
Online Supplement: Subset Selection for Multiple Linear

Regression via Optimization

Young Woong Park ∗1 and Diego Klabjan †2

1Ivy College of Business, Iowa State University, Ames, IA, USA
2Department of Industrial Engineering and Management Sciences, Northwestern

University, Evanston, IL, USA

September 17, 2019

1 Big M for xj’s in (9)

This section refers to the proof of Proposition 6. We start with the following lemma from Schrijver [30].

Lemma OS 1. (Corollary 3.2b, Schrijver [30]) If Ax = B has a solution, it has one of size polynomially
bounded by size of A and B. That is, for a solution x̂, we have size(x̂) ≤ size(A)·size(B).

Next, we derive a bound for rational number r based on size(r).

Lemma OS 2. We have |r| ≤ 2size(r)−1.

Proof. Starting from the definition, we derive

size(r) = 1 + dlog2(|rnum|+ 1)e+ dlog2(rden + 1)e
≥ 1 + log2(|rnum|+ 1) + log2(rden + 1)
= 1 + log2[|rnum|rden + |rnum|+ rden + 1]
= 1 + log2[|r|r2

den + |r|rden + rden + 1]
> 1 + log2[|r|r2

den + |r|rden]
= 1 + log2 |r|+ log2(r2

den + rden).

By rearranging, we obtain |r| ≤ 2size(r)−1−log2(r2den+rden) ≤ 2size(r)−1.

Next we derive an upper bound for x̂ using Lemmas OS 1 and 2.

Lemma OS 3. Let x̂ be a solution to Ax = B. For any j in J , we have |x̂j | ≤ 2size(A)size(B)−1.

Proof. We first derive m + size(x̂j) ≤ m +
∑m

j=1 size(x̂j) = size(x̂) ≤ size(A)size(B), in which the last

inequality holds by Lemma OS 1. Combining everything, we obtain |x̂j | ≤ 2size(A)size(B)−1.

Note that optimizing MSE is to select a subset of the columns of a. Let ā ∈ Rn×p be the data matrix
that corresponds to a subset of m columns of a, with cardinality p. For simplicity, let us assume that we
sort columns of a so that the selected p columns have indices from j = 1 to p. Let Ā = āT ā.

Lemma OS 4. We have size(Ā) ≤ size(A) for any Ā.

Proof. Recall that we have A = [αij]i=1,··· ,m,j=1,··· ,m and Ā = [ᾱij]i=1,··· ,p,j=1,··· ,p. We derive

size(Ā) = p2 +
∑p

i=1

∑p
j=1 size(ᾱij)

≤ m2 +
∑p

i=1

∑p
j=1 size(ᾱij)

= m2 +
∑p

i=1

∑p
j=1 size(αij)

≤ m2 +
∑m

i=1

∑m
j=1 size(αij)

= size(A),

which completes the proof.

Using Lemmas OS 3 and 4, it is trivial to see that Proposition 6 holds.

∗ywpark@iastate.edu
†d-klabjan@northwestern.edu

1

2 Proofs for Core Set Algorithms

Proof of Lemma 2
Recall that minj∈J Ūj = −0.5 and maxj∈J Ūj = 0.5. Hence, it follows

maxj∈J qj
minj∈J qj

=
maxj∈J e

−Ūj

minj∈J e−Ūj
=

e0.5

e−0.5
≤ 2.72,

which completes the proof. �

Lemma OS 5. We have minj∈J q
(t)
j ≥ 1

1+2.72(m−1) for any t.

Proof. Let qmin = minj∈J q
(t)
j . From Lemma 2, we have q

(t)
j ≤ 2.72 · qmin for all j ∈ J . Without loss of

generality, let q
(t)
1 = qmin. Since

∑
j∈J q

(t)
j = 1, we derive

qmin = 1−
∑m

j=2 q
(t)
j ≥ 1−

∑m
j=2 2.72 · qmin = 1− 2.72 · qmin(m− 1).

By rearranging, we obtain qmin ≥ 1
1+2.72(m−1) . Observe also that Lemma OS 5 holds for the renormalized

probabilities (28) at any point of the selection iteration, since q
(t)
j ’s are increasing for the explanatory variables

that have not been selected.

Proof of Lemma 3
Note that q

(t)
j ’s are renormalized in Steps 5 - 6 of Update-Core-Set-Random and q

(t)
j ’s in Step 2 depends on

all of the events happened prior to Update-Core-Set-Random. However, each q
(t)
j is non-decreasing by the

renormalization in Step 6 and q
(t)
j ’s in Step 2 are at least 1

1+2.72(m−1) by Lemma OS 5.

Event {Sopt ⊂ Ct} happens if Ct can be partitioned into (i) all the explanatory variables in Sopt and (ii)
Θ− |Sopt| explanatory variables from J \ Sopt. Then, we obtain

P [Sopt ⊂ Ct|Ht−1] ≥
(m−|Sopt|

Θ−|Sopt|
)∏

j∈Sopt

(
1

1+2.72(m−1)

)∏Θ−|Sopt|
j=1

(
1

1+2.72(m−1)

)
≥

(
1

1+2.72(m−1)

)Θ
,

in which the first inequality holds since we can select Θ − |Sopt| explanatory variables from J \ Sopt. This
completes the proof. �

Proof of Lemma 4
We derive

P
[⋂t

k=1Ak

]
= P

[
At|
⋂t−1

k=1Ak

]
P
[
At−1|

⋂t−2
k=1Ak

]
· · ·P [A2|A1]P [A1]

=
(
1− P

[
Sopt ⊂ Ct|

⋂t−1
k=1Ak

])
· · ·
(
1− P [Sopt ⊂ C2|A1]

)
P [A1]

≤
(
1− P

[
Sopt ⊂ Ct|Ht−1

])
· · ·
(
1− P [Sopt ⊂ C2|H1]

)
P [A1]

≤ (1− ϕ)t,

where the first equality holds by the chain rule, the first inequality holds since
⋂t−1

k=1Ak ⊆ Ht−1, and the
last inequality holds by Lemma 3. �

Proof of Lemma 5
Note that P

[⋂t
k=1Ak

]
in Lemma 4 is equivalent to P

[
Sopt 6⊂ Ck for all k ∈ {1, · · · , t}

]
. Hence, we derive

2

P
[
maea(t) = maeopta

]
= P

[
Sopt ⊂ Ck for at least one k ∈ {1, · · · , t}

]
= 1− P

[
Sopt 6⊂ Ck for all k ∈ {1, · · · , t}

]
= 1− P

[⋂t
k=1Ak

]
≥ 1− (1− ϕ)t,

where the inequality holds by Lemma 4. �

Lemma OS 6. The objective function value of S∗ in Algorithm 1 is strictly decreasing at each iteration
except in the last iteration.

