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Abstract

Subset selection in multiple linear regression aims to choose a subset of candidate explanatory variables
that tradeoff fitting error (explanatory power) and model complexity (number of variables selected).
We build mathematical programming models for regression subset selection based on mean square and
absolute errors, and minimal-redundancy-maximal-relevance criteria. The proposed models are tested
using a linear-program-based branch-and-bound algorithm with tailored valid inequalities and big M
values and are compared against the algorithms in the literature. For high dimensional cases, an iterative
heuristic algorithm is proposed based on the mathematical programming models and a core set concept,
and a randomized version of the algorithm is derived to guarantee convergence to the global optimum.
From the computational experiments, we find that our models quickly find a quality solution while the
rest of the time is spent to prove optimality; the iterative algorithms find solutions in a relatively short
time and are competitive compared to state-of-the-art algorithms; using ad-hoc big M values is not
recommended.

Keywords. multiple linear regression, subset selection, high dimensional data, mathematical programming,
linearization

1 Introduction

The multiple linear regression problem is a statistical methodology for predicting values of response (de-
pendent) variables from a set of multiple explanatory (independent) variables by investigating the linear
relationships among the variables. Given a fixed set of explanatory variables, the coefficients of the multiple
linear regression model are estimated by minimizing the fitting error, where the standard setting uses the
sum of squared errors (SSE) for measuring the fitting error. The subset selection problem, also referred to
as variable selection or model selection, for multiple linear regression is to choose a subset of explanatory
variables to build an efficient linear regression model. In detail, given a dataset with n observations and m
explanatory variables, a subset of explanatory variables are used to build a regression model, where the goal
is to decrease p, the number of explanatory variables in the model, as much as possible while maintaining
error loss relatively small.

For selecting a subset of explanatory variables, an objective function is defined to measure the efficiency
of the model [24]; the objective function is typically defined based on balancing the number of explanatory
variables used and the fitting error. Criteria such as the mean square error (MSE), mean absolute error
(MAE), adjusted r2, Mallow’s Cp, etc, are in this category for multiple linear regression and there are several
works studying the L0-norm-based feature selection in non-regression context [6, 30, 40]. There also exist
objective functions balancing the magnitudes of the regression coefficients and the fitting errors; instead of
the number of explanatory variables (non-zero coefficients), the regression coefficients are directly penalized.
Among many variants in this category, ridge [19] and least absolute shrinkage and selection operator (LASSO)
[38] regressions are the most popular models in multiple linear regression and there also exist recent papers
studying the L1-norm-based feature selection in a non-regression context [13, 20]. There also exist objective
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functions to select variables based on mutual information gain instead of minimizing fitting error. One of the
popular criteria in this category is minimum-redundancy-maximum-relevance (mRMR) proposed by Ding
and Peng [12] and Peng et al. [28]. Among various objective functions for selecting a subset, we focus on
MAE, MSE, and mRMR in this paper.

Given a subset of explanatory variables, if SSE is minimized, an explicit formula is available for obtaining
the optimal coefficients. On the other hand, when minimizing the sum of absolute errors (SAE), there is no
explicit formula available. For this case, a linear program (LP) [9, 39] or iterative reweighted least squares
algorithm [34] can be used to build the regression model.

When subset selection is required, algorithms for optimizing MSE have already been extensively studied.
Among them, stepwise-type algorithms are frequently used in practice due to their computational simplicity
and efficiency. An exact algorithm is to enumerate all possible regression models, but the computational cost
is excessive. To overcome this computational difficulty, Furnival and Wilson [14] proposed a branch-and-
bound algorithm, called leaps-and-bound, to find the best subset for MSE without enumerating all possible
subsets. Miyashiro and Takano [26] proposed a mathematical programming model to maximize adjust r2,
which is equivalent to minimizing MSE. Given a fixed p, Bertsimas et al. [3] and Bertsimas and King [4]
minimize SSE using mixed integer program (MIP)-based algorithms. For subset selection of least absolute
deviation regression, Konno and Yamamoto [21] presented an MIP to optimize SAE given fixed p. Bertsimas
et al. [3] proposed an MIP based algorithm for optimizing SSE and SAE given fixed p. A discrete first
order method is proposed and used to warmstart the MIP formulation, which is formulated based on specially
ordered sets [1], to avoid the use of big M. Bertsimas and King [4] proposed an MIP based algorithm for
minimizing penalized SSE given fixed p. For a detailed review of algorithms for subset selection, the reader
is referred to Miller [25].

Selecting a subset of explanatory variables with non-zero regression coefficients can be compared to general
optimization problems with cardinality constraints. While several early works (e.g., Bienstock [5], de Farias
and Nemhauser [10]) study general optimization problems with cardinality constraints from the optimization
theoretical point of view, recent work directly focuses on mathematical programming models for regression
subset selection. The MIP models in Bertsimas and Shioda [2], Bertsimas et al. [3], and Konno and Yamamoto
[21] assume fixed p and the cardinality constraint is explicit in the models. Their models are distinguished
by the objective functions and how they formulate subset selection; Konno and Yamamoto [21] optimized
SAE by introducing binary variables, Bertsimas et al. [3] optimized SSE or SAE, Bertsimas and Shioda
[2] optimized SSE without introducing binary variables. In contrast to the models in Bertsimas and Shioda
[2], Bertsimas et al. [3], and Konno and Yamamoto [21], we optimize MSE and MAE without fixing p.
Miyashiro and Takano [26] proposed a mathematical programming model to maximize adjust r2, which is
equivalent to minimize MSE. To the best of authors’ knowledge, the model in Miyashiro and Takano [26]
is the only mathematical programming model that directly maximizes adjust r2 (equivalent to minimizing
MSE), but there is no mathematical programming model directly optimizing mRMR or MAE.

Basic multiple linear regression analyses require a data matrix with n > m + 1; i.e., the number of
observations must be greater than the number of explanatory variables plus one. Otherwise, the n − 1
linearly independent explanatory variables and one intercept variable yield a regression model with zero
fitting error given a full rank data matrix. However, in practice, it is not that uncommon to have a data set
with m ≥ n − 1. For example, gene information has many attributes (explanatory variables) while only a
few observations are usually available. In statistics, subset selection when m ≥ n is called high dimensional
variable selection. Note that, if each row of the data matrix is an observation, the length of the data matrix
is greater than the width when m < n, and the width of the data matrix is greater when m ≥ n. Based
on the shape of the data matrix, we hereafter refer to the cases m < n and m ≥ n as thin and fat cases,
respectively. For the fat case, Stodden [36] studied how model selection algorithms behave with a different
but fixed ratio of mn . Candes and Tao [7] proposed an l1-regularized problem based approach, called Dantzig
selector. However, their approach does not explicitly take into account the number of selected variables,
which is different from our models.

Our contributions are as follows.

1. We present mathematical programs for the subset selection problem that directly minimize the pop-
ular criteria MAE and MSE. To the best of our knowledge, the proposed model for MAE is the
first mathematical programming formulation that directly optimizes MAE. The proposed model for
MSE is an equivalent model to the model of Miyashiro and Takano [26] which optimizes a different
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objective function; our work has been conducted simultaneously with Miyashiro and Takano [26]. In
the computational experiment, we observe that the proposed models quickly return a good candidate
solution when solved by a commercial optimization solver.

2. We propose the first mathematical programming formulation that directly optimizes mRMR for the
thin case, which also can be used for the fat case with trivial modifications. A modified version of the
model is also proposed to balance mRMR and the fitting errors. The modified version integrates the
mRMR-based feature selection and regression model building steps to obtain a model considering both
mRMR and the error-based objective MAE or MSE. The computational experiment shows that the
proposed models return different subsets from the MSE, MAE, and mRMR models in a relatively
short computational time.

3. For the proposed mathematical programs for MSE and MAE, we propose exact and heuristic ap-
proaches to obtain big M values. The performances of the models with different big M values are
discussed in the computational experiment. Further, the performance of the proposed big M-based
formulations are compared with alternative mathematical programming formulations and implemen-
tations.

4. To overcome computational difficulties of the MIP models, we propose an iterative algorithm that
gives a quality solution in a relatively short computational time for the fat case. We show that the
algorithm yields a local optimal and we propose a randomized version of the algorithm to guarantee
convergence to the global optimum. The computational experiment shows that the proposed algorithms
are competitive compared to the state-of-the-art benchmarks.

The structure of the paper is as follows. In Section 2, the mathematical models for the thin case with MAE,
MSE, and mRMR objectives are derived. In Section 3, for the fat case, we propose the iterative algorithm
based on the mathematical models and derive the randomized version of the algorithm with the convergence
result. Finally, we present computational experiments in Section 4.

2 Mathematical Models for Thin Case (m < n)

In this section, we derive mathematical programs to directly optimize MAE, MSE, and mRMR for the thin
case. Throughout this paper, the following notation is used:

n : number of observations
m : number of explanatory variables
p : number of selected explanatory variables
I = {1, · · · , n}: index set of observations
J = {1, · · · ,m}: index set of explanatory variables
a = [aij ] ∈ Rn×m: data matrix corresponding to the independent variables
aj ∈ Rn: independent variable j ∈ J
b = [bi] ∈ Rn: data vector corresponding to the dependent variable.
ρjk: absolute sample correlation between explanatory variables j, k ∈ J
ρj : absolute sample correlation between explanatory variable j ∈ J and the dependent variable

For all mathematical models derived, the following decision variables are used:

xj : coefficient of the jth explanatory variable, j ∈ J
y: intercept of the regression model
ti: error term of the ith observation, i ∈ I

zj =

{
1 if explanatory variable xj is included in the model
0 otherwise

, j ∈ J .

Note that the multiple linear regression model takes the form bi = y +
∑
j∈J aijxj + ti, for i ∈ I. Let us

consider a regression model with fixed subset Ŝ of J . For the minimization of SAE given Ŝ, the following
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LP gives optimal regression coefficients:

min
∑
i∈I

t̄i s.t. ti =
∑
j∈Ŝ

aijxj + y − bi,−t̄i ≤ ti ≤ t̄i, t̄i ≥ 0, i ∈ I. (1)

We later use this LP as a subroutine when we need to construct a regression model that minimizes SAE
given a fixed subset. Next we review the three subset selection criteria, which we use for the mathematical
programming formulations. In the followings, SSE and SAE are taken with respect to a subset Ŝ of
cardinality p.

