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ABSTRACT
We propose incremental (re)training of a neural network model to
cope with a continuous flow of new data in inference during model
serving. As such, this is a life-long learning process. We address
two challenges of life-long retraining: catastrophic forgetting and
efficient retraining. If we combine all past and new data it can easily
become intractable to retrain the neural network model. On the
other hand, if the model is retrained using only new data, it can
easily suffer catastrophic forgetting and thus it is paramount to
strike the right balance. Moreover, if we retrain all weights of the
model every time new data is collected, retraining tends to require
too many computing resources. To solve these two issues, we pro-
pose a novel retraining model that can select important samples
and important weights utilizing multi-armed bandits. To further
address forgetting, we propose a new regularization term focusing
on synapse and neuron importance. We analyze multiple datasets
to document the outcome of the proposed retraining methods. Var-
ious experiments demonstrate that our retraining methodologies
mitigate the catastrophic forgetting problem while boosting model
performance.
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1 INTRODUCTION
Powered by deep learning, artificial intelligence is exceeding human
intelligence in several tasks. There are still challenges, as training a
deep neural network requires substantial data, computing resources,
and it does not generalize well. Model training and serving is not a
one-time task but an incremental learning process. Once an initial
model is well-trained on historical data, it is then periodically fine-
tuned or retrained based on a continuous flow of new data for
inference inmodel serving. New datamay be collected every second,
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day, or week. In model serving, there are two important decisions:
when to retrain the model and how to efficiently retrain it. We
focus on the latter aspect. Retraining a model using only new data
can lead to catastrophic forgetting [10, 17], i.e., the model forgets
the knowledge acquired in the past. It is a common practice that
a model is retrained on a periodic basis using all old data (data
used the last time the model has been (re)trained) and new data
(data acquired since the last time the model has been (re)trained).
However, this strategy becomes infeasible as data accumulates
during model serving. Our study focuses on efficiently retraining a
trained neural network model with new data. The amount of old
data a retraining process can access is selected dynamically and is
subject to computation efficiency.

We study how to efficiently retrain a model from three aspects:
mitigating catastrophic forgetting by identifying important neu-
rons, strategically buffering data, and dynamically re-optimizing
weights. We assume the following setting to address these aspects.
A model is initially trained with some training data and then fine-
tuned continually based on (a small amount of) new data. Fine-
tuning is triggered periodically, and its timing is not the scope of
this work. Every fine-tuning of a model is a retraining session. Old
and new data are relative to the incumbent retraining session.

Catastrophic forgetting is a major barrier for deep neural net-
works to learn continually. There have been many attempts to limit
forgetting. Some existing studies focus on consolidating synapses
that are important to the trained model. Weight importance can
be measured using the diagonal of the Fisher matrix [17] or gradi-
ent magnitudes of weights [1]. If weights are required to be stable
during retraining by imposing regularization, it can prevent the
model from learning new patterns in new data. Moreover, both
neurons and weights affect model outcome. We introduce a new
regularization term to encourage weight updates as long as the neu-
rons do not incur dramatic changes. Inspired by the discussion of
representation sparsity by Aljundi et al. (2018b), we present a more
efficient regularization term that captures both the importance of
neurons and synapses/weights. The other line of research to cope
with forgetting is to dynamically adjust the underlying network ar-
chitecture [24, 31]. In the context of model serving, this is inefficient
since current AutoML strategies require weeks of training.