Proof. Let t be the current iteration in Algorithm 1 and let S∗t be the best subset over core set Ct with
objective function value maeta in Step 5 of Algorithm 1. Next in Steps 1 - 11 of Algorithm 2, we check
neighboring subsets, iteratively update the best subset, and obtain S̄t with maeta after Step 12. Note that it
is possible to have S∗t = S̄t if there is no update in Step 7 of Algorithm 2. Then after Step 14 of Algorithm
2, we obtain new core set Ct+1 and iteration t is over. We execute iteration t + 1 similarly and obtain (i)
S∗t+1 with maet+1

a in Step 5 of Algorithm 1, and (ii) S̄t+1 with maet+1
a after Step 12 of Algorithm 2. Hence,

the current best objective function values after Step 6 of Algorithm 1 are maeta and maet+1
a for iterations t

and t+ 1, respectively. For a contradiction, let us assume maeta ≤ maet+1
a and t+ 1 is not the last iteration

in Algorithm 1. We have two cases.

1. maeta < maet+1
a

First, note that S̄t ⊂ Ct+1 due to Step 14 of Algorithm 2 and that S∗t+1 is an optimal subset to (24)
over Ct+1. This implies maet+1

a ≤ maeta. Second, due to Steps 1 - 12 of Algorithm 2, we must have
maet+1

a ≤ maet+1
a . Combining all three inequalities, we obtain

maet+1
a ≤ maet+1

a ≤ maeta < maet+1
a ,

which is a contradiction.

2. maeta = maet+1
a

This implies that Algorithm 1 terminates after iteration t + 1 since we are violating the criterion in
Step 4. This contradicts the assumption that t+ 1 is not the last iteration.

Hence, mae∗a is strictly decreasing except in the last iteration in Algorithm 1.

Lemma OS 7. Algorithm 1 does not visit the same core set except in the last two iterations.

Proof. For a contradiction, let us assume that Algorithm 1 visits the same core set C in two different
iterations but they are not the last two iterations. By Lemma OS 6, we must have different subsets and
objective function values for the two iterations. Let S∗1 and S∗2 be the subsets with corresponding objective
function values mae1

a and mae2
a such that mae1

a > mae2
a. However, mae1

a > mae2
a implies that S∗1 is not an

optimal subset to (24) over core set C. This is a contradiction.

3 Stepwise Algorithm

Most of the publicly available implementations of stepwise algorithm consider AIC, BIC, or criteria other
than MAE and MSE. The R Statistics package Leaps, Lumley [19], supports the adjusted r2 objective,
which is equivalent to optimizing MSE. However, Leaps cannot handle the fat case, and there are no
publicly available packages for the MAE objective. Further, we consider new objectives MAEa and MSEa

for computational experiments. Hence, we implement a stepwise algorithm that works for all of the objective
functions we are considering for both the thin and fat cases.

Algorithm 1 closely follows the standard stepwise selection procedure except that it considers pmax, the
maximum number of explanatory variables allowed, given selection criterion OBJ. It starts with empty set
in Step 1. Then in Step 2, it iteratively adds an explanatory variable based on a greedy strategy (one that
minimizes the objective function most) until there is no improvement or we reach pmax explanatory variables.

3

Next in Step 3, we consider both the forward and backward direction to check if a neighboring set of S is
better. Step 3 continues until there is no improvement.

Finally, we call Stepwise(m,OBJ) with OBJ ∈ {MSE,MAE,MAEa,MSEa} for the thin case, as m ≤
n− 2 is guaranteed for this case. For the fat case, we call Stepwise(pmax,OBJ) with pmax ≤ n− 2 and OBJ
∈ {MSE,MAE,MAEa,MSEa}.

Algorithm 1 Stepwise(pmax, OBJ)

Input: pmax (maximum cardinality of subset), OBJ (selection criteria)
Output: S (subset of explanatory variables)
1: S ← ∅
2: Forward selection based on OBJ and update S, until (i) there is no improvement or (ii) |S| = pmax

3: Forward selection and backward elimination based on OBJ, and update S as long as |S| ≤ pmax, until
there is no improvement

4 The Empirical Time Complexity of Leaps-and-bound and (9)

Leaps, R package by Lumley [19], supports exhaustive search based on the leaps-and-bound algorithm (Leaps
B&B) of Furnival and Wilson [12]. In this section, we investigate the empirical time complexities of Leaps
B&B and (9) by checking the execution time to get an optimal solution for the instances used in Section
4 of the paper. If it takes more than 1 hour, we quit the algorithm and record 3600 seconds instead. In
Figure OS 1, we present the average computational time of Leaps B&B and MIP for MSE. Figure OS 1(a)
is the full size plot and Figure OS 1(b) is with a truncated y axis. Axes x and y are instance sets and time in
seconds. The circles and rectangles represent the average computational time of the MIP model and Leaps
B&B, respectively. The plain and dotted lines are fitted exponential curves for MIP and Leaps, respectively.
Observe that the computation time for both algorithms increases superlinearly, yet the computational time
of Leaps B&B grows much faster.