1. MSE is one of the most popular criteria [37], defined as SSE
n−1−p . By minimizing MSE, we can

balance SSE and p because SSE decreases in p. Another popular criteria is adjusted r2, defined as
r2
a = 1 − MSE

SST/(n−1) , where SST is the total sum of squares. Because SST
n−1 is a constant, maximizing

r2
a is equivalent to minimizing MSE. This explains the equivalence of our model and Miyashiro and

Takano [26].

2. MAE, defined as SAE
n−1−p , is an alternative to MSE for reducing the effect of outliers. Note that MAE

is defined similarly to MSE, where SAE is used instead of SSE. MAE is a widely used criterion that
is less sensitive to outliers and can also be used as an evaluation criterion when the model is fitted using
squared errors [17]. For a detailed discussion of MAE compared with MSE, the reader is referred to
Chai and Draxler [8] and Willmott and Matsuura [41]

3. mRMR, defined as 1
p

∑
j∈Ŝ ρj −

1
p2

∑
j,k∈Ŝ ρjk, is frequently used to select features prior to running

statistical models. By maximizing mRMR, the highly correlated explanatory variables to the dependent
variable are selected (the first term in the expression) while maintaining the variables that are far away
from each other (the second term in the expression).

We remark that the first objective is one of the most popular criteria practitioners use for selecting a subset,
the second objective is a variant of the first, which is mainly concerned with reducing the effect of outliers,
and the last objective is useful for screening the explanatory variables in an extreme fat case data.

2.1 Mean Square and Absolute Errors

In this section, we derive mathematical programs for MAE and MSE in Sections 2.1.1 and 2.1.2. For the
proposed models, valid values for big M, which is an upper bound for the regression coefficients, and valid
inequalities are derived in Sections 2.1.3 and 2.1.4.

2.1.1 Minimization of MAE

Observe that MAE = SAE
n−1−p has two terms (SAE and p) that can be written as SAE =

∑
i∈I |ti| and

p =
∑
j∈J zj in terms of the decision variables. Using these expressions, we can write a mathematical model

min
∑

i∈I |ti|
n−1−

∑
j∈J zj

(2a)

s.t. ti =
∑
j∈J aijxj + y − bi, i ∈ I, (2b)

−Mzj ≤ xj ≤Mzj , j ∈ J, (2c)

zj ∈ {0, 1}, t, x, y unconstrained. (2d)

to minimize MAE. Observe that, if we add constraint
∑
j∈J zj = p to (2) given fixed p, we obtain an easier

problem, which is equivalent to the model presented by Konno and Yamamoto [21] since the denominator
of the objective becomes constant. By adding cardinality constraint with fixed p and by replacing (2c) with
specially order sets based constraints, we obtain the model presented in Bertsimas et al. [3]. The remaining
development is completely different from the work in Konno and Yamamoto [21] or Bertsimas et al. [3] and
thus new. This is due to the fact that they assume fixed p which implies that model (2) is already linear. In
our case we have to linearize this model which is not a trivial task. Note that (2) is a Mixed Integer Linear
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Fraction Programming (MIFLP). There are numerous studies discussing solving MIFLP problems in the
original form without linearizing the objective function, which is different from our approach linearizing the
objective function to reformulate (2). The readers are referred to Schaible and Shi [32] and Stancu-Minasian
[33] for detailed reviews of fractional programming literature.

Note that M in (2c) is a constant, which is an upper bound for xj ’s, that we have not yet specified.
Konno and Yamamoto [21] set an arbitrary large value for M in their study. For now, let us assume that a
proper value of M is given (we derive a valid value for M in a later section). To linearize nonlinear objective
(2a), we introduce

u =

∑
i∈I |ti|

n− 1−
∑
j∈J zj

. (3)

Observe that u explicitly represents MAE. We linearize objective function (2a) by adding (3) as a constraint
and setting u as the objective function. Then, (2) can be rewritten as

min u (4a)

s.t.
∑
i∈I |ti| = (n− 1)u− u

∑
j∈J zj , (4b)

ti =
∑
j∈J aijxj + y − bi, i ∈ I, (4c)

−Mzj ≤ xj ≤Mzj , j ∈ J, (4d)

u ≥ 0, zj ∈ {0, 1}, t, x, y unconstrained. (4e)

In order to linearize nonlinear constraint (4b), we introduce vj = uzj , j ∈ J , which can be linearized using
standard linearization techniques . Using a linearization technique [15] with proper settings, we obtain

min u (5a)

s.t.
∑
i∈I |ti| = (n− 1)u−

∑
j∈J vj (5b)

ti =
∑
j∈J ajixj + y − bi, i ∈ I, (5c)

−Mzj ≤ xj ≤Mzj , j ∈ J, (5d)

vj ≤ u, j ∈ J, (5e)

u−M(1− zj) ≤ vj ≤Mzj , j ∈ J, (5f)

vj ≥ 0, u ≥ 0, zj ∈ {0, 1}, t, x, y unconstrained. (5g)

Observe that we use M again in (5f) and a proper value for M is derived in a later section. We conclude
that (5) is a valid formulation for (4) by the following proposition.

Proposition 1. An optimal solution to model (4) and an optimal solution to model (5) have the same
objective function value.

The proof is given in Appendix A and is based on the fact that feasible solutions to (4) and (5) map to
each other. Observe that the signs of t, x, and y in (5) are not restricted. In order to make all variables
non-negative, we introduce x+

j , x−j , y+ and y−, in which xj = x+
j − x

−
j and y = y+ − y−. We also use t+i

and t−i , where ti = t+i − t
−
i , to replace the absolute value function in (5b). Finally, we obtain mixed integer

program (6) for regression subset selection with the MAE objective.

min u (6a)

s.t.
∑n
i=1(t+i + t−i ) = (n− 1)u−

∑
j∈J vj , (6b)

t+i − t
−
i =

∑m
j=1 aij(x

+
j − x

−
j ) + (y+ − y−)− bi, i ∈ I, (6c)

x+
j ≤Mzj , j ∈ J, (6d)

x−j ≤Mzj , j ∈ J, (6e)

vj ≤ u, j ∈ J, (6f)

u−M(1− zj) ≤ vj ≤Mzj , j ∈ J, (6g)
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x+
j ≥ 0, x−j ≥ 0, y+ ≥ 0, y− ≥ 0, vj ≥ 0, u ≥ 0, t+i ≥ 0, t−i ≥ 0, zj ∈ {0, 1} (6h)

It is known that either t+i or t−i is equal to 0 if
∑
i∈I |ti| is minimized in the objective function. However,

since
∑
i∈I |ti| is not directly minimized and binary variables are present in (5), we give the following

proposition in order to make sure that (5) is equivalent to (6), where the proof is given in Appendix A.

Proposition 2. An optimal solution to (6) must have either t+i = 0 or t−i = 0 for every i ∈ I.

By Proposition 2, it is easy to see that (6b) is equivalent to (5b). Therefore, (6) correctly solves (2). A
final remark regarding the model is with regard to the dimension of the formulation. For a dataset with m
candidate explanatory variables and n observations, formulation (6) has 2n+ 4m+ 3 variables (including m
binary variables) and n+ 5m+ 1 constraints (excluding non-negativity constraints).

2.1.2 Minimization of MSE

In this section, we derive a quadratically constrained mixed integer programming model based on the results
in Section 2.1.1, which gives an equivalent formulation to Miyashiro and Takano [26] as maximizing adjusted
r2 is equivalent to minimizing MSE. Our work has been conducted simultaneously with Miyashiro and
Takano [26].

Observe that the only difference between MSE and MAE is that MSE has
∑n
i=1 t

2
i , whereas MAE

has
∑n
i=1 |ti|. Hence, the left hand side of (6b) is replaced by

∑n
i=1(t+i − t

−
i )2. Also, in order to make the

constraint convex, we use inequality instead of equality. Hence, we use∑
i∈I

(t+i − t
−
i )2 ≤ (n− 1)u−

∑
j∈J

vj (7)

instead of (6b). Finally, the mixed integer quadratically constrained program with the convex relaxation
reads

min{u|(7), (6c)− (6h)}. (8)

Note that we use inequality in (7) to have the convex constraint, but u is correctly defined only when (7) is
at equality. Hence, we need the following proposition.

Proposition 3. An optimal solution to (8) must satisfy (7) at equality.

The proof is given in Appendix A. By Proposition 3, we know that (7) is satisfied at equality at an
optimal solution, hence (8) correctly solves the problem.

2.1.3 Big M for xj’s and vj’s

Deriving a tight and valid value of M in (6) and (8) is crucial for two reasons. For optimality, too small
values cannot guarantee optimality even when the optimization model is solved optimally. For computation,
a large value of M causes numerical instability and slows down the branch-and-bound algorithm. Recall that
we assume that a valid value of M is given for the formulations (6) and (8) and that the same notation M is
used for both xj ’s and vj ’s. However, xj ’s and vj ’s are often in different magnitudes. Hence, it is necessary
to derive distinct and valid values of M for xj ’s and vj ’s.

In this section, we derive valid values of M for xj ’s and vj ’s in (6). The result also holds for (8) with
trivial modifications. Among the two exact approaches proposed in this section, the first approach is based
on the logic similar to Bertsimas et al. [3], where a similar approach is provided without a validity check
for a different problem minimizing SSE given a fixed p. We also provide a computationally faster procedure
for M for xj ’s in (8) as an alternative. Both of the M values do not cause any numerical problems in our
experiments.

First, let us consider M for vj ’s. Observe that a valid M for vj must be greater than all possible values
for u. However, it is generally better to have tight upper bounds. Hence, we use maem, the mean absolute
error of an optimal regression model with all m explanatory variables, as upper bounds. We set

M := maem (9)
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for every vj in (6). Note that (9) can be calculated by LP formulation (1) in polynomial time. By using
the M value in (9), we treat regression models that have worse objective function values than maem as
infeasible.

Next, let us consider M for xj ’s in (6) for MAE. We start with the following assumption.

Assumption 1. Dataset {b, a1, a2, · · · , am} is linearly independent.

This assumption implies that there is no regression model with total error equal to 0 among all possible
subsets of the m explanatory variables. This is a mild assumption because, in practice, we typically have a
dataset with structural and random noises and it is unlikely to have zero error.

