
APPENDIX A
SYNTHETIC DATASETS

The synthetic datasets are generated based on the real-world
MIMIC-III dataset. We move two consecutive times of a time
series closer, if the relative difference �x̃ in two consecutive
measurements is smaller than the relative difference �t̃ in
two consecutive times. The relative differences �x̃ and �t̃ of
a time series are given by

�x̃i =
|xi � xi�1|P
B

i=2 |xi � xi�1|

�t̃i =
|ti � ti�1|P
B

i=2 |ti � ti�1|
.

The scaling factor d 2 (0, 1) controls how much we move
times. If d = 0, we do not move times. In other words,
the synthetic dataset at d = 0 is the same as the real-world
MIMIC-III dataset. As d increases, stronger constraints are
introduced to synthetic data. The synthetic time t

0 for a time
series is generated as follows:

t
0
i
=

(
t1, if i = 1

ti +
P

i

j=2[d(�x̃j ��t̃j)S], otherwise

S =
BX

j=2

(|tj � tj�1|).

If a time series has missing values, we first calculate the
synthetic times for the observed measurements. Then we
perform a linear interpolation between real times and synthetic
times for observed measurements to generate synthetic times
for missing measurements.

APPENDIX B
RESULTS

A. Performance Comparison
Table III shows a variable-wise comparison of the impu-

tation models on the real-world MIMIC (d=0) dataset. Our
two imputation models outperform all comparison models
on all variables. MixMI is better than MixMI-LL on most
variables. All models except GP and MTGP achieve a much
lower error on Hematocrit and Hemoglobin than on other
variables. The reason is that these two variables are highly
correlated. Those methods that capture the correlation between
variables can reasonably infer missing values for Hematocrit
from observed measurements of Hemoglobin, and vice versa.
Compared to MICE, MixMI achieves even lower errors on
these two variables, which indicates that temporal correlations
captured by our model help to make better estimation of
missing values, even when there is a more dominant cross-
sectional correlation.

As shown in Table II, all models except MTGP benefit from
the increment of d, the scaling factor used to generate synthetic
data. The reason is that all models take into account temporal
aspects and the measurements in the synthetic time series have
stronger temporal correlations as d increases. MICE and GMM
also benefit from the temporal correlations because we include

time as a feature in addition to variable features. We also try
to exclude times, however, experiments show that these two
models perform better when times are included. MixMI-LL
is outperformed by 3D-MICE when d increases to 1, while
MixMI shows its robustness to the variation of d in our current
experimental settings.

To evaluate the interpretability of our model, we conduct
an experiment where our imputation model is trained and
evaluated on the real-world MIMIC dataset with one variable
being removed at a time. We calculate the performance de-
crease, i.e. the increase of MASE, of our model with a given
variable being removed against the model trained with all
variables. The more increase the more important a variable
is. The comparison of importance is shown in Table IV.

We compare the running times of all models on the real-
world MIMIC dataset. All models run on the same Linux
server, in parallel if possible, using up to 20 2.20GHz cores.
MixMI-LL (taking 4.2 hours), GP (1.1 hours), MTGP (1.2
hours) GMM (2.2 hours) and M-RNN (0.9 hours) are the
fastest models; 3D-MICE (156.1 hours) is the slowest; MICE
(77.5 hours) and MixMI (109.5 hours) are in the middle.

Fig. 3. Component weights comparison on real-world MIMIC dataset

B. Component Weights
The key information our imputation model uses to estimate

missing values is the component weight ⇡, which quantifies
the interaction of cross-sectional and temporal correlations.
We study MixMI on the real-world MIMIC dataset and
visualize how the interaction is captured by our model. Fig. 3
shows a comparison of all component weights for variables
across all patients and times. When imputing Hematocrit and
Hemoglobin, our model relies mostly (79.6% and 84.8%) on
the linear model through the cross-sectional view because of
the strong correlation between these two variables. Interest-
ingly, most values of ⇡(3) are lower than 10%, which indicates
that temporal correlations are not strong in these variables in
our dataset. However, our model is still able to detect the week
temporal correlations and utilizes them to improve imputation.
Besides, that ⇡(2) has a larger value in most of the variables
attests the importance of the linear component through tem-
poral view, removing which in our experiments can cause
a 10% performance decrease. Additionally, we observe that
when predicting the missing values at the beginning and the
end of a time series, our model reasonably uses a lower value
of ⇡

(3) than in the middle. On average, ⇡(3) of the first and



TABLE III
MASE ON THE REAL-WORLD MIMIC DATASET BY VARIABLE AND IMPUTATION MODEL. THE BOLD NUMBERS ARE THE BEST VALUES AMONG ALL

IMPUTATION MODELS.

Variable GP MTGP M-RNN GMM MICE 3D-MICE MixMI-LL MixMI

Chloride 0.12993 0.12549 0.10865 0.10650 0.10575 0.10836 0.08664 0.08603

Potassium 0.11533 0.11256 0.11222 0.10963 0.10997 0.10822 0.09453 0.09442

Bicarbonate 0.13196 0.12905 0.12371 0.12231 0.12275 0.11984 0.10302 0.10254

Sodium 0.12525 0.11939 0.11557 0.10159 0.10138 0.10727 0.08787 0.08807
Hematocrit 0.11436 0.10780 0.09189 0.06518 0.06558 0.06726 0.05486 0.05482

Hemoglobin 0.14168 0.12997 0.06556 0.05774 0.05772 0.06301 0.05117 0.05103

MCV 0.14215 0.13732 0.13798 0.13391 0.13474 0.13340 0.11634 0.11657
Platelets 0.13855 0.13087 0.14369 0.14203 0.14236 0.12815 0.10090 0.10070