As Mehta et al. [22], Lopez-Paz and Ranzato [21], and Kemker
et al. [15] conclude, memory replay approaches generally outper-
form regularization-based approaches. Given a limited data/memory
buffer size, memory replay approaches tune a model with new data
as well as a small subset of old data. Mehta et al. compare sev-
eral competitive methods, e.g., clustering and herding, to select
important individual samples from old data. As the authors state,
individual sample selection can be computationally expensive and
can be easily influenced by outlier data. Moreover, the same train-
ing samples in different training epochs can have very different

1
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stochastic gradient updates. To this end, we build a reward system
based on loss decreases or weight magnitude changes and use a
multi-armed bandit (MAB) algorithm to select batches of old data
that are influential in loss function optimization. Each arm corre-
sponds to a mini-batch with reward being the loss decrease or the
weight magnitude change, and the reward is observed only after
an arm is selected (a mini-batch is optimized). We use the standard
epoch-based weight optimization to warm up weights then use
an MAB algorithm to select mini-batches. Mini-batches selected
most often in the current (re)training session are used in the next
retraining session. We showcase superior results of the MAB-based
sampling method. We also demonstrate that the combination of the
MAB-based memory replay method and regularization can boost
the effectiveness of retraining.

Meta-learning in terms of directly or indirectly changing net-
work structures to address weight optimization is another major
innovation in continual learning. Network compression and weight
sharing among different tasks/domains are common ways of reduc-
ing the number of trainable parameters. Since continual learning
aims to enhance a trained model, prior studies address ensemble
ideas of expanding trained networks including AutoML. In addition,
we have already argued that AutoML-like methods are too slow.
In our retraining method, we do not consider additional trainable
parameters as we keep the architecture fixed but introduce a novel
way of tuning a subset of weights at a time. We cluster weights
after each (re)training session given weight changes in consecutive
epochs. In the subsequent retraining session, we use another re-
ward system based on loss decreases or weight magnitude changes
where each arm corresponds to a cluster of weights in an MAB
algorithm. In each retraining step, we use an MAB algorithm to
select an arm/cluster and only optimize the weights in this clus-
ter in a mini-batch. Then, we calculate the reward as the amount
of loss decrease or weight magnitude change. To this end, only a
small portion of weights receive gradient updates, and therefore,
computing resources are allocated dynamically.

The proposed MAB-based retraining methodology with the ad-
dressed three components outperforms the models that only rely
on regularization terms with reservoir sampling (a state-of-the-art
memory replay method) [28] and standard gradient optimization
on average by 0.48%. The improvements range from 0.07% to 1.53%
on a variety of network architectures including fully connected,
convolutional, and recurrent networks. Data samples selected based
on MAB yield a better model performance on average by 0.13% over
reservoir sampling. Strategically optimizing a subset of weights
using MAB with clustering improves model performance by 0.29%
over standard optimization where all weights are optimized for ev-
ery mini-batch. It turns out that MAB-based optimization produces
solutions that offer better generalizations.

The major contribution of our work is the development and in-
tegration of the addressed three strategies: mitigating catastrophic
forgetting, strategically buffering old data, and dynamically opti-
mizing weights by means of clustering and MAB. The retraining
model not only mitigates catastrophic forgetting but also performs
well on new data, i.e. it generalizes better. The model is generic
and can be applied to any (re)trained neural architecture with any
loss function. In summary, we present a simple way of mitigating
catastrophic forgetting by regularizing neuron changes, which also

boosts model performance on new data; we enhance memory replay
using MAB; and we propose a novel way of dynamically optimizing
weights using clustering and MAB.

The remainder of this paper is organized as follows. In Section 2,
we explain past studies related to our work. In Section 3, we detail
the three components in our methodology: synapse and neuron
importance, MAB-based memory replay, and MAB-based weight
optimization. In Section 4, we introduce the datasets and experimen-
tal settings and demonstrate the results. In the end, we conclude in
Section 5.

2 RELATEDWORK
In this section, we distinguish our study from related research ar-
eas: continual learning and multi-task/sequential learning. We also
detail competitive techniques that are proposed for solving cata-
strophic forgetting. Lastly, we introduce popular MAB algorithms
used in our models.