In order to find a valid value of M for xj ’s in (6), we formulate an LP. Let µ be the decision variable

having the role of M . Let b̄ =
∑

i∈I bi
n and Tmax =

∑
i∈I |bi − b̄| be the average of bi’s and the maximum

total error bound allowed, respectively. Any attractive regression model should have the total error less than
Tmax in order to justify the effort of building a regression model, because SAE > Tmax with p > 0 gives an
automatically worse objective function value than the model with no explanatory variable. This requirement
is written as

∑
i∈I(t

+
i + t−i ) ≤ Tmax. Because for now we are only concerned with feasibility, we can ignore

u and all related constraints and variables (6b), (6f), zj ’s, and vj ’s. Then, we have the following feasibility
set: ∑

i∈I(t
+
i + t−i ) ≤ Tmax, (10a)

t+i − t
−
i =

∑
j∈J aij(x

+
j − x

−
j ) + (y+ − y−)− bi, i ∈ I, (10b)

x+
j ≤ µ, j ∈ J, (10c)

x−j ≤ µ, j ∈ J, (10d)

µ ≥ 0, x+
j ≥ 0, x−j ≥ 0, y+ ≥ 0, y− ≥ 0, t+i ≥ 0, t−i ≥ 0. (10e)

For notational convenience, let Y = (x+, x−, y+, y−, t+, t−, µ) be a vector in (10).
Next, let us try to increase x+

k to its maximum value. For a fixed 0 < ε < 1, we define the objective as

max x+
k − εµ.

With the second term, we force µ to be the maximum value we need, yet not preventing a further increment
of x+

k . From the linear program

max{x+
k − εµ|(10a)-(10e), x−k = 0}, (11)

we obtain M̂+
k , a candidate for M , from the value of µ of an optimal solution solution to (11). Similarly, M̂−k

is obtained from max{x−k − εµ|(10a)-(10e), x+
k = 0}. Then the maximum value for explanatory variable xk

can be obtained by setting M̂k = max{M̂+
k , M̂

−
k }. Finally, considering all explanatory variables, we define

M̂ as
M̂ = max

j∈J
M̂j . (12)

Before we proceed, we first need to make sure that (11) is not unbounded so that the values are well defined.

Proposition 4. Linear program (11) is bounded.

Lemma 1. Let M̂ be the value obtained from (12) and Ȳ = (x̄+, x̄−, ȳ+, ȳ−, v̄j , ū, t̄
+, t̄−, z̄) be a feasible

solution of (6) with M̂ and SAE less than or equal to Tmax. Then, Ỹ = (x̄+, x̄−, ȳ+, ȳ−, t̄+, t̄−, M̂) is a
feasible solution for (10).

The proofs are given in Appendix A. Note that Lemma 1 implies that (10) covers all possible values of
x+
j and x−j of (6) with the maximum total error bound Tmax. Note also that M̂ in (12) is the maximum

value out of all possible values of x+
j and x−j that (10) covers.

Proposition 5. For all regression models with SAE less than or equal to Tmax, M̂ in (12) is a valid upper
bound for x+

j ’s and x−j ’s in (6).
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Proof. For a contradiction, suppose that M̂ is not a valid upper bound for xj ’s in (6). That is, there

exists a regression model (x̄+, x̄−, ȳ+, ȳ−) with total error less than Tmax but x̄+
q > M̂ , in which x̄+

q is the
coefficient for explanatory variable q. However, by Lemma 1, we must have a corresponding feasible solution
Ȳ = (x̄+, x̄−, ȳ+, ȳ−, t̄+, t̄−, M̂) for (10) with x̄+

q > M̂ . Note that Ȳ must satisfy x̄+
q ≤ M+

q from (10d).

Then, M+
q ≥ x+

q > M̂ implies M+
q > M̂ . This contradicts definition (12). A similar argument holds if

x̄−q > M̂ . Hence, M̂ is a valid upper bound.

Observe that a similar approach can be used to derive a valid value of M for xj ’s in (8) for MSE. Cal-
culating a valid value M for xj ’s in (6) and (8) consists of solving 2m LPs and 2m quadratically constrained
convex quadratic programs (QCP). Hence, we conclude that it can be obtained in polynomial time.

To reduce the computational time for the big M calculation, we present an alternative approach that
works for MSE models from a different perspective.

Note that we can obtain coefficients of an optimal regression model that minimizes SSE over all ex-
planatory variables as x̂ = (a>a)−1a>b, where a ∈ Rn×m and b ∈ Rn×1. This is equivalent to solving
Ax = B, with A = a>a ∈ Rm×m and B = a>b ∈ Rm×1. For a rational number r = rnum

rden
(rnum ∈ Z,

rden ∈ N, rnum and rden relative prime numbers), a rational vector B = [β1, · · · , βm], and a rational matrix
A = [αij ]i=1,··· ,m,j=1,··· ,m, let us define

size(r) := 1 + dlog2(|rnum|+ 1)e+ dlog2(rden + 1)e
size(B) :=

∑
i∈Isize(βi)

size(A) := m2 +
∑
i∈I
∑
j∈Jsize(αij).

Note that it is known that the size of solutions to Ax = B are bounded. Here, we extend this over the
various submatrices of A and subvectors of B encountered in our subset selection procedure. The following
proposition provides a valid value of M .

Proposition 6. Value M := 2size(A)size(B)−1 is a valid upper bound for x+
j ’s and x−j ’s in (8).

The proof of Proposition 6 and the omitted detailed derivations are available in Section 1 of the online
supplement. Observe that size(A) and size(B) can be calculated in polynomial time. In detail, it takes
O(mnh) in which h is the number of digits of the largest absolute number among all elements of A and B to
compute M . Recall that the previous approach requires to solve 2m QCPs. Hence, we have an alternative
polynomial time big M calculation procedure which is computationally more efficient than the one provided
by Proposition 5. However, this procedure yields a larger value of M .

2.1.4 Valid Inequalities

To accelerate the computation, we apply several valid inequalities at the root node of the branch and bound
algorithm. Let uheur and ū be the objective function values of a heuristic and the LP relaxation, respectively.
Let β0

j (β1
j ) be the objective function value of the LP relaxation of (6) after fixing zj = 0 (zj = 1). Then,

the following inequalities are valid for (6):

vj ≤ uheurzj , j ∈ J (13)

vj ≥ ūzj , j ∈ J (14)

u ≥ (β1
j − β0

j )zj + β0
j j ∈ J (15)

We do not provide proofs as it is trivial to establish their validity. In Figure 1, we illustrate the valid
inequalities. In both figures, the dark and light-shaded areas represent the feasible and infeasible region,
respectively, after applying the valid inequalities, whereas the combined area represents the original feasible
region of the formulation. In Figure 1(a), valid inequalities (13) and (14) are presented. Value u∗ is the
optimal objective function value. In Figure 1(b), ū is the objective function value of the LP relaxation with
non-integer zj before applying (15). The black circles represent (0, β0

j ) and (1, β1
j ) that give valid lower

bounds for any integer solution. Observe that integer feasible solutions (empty rectangles in the figure) are
in the feasible region after applying the valid inequality.

Note that (13) can be generated given an objective value of any feasible solution. For MAE, generating
(14) and (15) requires solving one LP and two LPs, respectively, for each j ∈ J . For MSE, generating (14)
and (15) requires solving one QCP and two QCPs, respectively.
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Figure 1: Illustration of the valid inequalities

2.2 Minimal-Redundancy-Maximal-Relevance

Given a and b, the mRMR criterion can be modeled as the following optimization problem:

max
S

1

|S|
∑
j∈S

ρj −
1

|S|2
∑
j,k∈S

ρjk. (16)

In this section, we assume that we want to find set S with |S| = p, which is different from the previous
treatment, i.e., here p is fixed. Using the binary variables zj previously defined, (16) can be written as

max
{p∑j∈J ρjzj −

∑
j,k∈J ρjkzjzk

p2

∣∣∣z ∈ {0, 1}m,∑
j∈J

zj = p
}
. (17)

By introducing new variable zjk ≡ zjzk, (17) can be converted into an MIP as follows.

max
∑
j∈J

ρj
p
zj −

∑
j,k∈J

ρjk
p2
zjk (18a)

s.t. zjk ≥ zj + zk − 1 j, k ∈ J (18b)∑
j∈J

zj = p (18c)

zj ∈ {0, 1}, zjk ∈ {0, 1} (18d)

This model is the first approach in the literature that guarantees global optimality for the mRMR criterion.
However, if (18) is solved approximately, it may not improve the solution of the greedy algorithm, which is
often used in practice. Further, if the selected features by (18) will be used for building a regression model,
it is beneficial to consider the regression fit simultaneously by integrating the mRMR and the traditional
error-based objectives. Hence, we propose to combine (6) and (18) to optimizing SAE while guaranteeing
good objective function values for (18).

Let Ω̄ be the optimal objective function value of (16). With a fractional parameter λ ∈ [0, 1], the following
constraint guarantees at most λ

100% away from Ω̄:

1
|S|
∑
j∈S ρj −

1
|S|2

∑
j,k∈S ρjk ≥ Ω̄− sign(Ω̄) · λ · |Ω̄|.

Regardless of the sign of Ω̄, the lower bound is smaller than Ω̄ by λ · Ω̄. Combining the constraint with the
MIP model optimizing SAE, the following MIP is obtained.

min
∑
i∈I t

+
i + t−i (19a)
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s.t. t+i − t
−
i =

∑
j∈J aij(x

+
j − x

−
j ) + y+ − y− − bi, i ∈ I, (19b)

−Mzj ≤ xj ≤Mzj , j ∈ J, (19c)∑
j∈J

ρj
p
zj −

∑
j,k∈J

ρjk
p2
zjk ≥ Ω̄− sign(Ω̄) · λ · |Ω̄|, (19d)

zjk ≥ zj + zk − 1, j, k ∈ J, (19e)∑
j∈J

zj = p, (19f)

zj ∈ {0, 1}, zjk ∈ {0, 1}, t+i , t
−
i , x

+
j , x

−
j , y

+, y− ≥ 0 (19g)

Note that (19) combines the mRMR feature selection and regression model building procedures, whereas
(18) provides pre-screening of explanatory variables for the regression model building step in the next stage.
A similar model for SSE can be obtained by replacing (19a) by

∑
i∈I(t

+
i + t−i )2, and (19) can be used for

the fat case with trivial modifications.

3 Mathematical Models and Algorithms for Fat Case (m ≥ n)

Let us consider the fat case, in which there are more explanatory variables than observations. A natural
extension of (6) or (8) for the fat case is to add cardinality constraint

∑
j∈J zj ≤ n − 2. This constraint

successfully selects a proper number of explanatory variables in many cases, however, we found that the
objective MAE and MSE for the fat case could be problematic in some cases; the penalty on the number
of explanatory variables by MAE or MSE is too weak (or strong) and the optimal solution selects n − 2
(or 0) explanatory variables.