WBC count 0.13963 0.13614 0.14583 0.14026 0.14068 0.13060 0.10934 0.10913

RDW 0.14592 0.13668 0.15938 0.15778 0.15836 0.13897 0.11340 0.11340

Blood urea nitrogen (BUN) 0.12358 0.12720 0.16345 0.15160 0.15189 0.11814 0.09479 0.09410

Creatinine 0.13341 0.12803 0.14904 0.13211 0.13212 0.12217 0.10067 0.10014

Glucose 0.12491 0.12420 0.11677 0.11771 0.11794 0.11921 0.10493 0.10501

TABLE IV
IMPORTANCE OF VARIABLES TO OUR IMPUTATION RESULTS ON THE REAL-WORLD MIMIC DATASET, MEASURED IN NORMALIZED INCREASE

Variable MASE increase (%) Normalized increase

Hematocrit 4.52 1
Hemoglobin 3.47 0.76
Chloride 2.11 0.46
Sodium 2.05 0.45
BUN 0.82 0.17
Creatinine 0.79 0.16
Bicarbonate 0.61 0.12
MCV 0.44 0.08
Potassium 0.42 0.08
WBC count 0.34 0.06
Platelet 0.33 0.06
RDW 0.27 0.05
Glucose 0.06 0

the last time indices is 13.9% lower than those in the middle.
This is due to the usage of GPs, which usually produce less
confident estimates at the end points of series. Furthermore, we
observe an increment of ⇡(3) as we impose stronger temporal
correlations in synthetic datasets, which further validates the
ability of our model in capturing such interaction.

C. Individualized Weights

By introducing individualized (per patient) mixing weights
⇧ defined in (10), we improve the performance in MASE score
from 0.08351 to 0.07538, an improvement of 9.73% compared
against the model where each mixture component has a fixed
weight for all patient cases. The reason that individualized
weights are better than fixed weights in our model might be
that they better approximate the responsibilities Q defined in
(12).

In training, we can optimize the responsibility a component
should take to “explain” an observed target value xp,v,b for
p 2 P

tr

v,b
. However, when making inference, the responsibility

each component should take to “explain” a missing value is
unknown, because responsibilities depend on observed target
values, according to (12). We have to use ⇧, the individualized
mixing weights, as an approximation of the responsibilities in
inference. As defined in (10), ⇧ only depends on the inputs,

therefore, we can calculate them when making inferences on
the test set.

In a standard mixture model, we could use ⇡
(k)
v,b

, which is
the average of responsibilities of the kth component across
all training patients, as a fixed weight that the kth component
should contribute to impute missing values x

mis

:,v,b for all test
patients. However, patient time series can be very different
and the confidence of predictions by the GP component can
vary largely across different patient cases. A fixed weight can
not reflect such variation in prediction confidence.

We shall view an individualized mixing weight as an
approximation of how much responsibility a component should
take to impute the missing value for a particular patient case.
It is tailored for each patient. To visualize how individualized
mixing weights help to produce better estimates, in Fig. 4,
we plot the distribution of the individualized weights ⇧ of
the GP component in the training set and compare it with
the distribution of the optimized responsibility values Q. The
responsibilities that the GP component should take can vary
a lot in different patient cases, especially on the synthetic
dataset, which implies that it is more reasonable for patients
to get individualized mixing weights than a fixed weight. We
also observe that the individualized mixing weights reasonably
mimic the distribution of the optimized responsibilities on



(a) Chloride, T1, d=0 (b) Chloride, T6, d=0

(c) Chloride, T1, d=0.5 (d) Chloride, T6, d=0.5

Fig. 4. A comparison between individualized mixing weights ⇧ and optimized
responsibilities Q that GP component should take to “explain” observed
measurements for training patients. The plots are from the real-world MIMIC
(d=0) and synthetic MIMIC (d=0.5) dataset, and for the mixture models
of Chloride at time point 1 and 6. The distributions of the optimized
responsibilities are shown in blue and the distributions of individualized
mixing weights are in yellow.

the training set. The improvement of our model on the test
set attests that the individualized weights approximate the
responsibilities better than fixed weights.

APPENDIX C
PARAMETER ESTIMATION IN EM

In the E (Expectation) step, we calculate the responsibilities
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the M (Maximization) step, we re-estimate the parameters in
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iteration j. The kernel parameters ✓v,b of GP models are
evaluated by function G, a gradient descent method that
calculates the estimates of [✓v,b](j+1) to maximize Lv,b(�),
using [✓v,b](j) as the starting point. The first order derivatives
of Lv,b(�) with respect to ✓v,b that are used in G are given in
Appendix E.

APPENDIX D
GP MODEL

We assume the GP model discussed here in a mixture
model for a certain variable and time, and thus we exclude
the subscripts v and b. We use xp,t to denote a measurement
of the time series xp at time t for patient p of a certain variable.
We use xp,�t to denote a time series without the measurement
at time t. The GP model is given by

xp,t = µp,t + f(t),

f(t) ⇠ GP(0,K(t, t0))

where µp,t is the overall mean of the model and f(t) is a
Gaussian process with mean of 0 and covariance of K(t, t0).
Following the maximum likelihood approach, the best linear
unbiased predictor (BLUP) [73] at t and the mean squared
error are
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where rt(t0) = corr(f(t), f(t0)), r is the vector of rt(t0) for
all possible t, t̄ is a vector of time except for time t, R is
the (B � 1)⇥ (B � 1) correlation matrix and the correlation



function is given by Rt,t0 = exp(�✓|t � t
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where 1n is a vector with length (B � 1) of all ones.

APPENDIX E
PARTIAL DERIVATIVES IN GP

To simplify the notations, we assume that the likelihood
function L under consideration is for a mixture model for a
certain variable and time. The partial derivative with respect
to Gaussian process parameters ✓ is
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