0

500

1000

1500

2000

2500

(2
0

,3
0
)

(2
0

,4
0
)

(2
0

,5
0
)

(2
0

,6
0
)

(2
0

,7
0
)

(2
0

,8
0
)

(2
0

,9
0
)

(2
0

,
1
0

0
)

(3
0

,4
0
)

(3
0

,5
0
)

(3
0

,6
0
)

(3
0

,7
0
)

(3
0

,8
0
)

(3
0

,9
0
)

(3
0

,
1
0

0
)

(4
0

,5
0
)

(4
0

,6
0
)

(4
0

,7
0
)

(4
0

,8
0
)

(4
0

,9
0
)

(4
0

,
1
0

0
)

(4
5

,5
0
)

(4
5

,6
0
)

(4
5

,7
0
)

T
im

e
(s

ec
o

n
d

s)

Leaps B&B MIP

Expon. (Leaps B&B) Expon. (MIP)

(a)

0

100

200

300

400

500

(2
0

,3
0
)

(2
0

,4
0
)

(2
0

,5
0
)

(2
0

,6
0
)

(2
0

,7
0
)

(2
0

,8
0
)

(2
0

,9
0
)

(2
0

,
1
0

0
)

(3
0

,4
0
)

(3
0

,5
0
)

(3
0

,6
0
)

(3
0

,7
0
)

(3
0

,8
0
)

(3
0

,9
0
)

(3
0

,
1
0

0
)

(4
0

,5
0
)

(4
0

,6
0
)

(4
0

,7
0
)

(4
0

,8
0
)

(4
0

,9
0
)

(4
0

,
1
0

0
)

(4
5

,5
0
)

(4
5

,6
0
)

(4
5

,7
0
)

T
im

e
(s

ec
o

n
d

s)

Leaps B&B MIP

Expon. (Leaps B&B) Expon. (MIP)

(b)

Figure OS 1: Average computational time of Leaps B&B and the MIP for MSE over the instance sets

5 Performance of MIP for Different Big M Values for xj’s

In Section 2.1.3, two approaches are proposed to derive a valid value of big M for regression coefficients xj ’s
for (6) and (8). In this section, we present an experiment to support the necessity of valid big M values by
checking the solution quality and execution time of MIP model (6) over various big M values. Let Mvalid

be the valid big M value derived by the proposed approach. Using Mvalid, we obtain the optimal regression
coefficients x∗ by solving (6). Let Mtight = maxj∈J |x∗j | be the tightest valid big M value for xj ’s.

We first check the ratio between Mtight and Mvalid to assess the quality of the big M values derived by

the proposed approach. In Table OS 1, the summary statistics of the ratios (
Mvalid
Mtight

) are presented using the

4

synthetic instances with n = 100 and m ∈ {20, 30, 40, 50}. If the ratio is small, then the proposed approach
returns a tight big M value. If the ratio is large, then a relaxed big M value is returned. Overall, Mvalid is
7.84 times large than Mvalid on average. There are larger variations in the ratio when m is small but the
variations decrease as m increases.

Statistics m = 20 m = 30 m = 40 m = 50 All
Average 9.76 6.14 7.71 7.75 7.84
Median 4.94 6.12 7.42 7.60 6.36
StdDev 16.10 2.31 1.97 2.00 8.03

Table OS 1: Ratio between Mtight and Mvalid

Next, we check the performance of MIP over increasing big M values using the same instances. In detail,
we check the big M values from 5% to 800% of the Mtight value for each instance. The upper bound 800%
is set based on the average ratio for all instances in Table OS 1. The result for the instances with m = 50
are excluded because the result is similar to those for the instances with m = 40. In Figure OS 2, the gap
from the optimal solution (in %) and execution time (in seconds) are presented for each m ∈ {20, 30, 40}. In
each plot, the horizontal axis is for the ratio between the big M value used and Mtight, the vertical axes are
for the gap from the optimal solution and execution time.

0

1

2

3

0%

1%

2%

3%

4%

5%

6%

5% 130% 255% 380% 505% 630% 755%

T
im

e
(s

ec
o

n
d

s)

G
ap

 f
ro

m
 o

p
ti

m
al

 (
%

)

Big M Ratio

Gap Time

(a) m = 20

0

10

20

30

40

50

60

0%

1%

2%

3%

4%

5%

6%

7%

8%

T
im

e
(s

ec
o
n

d
s)

G
ap

 f
ro

m
 o

p
ti

m
al

 (
%

)

Big M Ratio

Gap Time

(b) m = 30

0

10

20

30

40

50

60

70

0%

2%

4%

6%

8%

10%

12%

14%

T
im

e
(s

ec
o
n

d
s)

G
ap

 f
ro

m
 o

p
ti

m
al

 (
%

)

Big M Ratio

Gap Time

(c) m = 40

Figure OS 2: Big M result

From the the results presented in Figure OS 2, we observe the followings.

1. When big M value is smaller thanMtight (the ratio is smaller than 100%), the solution quality drastically
changes. Hence, using an arbitrary big M value can affect the solution quality.

2. When big M value is larger than Mtight (the ratio is larger than 100%), the solution quality remains
near zero. The fluctuations in the objective function gap (e.g., in Figure OS 2(c)) are due to the fact
that the algorithm terminated after 60 seconds. As the ratio increases, the fluctuations become severe,
which implies that having an arbitrary large big M value can return a bad solution. Hence, we conclude
that using a valid big M value returns optimal or near-optimal solutions as long as the ratio is in a
reasonable range.

3. When the big M value is larger than Mtight (the ratio is larger than 100%), the execution time tends
to increase as the big M ratio increases. When m = 20 or 30, there exists a clear trend showing a large
big M value increases the execution time. However, as the ratio approaches 800%, the execution time
does not increase rapidly.