Minimizing SAE can be thought as approximating the right-hand side (dependent values b) using a
combination of columns (explanatory variables). If we have more linearly independent explanatory variables
than observations, we can always build a regression model with SAE = 0. Hence, if we allow p ≥ n−1, then
the MAE objective is not useful. Further, due to the definition of MAE = SAE

n−1−p , we must have p ≤ n− 2
in order to make the numerator positive.

Suppose we can select n− 2 explanatory variables out of m (m > n− 2) candidate explanatory variables.
Because SAE converges to zero as we add more linearly independent explanatory variables and because
p = n − 2 and n are close to each other, SAE can be near zero. In this case, having n − 2 explanatory
variables might not be penalized enough by the definition of MAE. This could make p = n− 2 optimal and
it actually happens in many instances studied in Section 4, which is not a desired solution in most cases.
Hence, even with the restriction p ≤ n− 2, MAE may not be a useful criteria. In order to fix this issue, we
use a slightly modified objective function by additionally penalizing having too many explanatory variables
in the regression model:

MAEa =
SAE + p

n−2mae0

n− 1− p
, (20)

where mae0 =
∑

i∈I |bi−b̄|
n−1 is the mean absolute error of the optimal regression model with p = 0. Observe

that (20) is equivalent to MAE when p = 0. The penalty term increases as p increases. To optimize (20),
(6) can be modified as

min{u|(6b)− (6e), (6h),
∑
j∈J

zj ≤ n− 2, vj ≤ u+
mae0

n− 2
, u+

mae0

n− 2
−M(1− zj) ≤ vj ≤Mzj}. (21)

For the detailed derivations and modifications, please consider Appendix C. Finally, we remark that all
algorithms proposed in this section can also optimize MSE and MAE.

3.1 Core Set Algorithm

Observe that (21) might be difficult to solve optimally if the data is large because the number of binary
variables increases as m increases. To overcome this computational difficulty and get a quality solution
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quickly, we develop an iterative algorithm based on (21) and the popular core set concept in computer
science and operations research [16].

Let C be a subset of J such that |C| ≤ n− 2, with the cardinality of C defined by

Θ = |C| = min{nθ, n− 2}, (22)

where 0 < θ < 1 is a fraction that defines the target cardinality of C. We refer to C as the core set and
iteratively solve

min{u|(6b), (6c)− (6e), (6h), (28), (29)} (23)

that is obtained by dropping the cardinality constraint (30) from (21). Hereafter, we assume that (23) is
always solved with C instead of J , with |C| ≤ n− 2 being ensured by (22).

We present the algorithmic framework in Algorithm 1 based on the core set concept. Let S∗ be the
current best subset in Algorithm 1 with corresponding objective function value mae∗a. In Steps 1 - 3, we
initialize core set C with cardinality not exceeding Θ. We solve (23) with C in Step 5 and then update C in
Step 6. We iterate these steps until there is no improvement of the objective function value from a previous
iteration. We remark that the worst case run time of Algorithm 1 is exponential because (23) is solved by
the branch-and-bound algorithm, which has exponential worse case run time, in each iteration. However, in
practice, Algorithm 1 terminates quickly as shown in the experimental results in Section 4.

Algorithm 1 Core-Heuristic

Input: θ (core set factor)
1: Θ← min{nθ, n− 2}
2: (S∗,mae∗a)← stepwise heuristic with J and constraint p ≤ Θ
3: (S∗,mae∗a, C,Θ)← Update-Core-Set(S∗,mae∗a,Θ)
4: while objective function value is improving do
5: (S∗,mae∗a)← solve (23) with C
6: (S∗,mae∗a, C,Θ)← Update-Core-Set(S∗,mae∗a,Θ)
7: end while

We next explain how the core set is updated. The updating algorithm is presented in Algorithm 2. In
Steps 13 and 14, the idea is to keep the explanatory variables of the current best subset S∗ in the core set
and additionally selecting explanatory variables not in S∗ based on scores Tj . The score is defined based on
how much of the error could be reduced if we add explanatory variable j to the current best subset S∗. In
Steps 1 - 6, we calculate Tj ’s and Eja’s by checking neighboring subsets. Note that Tj ’s can be calculated by
LP formulation (1). In Steps 7 - 12, we update the current best subset S∗ if we found a better solution in
Steps 1 - 6. If S∗ is updated, we go to Step 1 and restart the algorithm with new S∗ and Θ. Observe that
Eja’s in Steps 1 - 3 are only for updating S∗ in Step 8, whereas Tj ’s and Eja’s in Steps 4 - 6 are also used to
define B in Step 13.

Let us define the neighborhood of set S̄ as

N (S̄) = {S ⊂ J ||S 4 S̄| ≤ 1}, (24)

where S 4 S̄ defines the symmetric difference of S and S̄. Through the following propositions, we show
that Algorithm 1 does not cycle and terminates with a local optimal solution based on the neighborhood
definition given in (24).

Proposition 7. Algorithm 1 does not cycle.

For the proof, see Lemmas OS 6 and 7 (OS stands for online supplement), which guarantee that there is no
cycle in the loop of Algorithm 1.

Proposition 8. Algorithm 1 gives a local optimum.

Proof. When Algorithm 1 terminates, all subsets that are neighbors to S∗, defined by (24), are evaluated
in Steps 1 - 6 of Algorithm 2, but there is no better solution than S∗. Hence, Algorithm 1 gives a local
optimum.
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Algorithm 2 Update-Core-Set

Input: S∗ (current best subset), mae∗a (current best obj value), Θ (core set cardinality)
Output: S∗ (new current best subset), mae∗a (new current best obj value), C (new core set), Θ (new core

set cardinality)

1: for j ∈ S∗ do

2: Tj ← SAE of subset S∗ \ {j}, Eja ←
Tj+

|S∗|−1
n−2 mae0

n−1−|S∗|−1

3: end for
4: for j ∈ J \ S∗ do

5: Tj ← SAE of subset S∗ ∪ {j}, Eja ←
Tj+

|S∗|+1
n−2 mae0

n−1−|S∗|+1

6: end for
7: if minj∈J E

j
a < mae∗a

8: update S∗ to Tj that gives minimum Eja value
9: if |S∗| = Θ then Θ← min{Θ + 1, n− 2}

10: mae∗a ← minj∈J E
j
a

11: go to Step 1
12: end if
13: B ← {Θ− |S∗| explanatory variables in J \ S∗ with smallest Tj ’s }
14: C ← S∗ ∪B

3.2 Randomized Core Set Algorithm

We also present a randomized version of Algorithm 1, which we call Core-Random. By constructing a core
set randomly and by executing the while loop of Algorithm 1 infinitely many times, we show that we can
find a global optimal solution with probability 1 when θ = 1. The randomized version of Update-Core-Set
is presented in Algorithm 3. Update-Core-Set-Random is similar to Update-Core-Set, with one difference.
Instead of the greedy approach in Steps 13-14 of Algorithm 2, we randomly choose n−2 explanatory variables
one-by-one without replacement based on a probability distribution.

Algorithm 3 Update-Core-Set-Random

Input: S∗ (current best subset), mae∗a (current best obj value), Θ (core set cardinality)
Output: S∗ (new current best subset), mae∗a (new current best obj value), C (new core set), Θ (new core

set cardinality)

1: Steps 1 - 12 of Algorithm 2
2: Define initial probabilities based on (26)
3: C ← ∅, J̄ ← J
4: while |C| < Θ
5: Select explanatory variable k in J̄ based on generalized Bernoulli with probabilities pj
6: C ← C ∪ {k}, J̄ ← J̄ \ {k}, renormalize pj ’s based on (27)
7: end-while

Let us next describe the initial probability distribution used in Step 2 of Algorithm 3. Let Uj be the
current best objective function value whenever explanatory variable j is included in the regression model.
We update Uj ’s at each iteration throughout the entire algorithm. In detail, we set Uj := mae∗a for j ∈ S∗
whenever current best objective function value mae∗a and subset S∗ are updated. In order to enhance the
local optimal search, we give a bonus to the columns currently in S∗ by setting weight wj = 0.5 if j ∈ S∗
and wj = 1 if j ∈ J \S∗. Observe that giving the same weight for all j ∈ J is equivalent to a random search.
On the other hand, if the weight for S∗ is much smaller (hence much greater selection probability) than the
weight for j ∈ J \ S∗, then we are likely to choose all variables in S∗, which is similar to Algorithm 2. By
means of a computational experiment, we found out that giving twice more weights for j ∈ J \S∗ compared
to j ∈ S∗ balances exploration and exploitation.
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We normalize Uj ’s and generate Ūj ’s so that minj∈J Ūj = −0.5 and maxj∈J Ūj = 0.5. In detail,

Ūj =
wjUj − Ūmid
Ūmax − Ūmin

for j ∈ J, (25)

where Ūmin = minj∈J wjUj , Ūmax = maxj∈J wjUj , and Ūmid = (Ūmax − Ūmin)/2. Finally, we define
probabilities using the exponential function

qj =
e−Ūj∑
j∈J e

−Ūj
for j ∈ J. (26)

From definitions (25) and (26), we have the following characteristic of qj ’s.

Lemma 2. We have
maxj∈J qj
minj∈J qj

≤ 2.72 for any values of qj ’s.

The proof is available in Section 2 of the online supplement. By the lemma, we know that the best explanatory
variables in S∗ has at most 2.72 times higher chance than the worst explanatory variable to be picked.
Observe that, once we select an explanatory variable in Step 5, we need to exclude the selected explanatory
variable in the next selection iteration. This can be thought as sampling without replacement. Let J̄ be
the set of explanatory variables that have not been selected in the previous selection iterations. In Step 6,
we add explanatory variable k to the core set and exclude it from J̄ . Then, we normalize the probability
distribution based on

qj =
qj∑
j∈J̄ qj

for j ∈ J̄ (27)

so that we only consider variables that have not been picked and the corresponding probabilities sum to 1.
It is easy to see that qj ’s after normalization by (27) are strictly greater than qj ’s before normalization. Note
also that qj ’s in (27) also satisfy Lemma 2, since in (27) we are multiplying them by a constant.

Now we are ready to show that Core-Random with θ = 1 finds a global optimal solution with probability
1. We first precisely review how Core-Random proceeds and define a detailed notation for the analysis. In
iteration t, the following steps are performed.