2.1 Continual Learning
Most continual learning studies, especially multi-task/sequential
learning studies, do not allow access to old data [2, 20]. Given this
restriction, only regularization techniques can be applied. General
continual learning focuses on retaining knowledge acquired from
old tasks by studying task ordering and parameter shifting. The
objective in retraining is to tune a previously (re)trained model to
have a good performance on both new and old tasks (data in terms
of model serving). General continual learning studies focus on the
aspect of changes in tasks and thus the aforementioned prior works
rely on the presence of different tasks [27], but this is not the goal
of our study. For this reason, continual learning studies focusing
exclusively on multiple tasks are not applicable to the process of
retraining.

2.2 Catastrophic Forgetting
We next introduce three major advances in solving catastrophic
forgetting: regularization, memory consolidation, and ensemble
networks.

In regularization studies, when the weights of a trained network
are being tuned with new data, weights that are important to the
previous training session are kept relatively stable to maintain
the performance on old data. The original loss function is then
combined with a regularization term to penalize updates of the
important weights when retraining on a new session or task. Re-
garding measuring the importance of weights, Kirkpatrick et al.
[17] propose the elastic weight consolidation (EWC) algorithm, an
established benchmark model that utilizes the diagonal of the Fisher
matrix. In particular, Aljundi et al. [1] propose the memory aware
synapses (MAS) model, another well-known benchmark model, by
measuring how different weights influence model outputs. Aljundi
et al. [2] make a breakthrough by introducing sparsity at the neu-
ron level and propose the selfless learning (Selfless) model. In spite
of their effectiveness, the EWC and MAS models only consolidate
weights, which can prevent a model from learning using new data.
The Selfless model takes the relatedness of pairs of neurons into
consideration, which is computationally intensive and often pro-
hibitive in model serving. The newly proposed regularization terms
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in our methodology consider only individual neurons and is thus
more computationally efficient. It turns out that the performance
is also superior.

Intuitively, if a model can access all old training data in any
retraining session, catastrophic forgetting would be maximally
reduced. Memory replay studies in continual learning solve cata-
strophic forgetting by selecting a small portion of old data or by
generating synthetic important samples [21]. These existing mem-
ory replay approaches usually require additional training for select-
ing samples. Reservoir sampling is commonly used for choosing a
pre-defined number of random samples without replacement from a
population in a single pass [28]. It creates a reservoir pool of a fixed
size, and it maintains a random uniform distribution when replac-
ing a sample in the pool with a new sample. It is commonly applied
in data streaming when it is difficult to fit all samples into memory.
Inspired by reinforcement learning, we utilize a more promising
sampling approach, MAB, to choose important training batches for
network retraining. Sampling is done in each (re)training session
in an online learning fashion. Our method of selecting important
batches is more practical and efficient than selecting individual
samples.

Ensemble networks, sometimes referred to as meta-learning in
continual learning, take a different direction to overcome cata-
strophic forgetting by designing multiple networks for different
tasks or expanding trained networks [13]. The biggest limitation is
that memory usage increases with new data or new tasks in training
and even inference. Our methodology does not introduce additional
parameters, and we use an MAB algorithm to selectively optimize
a subset of weights in mini-batch retraining. Unlike models that
freeze network layers [7], of which some weights are frozen during
an entire (re)training session, all weights in our methodology are
considered, albeit not in each iteration.

2.3 Multi-armed Bandits
We briefly introduce competitive MAB algorithms that are used
for creating a reward system in our retraining methodology. The
MAB problem is to select an action among a finite number of ac-
tions. The reward is observed after the action is executed by the
environment. The five commonly used MAB algorithms are ex-
pected improvement (EI) [3], upper confidence bound (UCB) [4],
Thompson sampling (TS) [14], exponential-weight algorithm for
exploration and exploitation (EXP3 and EXP4) [5, 6], and top-two
expected improvement (EI2) [23]. We choose the best MAB algo-
rithm in our retraining methodology based on the experimental
performance under different settings.

The use of MAB algorithms for continual learning is studied
by Graves et al. [12]. However, the purpose of their data sampling
approach is to overcome forgetting by taking different tasks as
arms, which is different from our study where we consider arms as
mini-batches or clusters of weights.