Combining the observations, we conclude that it is important to have a valid value of big M (i.e., larger than
Mtight) to guarantee optimality. Once validity is guaranteed, big M values within a reasonable range do not
affect the performance significantly while an arbitrary large value can decrease the solution quality and it
can cause numerical stability issues. Hence, the use of the proposed big M value calculation algorithm is
justified.

5

6 Comparison of Big M and Logical Constraint-based Models

In Section 2 of the main document, mathematical programming models (6) and (8) are proposed based on
the valid big M values derived, and in Section 5 of the online supplement, the usefulness of the valid big
M values are shown. In this section, we show the advantage of the big M-based models over alternative
modeling techniques available in most commercial optimization solvers. This also supports the necessity
of tight and valid big M values. In detail, we compare the proposed big M-based models with indicator
constraints or logical constraints of CPLEX. The logical constraints do not require a valid big M value,
which may improve numerical robustness of the solver or decrease the solution time. In the experiment in
this section, we compare the two approaches, big M-based and logical constraint-based formulations, for
solving (6).

The logical constraints replace big M constraints by combining linear constraints based on logical op-
erators and conditional statements. In the following logical constraint-based formulation, the big M-based
constraints (6d)-(6g) of (6) are replaced by the logical constraints (OS1d) - (OS1g). Note that the constraints
x+
j = 0, x−j = 0, vj = 0, and vj = u are conditional and depend on the zj value in the logical constraints.

min u (OS1a)

s.t.
∑n

i=1(t+i + t−i) = (n− 1)u−
∑

j∈J vj , (OS1b)

t+i − t
−
i =

∑m
j=1 aij(x

+
j − x

−
j) + (y+ − y−)− bi, i ∈ I, (OS1c)

zj = 0⇒ x+
j = 0, j ∈ J, (OS1d)

zj = 0⇒ x−j = 0, j ∈ J, (OS1e)

zj = 0⇒ vj = 0, j ∈ J, (OS1f)

zj = 1⇒ vj = u, j ∈ J, (OS1g)

x+
j ≥ 0, x−j ≥ 0, y+ ≥ 0, y− ≥ 0, vj ≥ 0, u ≥ 0, t+i ≥ 0, t−i ≥ 0, zj ∈ {0, 1} (OS1h)

In the computational experiment, we compare the performances of (6) and (OS1) with the one minute time
limit. The synthetic instances from Section 5 of the online supplement with n = 100 and m ∈ {20, 30, 40, 50}
are used. The performances are measured using the criteria presented in Section 4: execution time, GAPIP ,
and GAPsol. Note that each (n,m) pair includes ten instances and the average results are presented for each
m in Table OS 2.

Formulation (6) Formulation (OS1)
m Time GAPIP GAPsol Time GAPIP GAPsol

20 1.4 0.0% 2.6% 3.6 0.0% 2.6%
30 33.6 0.2% 3.2% 49.9 1.0% 3.1%
40 61.7 4.6% 6.0% 61.4 9.0% 5.4%
50 62.6 13.2% 6.6% 62.0 18.7% 6.5%

Table OS 2: Performances of big M and logical constraint-based formulations

When m = 20, GAPIP values are 0 and GAPsol values are identical for the two formulations implying
that all of the instances are solved optimally by the two approaches. The average execution time for (6)
is 2.57 times faster than (OS1), but the absolute difference is not significant. When m = 30, formulation
(6) solves 70% of the instances optimally, whereas formulation (OS1) returns an optimal solution for 40%
of the instances. Further, the smaller GAPIP and larger GAPsol values show that (6) performs better. For
all other instances with m = 40 and 50, both formulations do not return optimal solutions in one minute.
However, because (6) provides smaller optimality gaps (GAPIP) and larger relative gaps (GAPsol) than
(OS1), we conclude that (6) outperforms the logical constraint-based formulation.

6

7 Best θ for Core Set Algorithms

Recall that both Core-Heuristic and Core-Rand take θ as input to decide the core set cardinality in (23).
To decide the best θ value for each core set algorithm, we compare the performance of the algorithms with
several θ values for selected instance sets.

For the Core-Heuristic, we test all 160 instances generated. In Figure OS 3, we plot the average GAPsol

across 16 instance sets for different θ values.

1. For MSEa, there is no big difference between the three θ values. This is because the algorithm did not
update the best solution after the first iteration and thus terminates the algorithm immediately. For
this reason, the shape of the lines are very similar to those of the thin case result in Figure 2(a). We
conclude that θ = 0.8 is best for the Core-Heuristic, as it gives a slightly larger average improvement.

2. For MAEa, on the other hand, the shape of the lines seems random although GAPsol are generally
increasing as instance size increases. We observe that θ = 1.0 is best for (100,40),(100,50),(100,60)
instances sets, and θ = 0.8 is best for the other instance sets. Hence, we conclude that θ = 1 is the
best for instance sets satisfying { n

m ≥ 0.4, n ≤ 40} or { n
m ≥ 0.5, n > 40}. For all other instances, we

conclude θ = 0.8 is the best.

0%

10%

20%

30%

40%

50%

60%

70%

θ = 0.6 θ = 0.8 θ = 1.0

(a) MSEa

0%

10%

20%

30%

40%

50%

60%

70%

80%

θ = 0.6 θ = 0.8 θ = 1.0

(b) MAEa

Figure OS 3: Average GAPsol of Core-Heuristic with different θ values

For Core-Random, we tested 30 instances in {(m,n)|(100, 30), (150, 40), (200, 50)}, where each instance
set contains 10 instances. The three instance sets are selected to represent varying instance size. We refer
the instance sets (100, 30), (150, 40), (200, 50) as small, medium, large size, respectively. We only tested the
algorithm with theMAEa objective, since the algorithm behaves similarly for the MSEa objective. Although
Core-Random is designed to iterate infinitely, we executed it only for one hour since we are interested in if
Core-Random defeats the MIP model with the same one hour time limit. We rank the θ values over time
based on the best objective function value the algorithm gives with each θ.

