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these two aspects and the synchronization of batches of products in the multi-level lot-

sizing and scheduling formulation. Two models are presented; one considering batch

production and the other one allowing lot-streaming. Comparisons with traditional

models demonstrate the capability of the new approach in delivering more realistic

results. The generated production plans are always feasible and cost savings of 30-40%

compared to classical models are observed.
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1 Introduction

The complexity of the product structure (bill-of-materials or BOM) of real-world cases

has motivated researchers to decompose hierarchically the overall planning system into a

set of more manageable subsystems. Production planning and scheduling (PPS) is one

of the most prominent hierarchical systems and lies at the very heart of the performance

of industrial enterprizes. At the upper level of this two-level system, the tactical driver

is to determine the amount of each product that must be produced in each time-period

across several resources (sizing of lots). The production scheduling (sequencing of lots)

is left to the lower operational level of planning. In many situations (specially if one of

the production stages represent stationary bottlenecks – see Seeanner and Meyr, 2013) this

approach might be sufficient. Nevertheless, as the top level has no detailed view about

system capacity in terms of scheduling, there is no guarantee that scheduling constraints

(e.g., precedence, capacity) are respected, and the production plans might be infeasible

(Urrutia, Aggoune, Dauzère-Pérès , 2012). In order to ensure that the plans generated at the

upper-level can be scheduled afterwards, the interdependencies between both levels should

be incorporated in solution approaches, through top-down and bottom-up influences.

Significant research has been conducted on the multi-level capacitated lot-sizing prob-

lem (MLCLSP) that fits the highest level of PPS. MLCLSP is considered a big time

bucket model as several products can be produced in each macro period, and it is an

extension of the single-level capacitated lot-sizing problem (CLSP) by incorporating the

bill-of-material information (i.e. the relationship in terms of material requirements be-

tween different items to be produced) in the inventory balance constraints. Researchers

have tried to consider more realistic classes of MLCLSP, including setup times, setup

carryover and/or backlogging (cf. Tempelmeier and Buschkühl, 2009; Toledo et al., 2013;

Wu, Shi, Geunes and Akartunali, 2011). However, even today the majority of the models

and algorithms proposed for MLCLSP rely on one of the following two assumptions: either

lead times are neglected, thus allowing predecessors and successors to be produced in the

same period; or lead times account for at least one period for each component, forcing the

throughput time (in number of periods) of the finished products to be at least equal to the

number of levels of the BOM.

Buschkühl et al. (2010) report in their review that out of 16 papers dealing with meta-

heuristic solutions to MLCLSP, only one study (Berretta et al., 2005)considers lead time,

while all others neglect it. The present work is motivated by the observation that the

majority of the solutions published for well-known MLCLSP instances suffer from this as-

sumption. Indeed, the zero lead time assumption leads to plans that are not implementable,

as the lower-level scheduling problem is likely to be infeasible. This is more pronounced as

the capacity tightens. On the other hand, positive lead time usually results in extensive

amounts of work-in-process, which tends to increase with a larger number of levels in the
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BOM.

There have been a few attempts for small-bucket approaches (in which the micro-period

time structure only allows for one setup per period – see Seeanner and Meyr, 2013), but

only few works include scheduling decisions within big-bucket multi-level lot-sizing (cf.

Gómez Urrutia et al., 2012; Karimi-Nasab and Seyedhoseini, 2013; Stadtler, 2005).

We study the impact of not considering scheduling decisions within MLCLSP and the

limitations/flaws of well known previous MLCLSP formulations. We show, by means of

studying the synchronization of the batches of products within MLCLSP, that most of the

solutions reported in the literature obtained by standard MLCLSP with zero lead times are

infeasible, and those that consider positive lead times entail significant work-in-process. To

this end, two linear mixed-integer programming formulations are proposed, one restricted

to batch production and the other one allowing lot-streaming. In each time period of both

models, sizing and sequencing of production lots are simultaneously addressed in such a way

that precedence relationships of products are respected. The batching formulation considers

production taking place in batches such that units produced within each lot can only be

processed as raw materials on the subsequent BOM level once the whole batch is completed.

The lot-streaming or non-batching model relaxes this requirement, allowing components to

be transformed further on as soon as they are released. In the latter case, modeling is tricky

and it requires a rigorous argument to establish correctness. We present results establishing

correctness of the two models and comparing them with respect to the produced cost.

Both formulations are applied to benchmark instances and the differences to the classical

model approaches1 are analyzed. In contrast to MLCLSP with zero lead time the new model

formulations are able to generate always feasible production plans. Comparing them with

MLCLSP with positive lead time illustrates the potential cost savings of 30-40% due to a

reduced total throughput time and work-in-process, respectively.

Our contributions are:

• developing two integrated models of lot-sizing and scheduling for a multi-level produc-

tion system based on MLCLSP,

• proving the correctness of both formulations and establishing a relationship between

them,

• analyzing the drawbacks of the classical MLCLSP model with and without lead time

using standard benchmark instances,

• quantifying the potential gains by using more detailed models for such a multi-stage

production planning problem.

1By classical model approaches we mean the multi-level lot sizing and scheduling problem without
scheduling aspects as proposed by Billington et al. (1983) and described in Buschkühl et al. (2010).
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In Section 2 we introduce MLCLSP and the major hurdles of its standard formulation

proposed in the literature. In Section 3 two novel multi-level formulations are developed for

the capacitated lot-sizing and scheduling problem, based on the assumptions for batching

and lot-streaming production environments, respectively. We then address several possible

extensions to these models. In Section 4 we then apply the new model formulation to

standard benchmark instances and compare the results with those of the classical MLCLSP.

Related Literature

Lot-sizing problems have been studied by researchers in different variations during the last

decades. One of the initial works describing the trade-off between the setup and holding

costs for a dynamic demand scenario is provided by Wagner and Within (1958). Introducing

capacity limitations and considering several products simultaneously led to the capacitated

lot-sizing problem (CLSP), which Bitran and Yanasse (1982) have shown to be NP-hard. In

the case of positive setup times, Maes et al. (1991) proved that already the feasibility prob-

lem is NP-complete. MLCLSP dealt in this paper was first introduced by Billington et al.

(1983) and it extended the lot-sizing models towards material requirements planning. Before

this work, lot-sizing problems have mainly been applied at the final product level.

A recent review about different model formulations and solution methods for ML-

CLSP can be found in Buschkühl et al. (2010). This review points out that it is nec-

essary to consider manufacturing lead times, but many researchers neglect them. For

example, 15 out 16 papers on metaheuristic solution methods for MLCLSP mentioned

in that review neglect lead time (e.g. Berretta and Rodrigues, 2004; Pitakaso et al., 2006;

Xie and Dong, 2002). The remaining work Berretta et al. (2005) assumes that some items

have no lead times and others have positive lead times of one period or more. More re-

cently, also Wu, Shi, Geunes and Akartunali (2011) and Wu, Shi, Geunes and Akartunali

(2012) present MIP models for solving capacitated multi-level lot-sizing problems with setup

times and backlogging, considering null lead times. Clark et al. (2011) stress the need to

incorporate more specificities of production environments in lot-sizing models, including the

synchronization of resources.