1. We solve (23) with C in Core-Random and obtain S∗. Note that the core set is from the previous
iteration. Hence, we denote the core set as Ct−1.

2. In Step 1 of Update-Core-Set-Random, we check the neighborhood of S∗ obtained from (23) and update
S∗ if applicable.

3. After Step 1 of Update-Core-Set-Random, we obtain qj ’s from (26). Let q
(t)
j be the initial probability,

defined in (26), used to construct the core set in iteration t.

4. In Step 2 of Update-Core-Set-Random, we construct core set Ct based on q
(t)
j ’s. Note that Ct is used

in iteration t+ 1 to solve (23).

Let Sopt be an optimal subset. If Sopt ⊂ Ct for a core set Ct, then we can find a global optimal solution by
solving (23) in iteration t+ 1. We first derive a lower bound of the probability for the event Sopt ⊂ Ct given
any previous iterations.

Lemma 3. Let Ht−1 be the set that includes any collection of the events that have happened prior to
iteration t. Then, we have

P [Sopt ⊂ Ct|Ht−1] ≥
( 1

1 + 2.72(m− 1)

)Θ

.

The proof is available in Section 2 of the online supplement. Let maeopta be the optimal objective function
value of (21) over the entire J and maea(t) be the objective function value of the current best solution in
iteration t of Core-Random, i.e., the objective value with respect to S∗. Let At be the event {Sopt 6⊂ Ct} in
iteration t. For notational convenience, let

ϕ =
(

1
1+2.72(m−1)

)Θ
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be the lower bound for P [Sopt ⊂ Ct|Ht−1] from Lemma 3. Based on Lemma 3, we present the following
lemmas with the proofs given in Section 2 of the online supplement.

Lemma 4. We have P
[⋂t

k=1Ak

]
≤ (1− ϕ)t for any iteration t.

Lemma 5. We have P
[
maea(t) = maeopta

]
≥ 1− (1− ϕ)t for any iteration t.

Finally, we show that Core-Random finds a global optimal solution with probability 1 as iterations
continue infinitely.

Proposition 9. We have limt→∞ P
[
maea(t) = maeopta

]
= 1.

Proof. Since 0 < ϕ < 1 by the definition of ϕ, we have limt→∞(1− ϕ)t = 0. Using this result, we derive

limt→∞ P
[
maea(t) = maeopta

]
≥ limt→∞ 1− (1− ϕ)t = 1.

Hence, we obtain limt→∞ P
[
maea(t) = maeopta

]
= 1.

4 Computational Experiment

In this section, we present computational experiments for all proposed models and algorithms in Section 2
and Section 3. They are compared to benchmark algorithms and to each other. To test the performance, we
use randomly generated instances and a personal computer with 8 GB RAM and Intel Core i7 (2.40 GHz
dual core) was used for the experiments in Section 4.3 and a server with Xeon 2.8 GHz CPU and 15GB
RAM is used for all other experiments. All models and algorithms are implemented in C# and CPLEX.

4.1 Experimental Design

We obtained many publicly available instances for the subset selection problem. The majority of them were
very easy to solve by both our models and stepwise heuristics. One of the purposes of this study is to
establish the solution quality of the stepwise heuristic versus the optimal solutions. For these reasons, we
generated synthetic instances. Furthermore, we want a large variety of instances with regard to the size and
by randomly generating instances, we were also able to achieve this.

For the thin case (m < n), we generate 26 sets of instances with {(m,n)|m ∈ {20, 30, 40, 50}, n ∈
{30, 40, · · · , 90, 100},m+10 ≤ n}, where each set contains 10 instances. Hence, we generate a total of 260 in-
stances. For the fat case (m > n), we generate 16 sets of instances with {(m,n)|m ∈ {100, 150, 200, 250}, n ∈
{30, 40, 50, 60}}, in which each set contains 10 instances. Hence, we generate a total of 160 instances. For
the detailed procedure used to generate the instances, see Section 8 of the online supplement.

To evaluate the performance of the proposed models and algorithms, we compare the improvement against
benchmark packages and algorithms. For the thin case with MAE objective and the fat case with both MAE
and MSE objectives, we implemented a stepwise algorithm in C#, due to the absence of a statistical package
that supports such cases. The algorithm is presented in Section 3 of the online supplement. For the thin case
with the MSE objective, we use the stepwise regression implementation of R statistics package Leaps by
Lumley [23], which supports the adjusted r2 objective. The leaps package also provides leaps-and-bound, an
exact algorithm proposed by Furnival and Wilson [14]. However, in Section 4 of the online supplement, we
show that its complexity is much worse than that of our algorithms. For the remaining portion of the paper,
we refer to all of the benchmark algorithms and packages as Step. For all proposed models and algorithms,
solutions obtained by Step are used as initial solutions. As we discussed in the introduction, enumerating
all possible subsets is not a computationally tractable approach and it is excluded in the comparison.

For comparison purposes, we use the following measures.

GAPIP : the optimality gap obtained by CPLEX within allowed time.
GAPsol: relative gap between a proposed model and heuristic defined as

obj of Step− obj of proposed model

obj of Step
.
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Solving the problems optimally for larger instances takes a long time as implied in Section 4 of the online
supplement. Hence, we set up time limits for CPLEX. We execute CPLEX with two settings for the time
limit: one hour and one minute. The computation time of the big M is less than 90 seconds for all instances
considered in the experiment, and we do not include this time within the one hour and one minute time
limits.

Finally, we summarize the algorithms used for the experiment in Table 1. Recall that we only presented
the result for big M with the MAE and MAEa objectives. For the MSE and MSEa objectives, we need a
trivial modification. In all algorithms and models, to obtain big M for vj , we use (9) and (31) for the thin
and fat cases, respectively. However, we have several options to obtain the big M value for xj : (12), (32),
and procedures in Appendix B. Among these, for the thin case and each iteration of CoreHeur and CoreRnd
for the fat case, we use (12) for big M for xj , because in each iteration we deal with the thin case. For the
fat case MIP models, we use (32) for big M for xj because other procedures give extremely large values of
M . These choices were made based on computational experiments in Section 5 of the online supplement.
The result in the online supplement implies that valid big M values guarantee optimality while they do not
significantly increase the execution times. Even if CPLEX terminates due to the time limit, the solution
qualities are similar regardless of the big M values as long as the big M values are valid.

Case Obj Notation Reference
Thin MAE MIP (6) with big M based on (9) and (12)
Thin MSE MIP (8) with big M based on (9) and (12)
Thin mRMR MIP (19), (19) does not have big M
Fat MAEa MIP (21) with big M based on (31) and (32)

CoreHeur Algorithm 1 with Algorithm 2 and big M based on (9) and (12) with J := C
CoreRnd Algorithm 1 with Algorithm 3 and big M based on (9) and (12) with J := C

Fat MSEa MIP (36) with big M based on (31) and (32)
CoreHeur Algorithm 1 with Algorithm 2 and big M based on (9) and (12) with J := C
CoreRnd Algorithm 1 with Algorithm 3 and big M based on (9) and (12) with J := C

Table 1: Summary of the algorithms

We also note here that big M-based formulations we propose outperform logical constraint-based formu-
lations that are available in CPLEX and most commercial optimization solvers. In Section 6 of the online
supplement, we compare the two approaches and observe that the proposed formulations terminate faster
with an optimal solution or terminate with a better solution (smaller optimality gap and smaller objective
function value) when one minute time limit is employed.

4.2 Study of Thin Case (m < n) for MAE and MSE Objectives

In Figure 2, we present the averages of GAPIP and GAPsol across the 26 instance sets. Each rectangle and
circle corresponds to the average GAPIP and GAPsol of 10 instances for the corresponding instance set. In
both plots on the left, x and y axes represent the instance sets and the gaps in percentage. For both MSE and
MAE, GAPIP is near zero for most of the instances with m ≤ 40. Hence, we get an optimal solution within
one hour. For larger instances, GAPIP is positive for both MSE and MAE and is larger for MSE. For
GAPsol, we observe common phenomena for both objectives. First, GAPsol tends to decrease as n increases
for each fixed m. Second, there are bumps for GAPsol at (m,n) ∈ {(20, 30), (30, 40), (40, 50), (50, 60)}. Fig-
ure 2 also implies that the performance of heuristics deteriorates when we have relatively fewer observations
given fixed m, because GAPsol is an underestimation of the gap between an optimal solution and heuristic
solution. We also plot the average execution time of (6) and (8). Observe that the average time of (6)
for large instances is still 500 seconds, while GAPIP is positive for the same instance sets. This implies
that most of the instances are solved optimally but we terminate with a relatively large GAPIP for a few
instances after one hour.

During the experiment, we observed that the improvement of the objective function value occurs in
the early stage of the branch-and-bound algorithm, and CPLEX tries to improve the lower bound for the
remaining time. In Figure 3, we present the primal and lower bounds for one instance over time. The circles
and empty circles are the primal and lower bounds over time, respectively, and the plain and dotted lines
represent the best primal and lower bounds obtained after one hour. Observe that there is no objective
function value improvement after 90 and 25 seconds for MSE and MAE, respectively. In other words, we
can obtain the same regression models obtained with one hour execution by terminating CPLEX after 90
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(b) GAPIP and GAPsol for MAE
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Figure 2: Average GAPIP , GAPsol, and execution time with the one hour time limit

seconds. From this observation, we conclude that good solutions are obtained in the early stages of the
branch-and-bound algorithm but improving the lower bound takes longer time. This observation gives the
justification to run CPLEX for a short time if we do not need to retain optimality.
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Figure 3: Convergence of primal and dual bounds for an instance with m = 50 and n = 100

For this reason, we execute CPLEX with the one minute time limit. In the experiment of Bertsimas et al.
[3], time limit of 500 seconds for MIP is considered as they solve different formulation with larger data. In
Figure 4, we present the averages of GAPIP and GAPsol over 26 instance sets, when CPLEX terminates
after one minute. We observe a similar shape for GAPsol except the gaps are slightly smaller. On the
other hand, GAPIP is positive for more instances compared to the previous result with the one hour time
limit. To compare the solution qualities precisely, in Figure 5, we plot the improvement of the primal and
lower bounds obtained by executing the extra 59 minutes, where the data points represent lost(GAPsol) =(
GAPsol with one hour - GAPsol with one minute

)
and lost(GAPIP ) =

(
GAPIP with one minute - GAPIP

with one hour
)
. Observe that the difference of GAPsol is less than 5% for all cases, whereas there exists

significant improvement of the lower bounds for m ≥ 30. Therefore, within one minute (excluding the big
M time), we can improve the stepwise heuristic solution up to 25% by solving the proposed MIP models.