1

1.5

2

2.5

3

1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60

R
a

n
k

in
g

Time (minutes)

θ = 0.6 θ = 0.8 θ = 1.0

(a) Small size (100,30)

1

1.5

2

2.5

3

1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60

R
a

n
k

in
g

Time (minutes)

θ = 0.6 θ = 0.8 θ = 1.0

(b) Medium size (150,40)

1

1.5

2

2.5

3

1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60

R
a
n

k
in

g

Time (minutes)

θ = 0.6 θ = 0.8 θ = 1.0

(c) Large size (200,50)

Figure OS 4: Average rankings of Core-Random over time with different θ values

7

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60

P
er

ce
n

ta
g
e

Time (minutes)

θ = 1.0

θ = 0.8

θ = 0.6

(a) Small size (100,30)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60

P
er

ce
n

ta
g

e

Time (minutes)

θ = 1.0

θ = 0.8

(b) Medium size (150,40)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60

P
er

ce
n

ta
g

e

Time (minutes)

θ = 1.0

θ = 0.8

θ = 0.6

(c) Large size (200,50)

Figure OS 5: Precentage of the top-ranked of Core-Random over time with different θ values

In Figure OS 4, the average ranking for each θ is plotted. Note that the ranking is close to 1 if the
algorithm with the corresponding θ gives the best objective function value out of the three θ values, and the
ranking is close to 3 for the opposite case. Observe that θ = 1.0 is best in general for the small and medium
size instances. However, θ = 0.8 outperforms θ = 1.0 for the large size instances, especially after 40 minutes.
This is because we have a larger number of iterations with θ = 0.8 than with θ = 1.0 in 1 hour, and θ = 0.8
starts to take advantage after some time.

In order to check the performance from a different view, in Figure OS 5, we plot the area charts over
time. Each area represents the percentage of the top ranked for each θ. The figure shows that θ = 1.0 is
best for the small and medium size instances, whereas θ = 0.8 starts to outperform as iterations increases
for the large size instances. This is in line with the observation from Figure OS 4.

Based on the observations from Figures OS 4 and OS 5, we conclude the following universal rule for the
selection of θ for Core-Random.

1. With a 10 minute time limit, θ = 1.0 is best for all sizes.

2. With a 1 hour time limit, θ = 0.8 is best for large instances. Hence, with the one hour time limit, we
use θ = 0.8 if mn ≥ 9000 and θ = 1.0 otherwise.

8 Instance Generation Procedure

We generate synthetic instances by the following procedure.

1. We generate response variable bi ∼ N(0, 5) for i = 1, · · · , n.

2. Next, m
5 explanatory variables are generated, in which each variable is correlated to b with correlation

coefficient ρ = 0.2.

3. For each already generated explanatory variable, we generate four explanatory variables that are cor-
related to the already generated variable with correlation coefficient ρ ∼ Uniform(0.5, 0.8).

This procedure generates m
5 groups of explanatory variables, in which five explanatory variables in each

group are highly correlated to each other.

9 Study of Thin Case (m < n) for mRMR with Synthetic Data

In this section, we conduct two experiments for mRMR using the thin case synthetic instances from Section
4.2. Because there are four parameters to control for synthetic data, in the first experiment, we check the
results with various p and λ values by fixing the data size m and n. In the second experiment, by fixing p
to 10, the thin case synthetic instances with m ∈ {20, 30, 40} and n ∈ {50, 60, · · · , 100} are used to test the
performances with various m,n, and λ values. All of the performance measures in Section 4.3 of the main
document are used.

8

The results are reported in Figures OS 6 - OS 9. In all figures, heatmaps are presented for each (m,n, λ)
tuple. The rows are defined for each (m,n) pair and the columns are for λ values for MIPmix. Each cell
represents the average across ten instances except for Figure 7(b), which presents the percentages of optimally
solved cases out of ten instances.

In the first experiment, ten random instances with m = 30 and n = 100 are used with parameters
p ∈ {2, 4, · · · , 14, 16} and λ ∈ {0.05, 0.1, · · · , 0.45, 0.5} and the results are reported in Figures OS 6 - OS 9.
For all MIP models, it takes less than one minute to terminate with an optimal solution. Hence, we do not
report the execution times for the first experiment.