The present paper deals with the manufacturing lead time consideration for MLCLSP.

This involves also scheduling decisions. The classical MLCLSP problem is considered to be

a big-bucket model, as the planning horizon is divided into a small number of long time

periods allowing for multiple products/setups per time bucket. On the other hand, the class

of small-bucket models try to capture both lot-sizing and scheduling decisions, as at most

one setup might be performed in each period and, consequently, a complete production

sequence is generated by default, Drexl and Kimms (1997). Here, the planning horizon is

divided into many short periods. Nevertheless, Wolsey (2002) provides a comprehensive

study and classification scheme for different small- and big-bucket models, and shows that
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the LP relaxation of small-bucket models usually delivers very weak lower bounds. Only

with customized reformulations and valid inequalities added to the problem an improvement

of the lower bound is possible. In contrast, most big-bucket models (MLCLSP is classified

as such) provide much better lower bounds (see Almeder and Almada-Lobo, 2011).

A few researchers have tried to incorporate the multi-level structure and the exact tim-

ing issues into small-bucket models. Stadtler (2011) presents a proportional lot-sizing and

scheduling problem formulation for a multi-level problem. In order to allow synchronization

of the different levels within a period, the problem is restricted to a single capacitated re-

source, i.e., it is not possible to produce different items simultaneously on different machines.

Meyr (2004) and Seeanner and Meyr (2013) use a general lot-sizing and scheduling problem

formulation (GLSP) to model a multi-level system with possible simultaneous production

of predecessor and successor items. The GLSP is based on time buckets of variable length

(usually determined by the size of a lot). In order to allow synchronization, all machines

must use the same period structure, which might lead to unproductive idle times. Further-

more, it is not possible to enforce the finishing of a production lot before the production of

a successor starts.

For the class of big-bucket lot-sizing models, there are extensions to incorporate schedul-

ing decisions. Haase (1996), Gupta and Magnusson (2005), and Almada-Lobo et al. (2008)

developed extensions for the single-level capacitated lot-sizing problem to deal with sequence

dependent setups. In what concerns big-bucket models for the multi-level setting, we are

only aware of one paper (Fandel and Stammen-Hegene, 2006) that tackles this problem.

The authors model a similar problem as our here, but in contrast to our approach, the

authors develop a non-linear formulation. The complexity of that formulation prohibits to

solve even small instances. To the best of our knowledge, efficient solution methodologies for

their model are not known as of this date. The review by Zhu and Wilhelm (2006) analyzes

the research on the intersection of lot-sizing and scheduling from the scheduling point of

view.

Another subject related to this work is the problem of synchronizing the use of common

resources. Tempelmeier and Buschkühl (2008) describe a problem where a common setup

operator has to perform the setup operations on different machines. Hence, it is necessary to

ensure that there are no two setup operations at the same time. In Almeder and Almada-Lobo

(2011) a model describing the synchronization of a secondary resource used in a parallel ma-

chine environment is developed.

2 Motivation

In this paper, we study extensions to the following classical MLCLSP model as formulated

by Billington et al. (1983).
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2.1 Classical MLCLSP formulation

We assume a production planning problem with N items (including finished goods, sub-

assemblies, and raw materials), T time periods and M machines and the underlying BOM.

Each item has a manufacturing lead time and deterministic demand in each time period.

The problem is to find production quantities in each time period that obey to BOM require-

ments, demand requirements, limited capacity resources, and simultaneously minimizing the

production and holding costs. It reads

min
N
∑

i=1

T
∑

t=1

(ci · Yit + hi · Iit) (1)

subject to

Iit = Ii(t−1) +Xi(t−li)−
∑

j∈Γ(i)

aij ·Xjt − Eit i, t (2)

N
∑

i=1

(pmi ·Xit + smi · Yit) ≤ Lmt m, t (3)

Xit −G · Yit ≤ 0 i, t (4)

Iit ≥ 0, Xit ≥ 0,Yit ∈ {0, 1} i, t (5)

and with the decision variables:
Iit inventory level of item i at the end of period t

Xit production amount of item i in period t

Yit







1 if item i is produced in period t

0 otherwise.

The parameters are as follows:

aij quantity of item i required to produce one unit of item j (gozinto-factor)

pmi time for producing one unit of item i on machine m

ci setup cost of item i

Eit (external) demand of item i in period t

G arbitrary large number (e.g. total demand or maximum capacity)

Ii0 initial inventory level of item i

hi holding cost of item i

Lmt available capacity (time) of machine m in period t

li lead time of item i (nonnegative integer corresponding to the number of periods)

smi time for setting up machine m for the production of item i

Γ(i) set of immediate successors of item i based on BOM.

The index set (i, j, t,m) is defined by i, j ∈ {1, 2, . . . , N}, t ∈ {1, 2, . . . , T} and m ∈

{1, 2, . . . ,M}. Objective function (1) captures the fixed setup cost and the underlying
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holding cost. Constraints (2) represent the standard lot-sizing inventory balance capturing

BOM and lead times. Limited machine capacity is reflected by (3) and (4) captures the

definition of setup variables.

Many researchers dealing with this model assume that manufacturing lead times are

negligible, i.e. predecessors and successors might be produced in the same period (li =

0 for every i). Since MLCLSP is a big-bucket model and periods are assumed to cover

long time slots with several different production batches, the exact scheduling process is

usually postponed to the next planning level (the bottom level of the PPS hierarchical

system). Assuming that the capacity utilization is not too high and/or that there is always

the possibility of using overtime to compensate a potential lack of capacity, it might be

reasonable to neglect the lead time. Nevertheless, in case of capacity tight scenarios and of

a limited usage of overtime (which happens for example in a production system running 24

hours a day, 7 days a week) this zero lead time assumption may lead to plans that are not

implementable in practice.

On the other hand, positive lead times of at least one period (li = 1 for every i) do deliver

feasible solutions that can be implemented. But positive lead times contradict somehow the

big-bucket assumption, because in practice they would lead to extensive amounts of work-

in-process. For example, consider a time period of one day and an average production batch

of 3 hours. For a BOM with 10 levels it would take ten days to finish a final item according

to MLCLSP, but less than two days in practice. Note, that in the case of positive lead

times the objective function (1) does not capture the additional work-in-process. An extra

constant cost term depending on the total demand of all periods has to be added.

2.2 Drawbacks of MLCLSP

Let us assume a simple example with four items (1, 2, 3, and 4), three machines (A, B, and

C), and two periods. Item 1 is produced on machine A, item 2 on machine B and items 3

and 4 on machine C. Items 1 and 2 are final items, where one unit of item 3 is necessary to

produce one unit of item 1, and one unit of item 4 is necessary to produce one unit of item

2 and one unit of item 3, respectively. Table 1 contains all parameters and Figure 1 depicts

the product structure. It is assumed that resource requirements are measured in time units,

each machine has a capacity of 1 (meaning it is available throughout the whole period) and

setup times are 0.05 for all products. Furthermore, we assume that machine A is initially

setup for item 1, machine B for item 2, and machine C for item 4.