3 NEURAL NETWORK RETRAINING
METHODOLOGY

In this section, we describe the three components of the new re-
training methodology. We let \𝑚 denote the model parameters

trained on data 𝐷𝑚 (the “old” data). The newly arrived data is de-
noted by 𝐷𝑚+1. After observing 𝐷𝑚+1, an oracle determines that
the model needs to be retrained, and thus the task is to efficiently
find model parameters \𝑚+1 on samples 𝐷𝑚 ⋃

𝐷𝑚+1 (or an approx-
imately selected subset). Given sample 𝑥 and ground truth 𝑔, we
let 𝐿\ (𝑥, 𝑔) denote the loss function and let 𝑙𝑚+1 (\ ) denote the
objective function of model𝑚 + 1 given parameters \ .

3.1 Synapse and Neuron Importance
We first lay out the methodology of our regularization term. Given a
generic neural network model with 𝑁 layers {𝑌𝑗 }𝑁𝑗=0, the equations
specifying the dynamics are

𝑌𝑖+1 = 𝑓𝑖+1 (𝑊𝑖𝑌𝑖 + 𝐵𝑖 ), (1)

where 𝑌𝑖 denotes the vector of neurons in layer 𝑖 ,𝑊𝑖 and 𝐵𝑖 denote
the matrix and vector of weights between layer 𝑖 and layer 𝑖 + 1,
and 𝑓𝑖+1 denotes the activation function in layer 𝑖 + 1. The trainable
parameters are \ = {𝑊𝑖 , 𝐵𝑖 }𝑁𝑖=1. We denote neuron values of the
trained model by 𝑌𝑚

𝑖
on 𝐷𝑚 . Note that 𝑌𝑖 = 𝑌𝑖 (\ ), but we explicitly

show this dependence only when needed for clarity. A second
subscript, when present, relates to individual neurons.

In regularization approaches, in training session𝑚 + 1, weights
that are important to training session𝑚 are “consolidated.” From
(1), we can easily conclude that the magnitudes of weights with
respect to model outputs are partially influenced by the magnitudes
of both neuron activations and weights because of the chain rule

𝜕𝑙𝑚+1

𝜕𝑊𝑖−1
=
𝜕𝑙𝑚+1

𝜕𝑌𝑁

𝜕𝑌𝑁

𝜕𝑊𝑖−1
𝜕𝑌𝑁

𝜕𝑊𝑖−1
=
𝜕𝑌𝑁

𝜕𝑌𝑖

𝜕𝑌𝑖

𝜕𝑊𝑖−1
.

(2)

The proposed loss function is

𝑙𝑚+1 (\ ) = 𝐸 (𝑥,𝑔)∼𝑝 ( · |𝐷𝑚
⋃

𝐷𝑚+1)𝐿\ (𝑥,𝑔)+

𝛼

𝑁∑
𝑖=1

∑
𝑘

𝜕 ∥𝑌𝑁 ∥2
2

𝜕𝑌𝑖𝑘

���
𝑌=𝑌𝑚

(𝑌𝑖𝑘 (\ ) − 𝑌𝑚𝑖𝑘 )
2+

𝛽
∑
𝑠

𝜕
𝑌𝑁 (\̄ )

2
2

𝜕\̄𝑠

���
\̄=\𝑚

(\𝑠 − \𝑚𝑠 )2,

(3)

where the first term captures standard loss, the second term captures
neuron activities, and the last term regularizes trainable parameters.
Values 𝛼 and 𝛽 are hyperparameters. We weigh the last two terms
by gradient values. Term (𝑌𝑖𝑘 (\ ) −𝑌𝑚𝑖𝑘 )

2 captures the change in the
neuron activity, which is an approximation to 𝜕𝑌𝑖

𝜕𝑊𝑖−1,𝑘
. This term

in (2) is multiplied by a linear combination of 𝜕𝑌𝑁
𝜕𝑌𝑖

approximated
by the L2 norm, which justifies the weights in the regularization
terms in (3).