4.3 Study of Thin Case (m < n) for Minimal-Redundancy-Maximal-Relevance

In this section, four MIP models are compared: MIPmrmr (MIP model (18) maximizing mRMR), MIPmae

(MIP model (6)), MIPsae (MIP model (6) with fixed p minimizing SAE), and MIPmix (MIP model (19)
minimizing SAE subject to the mRMR constraint).

In the first experiment, MIPmix is compared with MIPmrmr and MIPsae for fixed p values. In the sec-
ond experiment, MIPmix is compared with MIPmae. Let Smrmr, Ssae, and Smix be the selected subsets
of the corresponding MIP models, and let mRMRmrmr and mRMRmixed be the mRMR values for Smrmr

and Smix, respectively. Let SAEsae and SAEmixed be the SAE values for Ssae and Smix, respectively. To
compare the selected subset and solution quality of MIPmix against the other three models, the follow-
ing criteria are used. For each model ∈ {mrmr,mae, sae}, set difference between Smodel and Smixed,
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Figure 4: Average GAPIP and GAPsol with the one minute time limit
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Figure 5: Average improvement of GAPIP and GAPsol by the extra 59 minutes

SDmodel =
|(Smodel\Smix)|+|(Smix\Smodel)|

2 , is defined. For all four models, the relative mRMR gap from

MIPmrmr (GAPmrmr(%) =
mRMRmrmr−mRMRmodel

mRMRmrmr
× 100) and relative SAE gap from the optimal SAE

(GAPsae(%) =
SAEmodel−SAEsae

SAEsae
×100) are defined. Note that SDmrmr and SDsae measure how the selected

subset by MIPmix is different from the subsets obtained by MIPmrmr and MIPsae, respectively. To measure
the solution quality in terms of mRMR and SAE, GAPmrmr and GAPsae calculate the relative gaps of MIPmix

from the best mRMR (by MIPmrmr) and best SAE (by MIPsae), respectively.
To test the performances of the models with various parameters and sizes, we conduct experiments using

the thin case synthetic data from Section 4.2 and report the result in Section 9 of the online supplement.
The result of these experiments confirms that MIPmix effectively balances the mRMR and SAE objects. The
obtained subset by MIPmix is distinguished from the subsets of MIPmrmr and MIPsae. Check the online
supplement for the detailed results. For the experiments in this section, the MIP models are tested using
select real datasets from the UCI Machine Learning Repository [22] and Johnson [31]. Four regression
datasets (Bodyfat, Autompg, Housing, and Servo) are selected among the datasets with more than 100
observations and that are created for linear regression analysis. The original data are processed by deleting
rows with missing values and by creating dummy variables for categorical variables. All final variables are
standardized.

In the first experiment, for each dataset, parameters p ∈ {3, 4, 5, 6} and λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} are
used. In Figure 6, a heatmap is presented for the four performance measures SDmrmr, SDsae, GAPmrmr,
and GAPsae. The execution times are not reported because all models are solved optimally within a second.
The rows are defined for datasets and p, and the columns are defined for λ values. The heatmap shows
the same trend with the previous experiments. Increasing λ and p values increases SDmrmr and GAPmrmr

while decreases SDsae and GAPsae. For several cases (Housing data with p = 3, 4, 5), SDmrmr = SDsae = 0
because the selected subset is optimal for both criteria mRMR and SAE. For several cases (λ = 0.4, 0.5
for Augompg, Housing, Servo), SDsae = 0 because Ssae has the mRMR value within 40% from the optimal
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mRMR value, which also implies Constraint (19d) does not cut any part of the feasible region. In order to
determine the best balance between the two criteria, a user can determine an allowable maximum for any
of the gaps GAPmrmr and GAPsae and select the best in the scope. Otherwise, a pareto frontier and scatter
plot can be useful in selecting a good solution.

SD mrmr SD sae GAP mrmr GAP sae
dataset (m,n) p 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Bodyfat

(15,252) 3 1 1 1 1 1 0 0 0 0 0 7.8% 7.8% 7.8% 7.8% 7.8% 0.0% 0.0% 0.0% 0.0% 0.0%

(15,252) 4 2 2 2 2 2 1 0 0 0 0 8.5% 14.7% 14.7% 14.7% 14.7% 0.5% 0.0% 0.0% 0.0% 0.0%

(15,252) 5 1 3 3 3 3 2 0 0 0 0 5.9% 15.2% 15.2% 15.2% 15.2% 0.5% 0.0% 0.0% 0.0% 0.0%

(15,252) 6 2 4 3 3 3 2 2 0 0 0 8.9% 19.3% 20.0% 20.0% 20.0% 0.3% 0.1% 0.0% 0.0% 0.0%

Autompg

(8,392) 3 1 1 1 1 1 0 0 0 0 0 3.1% 3.1% 3.1% 3.1% 3.1% 0.0% 0.0% 0.0% 0.0% 0.0%

(8,392) 4 1 1 1 1 1 1 0 0 0 0 7.5% 15.7% 15.7% 15.7% 15.7% 1.2% 0.0% 0.0% 0.0% 0.0%

(8,392) 5 1 1 1 1 1 1 0 0 0 0 9.7% 11.0% 11.0% 11.0% 11.0% 0.1% 0.0% 0.0% 0.0% 0.0%

(8,392) 6 1 1 1 1 1 0 0 0 0 0 8.0% 8.0% 8.0% 8.0% 8.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Housing

(13,506) 3 0 0 0 0 0 0 0 0 0 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

(13,506) 4 0 0 0 0 0 0 0 0 0 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

(13,506) 5 1 1 1 1 1 0 0 0 0 0 6.6% 6.6% 6.6% 6.6% 6.6% 0.0% 0.0% 0.0% 0.0% 0.0%

(13,506) 6 2 2 2 2 2 0 0 0 0 0 9.2% 9.2% 9.2% 9.2% 9.2% 0.0% 0.0% 0.0% 0.0% 0.0%

Servo

(15,167) 3 1 2 2 2 2 2 1 0 0 0 4.5% 18.3% 21.2% 21.2% 21.2% 5.0% 0.7% 0.0% 0.0% 0.0%

(15,167) 4 2 2 3 3 3 1 1 0 0 0 8.9% 18.8% 22.2% 22.2% 22.2% 7.5% 5.2% 0.0% 0.0% 0.0%

(15,167) 5 2 2 3 3 3 2 1 1 0 0 9.6% 18.0% 25.5% 34.4% 34.4% 4.8% 1.3% 0.2% 0.0% 0.0%

(15,167) 6 2 2 2 4 4 2 2 2 0 0 4.6% 4.6% 4.6% 33.0% 33.0% 0.1% 0.1% 0.1% 0.0% 0.0%

\λ

Figure 6: Performances of MIPmix compared to MIPmrmr and MIPsae

In the second experiment, MIPmix is compared with our MIP model (6), which we denote as MIPmae.
While MIPsae assumes fixed p, our MIP model (7) from Section 2.1 can be used to find the optimal p value,
referred to as p∗. Hence, we solved (7) to obtain p∗ and the optimal MAE. Then, we compare the solution
quality of MIPmix by fixing p to p∗ and by checking various λ values. In Table 2, the fourth column represents
the relative gap of the mRMR objective between (7) and optimal mRMR, the fifth column represents the
relative gap of the MAE objective between (7) and MIPmix, the sixth column represents the relative gap of
the mRMR objective between MIPmix and optimal mRMR, and the last column represents the set difference
between (7) and MIPmix.

MIPmae MIPmix
Dataset (m,n) λ p* GAPmrmr GAPmae GAPmrmr SDmae
Bodyfat (15,252) 0.05 4 14.7% 0.6% 4.7% 2

0.1 0.5% 8.5% 1
0.15 0.0% 14.7% 0
0.2 0.0% 14.7% 0

Autompg (8,392) 0.05 4 15.7% 1.2% 1.0% 1
0.1 1.2% 7.5% 1

0.15 1.2% 7.5% 1
0.2 0.0% 15.7% 0

Housing (13,506) 0.05 11 6.5% 1.3% 4.7% 2
0.1 0.0% 6.5% 0

0.15 0.0% 6.5% 0
0.2 0.0% 6.5% 0

Servo (15,167) 0.05 9 8.1% 1.1% 4.8% 1
0.1 0.0% 8.1% 0

0.15 0.0% 8.1% 0
0.2 0.0% 8.1% 0

Table 2: Comparison with MAE model

The GAPmrmr values of MIPmae show that the optimal MAE subset is quite different from the optimal
mRMR subset and the mRMR values are different up to 14.7%. By MIPmix, we can improve the mRMR
value significantly without decreasing MAE too much. For all four datasets, with λ = 0.05, GAPmrmr values
of MIPmix are significantly lower than those of MIPmae, while GAPmae values of MIPmix are approximately
1% from the optimal MAE value. In detail, for Autompg data, MIPmix keeps both of GAPmae and GAPmrmr

approximately at 1%.
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4.4 Study of Fat Case (m > n)

In this section, we present two experiments for the fat case datasets. In the first experiment, the solution
qualities of the MIP models, (21) and (36), and the core set algorithms, Core-Heuristic and Core-Random,
are compared using the synthetic datasets. In the second experiment, the core set algorithms are compared
against the stepwise algorithm and a state-of-the-art benchmark algorithm using real-world instances from
the UCI Machine Learning Repository.

Recall that the core set algorithms require core set cardinality parameter θ. Hence, we first decide the
best θ value for each core set algorithm, then we compare Core-Heuristic, Core-Random, and the MIP models
in Section 7 of the online supplement. We conclude the following universal rule for the selection of θ.

1. For Core-Heuristic, we use θ = 1 for instance sets satisfying { nm ≥ 0.4, n ≤ 40} or { nm ≥ 0.5, n > 40}.
For all other instances, we use θ = 0.8.

2. For Core-Random, with a ten minute time limit, θ = 1.0 is best for all sizes.
3. For Core-Random, with a one hour time limit, θ = 0.8 is best for large instances. Hence, with the one

hour time limit, we use θ = 0.8 if mn ≥ 9000 and θ = 1.0 otherwise.

We compareGAPsol of the MIP models, and Core-Heuristic and Core-Random with the best θ determined
by the rule above. In Figure 5, we observed that running the MIP solver beyond 1 minute does not improve
the solution quality much. For this reason, to save computational power, we ran the MIP solver for 1 minute
for the fat case. For Core-Random, we set 10 minutes and 1 hour time limit to check the performance as we
spend more time.