The optimal solution of the MLCLSP model without lead time can be easily obtained

(see Table 2). The total cost is 22 consisting of the setup cost of 20 (four setups) and the

holding cost of 2 (two units of item 4 are carried to period 2). It is obvious that this solution

is not feasible in practice, because before item 1 can be produced in the first period, items 3

and 4 have to be scheduled. Figure 2(a) shows the production plan generated by scheduling
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Table 1: Data for the example
item machine Ei1 Ei2 hi ci pmi smi

1 A 3 0 3 5 0.1 0.05
2 B 0 2 2 5 0.4 0.05
3 C 0 0 2 5 0.1 0.05
4 C 0 0 1 5 0.1 0.05

4/C

3/C

1/A 2/B

1

1

1

Figure 1: BOM for the example

the solution obtained by the MLCLSP formulation. Note, that MLCLSP does not consider

the initial setup state of the machines. Therefore the solution depicted in Figure 2(a) saves

the cost and time of three setups (if machines A, B, and C are initially set up for items 1, 2,

and 4) and has a total cost of only 7 (one setup from item 4 to item 3 and two units of item 4

carried to period 2). But obviously this production plan violates the demand requirement,

as the lot of item 1 is finished in period 2 and not in period 1. The second production

plan (Figure 2(b)) is generated from the first one, by splitting the lot of item 4 such that

item 1 can be finished on time. But an additional setup for item 4 increase the cost to 13.

Furthermore, this version would violate the implicit assumption of the traditional lot-sizing

model that each item is produced at most once in a period. The third plan (Figure 2(c))

represents the optimal feasible solution of a simultaneous lot-sizing and scheduling model.

The second batch of item 4 is moved to the second period (still the setup operation has to

be done at the end of period 1), ending up with a total cost of 10 (two setups on machine

C and no holding cost). But this solution is in essence different from that of MLCLSP.

Clearly, if we consider one period lead time for MLCLSP, the problem is infeasible.

Table 2: MLCLSP solution with no lead time for the example
item xi1 xi2 Ii1 Ii2

1 3 0 0 0
2 0 2 0 0
3 3 0 0 0
4 5 0 2 0
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period 1 period 2

A

B

C 4 3

1

2

Item 1 is finished in period 2!

(a) Infeasible solution of MLCLSP obtained after scheduling
the lots

period 1 period 2

A

B

C 4 3

1

2

Extra setup and inventory for item 4!

4

(b) Adjusted feasible solution with two lots of item 4 in the first
period

period 1 period 2

A

B

C 4 3

1

2

Extra setup for item 4!

4

(c) Optimal solution of the problem

Figure 2: Gantt charts after scheduling the lots obtained by MLCLSP and possible ad-
justments for obtaining a feasible production plan. The different bars indicate the actual
production times for the items. Shaded bars represent setup operations.

3 Models

In order to address the above mentioned pitfalls of MLCLSP in a systematic way and to

come up with an alternative, we suggest to embed scheduling to MLCLSP, i.e., to consider

the starting times of operations and the precedence relations in production between products

in an integrated manner. We present two model formulations. The first one is based on the

batching assumption, i.e., the production of a successor item can only start if the complete

batch of the predecessor item is finished. For the second formulation, the lot-streaming case,

we relax this constraint and allow simultaneous production of predecessor and successor

items.

3.1 Batching Production

This section develops a multi-level capacitated lot-sizing formulation that schedules the

production lots and synchronizes the batches of predecessors and successors, based on (1)-

(5). As for the MLCLSP model formulated before, we assume that each item is assigned to

a single machine, which is the case for most problems published and test instances available
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(see Tempelmeier and Derstroff, 1996). The following additional parameters are introduced:

φ(m) set of items that can be assigned to machine m

pi
time for producing one unit of item i (we can omit index m because each item is

assigned to a specific machine)

sij setup time for a changeover from product i to product j, sii = 0 for each i

cij setup cost for a changeover from product i to product j, cii = 0, i, j ∈ φ(m)
We need the following decision variables:

µs
it start time of the production of item i in period t

X̂ijt

production amount of item j ∈ Γ(i) starting before production

of item i is finished in period t

αitm







1 if machine m is set up for item i at the beginning of period t

0 otherwise

Tijtm







1 if there is a changeover from item i to j on machine m in period t

0 otherwise

Wijt



















1 if production of item j starts after the whole batch of item i

is completed in period t and j ∈ Γ(i)

0 otherwise.

By scaling, we assume without loss of generality that the duration of a period is a single

time unit (i.e., Lmt = 1 for every m and t). Hence, all time-related parameters and decision

variables are scaled to this time unit. We first consider the case where the production takes

place in batches. In other words, at the start of the production of item i the whole amount of

necessary predecessors (raw materials) must be available and the finished items are available

for other production processes only after the whole batch is finished. Hence, the stock level

of item i is a discontinuous step function (see Figure 3) where a decrease in stock is due to

the consumption of item i by a different item and an increase in inventory results from a

finished batch.

0 1t1 t2

Iit

t

Ii(t−1)

Figure 3: Change of the available stock of item i: t1 denotes the start and t2 the finish time
of the production of item i.
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Note, that Tijtm = 0 for every i /∈ φ(m) or j 6∈ φ(m), and for i = j. We also have

αitm = 0 for every i /∈ φ(m). Let ν(·) denote the optimal value of the underlying optimization

problem. The corresponding lot-sizing and scheduling problem for the batching production

(FB) reads:

ν(FB) = min

N
∑

i=1

T
∑

t=1

hit · Iit +

N
∑

i=1

N
∑

j=1

T
∑

t=1

M
∑

m=1

cij · Tijtm (6)

subject to

Iit − Ii(t−1) −Xit+
∑

j∈Γ(i)

aij ·Xjt + Eit = 0 i, t (7)

pi ·Xit ≤
∑

j∈φ(m)

Tjitm + αitm i ∈ φ(m), t,m (8)

∑

i∈φ(m)

αitm = 1 t,m (9)

∑

j∈φ(m)

Tjitm + αitm =
∑

j∈φ(m)

Tijtm + αi(t+1)m i ∈ φ(m), t,m (10)

∑

j∈φ(m)

Tjitm ≤ 1 i ∈ φ(m), t,m (11)

µs
it + pi ·Xit + sij · Tijtm + Tijtm − 1− αj(t+1)m ≤ µs

jt i ∈ φ(m), j ∈ φ(m), t,m (12)

µs
it + pi ·Xit + sij · Tijtm + αj(t+1)m − 1− αjtm ≤ µs

jt i ∈ φ(m), j ∈ φ(m), t,m (13)

µs
it + pi ·Xit +

∑

j∈φ(m)

sij · Tijtm ≤ 1 i ∈ φ(m), t (14)

(µs
it + pi ·Xit)− µs

jt ≤ 1−Wijt i, j ∈ Γ(i), t (15)

X̂ijt ≥ Xjt −
1

pj
Wijt i, j ∈ Γ(i), t (16)

Ii(t−1) ≥
∑

j∈Γ(i)

aijX̂ijt i, t (17)

Iit, Xit, X̂ijt, µ
s
it ≥ 0;αitm, Tijtm,Wijt ∈ {0, 1} i, j, t,m. (18)

Objective function (6) aims at minimizing the sum of sequence-dependent setup and

holding costs. Constraints (7) represent the inventory balance for both components and

end-items. Constraints (8) guarantee that a product is produced only if the machine is

set up for it. Note that we assume that the length of one period is one time unit and

capacities are measured in time units. Therefore, in contrast to constraints (4), we can

omit parameter G in this case. Based on (9) each machine has to be set up for exactly

one product at the beginning of each period. Constraints (10) carry the setup configuration

state of the machines into the next period. They represent a flow conservation for the setup
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state. So if a machine is set up for a certain item i in period t, there must be either a

changeover from item i to another item (
∑

j∈φ(m) Tijtm) or the setup state is carried over

to the next period (αi(t+1)m). Constraints (11) avoid more than one setup for each item.