Compared to EWC, our regularization terms are based on model
outputs, which does not require additional weight importance cal-
culations after each training session. Compared to MAS, we add the
second term for regularizing the sensitivity of outputs with respect
to neurons. The Selfless model also considers weight and neuron
importance, but it has computationally expensive operations of
calculating pairwise relatedness of neurons. The weights in (3) can
be easily computed by backpropagation.
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3.2 MAB-based Memory Replay
In this section, we propose a new memory replay method utilizing
MAB algorithms. Although regularization methods can marginally
solve catastrophic forgetting, we show in our experiments that
when integrating with an adequate memory replay method, the
retraining performance can be boosted notably. We propose an
online memory replay algorithm that selects optimal mini-batches
in training session𝑚 + 1 for training session𝑚 + 2.

Training samples contribute differently to loss decreases in a
training session. Inspired by the data influence discussion in [18],
we build a reward system based on loss updates from different
training samples. As it can be difficult to take each training sample
as one arm with a large dataset [9, 18], we consider each training
mini-batch as one arm, and every one-step gradient update on a
mini-batch is an arm pull action.

The setting is that in the current (re)training session we select a
subset of samples that are going to be used in subsequent training
steps. Formally, while training on 𝐷𝑚 ⋃

𝐷𝑚+1 the goal is to select
a subset of samples 𝑆 and set 𝐷𝑚+1 = 𝑆 for training in the next step
based on𝐷𝑚+1 ⋃𝐷𝑚+2. The key idea is to train for a certain number
of epochs based on an optimization technique and then to switch
to a strategy of selecting a mini-batch in each training step based
on MAB or “simulating” such a behavior. In the former case a mini-
batch is selected based on MAB while in the latter case standard
epoch-based training is performed. In each step we record which
mini-batch would have been selected if MAB-based training had
been employed. The selection of a mini-batch is based on an MAB
algorithm. We select the best MAB algorithm by experimenting
with all of the previously introduced MAB algorithms in Section 2.3.
The arms/mini-batches used most often are part of 𝑆 (for training
session𝑚 + 2).

Each arm pull gives a stochastic reward since the weights are
different in each pull, and we propose two reward collection meth-
ods: 1) the loss change when making a gradient update based on
the mini-batch (denoted by MAB-Loss in experiments) and 2) the
L2-norm of gradients of the mini-batch (labeled as MAB-NGrad in
experiments). The gradient norm strategy is based on importance
sampling proposed in [29]. Given mini-batch 𝐵 and parameters
\ that have just been updated based on 𝐵, the reward is defined
as

∑
𝑖∈𝐵

∇𝑙𝑚+1
𝑖

(\ )
2

2 where 𝑙𝑚+1
𝑖

is the loss component of 𝑙𝑚+1

pertaining to sample 𝑖 .
The reward of each arm may change when we pull the same

arm at a different training step due to the different underlying
parameters. We aim to choose the most influential mini-batches
during training and use them for the subsequent retraining session.
We list our MAB-based memory replay algorithm with respect to
reward corresponding to the decrease of loss and simulated MAB in
Algorithm 1, where hyperparameter 𝑞 controls how many epochs
we use for warming up weights (in the experiments we label this
version as MAB-Sim). We have attempted a version where the
selected mini-batch based on MAB is also processed, Steps 6 and 7
are replaced by “for each remaining training iteration” and Step 8
by “processing the recorded mini-batch in Step 7”. This variant is
denoted by MAB-Opt in the experimental section.