p \ λ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Avg

2 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

4 1.5 1.4 1.6 1.6 1.6 1.7 1.7 1.7 1.7 1.6 1.6

6 3.2 3.1 3.1 3.2 3.1 3.1 3.0 3.2 3.2 3.2 3.1

8 4.5 4.4 4.8 4.5 4.7 4.7 4.6 4.4 4.4 4.4 4.5

10 5.3 6.1 5.7 5.7 6.0 6.1 6.1 6.1 6.1 6.1 5.9

12 6.3 6.7 7.0 6.8 6.9 7.0 7.0 7.0 7.1 7.1 6.9

14 5.8 6.1 6.9 7.0 7.2 7.1 7.2 7.5 7.6 7.6 7.0

16 5.7 6.3 6.5 7.1 7.1 7.3 7.3 7.2 7.2 7.4 6.9

Avg 4.1 4.3 4.5 4.6 4.6 4.7 4.7 4.7 4.7 4.7 4.6

(a) Heatmap of SDmrmr

p \ λ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Avg

2 0.5% 1.1% 2.1% 2.1% 2.1% 2.1% 2.1% 2.1% 2.1% 2.1% 1.8%

4 1.0% 2.3% 4.1% 5.7% 12.9% 13.7% 13.7% 13.7% 13.7% 17.4% 9.8%

6 2.0% 5.9% 6.2% 7.4% 10.3% 10.3% 11.1% 11.8% 11.8% 11.8% 8.9%

8 2.6% 5.8% 9.8% 11.9% 13.4% 13.4% 15.3% 16.9% 16.9% 16.9% 12.3%

10 3.2% 6.6% 9.9% 12.4% 17.3% 18.3% 19.6% 19.6% 19.6% 19.6% 14.6%

12 3.0% 8.0% 10.1% 15.2% 16.5% 17.5% 18.8% 18.8% 21.1% 21.1% 15.0%

14 3.9% 7.8% 11.6% 15.6% 16.3% 17.2% 19.4% 22.4% 23.7% 23.7% 16.2%

16 3.7% 8.3% 11.6% 13.4% 15.8% 17.7% 17.7% 19.2% 19.2% 20.9% 14.8%

Avg 2.5% 5.7% 8.2% 10.5% 13.1% 13.8% 14.7% 15.6% 16.0% 16.7% 11.7%

(b) Heatmap of GAPmrmr

p \ λ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Avg

2 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

4 1.5 1.2 1.4 1.3 0.7 0.7 0.7 0.7 0.7 0.6 1.0

6 2.0 1.0 1.1 0.8 0.6 0.6 0.5 0.6 0.6 0.7 0.9

8 2.4 2.2 1.7 0.8 0.5 0.5 0.4 0.0 0.0 0.0 0.9

10 4.9 2.6 2.4 2.0 1.1 1.3 0.5 0.5 0.5 0.6 1.6

12 4.3 3.2 3.1 1.5 1.1 1.1 0.9 0.9 0.8 0.8 1.8

14 3.9 3.1 2.3 1.9 1.7 1.6 1.3 0.7 0.3 0.3 1.7

16 4.7 2.9 2.1 1.6 1.3 1.1 1.1 1.2 1.2 0.7 1.8

Avg 3.0 2.1 1.8 1.3 0.9 0.9 0.7 0.6 0.6 0.5 1.2

(c) Heatmap of SDsae

p \ λ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Avg

2 1.3% 1.2% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 1.0%

4 2.9% 2.4% 2.3% 2.2% 1.5% 1.3% 1.3% 1.3% 1.3% 1.2% 1.8%

6 2.4% 1.2% 1.2% 1.0% 0.7% 0.7% 0.2% 0.1% 0.1% 0.1% 0.8%

8 1.7% 1.6% 0.9% 0.7% 0.2% 0.2% 0.2% 0.0% 0.0% 0.0% 0.6%

10 2.7% 1.5% 0.8% 0.7% 0.3% 0.2% 0.1% 0.1% 0.1% 0.1% 0.7%

12 2.3% 1.1% 0.6% 0.3% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.5%

14 2.1% 1.2% 0.8% 0.3% 0.3% 0.3% 0.2% 0.1% 0.0% 0.0% 0.5%

16 1.9% 0.9% 0.4% 0.3% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4%

Avg 2.2% 1.4% 1.0% 0.8% 0.5% 0.5% 0.4% 0.3% 0.3% 0.3% 0.8%

(d) Heatmap of GAPsae

Figure OS 6: Comparison of MIPmrmr and MIPmix with fixed m = 30 and n = 100

The heatmaps in Figure OS 6 show that SDmrmr and GAPmrmr increase as p and λ increase because
larger p and λ values allow and force Smix to deviate from Smrmr. On the other hand, GAPsae decreases in
increasing p and λ because larger p and λ values allow and force Smix to be close to Ssae. When λ is small,
SDsae increases as p increases because there exist more alternative subsets.

In the second experiment, we use fixed p = 10 and penalty constant λ ∈ {0.05, 0.1, · · · , 0.45, 0.5}, and one
hour time limit. Note that small λ value means the solution to (20) should have closer mRMR objective to
Ω̄ while sacrificing SAE, and large λ value means the solution to (20) focuses more on minimizing SAE. For
each (m,n, λ) tuple, ten random instances are solved. For both of MIPmrmr and MIPsae, CPLEX terminated
optimality within one hour for all cases. On the other hand, MIPmix terminated without optimality within
one hour for several cases. Hence, we report the percentage of non-optimal cases for MIPmix.

In Figure OS 7(a), we observe that the execution times of all three models increase drastically as m and
n increase. The execution time of MIPmix increases in increasing λ values. This is because the feasibility
space of MIPmix is larger when λ is large. As λ increases, constraint (20d) becomes less restrictive. In Figure
IS 7(b), we can also observe that the percentage of cases where MIPmix cannot be solved optimally increases
as m, n, and λ increase. Among all parameters m, n, and λ, we conclude that the number of features (m)
affects the execution time most. Among the three models, MIPmrmr is the fastest and MIPmix is the slowest.

In Figure OS 8, MIPmrmr and MIPmix are compared. As m and λ increase, SDmrmr increases and the
selected subsets become more distinct. When m is large, there are more alternative subsets given fixed λ
and this increases SDmrmr. When λ is large, the feasible space of (20) is larger and Smix can be significantly
different from Smrmr. The heatmap for GAPmrmr in Figure OS 8(b) also shows the same trend. Increasing
λ decreases the mRMR value.

In Figure OS 9, MIPsae and MIPmix are compared. As m increases, SDsae increases and the selected
subsets become more distinct, because there are more alternative subsets given fixed λ. As λ increases,
constraint (20d) becomes less restrictive and SDsae and GAPsae values approach zero.