The production sequence on a certain machine within a period represents an open tour

including some of the items. As in vehicle routing problems we have to avoid disconnected

subtours, i.e., setup sequences which cycle between the same products within a period (e.g.,

i1 → i2 → · · · → i1) but where the initial setup state of the machine is not part of this

sequence. Constraints (12) cut off such disconnected subtours and subtours that appear in

the middle of the sequence (see e.g., Almada-Lobo et al., 2007 or Almada-Lobo et al., 2008

for further details). Furthermore, these constraints link the starting and finishing times

of two batches produced one immediately after the other. We do not impose the starting

times of the first batch in any period to be zero, as there might be some idle time before

production starts (as well as afterwards). Requirements (12) do not define the starting time

of the last product to be produced on each machine, as they are inactive for such cases. We

assume that for a cycle with more than one item involving item j (αjtm = αj(t+1)m = 1),

there occurs only one batch of j in the first position of the production sequence. In case of

a path, requirements (13) determine the starting time of the last product of the sequence.

Clearly, (13) are redundant for a cycle. Inequalities (12)–(14) ensure that the machines are

used no longer than their available capacity. Constraints (15) ensure the coherency between

variables Wijt and the start and finish times of the batches of predecessors and successors.

Note that µs
it + pi · Xit computes the production completion time of product i in period

t. In case item j starts the production before the batch of its predecessor i is completed

in the same period (or in case there is not such batch), i.e. Wijt = 0, constraints (16) and

(17) force the quantity of item i required to produce j to be supplied solely from the initial

stock in that period. If Wijt = 1, then (16) and (17) are inactive, and (7) allow the gross

requirements of item i to produce j to be matched from stock and from production in the

same period.

Note that the way how depended batches are synchronized is motivated by a model

formulation given in Almeder and Almada-Lobo (2011) where the usage of a secondary

resource is synchronized across parallel machines.

Example continued. For a better understanding of the model let us return to the example

given in Section 2.2. Figure 4 depicts the optimal solution obtained by the model above with

total cost of 10. The positive values of the decision variables are indicated at the different

positions. All decision variables not mentioned have a value of 0.

The variables αitm and Tijtm determine the changes of the setup state of the machines and

the items which may be produced. The values of αi1m correspond to the given initial setup

state of the machines. Since there is no setup on machines A and B, in period 1 variables

Tijtm equal to 0 for m = A,B. On machine C we have in the first period a changeover from
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A

B

C

t = 1 t = 2
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Figure 4: Illustration of decision variables for the batching case

item 4 to item 3 and back to item 4. Hence, for items 3 and 4 constraints (10) are as follows:

1
T431C

+ 0
α31C

= 1
T341C

+ 0
α32C

1
T341C

+ 1
α41C

= 1
T431C

+ 1
α42C

The constraints (12) and (13) ensure a correct production sequence within a period and

enforce the decision variables µs
it to take the correct starting times of the lots. Let us look

in more detail to constraints (12) for items 3 and 4 in period 1:

0.35
µs
31

+ 0.3
p3·X31

+ 0.05
s34·T341C

+ 1
T341C

− 1− 1
α42C

= −0.3 ≤ 0
µs
41

0
µs
41

+ 0.3
p4·X41

+ 0.05
s43·T431C

+ 1
T431C

− 1− 0
α32C

= 0.35 ≤ 0.35
µs
31

The last term of the left-hand-side (αjtm) is necessary to allow a changeover back to item 4

at the end of period 1. Otherwise, the two constraints above would conflict and no feasible

values for µs
31 and µs

41 would be possible. In case there is no changeover back to the first

item produced in that period, constraints (13) is turned active enforcing the correct starting

value of the last lot in a period.

Since in period 1 the lot of item 3 is produced after item 4 and item 1 after item 3,

13



constraints (15) do not enforce Wijt to be 0 for those item combinations:

0.3
µs
41
+p4·X41

− 0.35
µ31

= −0.05 ≤ 1−W431

0.65
µs
31
+p3·X31

− 0.65
µ11

= 0 ≤ 1−W311

Hence, W431 and W311 can take the values 1, such that X̂431 = X̂311 = 0 according to (16)

and consequently, due to constraints (17) there is no inventory of item 4 or 3 necessary

before the start of the period.

Next we show that formulation FB really models the problem correctly. Let Q be the

set of solutions satisfying constraints (7)–(15) and (18). Set Q admits solutions that have

nonnegative inventory stock for every product at the end of every period (imposed by (7)),

but potentially negative in-period stock. We show that constraints (16) and (17) avoid this

case. To this end, consider subsets S(i) of items in a given time period t defined as

S(i) = {j ∈ Γ(i) : µs
jt < µs

it + pi ·Xit}.

The following lemma states that there are no negative in-period stocks (note that due to the

batching assumption the condition
∑

j∈S(i) aij ·Xjt > Ii(t−1) is equivalent to the statement

of having negative in-period stock).

Lemma 1. If x⋆ ∈ Q and x⋆ fulfills (16) and (17), then
∑

j∈S(i) aij ·Xjt ≤ Ii(t−1).

Proof. Let x⋆ ∈ Q. We first observe that if j ∈ S(i), then µs
jt < µs

it + pi ·Xit, which in turn

from (15) implies Wijt = 0. Thus if j ∈ S(i), from (16) we obtain X̂ijt ≥ Xjt.

On the other hand, if j ∈ Γ(i)\S(i), then clearly X̂ijt ≥ 0. Combining these two facts

we derive

Ii(t−1) ≥
∑

j∈Γ(i)

aij · X̂ijt ≥
∑

j∈S(i)

aij · X̂ijt +
∑

j∈Γ(i)\S(i)

aij · X̂ijt ≥
∑

j∈S(i)

aij · X̂ijt ≥
∑

j∈S(i)

aij ·Xjt.

This establishes the lemma.

In addition to showing that solutions have no negative in-period stock, we need to assert

that no solutions to the problem are left out.

Lemma 2. Any x⋆ ∈ Q satisfying
∑

j∈S(i) aij · Xjt ≤ Ii(t−1) for every i and t (x∗ has

nonnegative in-period inventory) fulfills constraints (16) and (17).

Proof. We show this by contradiction. We first note that in (16) and (17) we have the

freedom of selecting X̂ijt. As a result we can assume that we have an underlying X̂ijt

satisfying (16) but not (17) for at least one item i′ in a period t′ since otherwise we could

14



always increase X̂ijt to satisfy (16), but possibly violate (17) even more. Thus we have

X̂i′jt′ ≥ Xjt′ −
1

pj
Wi′jt′ j ∈ Γ(i′)

Ii′(t′−1) <
∑

j∈Γ(i′)

ai′jX̂i′jt′ .