For the first experiment, we present the average GAPsol for all algorithms and execution times for Core-
Heuristic in Figure 7. For the MSEa objective, MIP performs worst for all instances. For many instance
sets, it does not improve the initial heuristic solution. Core-Random performs slightly better than Core-
Heuristic for small instances with n = 30, but they perform equally for remaining instances. For the MAEa
objective, the performance of MIP drops substantially when m increases. For most instances, Core-Random
performs the best in general. However, for larger instances with n = 60, Core-Heuristic performs the best.
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Figure 7: Comparison of performance of the algorithms

For the second experiment, we compare the performance of the core set algorithms with two benchmark
algorithms: a stepwise heuristic minimizing MSE and the mathematical programming based algorithm of
Bertsimas et al. [3]. We use the R package bestsubset of Hastie et al. [18] which implements Bertsimas et al.
[3]. We denote this algorithm as BKM. For this experiment, we use two sets of the dataset of Rafiei and Adeli
[29] from the UCI Machine Learning Repository [22] that have more than 100 features and that are created
for linear regression analysis. The original dataset has 103 features and two possible response variables cost
and sales. To create fat case datasets, we randomly select 50 observations and create 10 instances for each
response variable. All explanatory variables are standardized.

We use a ten minute time limit for BKM to compare with the core set algorithms. Note that, within
this time limit, BKM may not guarantee optimality and that BKM requires a fixed p. To search for the
best MSE and within the ten minute time limit, we enumerate BKM with the following search order for p:
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1,3,5,7, · · · ,45,47,2,4,6,· · · ,46,48. For each p, 60 seconds is allowed and the algorithm stops at 600 seconds
even if all p values were not searched.

Gap from the best Time (seconds)
data (n,m) BKM Step CoreHeur CoreRnd BKM Step CoreHeur CoreRnd

(10min) (10min) (10min) (10min)
Cost1 (50,103) 33.5% 105.2% 12.9% 0.0% 600 10 77 648
Cost2 (50,103) 53.8% 6.9% 0.0% 0.0% 600 12 98 646
Cost3 (50,103) 5.4% 23.2% 8.5% 0.0% 600 10 141 632
Cost4 (50,103) 5.4% 17.2% 0.0% 8.9% 600 9 204 634
Cost5 (50,103) 23.9% 14.4% 0.0% 3.0% 600 11 141 647
Cost6 (50,103) 16.5% 50.1% 0.0% 5.8% 600 4 134 624
Cost7 (50,103) 0.0% 30.8% 26.7% 3.1% 600 8 136 634
Cost8 (50,103) 97.2% 18.7% 13.0% 0.0% 600 11 52 581
Cost9 (50,103) 7.3% 11.2% 3.8% 0.0% 600 7 137 633
Cost10 (50,103) 19.6% 10.4% 4.8% 0.0% 602 11 142 650
Sales1 (50,103) 10.7% 28.3% 0.0% 1.6% 602 6 138 628
Sales2 (50,103) 73.8% 363.0% 2.0% 0.0% 601 8 148 668
Sales3 (50,103) 0.0% 44.1% 44.0% 44.0% 600 6 138 638
Sales4 (50,103) 1.3% 32.4% 2.3% 0.0% 600 5 135 642
Sales5 (50,103) 7.8% 4.6% 4.6% 0.0% 600 12 141 652
Sales6 (50,103) 0.0% 29.9% 29.9% 4.2% 600 8 139 645
Sales7 (50,103) 0.0% 50.1% 37.7% 11.4% 600 8 139 640
Sales8 (50,103) 21.2% 0.0% 0.0% 0.0% 601 12 55 650
Sales9 (50,103) 0.0% 31.5% 6.9% 13.2% 602 6 202 629
Sales10 (50,103) 0.0% 5.5% 5.3% 4.2% 600 8 137 628

Average 18.9% 43.9% 10.1% 5.0% 600 9 132 637

Table 3: Performance of core set and benchmark algorithms with ten minutes time limit

The result for the second experiment is presented in Table 3. The first two columns describe the datasets,
the next four columns present the gap of each algorithm from the best objective value of the four algorithms,
and the last four columns report the running time. The smallest gap among the four gaps is in boldface.
The stepwise algorithm is the fastest while the gap from the best algorithm is over 40% on average. The
three MIP-based algorithms do not dominate each other: BKM wins six cases, CoreHeur wins six cases, and
CoreRnd wins 9 cases. However, the relative gap of CoreRnd is the smallest, which show the effectiveness
and robustness of the algorithm given the ten minute time limit. CoreHeur can be a good alternative to
CoreRnd because it spends significantly less time than the other two MIP-based algorithms and quickly
improves the solution quality of the stepwise algorithm.

5 Conclusion

In this study, we present mathematical programs to optimize various subset selection criteria: MAE, MSE,
mRMR, and variants. The proposed mathematical programs return an optimal subset given a valid value of
big M, which is also derived in our work. For the selected test instances, we observe that the solver frequently
spends more than an hour to prove optimality, while near-optimal solutions are obtained in the first minute.
To speed up the solution time and to deal with high dimensional cases, we propose an iterative algorithm
based on the popular core set concept. The proposed algorithm and the randomized version converge to local
and global optimal solutions, respectively, and show that they outperform the state-of-the-art benchmark.

Mathematical programming models for subset selection are getting rapidly increasing attention recently
due to the improved computational power and numerical solver efficiency. Further, the use of binary decision
variables can help to model various subset requirements such as conditional inclusion (exclusion) of explana-
tory variables. Despite the benefits, there are still limitations in the current mathematical programming
models. For example, the current approaches cannot solve large scale instances (e.g., millions of observations
or explanatory variables) optimally. Hence, developing an improved model or an efficient algorithm with
guaranteed optimality is crucial. Also, the big M values derived in the current work are valid, but not the
tightest; this slows down the branch and bound algorithm speed. Hence, tighter big M values can be further
studied.
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APPENDIX

A Proof of Lemmas and Propositions

Proof of Proposition 1
The proof is based on the fact that feasible solutions to (4) and (5) map to each other. Hence, we consider
the following two cases.

1. Case: (4) ⇒ (5)
Let S = {j|zj = 1} be the column index set of a solution to (4). We set vj = u for j ∈ S and vj = 0
for j /∈ S. Then,∑

i∈I |ti| = (n− 1)u−
∑
j∈J uzj (from (4b))

= (n− 1)u−
∑
j∈S u

= (n− 1)u−
∑
j∈S vj (by definition of vj)

= (n− 1)u−
∑
j∈J vj ,

which satisfies (5). Further, we satisfy the following.

(a) Constraint (5e): We have vj = u ≤ u for j ∈ S and vj = 0 ≤ u for j /∈ S. Hence, vj ≤ u for all
j ∈ J .

(b) Constraint (5f): We have u−M(1− zj) = u ≤ vj = u ≤Mzj = M for j ∈ S and u−M(1− zj) =
u−M ≤ vj = 0 ≤Mzj = 0 for j /∈ S. Hence, we satisfy (5f).

(c) Constraint (5g): We have vj ∈ {0, u} ≥ 0, for all j ∈ J .

Note that (5c) is automatically satisfied since it is equal to (4c). Hence, we obtain a feasible solution
to (5).

2. Case: (5) ⇒ (4)
Let S = {j|zj = 1} be the column index set of a solution to (5). Since we are minimizing u, (5e) is
equivalent to maxj vj = u. Note that, in an optimal solution, we must have vj = u for all j ∈ S.
Hence, starting from (5b), we derive∑

i∈I |ti| = (n− 1)u−
∑
j∈J vj (from (5b))

= (n− 1)u−
∑
j∈S vj = (n− 1)u−

∑
j∈S u (vj = u for all j ∈ S)

= (n− 1)u−
∑
j∈S uzj = (n− 1)u−

∑
j∈J uzj ,

which satisfies (5).

This ends the proof. �

Proof of Proposition 2
Let X̄ = (x̄, ȳ, v̄, ū, t̄, z̄) be an optimal solution to (6) and let p̄ =

∑
j∈J z̄j be the number of optimal regression

variables. For a contradiction, let us assume that there exists an index k such that t̄+k > 0 and t̄−k > 0.

Without loss of generality, let us also assume t̄+k ≥ t̄
−
k . For simplicity, let δ = t̄−k . Let us generate X̃ that is

equal to X̄ except t̃+k = t̄+k − δ, t̃
−
k = t̄−k − δ = 0, ũ = ū− 2δ

n−1−p̄ , and ṽj = ũ if z̄j = 1. We show that X̃ is a

feasible solution to (6) with strictly lower cost than X̄.

1. X̃ has lower cost than X̄ since ũ < ū by definition.

2. X̃ satisfies (6b) because
∑
i∈I(t̃

+
i + t̃−i ) =

∑
i∈I(t̄

+
i + t̄−i )− 2δ = (n− 1)ū−

∑
j∈J v̄j − 2δ = (n− 1−

p̄)ū− 2δ = (n− 1− p̄)(ū− 2δ
n−1−p̄ ) = (n− 1− p̄)ũ = (n− 1)ũ−

∑
j∈J ṽj , in which the second equality

holds because X̄ satisfies (6b).

3. Observe that (6c), (6d), and (6e) are automatically satisfied. Further, since we set ṽj = ũ for j such
that z̃j = 1, (6f) and (6g) are satisfied.
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4. Finally, (6h) is automatically satisfied except for t̃+k ,t̃−k , and ũ. Note that t̃+k = t̄+k − δ = t̄+k − t̄
−
k ≥ 0

and t̃−k = 0. Also, we have

ũ = ū− 2δ
n−1−p̄ =

∑
i∈I(t̃+i +t̃−i )

n−1−p̄ − 2δ
n−1−p̄

=
∑

i∈I\{k}(t̃
+
i +t̃−i )+(t̃+k +t̃−k )−2δ

n−1−p̄

≥
∑

i∈I\{k}(t̃
+
i +t̃−i )+2t̃−k −2δ

n−1−p̄ (since t̃+k ≥ t̃
−
k )

=
∑

i∈I\{k}(t̃
+
i +t̃−i )

n−1−p̄ (by the definition of δ)

≥ 0.

Hence, X̃ satisfies (6h).