9

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Avg

(20,50) 0.4 0.1 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

(30,50) 0.0 1.7 0.4 0.7 1.1 1.9 3.0 3.6 3.7 3.9 4.3 4.6 2.7

(40,50) 9.0 180.6 114.9 209.3 301.2 429.3 468.4 497.9 556.4 898.7 670.9 643.8 479.1

(20,60) 0.4 0.1 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

(30,60) 4.0 2.7 12.0 8.3 9.2 10.2 9.6 8.9 7.8 7.6 7.6 7.7 8.9

(40,60) 11.9 337.4 319.7 359.2 482.2 362.1 743.51013.0 776.3 842.91004.1 973.1 687.6

(20,70) 0.7 0.2 0.3 0.3 0.3 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3

(30,70) 4.2 3.0 18.4 15.6 8.0 9.5 9.3 8.4 7.8 7.9 7.6 7.8 10.0

(40,70) 22.9 220.1 409.5 508.9 422.5 711.2 454.0 839.2 692.0 555.7 714.2 861.0 616.8

(20,80) 0.5 0.2 0.5 0.4 0.4 0.4 0.5 0.4 0.4 0.5 0.4 0.4 0.4

(30,80) 5.4 6.7 13.3 11.1 14.0 12.0 13.9 15.9 15.5 17.2 17.3 18.8 14.9

(40,80) 20.4 417.0 401.5 910.7 705.2 942.6 977.01476.9 995.91533.71200.71209.81035.4

(20,90) 0.5 0.2 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.4 0.3 0.4

(30,90) 4.6 6.3 19.3 14.6 14.1 15.7 12.8 14.3 12.2 14.9 15.5 14.1 14.8

(40,90) 22.7 239.0 257.0 791.4 689.2 844.4 780.6 795.9 808.2 904.81087.11008.7 796.7

(20,100) 0.6 0.2 0.6 0.6 0.5 0.4 0.4 0.4 0.5 0.4 0.5 0.5 0.5

(30,100) 6.2 5.9 25.7 15.2 13.2 13.1 13.2 15.1 10.9 12.8 12.8 14.3 14.6

(40,100) 16.8 462.5 272.5 409.9 495.7 759.2 910.11044.81068.21117.11141.31147.2 836.6

Avg 7.3 104.7 103.7 181.0 175.4 228.5 244.3 318.7 275.4 328.9 327.0 328.5 251.1

𝑚,𝑛 MIP MIP MIP
mrmr sae

mix (𝜆 values)

(a) Heatmap of Execution times

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Avg

(20,50) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(30,50) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(40,50) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(20,60) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(30,60) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(40,60) 0% 0% 0% 0% 10% 0% 0% 10% 10% 10% 4%

(20,70) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(30,70) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(40,70) 0% 0% 0% 0% 0% 10% 0% 0% 0% 0% 1%

(20,80) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(30,80) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(40,80) 0% 10% 0% 10% 0% 10% 10% 20% 10% 10% 8%

(20,90) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(30,90) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(40,90) 0% 0% 0% 10% 0% 0% 0% 0% 0% 0% 1%

(20,100) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(30,100) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(40,100) 0% 0% 0% 0% 10% 20% 20% 20% 20% 20% 11%

Avg 0% 1% 0% 1% 1% 2% 2% 3% 2% 2% 1%

𝑚,𝑛 \𝜆

(b) Heatmap of Non-Optimal MIPmix

Figure OS 7: Execution times and Optimality of MIPmrmr, MIPsae, and MIPmix with fixed p = 10