Among all such X̂i′jt′, we pick the smallest one, which we denote by X̂min
i′jt′ . By choice we

clearly have

Ii′(t′−1) <
∑

j∈Γ(i′)

ai′jX̂
min
i′jt′. (19)

According to the definition of S(i), the minimal values satisfying (16) are defined by

X̂min
i′jt′ =







Xjt′ j ∈ S(i′)

0 j ∈ Γ(i′)\S(i′).

Inequality (19) yields

Ii′(t′−1) <
∑

j∈Γ(i′)

ai′jX̂
min
i′jt′ =

∑

j∈S(i′)

ai′jX̂
min
i′jt′ +

∑

j∈Γ(i′)\S(i′)

ai′jX̂
min
i′jt′ =

∑

j∈S(i′)

ai′jXjt′.

This constraint indicates that there is negative in-period inventory and it contradicts our

assumption that
∑

ai′j ·Xjt ≤ Ii′(t′−1).

3.2 Lot-streaming Production (Non-batching)

The previous model assumed that components can only be used for the production of suc-

cessors if the production batch is completely finished. If this assumption is relaxed, we

allow to use some already finished parts of the current production batch for the production

of successors. No transportation times are considered between different production stages

and inventory levels increase and decrease continuously due to production and consump-

tion of an item. It has to be ensured that during the whole period the inventory level is

nonnegative. Instead of constraints (16) and (17) it is necessary to replace them with

Ii(t−1) +min

(

Xit,
1

pi
(τ − µs

it)
+

)

≥
∑

j∈Γ(i)

aij min

(

Xjt,
1

pj

(

τ − µs
jt

)+
)

i, t, τ ∈ [0, 1],

(20)

where x+ := max(x, 0).

This set of constraints ensures that, for every time point τ in period t, the initial inventory
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plus the production of item i until τ is not less than the consumption of item i due to the

production of successors. Note that the external demand Eit only occurs at the end of

the period. Unfortunately there is an infinite number of such constraints. The next result

asserts that only a finite number of τ values suffices.

Theorem 1. It is sufficient and necessary to fulfill constraints (7) and (20) at the start

of the production batch of item i (τ = µs
it) and at the end of the production batch of each

successor k ∈ Γ(i) (τ = µs
kt + pkXkt) in order to maintain a nonnegative inventory level

throughout the whole period t.

Proof. We fix item i. Let us first consider the case when there is no production of item

i in period t (Xit = 0). If there is no production, the in-period inventory level of item i

is non-increasing throughout the period. Hence it reaches the minimum at the end of the

period. Since constraints (7) ensure that there is a nonnegative stock level at the end of

each period, the in-period inventory level can never be negative. To show the other way

around, because of (7), the following derivation shows that (20) is fulfilled for all τ :

Ii(t−1) +min

(

Xit,
1

pi
(τ − µs

it)
+

)

= Ii(t−1) = Iit −Xit + Eit +
∑

j∈Γ(i)

aijXjt ≥

≥
∑

j∈Γ(i)

aijXjt ≥
∑

j∈Γ(i)

aij min

(

Xjt,
1

pj

(

τ − µs
jt

)+
)

.

Now let us consider the case of a production of item i in period t (Xit > 0). We divide

the period into three parts. Let t1 define the start of the production of item i (t1 = µs
it),

and t2 the end of the production of item i (t2 = µs
it + piXit). Furthermore, note that 1

pi
is

the production rate of item i,
aij
pj

is the consumption rate of item i due to the production of

successor j, and the in-period inventory level Iit(τ) is a piecewise linear function of τ .

Let first τ ∈ [0, t1]. During this period only consumption of item i might occur (Iit(τ)

is non-increasing), so it is sufficient and necessary that at time t1 the inventory level is

nonnegative, which is equivalent to constraints (20) at τ = t1 = µs
it.

Consider now τ ∈ [t2, 1]. After t2 again only consumption might occur and the in-period

inventory level is non-increasing (Iit(τ) is again non-increasing). For the time span from t2

to the end of the period it is sufficient and necessary to have nonnegative inventory at the

end of the period. This is assured by constraints (7).

Finally, let τ ∈ [t1, t2]. During the production period of item i between t1 and t2 the

in-period inventory level may increase or decrease depending on the difference between the

constant production rate 1
pi

and the consumption rate of all currently processed successors

(see Figure 5). This consumption rate might vary depending on the number of successors

produced at a specific time point. If we consider a specific successor k of item i, during

the production of item k, the consumption rate of item i is increased by aik
pk

. Since the

consumption rate due to item k stays constant over the whole production period [t1, t2], it
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is sufficient and necessary that at the end of this production period the in-period inventory

level is nonnegative, i.e. Iit(τ) ≥ 0 for τ = µs
kt + pkXkt. We need to guarantee this for all

k and thus Iit(τ) ≥ 0 for τ ∈ {µs
kt + pkXkt|k ∈ Γ(i) and t1 ≤ µs

kt + pkXkt ≤ t2}. Using the

same argument as in the case of no production it can be shown that (20) for τ < t1 and

τ > t2 are valid and not cutting off solutions with nonnegative inventory. Hence, (20) must

hold for τ ∈ {µs
kt + pkXkt|k ∈ Γ(i)}.

0 1t1 t2

Iit(τ)

t

Ii(t−1)

I ′it(τ) ≤ 0
I ′it(τ) ≤ 0

I ′it(τ) ≤ 0
I ′it(τ) ≥ 0

Figure 5: Example of the in-period inventory

From Theorem 1 we conclude that replacing (16) and (17) with a set of constraints

avoiding negative stock levels at the beginning and end of the production of each item i for

each successor k by

Ii(t−1) ≥
∑

j∈Γ(i)

aij min

(

Xjt,
1

pj

(

µs
it − µs

jt

)+
)

i, t (21)

Ii(t−1) +min

(

Xit,
1

pi
(µs

kt + pkXkt − µs
it)

+

)

≥

∑

j∈Γ(i)

aij min

(

Xjt,
1

pj

(

µs
kt + pkXkt − µs

jt

)+
)

i, k ∈ Γ(i), t (22)

leads to a model that allows immediate use of produced items but maintains a nonnegative

in-period inventory.

Hence, the model for the lot-streaming case FL reads:

ν(FL) = min
N
∑

i=1

T
∑

t=1

hit · Iit +
N
∑

i=1

N
∑

j=1

T
∑

t=1

M
∑

m=1

cij · Tijtm

subject to (7)− (14), (21), (22)
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Iit, Xit, µ
s
it ≥ 0;αitm, Tijtm ∈ {0, 1} i, j, t,m

This is a nonlinear model that can be easily linearized. We show the underlying lin-

earization of (21) and (22) in Appendix A.

Example continued. Considering again the example given in Section 2.2, Figure 6 depicts

the optimal solution obtained by the lot-streaming version of the model with total cost of 7.

The values of the decision variables that are not 0 are indicated.
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Figure 6: Illustration of decision variables for the lot-streaming case

Considering the inventory level of item 4 at the end of period 1, the new constraints (21)

and (22) read in period 2 as follows.