Hence, X̄ is not an optimal solution to (6), which is a contradiction. �

Proof of Proposition 3
Let X̄ = (x̄, ȳ, v̄, ū, t̄, z̄) be an optimal solution to (8) with p̄ =

∑
j∈J z̄j . For a contradiction, let us assume

that X̄ does not satisfy (7) at equality. Let δ = (n− 1)ū−
∑
j∈J v̄j −

∑
i∈I(t̄

+
i − t̄

−
i )2 > 0. Let us generate

X̃ that is equivalent to X̄ except that ũ = ū− 2δ
n−1−p̄ and ṽj = ũ if z̄j = 1. We first show that ũ ≥ 0 since

ũ = ū(n−1−p̄)−2δ
n−1−p̄ =

ū(n−1)−ūp̄−2(n−1)ū+2
∑

j∈J v̄j+2
∑

i∈I(t̄+i −t̄
−
i )2

n−1−p̄

=
∑

j∈J v̄j−ū(n−1)++2
∑

i∈I(t̄+i −t̄
−
i )2

n−1−p̄ = δ
n−1−p̄ +

∑
i∈I(t̄+i −t̄

−
i )2

n−1−p̄ ≥ δ
n−1−p̄ ≥ 0,

in which the second equality is obtained by the definition of δ. For the remaining part, using a similar
technique as in the proof of Proposition 2, it can be seen that X̃ is a feasible solution to (8) with strictly
lower objective function value than X̄. This is a contradiction. �

Lemma 6. Let c be a vector that has 1 for t+i ’s and t−i ’s and 0 for all other variables of (10). Then, for
every extreme ray r in the recession cone of (10), we must have c>r > 0.

Proof. Suppose that there exists extreme ray r in the recession cone of (10) with c>r ≤ 0. Let us consider
linear program min {c>Y | (10a) - (10e) }. We have two cases.

1. Suppose that c>r < 0. Note that Ȳ + δr is feasible for any δ ≥ 0 and a feasible solution Ȳ , since r is
extreme ray. Then, c>(Ȳ + δr) = c>Ȳ + δc>r goes to negative infinity and thus the LP is unbounded
from below. However, from the definition of the LP, the objective value is always non-negative. This
is a contradiction.

2. Suppose that c>r = 0. This implies that the LP has the optimal objective value of 0. This contradicts
Assumption 1 since c>Y = 0 implies

∑n
i=1(t+i + t−i ) = 0.

By the above two cases, we must have c>r > 0.

Proof of Proposition 4
From Lemma 6, we know that there is no extreme rays with non-positive

∑n
i=1(t+i + t−i ). For the proof of

the proposition, let us assume that (11) is unbounded and thus there is an extreme ray r such that c̄>r < 0,
where c̄ is the objective vector of objective function of (11). Given such extreme ray r, we must have c>r > 0
by Lemma 6, where c is a vector that has 1 for t∗i ’s and t−i ’s and 0 for all other variables of (10). For a
feasible solution Ȳ to (11) and any δ ≥ 0, Ȳ = Y + δr is also feasible. Note that δ must go to infinity for
(11) to be an unbounded LP. However, δc>r > 0 implies

∑
i∈I(t

+
i + t−i ) increases as δ increases. Hence, δ

must be bounded by (10a). This implies that Ȳ cannot be bounded for any δ. �

Proof of Lemma 1
With fixed z̄j , we have fixed v̄j and ū from (6f). Note that, since Ȳ has SSE less than or equal to Tmax,
we have (n − 1)ū −

∑
j∈J v̄j =

∑
i∈I(t

+
i + t−i ) ≤ Tmax, which satisfies (10a). Observe that vj ’s and u can
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be ignored in (10). Observe also that (10c) and (10d) cover (6d) and (6e) regardless of z̄j . Finally, (6c) and

(10b) are the same. Therefore, Ỹ = (x̄+, x̄−, ȳ+, ȳ−, t̄+, t̄−, M̂) is feasible for (10). �

B Alternative Approach for Big M

In this section, we derive an approximated value for Big M for xj ’s in (21) and (36).

Algorithm 4 Estimate-M

1: For k ∈ J
2: For s = 1, · · · , 30
3: Pick explanatory variable k and n−3 explanatory variables randomly and generate new instances

with the selected n− 2 columns and n observations
4: Solve (1) and set Ms

k ← x∗k
5: End-For
6: M̄k ← average(M1

k , · · · ,M30
k ), σMk ← std-dev(M1

k , · · · ,M30
k ), M̂k ← M̄k + 1.65σMk

7: End-For

Instead of trying to get a valid value of M , we use a statistical approach to get an approximated value
of M for xj . In Algorithm 4, we estimate a valid value of M for each k. In Steps 2-5, we obtain 30 i.i.d.
sample values of M when explanatory variable k is included in the regression model. Then, in Step 6, we
obtain the upper tail of the confidence interval. With 95% confidence, the true valid value of M is less than
M̂ in Step 6. Hence, we set Mk := M̂k for xk in (21) and (36) for the fat case (m > n).

C New Objective Function and Modified Formulations for Fat
Case (m ≥ n)

Before we derive the objective function, let us temporarily assume |J | = n − 2 so that any subset S of J
automatically satisfies |S| = p ≤ n − 2 = |J |. We will relax this assumption later to consider |J | > n − 2.
Suppose that we want to penalize large p in a way that the best model with n− 2 explanatory variables is
as bad as a regression model with no explanatory variables. Hence, we want the objective function to give
the same value for models with p = 0 and p = n− 2. With this in mind, we propose (20), which we call the
adjusted MAE .

Let us now assume that SAE is near zero when p = n − 2, which happens often. Then we have

MAEa =
SAE+ n−2

n−2mae0

n−1−(n−2) = SAE +mae0 ≈ mae0. Hence, instead of near-zero MAE, the new objective has

almost the same value as mae0 when p = n − 2. Recall that u = MAE and u is the objective function in
the previous thin case model. Hence, we need to modify the definitions and constraints. First we rewrite

constraint (6b) as
∑
i∈I(t

+
i + t−i ) = (n− 1)u−

∑
j∈J zj

(
u+ mae0

n−2

)
. Let vj = (u+ mae0

n−2 )zj . Then, (6f) and

(6g) are modified to

vj ≤ u+
mae0

n− 2
(28)

u+
mae0

n− 2
−M(1− zj) ≤ vj ≤Mzj . (29)

Finally, we remove the assumption we made (|J | = n − 2) at the beginning of this section by adding
cardinality constraint ∑

j∈J zj ≤ n− 2 (30)

and obtain the following final formulations,

min{u|(6b)− (6e), (6h)(28), (29), (30)},
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which is presented in (21). In fact, without (30), MAEa cannot be well-defined since it becomes negative
for p > n− 1 and the denominator becomes 0 for p = n− 1. Observe that (21) is an MIP with 2n+ 4m+ 3
variables (including m binary variables) and n+5m+2 constraints. Observe also that (6) with the additional
constraint (30) can be used for the fat case. However, using n− 2 explanatory variables out of m candidate
explanatory variables can lead to an extremely small SAE as we explained at the beginning of this section.

To obtain a valid value of M for vj ’s in (21), we can use a similar concept used in Section 2. In detail,
we set

M := mae0 +
mae0

n− 2
=
n− 1

n− 2
mae0 (31)

for vj ’s to consider regression models that are better than having no regression variables. Given a heuristic
solution with objective function value maeheura , we can strengthen M by making solutions worse than the
heuristic solution infeasible. Hence, we set M := maeheura + mae0

n−2 for vj ’s in (29).
However, obtaining a valid value of M for xj ’s in (21) is not trivial. Note that (12), which we used for

the thin case, is not applicable for the fat case because LP (10) can easily be unbounded for the fat case.
One valid procedure is to (i) generate all possible combinations of n − 2 explanatory variables and all n
observations, (ii) compute M for each combination using the procedure in Section 2.1.3, and (iii) pick the
maximum value out of all possible combinations. However, this is a combinatorial problem. Actually, the
computational complexity of this procedure is as much as that of solving (1) for all possible subsets. Hence,
enumerating all possible subsets just to get a valid big M is not tractable.

Instead, we can use a heuristic approach to obtain a good estimation of the valid value of M . In
Appendix B, we propose a statistic-based procedure that ensures a valid value of M with a certain confidence
level. This procedure can give an M value that is valid with 95% confidence. However, for the instances
considered in this paper, this procedure gives values of M that are too large because many columns can be
strongly correlated to each other. Note that a large value of M can cause numerical errors when solving the
MIP’s.

Hence, for computational experiment, we use a simple heuristic approach instead. Let us assume that we
are given a feasible solution to (21) from a heuristic and xheurj ’s are the coefficient of the regression model.
Then, we set

M := max
j∈J
|xheurj |. (32)

Note that we cannot say that (32) is valid or valid with 95% confidence. If we use (21) with this M , we get
a heuristic (even if (21) is solved optimally).

Similar to MAEa in (20), MSEa can be defined as

MSEa =
SSE + p

n−2mse0

n− 1− p
, (33)

where mse0 =
∑

i∈I(bi−b̄)2

n−1 is the mean squared error of an optimal regression model when p = 0. Next,
similar to (28) and (29), we define

vj ≤ u+
mse0

n− 2
, (34)

u+
mse0

n− 2
−M(1− zj) ≤ vj ≤Mzj , (35)

while (7) remains the same. Finally, we obtain

min{u|(7), (6c)− (6e), (6h)(34), (35), (30)} (36)

for the MSEa objective. Note that (36) is mixed integer quadratically constrained program that has 2n +
4m+ 3 variables and n+ 5m+ 2 constraints.

For the core set algorithm, similar to (23), we have

min{u|(7), (6c)− (6e), (6h), (34), (35)}. (37)

26


	Introduction
	Mathematical Models for Thin Case (m < n)
	Mean Square and Absolute Errors
	Minimization of Minimization of MAE
	Minimization of Minimization of MSE
	Big M for x's and v's
	Valid Inequalities

	Minimal-Redundancy-Maximal-Relevance

	Mathematical Models and Algorithms for Fat Case (m >= n)
	Core Set Algorithm
	Randomized Core Set Algorithm

	Computational Experiment
	Experimental Design
	Study of Thin Case (m < n) for MAE and MSE Objectives
	Study of Thin Case (m < n) for Minimal-Redundancy-Maximal-Relevance
	Study of Fat Case (m > n)

	Conclusion
	Proof of Lemmas and Propositions
	Alternative Approach for Big M
	New Objective Function and Modified Formulations for Fat Case (m >= n)