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Avg

(20,50) 3.9 4.5 4.7 4.8 5.4 5.0 5.1 5.0 5.1 5.0 4.9

(30,50) 1.4 1.9 2.2 2.9 3.2 3.7 3.8 3.9 4.1 4.2 3.1

(40,50) 6.1 6.0 6.0 6.4 6.3 6.5 6.3 6.2 6.4 6.5 6.3

(20,60) 4.2 4.1 4.3 4.4 4.6 4.7 4.7 4.6 4.2 4.8 4.5

(30,60) 4.8 4.8 5.1 5.1 5.3 5.2 5.4 5.2 5.4 5.5 5.2

(40,60) 4.7 5.7 5.7 5.8 6.1 6.3 6.5 6.6 6.6 6.7 6.1

(20,70) 3.6 4.0 4.0 4.2 4.2 4.3 4.4 4.6 4.6 4.6 4.3

(30,70) 4.1 5.0 5.5 5.6 5.8 5.7 5.7 5.9 5.9 5.9 5.5

(40,70) 6.1 6.4 6.5 6.6 6.7 6.7 6.5 6.9 7.0 7.1 6.7

(20,80) 3.2 3.5 3.8 3.8 3.8 4.0 4.1 4.1 4.1 4.1 3.9

(30,80) 5.4 5.9 5.5 5.4 5.8 5.9 5.9 5.9 5.9 5.9 5.8

(40,80) 5.7 6.2 6.1 5.9 6.1 6.0 6.1 6.1 6.2 6.2 6.1

(20,90) 4.4 4.5 4.5 4.4 4.4 4.6 4.6 4.6 4.9 5.0 4.6

(30,90) 4.9 5.6 6.0 6.3 6.3 6.3 6.6 6.6 6.6 6.6 6.2

(40,90) 5.7 6.0 6.1 6.2 5.9 6.0 6.0 6.1 6.0 6.1 6.0

(20,100) 4.5 4.7 4.6 5.0 4.9 4.9 5.0 5.0 5.0 5.0 4.9

(30,100) 5.3 6.1 5.7 5.7 6.0 6.1 6.1 6.1 6.1 6.1 5.9

(40,100) 5.3 5.7 5.8 5.6 6.0 6.1 6.2 6.3 6.3 6.4 6.0

Avg 4.6 5.0 5.1 5.2 5.4 5.4 5.5 5.5 5.6 5.7 5.3

𝑚,𝑛 \𝜆

(a) Heatmap of SDmrmr

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Avg

(20,50) 3% 7% 9% 12% 15% 15% 18% 18% 19% 19% 13%

(30,50) 3% 8% 13% 18% 21% 25% 27% 29% 32% 33% 21%

(40,50) 3% 7% 9% 14% 17% 21% 23% 24% 27% 28% 17%

(20,60) 3% 6% 8% 10% 13% 19% 17% 19% 18% 20% 13%

(30,60) 2% 7% 10% 12% 18% 22% 24% 25% 26% 31% 18%

(40,60) 4% 8% 12% 17% 19% 24% 26% 26% 28% 30% 19%

(20,70) 2% 4% 8% 9% 9% 17% 18% 20% 21% 21% 13%

(30,70) 3% 7% 12% 12% 15% 20% 22% 24% 24% 24% 16%

(40,70) 4% 7% 13% 16% 20% 21% 25% 27% 28% 28% 19%

(20,80) 3% 5% 9% 12% 13% 15% 17% 18% 18% 18% 13%

(30,80) 4% 7% 9% 13% 15% 16% 16% 16% 16% 16% 13%

(40,80) 4% 8% 10% 14% 17% 18% 20% 20% 22% 22% 15%

(20,90) 1% 6% 7% 9% 10% 13% 13% 13% 15% 19% 11%

(30,90) 3% 7% 9% 13% 17% 20% 21% 21% 21% 21% 15%

(40,90) 4% 7% 11% 14% 18% 19% 20% 21% 22% 22% 16%

(20,100) 2% 5% 6% 9% 10% 11% 13% 13% 13% 13% 9%

(30,100) 3% 7% 10% 12% 17% 18% 20% 20% 20% 20% 15%

(40,100) 3% 7% 12% 16% 17% 20% 22% 25% 25% 26% 17%

Avg 3% 7% 10% 13% 16% 19% 20% 21% 22% 23% 15%

𝑚,𝑛 \𝜆

(b) Heatmap of GAPmrmr

Figure OS 8: Comparison of MIPmrmr and MIPmix with fixed p = 10

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Avg

(20,50) 2.8 1.9 1.7 1.7 1.3 1.2 1.3 1.3 1.2 0.9 1.5

(30,50) 4.0 3.4 3.4 2.8 2.2 1.8 1.5 0.8 0.3 0.4 2.1

(40,50) 5.5 4.5 4.1 2.7 1.6 1.5 0.9 0.8 0.6 0.5 2.3

(20,60) 3.2 2.6 2.0 1.7 1.8 1.4 0.9 0.8 1.1 0.8 1.6

(30,60) 5.1 4.2 3.3 3.0 2.7 2.0 1.4 1.1 1.2 1.1 2.5

(40,60) 5.2 5.5 4.9 3.1 2.7 2.1 0.8 1.4 1.0 0.3 2.7

(20,70) 2.0 2.0 1.8 1.3 1.3 1.1 1.1 0.9 0.9 0.9 1.3

(30,70) 4.4 3.3 2.4 2.3 2.1 0.6 0.5 0.2 0.2 0.2 1.6

(40,70) 5.3 5.4 4.6 4.4 2.6 2.7 1.6 0.7 0.5 0.8 2.9

(20,80) 2.5 1.2 1.2 0.8 0.8 0.4 0.3 0.2 0.2 0.2 0.8

(30,80) 3.3 2.6 1.7 0.9 0.5 0.0 0.0 0.0 0.0 0.0 0.9

(40,80) 4.1 3.8 3.2 1.8 1.2 1.0 0.7 0.6 0.2 0.3 1.7

(20,90) 2.1 1.8 1.6 1.0 0.8 0.6 0.6 0.6 0.3 0.0 0.9

(30,90) 4.5 3.1 2.9 2.1 1.2 0.6 0.4 0.4 0.4 0.4 1.6

(40,90) 4.6 3.8 3.0 1.7 1.0 0.6 0.3 0.1 0.1 0.0 1.5

(20,100) 1.6 1.3 1.2 0.8 0.8 0.7 0.6 0.6 0.6 0.6 0.9

(30,100) 4.9 2.6 2.4 2.0 1.1 1.3 0.5 0.5 0.5 0.6 1.6

(40,100) 5.3 4.6 3.9 2.2 1.3 0.7 0.5 0.1 0.1 0.0 1.9

Avg 3.9 3.2 2.7 2.0 1.5 1.1 0.8 0.6 0.5 0.4 1.7

𝑚,𝑛 \𝜆

(a) Heatmap of SDsae

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Avg

(20,50) 6% 2% 2% 2% 1% 1% 1% 1% 1% 1% 2%

(30,50) 10% 6% 4% 2% 1% 1% 1% 0% 0% 0% 3%

(40,50) 8% 6% 5% 4% 2% 2% 1% 1% 1% 0% 3%

(20,60) 4% 3% 2% 2% 2% 1% 1% 1% 1% 1% 2%

(30,60) 9% 5% 4% 4% 3% 2% 2% 2% 1% 1% 3%

(40,60) 9% 5% 4% 2% 2% 1% 1% 1% 0% 0% 3%

(20,70) 2% 1% 1% 1% 1% 0% 0% 0% 0% 0% 1%

(30,70) 5% 3% 1% 1% 1% 0% 0% 0% 0% 0% 1%

(40,70) 7% 5% 3% 3% 2% 1% 1% 0% 0% 0% 2%

(20,80) 3% 1% 1% 1% 1% 0% 0% 0% 0% 0% 1%

(30,80) 2% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0%

(40,80) 4% 2% 2% 1% 1% 1% 1% 1% 0% 0% 1%

(20,90) 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0%

(30,90) 3% 2% 1% 1% 1% 0% 0% 0% 0% 0% 1%

(40,90) 4% 3% 2% 1% 1% 0% 0% 0% 0% 0% 1%

(20,100) 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(30,100) 3% 2% 1% 1% 0% 0% 0% 0% 0% 0% 1%

(40,100) 4% 3% 1% 0% 0% 0% 0% 0% 0% 0% 1%

Avg 5% 3% 2% 1% 1% 1% 0% 0% 0% 0% 1%

𝑚,𝑛 \𝜆

(b) Heatmap of GAPsae

Figure OS 9: Comparison of MIPsae and MIPmix with fixed p = 10

10

	Big M for x's in (9)
	Proofs for Core Set Algorithms
	Stepwise Algorithm
	The Empirical Time Complexity of Leaps-and-bound and (9)
	Performance of MIP for Different Big M Values for x's
	Comparison of Big M and Logical Constraint-based Models
	Best theta for Core Set Algorithms
	Instance Generation Procedure
	Study of Thin Case (m < n) for mRMR with Synthetic Data