2
I41

≥ 1
a43

·min

(

0
X32

, 10
1

p3

·

(

0
µs
42

− 0
µs
32

)

)

+ 1
a42

·min

(

2
X22

, 2.5
1

p2

·

(

0
µs
42

− 0
µs
22

)

)

= 0

2
I41

+min

(

0
X42

, 10
1

p4

·

(

0
µs
22

+ 0.8
p2·X22

− 0
µs
42

)

)

= 2 ≥

1
a43

·min

(

0
X32

, 10
1

p3

·

(

0
µs
22

+ 0.8
p2·X22

− 0
µs
32

)

)

+ 1
a42

·min

(

2
X22

, 2.5
1

p2

·

(

0
µs
22

+ 0.8
p2·X22

− 0
µs
22

)

)

= 2

Hence, (22) ensures that there is enough inventory for item 4 at the beginning of period 2.

We prove in the following theorem that FB is a special case of FL and, as such, the

optimal value of FL is at least as good as FB’s.

Theorem 2. We have v(FB) ≥ v(FL).
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Proof. We demonstrate the statement by showing that adding constraints (16) and (17) to

FL constraints (21) and (22) become redundant and can be dropped.

Consider S(i) = {j ∈ Γ(i) : µs
it ≥ µs

jt}. Constraints (21) are then equivalent to Ii(t−1) ≥
∑

j∈S(i) aij min
(

Xjt,
1
pj

(

µs
it − µs

jt

)

)

. If j ∈ S(i), then (15) imposes Wijt = 0 and X̂ijt ≥ Xjt.

Using (16) and (17), we obtain

Ii(t−1) ≥
∑

j∈Γ(i)

aijX̂ijt ≥
∑

j∈S(i)

aij ·Xjt ≥
∑

j∈S(i)

aij min

(

Xjt,
1

pj

(

µs
it − µs

jt

)

)

i, t,

making constraint (21) redundant.

Let Q(i, k), k ∈ Γ(i) denote Q(i, k) = {j : j ∈ Γ(i) and µs
kt + pkXkt ≥ µs

jt}. The right

hand-side of (22) can then be simplified to

∑

j∈Q(i,k)

aij min

(

Xjt,
1

pj

(

µs
kt + pkXkt − µs

jt

)

)

.

Let us now distinguish two cases: µs
kt + pkXkt ≤ µs

it or µs
kt + pkXkt > µs

it.

We start by µs
kt + pkXkt ≤ µs

it. Since µs
kt ≤ µs

it + pi · Xit, from (15) clearly Wikt = 0.

Moreover, Wijt = 0 for every j in Q(i, k), which implies X̂ijt ≥ Xjt. Thus,

Ii(t−1) ≥
∑

j∈Q(i,k)

aij ·Xjt ≥
∑

j∈Q(i,k)

aij min

(

Xjt,
1

pj

(

µs
kt + pkXkt − µs

jt

)

)

i, k ∈ Γ(i), t.

Let now µs
kt + pkXkt > µs

it. We have to further consider two different scenarios.

If µs
kt + pkXkt < µs

it + piXit, then similarly to the above case, it follows that Wikt = 0

and Wijk = 0 for every j in Q(i, k). In terms it yields

Ii(t−1) +min

(

Xit,
1

pi
(µs

kt + pkXkt − µs
it)

)

≥ Ii(t−1) ≥

≥
∑

j∈Q(i,k)

aij ·Xjt ≥
∑

j∈Q(i,k)

aij min

(

Xjt,
1

pj

(

µs
kt + pkXkt − µs

jt

)

)

,

making (22) redundant.

Finally let µs
kt + pkXkt ≥ µs

it + piXit. In this case (22) reads

Ii(t−1) +min

(

Xit,
1

pi
(µs

kt + pkXkt − µs
it)

)

= Ii(t−1) +Xit ≥

≥
∑

j∈Q(i,k)

aij min

(

Xjt,
1

pj

(

µs
kt + pkXkt − µs

jt

)

)

.

It is easy to see that this condition is dominated by Ii(t−1) +Xit ≥
∑

j∈Γ(i) aij ·Xjt, which

is derived from (7) given that Iit and Eit are non-negative.
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3.3 Hybrid case

An interesting extension is a combination of the batching and lot-streaming cases, i.e. the

raw materials might be delivered continuously to the production process of item i, but the

newly produced items are only available if the whole batch is finished. In such a case we

have to ensure that the whole production of successors can be supplied from stock of item

i until the production is finished. To that end, we replace (22) by

Ii(t−1) ≥
∑

j∈Γ(i)

aij min
(

Xjt, pj
(

µs
it + piXit − µs

jt

)+
)

i, t. (23)

In (23) the start time µs
it of the production of item i was replaced by the finish time

µs
it + piXit.

Both versions, the batching and lot-streaming cases, represent extreme situations, es-

pecially the continuous production case where it is possible to produce subsequent items

in the BOM at the same time. Nevertheless, the batching scenario is more often found in

practice. If we want to model a situation where it is not necessary to wait for the whole

batch to be finished before items can be retrieved and used for further production steps, we

might introduce a minimum production lead time τi and substitute in constraints (21) and

(22) the starting time of item i with the term µs
it + τi.

3.4 Limitations

One assumption of big-bucket models is that at most one batch of each product is allows

per time period. This assumption still holds for the presented models. Let us now con-

sider the example from Section 2.2 with modified demand for item 2, d21 = 2 and d22 = 0.

The only feasible solution to this instance is shown in Figure 7. Such a solution enforces

two batches of item 4 in period 1 on machine C, which is not a feasible solution to our

model. Belvaux and Wolsey (2001) develop a lot-sizing model, which accounts for multiple

setups of the same item. In their approach the production sequence is not unique anymore.

Adapting it to our case would require to compute starting times for each batch and thus

blowing up the model size. Fandel and Stammen-Hegene (2006) develop a general lot-sizing

and scheduling approach for that problem but they end up with a highly complex non-linear

model. Experiences with such model formulations in similar settings show that the compu-

tational tractability of these kind of models is worse (see e.g. Almeder and Almada-Lobo,

2011).

4 Computational Comparison against MLCLSP

In this section we analyze the solution quality obtained by the traditional MLCLSP model

and compare it with the new extended model formulation. All models were implemented
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Figure 7: Example from Section 2.2 with changed demand for item 2.

in C++ using CPLEX 12.4 with Concert technology on a Intel Xenon E5540 CPU (using a

single thread) and 4 GB of random access memory. Furthermore, we used the well-known

(l, S) valid inequalities adapted by Clark and Armentano (1995) to the multi-level case. We

add them dynamically within the branch-and-cut framework of CPLEX.

4.1 MLCLSP with Zero Lead Time and no Setup Carryover

Considering that the proposed model incorporates more details than MLCLSP, we first

evaluate if solutions derived from the traditional MLCLSP model would also be optimal or

feasible for our approach. That means we are testing if the lot sizes obtained by MLCLSP

(without scheduling) can be scheduled within the given capacity. For this purpose we

considered 4 classes of instances proposed by Tempelmeier and Derstroff (1996). Classes A

and B are small instances with 10 items produced on 3 machines and a planning horizon of 4

periods. Class A instances consider setup cost but no setup times, whereas class B instances

include also setup times. These classes are small enough that MLCLSP with zero lead time

and no setup carryover can be solved easily with CPLEX within a second. Classes C and D

are larger instances (40 items, 6 machines, 16 periods). For most of these instances optimal

solutions of MLCLSP are unknown. We take the best known solutions for these classes

obtained by a heuristic method proposed in Almeder (2010). All classes contain instances

with a general and assembly product structure, with different demand profiles and different

levels of capacity utilization.

Classical MLCLSP does not consider setup carryover. To avoid setup carryover in our

formulation we introduce additional items (one for each machine) with no demand and force

that setup carryovers are only possible for these additional items. The setup times and costs

into these items are set to zero. The production quantities obtained by solving MLCLSP

are fixed in our formulation (6)-(18) such that we only determine the production sequences,

and start and finish times. We let CPLEX run for at most 600 seconds and classify the

outcomes in three different categories:

Infeasible: CPLEX reports that the problem is infeasible, i.e. it is not possible to find a

capacity feasible solution with the given production amount respecting synchronization

conditions,
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Feasible: CPLEX is able to find a capacity feasible solution with the given production

quantities, which considers synchronization,

Unknown: CPLEX is neither able to generate a feasible solution, nor to prove infeasibility.

Table 3 shows the results of these tests. The values in brackets correspond to the number

of tested solutions for each of the classes of test instances. We clearly observe that the vast

majority of the solutions are infeasible. This further solidifies the need of our work. Since the

batching constraint is more restrictive, fewer solutions are feasible under this assumption.

But even without considering batching, which implies that predecessor and successor can

be produced simultaneously, more than 85% of the instances are infeasible. It seems that

the zero lead-time assumption leads to solutions that cannot be implemented in practice.

On the other hand, having only a few periods, a 1-period lead time is also not meaningful.

Table 3: Checking the feasibility of solutions of the classical MLCLSP model.
batching assumption lot-streaming assumption

class infeasible feasible unknown infeasible feasible unknown
A (1500) 99.33% 0.67% 0.00% 89.47% 10.53% 0.00%
B (600) 99.33% 0.67% 0.00% 87.67% 12.33% 0.00%
C (599) 99.83% 0.00% 0.17% 92.49% 0.00% 7.51%
D (573) 98.78% 0.00% 1.22% 84.99% 0.00% 15.01%

In Table 4 we aggregate the results of the different classes according to various criteria.

The value in brackets corresponds to the number of tested solutions in each group. Differen-

tiating by the product structure (general and assembly structure) and by the way items are

assigned to machines (cyclic - the same machine is used for items on different levels; non-

cyclic - only items at the same level or adjacent levels in the BOM are assigned to the same

machines), we observe that most of the feasible solutions are obtained for problems with

a general product structure and a non-cyclic machine-item relation (for the lot-streaming

assumption). Furthermore, it is obvious that capacity-tight problems are more likely to be

infeasible, because free capacity usually means more flexibility for the scheduling problem.

The capacity utilization is defined by the total capacity requirement for production and

setup for each machine divided by the total available capacity of that machine. Also, the

setup cost level has an impact on the feasibility of the solution. High setup costs tend

to generate solutions with large batches, which are more difficult to schedule than smaller

batches.

Increasing capacity

A work-around which is often proposed to avoid infeasible plans to reserve some extra

capacity for the scheduling step. So MLCLSP is first applied to a problem with reduced
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Table 4: Breakdown with respect to BOM structure, capacity utilization, and setup cost.
batching assumption lot-streaming assumption

group infeasible feasible unknown infeasible feasible unknown
general-noncyclic (823) 99.64% 0.00% 0.36% 77.16% 16.77% 6.08%

general-cyclic (814) 99.14% 0.86% 0.00% 96.68% 1.47% 1.84%
assembly-noncyclic (811) 99.63% 0.00% 0.37% 95.07% 0.86% 4.07%

assembly-cyclic (824) 98.91% 0.85% 0.24% 86.89% 9.10% 4.00%
capacity util. 90% (641) 100.00% 0.00% 0.00% 99.69% 0.00% 0.31%
capacity util. 70% (657) 100.00% 0.00% 0.00% 88.74% 7.15% 4.11%
capacity util. 50% (660) 96.82% 2.12% 1.06% 79.09% 14.85% 6.06%
setup cost - low (653) 96.63% 2.14% 1.23% 82.08% 9.65% 8.27%

setup cost - med. (656) 100.00% 0.00% 0.00% 90.24% 7.16% 2.59%
setup cost - high (656) 100.00% 0.00% 0.00% 92.07% 6.10% 1.83%

capacity hoping that afterwards lots can be scheduled such that capacity restrictions are

not violated.

In order to investigate this approach we take again the solutions obtained by the classical

MLCLSP model and try to solve the scheduling problem while increasing the capacity per

period by 10%, 30%, and 50%. Table 5 reports the percentage of infeasible plans in the

different groups. Percentages are given in ranges because a run time limit of 600 seconds

was applied. For some of the problems no feasible solution was found within this time limit,

as well as no proof of infeasibility could be obtained. But already the lower bounds on the

number of infeasible instances are sufficient to spot the problem. It shows clearly that for

the case of batching even if the capacity is increased by 50% most of the MLCLSP solutions

are infeasible even if the original problem had only a theoretical capacity utilization of 50%.

For the lot-streaming case the results are better but still more than 20% of the production

plans are infeasible when the capacity is increased by 50%. Similar to the previous results a

cyclic machine assignment and low capacity utilization lead to less infeasible plans. Figure 8

shows the share of classical MLCLSP solutions which cannot be scheduled for different levels

of capacity increase.

4.2 MLCLSP with Zero Lead Time and Setup Carryover

In addition to classical MLCLSP the proposed model considers setup carryover. We have

applied the full model with synchronization to the test classes A and B in order to gain

some insights about the computational behavior of the model. The results are compared

to the solution of classical MLCLSP with setup carryover. The solution of that model is a

lower bound for the solution of model (6)-(18).

Table 6 shows the results obtained by CPLEX after 600 seconds run time. The columns

report the number of solutions solved to optimality, the number of feasible solutions, the

number of infeasible solutions, and the number of solutions with an unknown status, i.e.
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Table 5: Percentage of infeasible plans with and without increased capacity
batching lot-streaming

group orig. cap. cap.+10% cap.+30% cap.+50% orig. cap. cap.+10% cap.+30% cap.+50%
general-noncyclic (823) 99.6-100% 98.8-99.1% 98.1-99.0% 93.9-95.6% 77.2-83.2% 52.6-64.5% 18.1-41.1% 6.9-36.5%

general-cyclic (814) 99.1% 99.1% 96.3-96.9% 85.3-86.5% 96.7-98.5% 86.0-94.0% 49.3-70.1% 19.0-47.9%
assembly-noncyclic (811) 99.6-100% 99.3-100% 97.7-99.4% 95.6-98.5% 95.1-99.1% 91.7-98.5% 74.8-93.5% 49.6-75.5%

assembly-cyclic (824) 98.9-99.2% 98.5-99.2% 94.2-95.6% 82.0-85.2% 86.9-90.9% 68.6-76.6% 32.3-49.9% 16.0-38.3%
capacity util. 90% (641) 100% 100% 100% 99.5-100% 99.7-100% 94.9-96.9% 65.8-77.1% 39.0-59.9%
capacity util. 70% (657) 100% 100% 98.3-98.9% 91.8-93.9% 88.7-92.8% 76.9-86.3% 46.9-67.7% 18.1-47.2%
capacity util. 50% (660) 96.8-97.9% 95.2-96.8% 88.8-91.7% 76.5-80.3% 79.1-85.2% 64.4-76.5% 31.4-54.2% 16.1-43.6%
setup cost - low (653) 96.6-97.9% 94.6-96.8% 86.5-91.7% 71.1-79.3% 82.1-90.4% 68.8-80.4% 40.0-60.6% 23.0-48.7%

setup cost - med. (656) 100% 100% 99.7-99.8% 93.8-94.4% 90.2-92.8% 75.5-83.5% 42.4-63.4% 22.0-49.8%
setup cost - high (656) 100% 100% 99.8% 97.7-97.9% 92.1-93.9% 78.2-85.7% 46.6-67.2% 25.3-49.8%

all (3272) 99.3-99.5% 98.9-99.3% 96.5-97.7% 89.2-91.5% 88.9-92.9% 74.6-83.3% 43.5-63.5% 22.8-89.5%
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Figure 8: Percentage of infeasible MLCLSP solutions

we were neither able to find a feasible solution, nor could we prove infeasibility. We also

report the average gap reported by CPLEX for all feasible solutions. The last column shows

the average increase of the total costs of an optimal solution compared with the solution of

classical MLCLSP with setup carryover but no synchronization.

Table 6: Results for our model formulation.
class optimal feasible infeasible unknown avg. gap cost incr.

batching assumption
A (1500) 177 (11.8%) 185 (12.3%) 889 (59.3%) 249 (16.6%) 11.6% 32.7%
B (600) 89 (14.8%) 88 (14.7%) 317 (52.8%) 106 (17.7%) 11.2% 28.5%

lot-streaming assumption
A (1500) 169 (11.3%) 902 (60.1%) 284 (18.9%) 145 (9.7%) 23.2% 5.9%
B (600) 79 (13.2%) 387 (64.5%) 76 (12.7%) 58 (9.7%) 19.8% 6.4%

The most important result of these tests is shown in the last column. It represents the

additional cost of synchronization compared with classical MLCLSP, or, in other words,

the underestimation of costs by MLCLSP compared to a more realistic and detailed model

formulation.

A second outcome of these experiments is that there are quite a few instances with

unknown status. Also the average gap for feasible solutions is still considerable which is due

to the complexity of the new model formulation. Hence, future research should concentrate

on better formulations and fast solution algorithms for this problem. Nevertheless, one

main focus of this paper is to show the potential of integrated scheduling decisions within

MLCLSP.
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4.3 MLCLSP with One Period Lead Time and Setup Carryover

One way to overcome the feasibility problem of MLCLSP is to consider a minimum lead

time of one period. As aforementioned this lead time may cause a substantial increase

of inventory. Tempelmeier and Buschkühl (2009) used an extension of the class B test

instances for MLCLSP with lead time and setup carryover. In order to guarantee feasibility

they added two additional periods at the beginning with no external demand (in total now

6 periods). Since the problems have a three level product structure it is possible to satisfy

an end-item demand in the third period. We will denote the new class of instances as B6.

We solve the test instances using classical MLCLSP without synchronization, but with

one period lead time (as, for example, described by Tempelmeier and Buschkühl, 2009), as

well as using our new model formulation with synchronization. We apply a 600 second

run time limit to CPLEX. Table 7 compares the new solutions obtained by using the syn-

chronization feature. The columns show the number of solutions solved to optimality, the

number of feasible solutions, the number of instances where no solution has been obtained,

the number of improved solutions and the average cost improvement (improvement of the

upper bound) of the synchronization model compared to MLCLSP with lead time.

For the batching case we can solve 151 instances to optimality, for 448 instances we

find a feasible solution and only for one instance we are not able to compute a feasible

solution within the specified run time. For the lot-streaming case less instances are solved

to optimality. But for all other instances we obtain feasible solutions.

The column labeled UB impr. denotes the average improvement of the objective function

of the best solution found (optimal or feasible) compared to the optimal solution of MLCLSP

with lead time. Considering lead time in a big-bucket model leads to a clear overestimate

of the optimal costs of at least 30.6% for batching and 39.4% for lot-streaming due to the

increased inventory levels carried from one-period to the next just to maintain the feasibility

of the solution. We note that for the instances with low capacity utilization and high setup

cost, the cost overestimation by the MLCLSP solution with one period lead time is higher

than for the other cases.

5 Conclusions

Our extensive computational study clearly indicates that the solutions obtained by MLCLSP

are either infeasible or lead to excessive work-in-process (from 15% to 60% increase in

overall cost). The need for synchronization is thus clearly established. This work is the first

step in such a direction to develop a synchronisation mechanism in a big-bucket lot-sizing

framework. We present here two extensions of MLCLSP representing the two extreme cases

of batching (i.e. a successor item can only be produced if the full batches of the predecessor

items are finished) and lot-streaming (i.e. the successor item can be produced simultaneously
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Table 7: Comparing MLCLSP with one period lead time with the new model with synchronization for the class B6 test instances.
batching assumption lot-streaming assumption

group opt. feas. unk. improved UB impr. opt. feas. unk. improved UB impr.
general-noncyclic (150) 48 102 0 147 (98%) 33.2% 17 133 0 149 (99%) 32.7%

general-cyclic (150) 55 95 0 150 (100%) 29.4% 1 149 0 146 (97%) 29.9%
assembly-noncyclic (150) 7 142 1 141 (94%) 24.7% 3 147 0 150 (100%) 23.2%

assembly-cyclic (150) 41 109 0 150 (100%) 34.8% 6 144 0 150 (100%) 34.8%
capacity util. 60% (120) 2 117 1 108 (90%) 20.4% 0 120 0 117 (98%) 18.6%
capacity util 47% (120) 30 90 0 120 (100%) 29.8% 1 119 0 119 (99%) 29.9%
capacity util. 33% (120) 69 51 0 120 (100%) 41.5% 23 97 0 120 (100%) 41.5%
setup cost - low (120) 4 116 0 108 (90%) 20.4% 6 114 0 117 (98%) 18.6%

setup cost - med. (120) 13 90 0 120 (100%) 29.8% 6 114 0 119 (99%) 29.9%
setup cost - high (120) 67 51 1 120(100%) 41.5% 9 111 0 120 (99%) 41.5%

all (600) 151 448 1 588 (98%) 30.6% 27 573 0 595 (99%) 39.4%
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with its predecessor items as long as it uses a different resource). It is straight forward to

introduce any possible lead time in between these two extremes if technical restrictions are

demanding it.

While commercial solvers are capable of solving small to mid size instances and many

larger instances, large-scale cases need further investigations. Future work should be devoted

to develop tighter model formulations and MIP-based heuristic solution approaches.
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