Algorithm 1 MAB-based memory replay algorithm

1: Input: 𝐷𝑚 ⋃
𝐷𝑚+1

2: Output: 𝑆 ⊂ 𝐷𝑚 ⋃
𝐷𝑚+1

3: Perform 𝑞 epochs using epoch-based loss optimization
4: Collect the decreases of loss when training on mini-batches

in the 𝑞𝑡ℎ epoch as the initial rewards of corresponding mini-
batches

5: for each remaining epoch do
6: for each mini-batch 𝑏 do
7: Record whichmini-batch (an arm) would be selected based

on an MAB algorithm
8: Conduct a one-step gradient update based on the mini-

batch 𝑏 {The recorded MAB mini-batch might be different
from the processed mini-batch}

9: The reward received of the mini-batch 𝑏 is the decrease
of loss of this mini-batch

10: end for
11: end for
12: Order all mini-batches based on the number of times they have

been selected in Step 7
13: Select the top mini-batches as 𝑆
14: 𝐷𝑚+1 = 𝑆

3.3 MAB-based Weight Optimization
Training in model serving must be performed quickly since infer-
ence on a “stale” model is dangerous. One solution to expedite
optimization is to train only on a subset of weights at a time. We
propose a novel way of updating weights during retraining sessions.
The weights are first clustered, and then an MAB algorithm selects
one cluster at a time. In this context an arm corresponds to a cluster.

3.3.1 Weight Clustering. We have found that a noticeable number
of weights in each layer have strong correlations. We have ana-
lyzed the weight values and their pairwise correlations in each
layer among different epochs. Figure 1 shows an example of pair-
wise correlations of 10 random weight pairs in each layer of the
LeNet model that is trained on the MNIST dataset 1. The subplots
correspond to the first convolutional (CNN) layer, the second CNN
layer, the first fully-connected (FC) layer, and the second FC layer.
We compute the Pearson correlation of the pairs for every 10 con-
secutive epochs. The figure shows that many pairs of weights move
in tandem, and there are many pairs with a correlation close to 1.
Furthermore, the correlation values are fairly stable with only a few
abrupt changes during training. Optimizing over a set of weights
that converge in sync should be efficient.

We demonstrate the weight and partial derivative relationships
of one weight pair in the first layer of the LeNet model in Figure 2.
Figures 2a and 2b illustrate the value series and the partial derivative
series of the pair. Figures 2c and 2d also illustrate the series of
the same pair but using a different weight initialization seed. By
comparing Figures 2a and 2c, the two weights each end up with
different values when they are close to convergence. Nevertheless,
in later epochs they have a strong correlation. This correlation
relationship can be easily verified in Figures 2b and 2d as the partial

1http://yann.lecun.com/exdb/mnist/
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(c) The 1st FC layer
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(d) The 2nd FC layer

Figure 1: The correlation of random pairs of weights in LeNet trained on the MNIST dataset

derivatives of the two weights become close regardless of the initial
weights. Ideally, all weights should have gradients close to 0 when
a model converges. However, as most deep learning tasks are non-
convex problems, not all weights converge at the same rate [11].

The novelty of our weight clustering method is that we cluster
weights that converge in sync and retrain them together. One option
is to cluster the weights based on correlation but in such a case a
distance-based algorithm must be used which does not scale. In
order to capture trends in weights, we do not use weight values
as features but the change in a weight value in two consecutive
epochs. We select the values in the last 20% of the epochs and use
standard Euclidean distance as the distance measure in clustering.
We have attempted K-Means and DBSCAN clustering algorithms
to cluster the weights in each layer with the former performing
better.

We obtain the final clusters of all weights as follows. If the largest
number of clusters in different layers is𝐾 , we create𝐾 arms/clusters.
For cluster 𝑖, 1 ≤ 𝑖 ≤ 𝐾 , we select a random cluster from each layer

and cluster 𝑖 is the union of all such sets. Those clusters at layers
that have already been selected, are not selected for subsequent
clusters (it is possible that some layers end up with no clusters to
select from in subsequent iterations). Note that, for example, cluster
𝐾 could consist of only a cluster of a single layer (the layer with
the largest number of clusters).

Although in network compression or network pruning studies
[13, 16, 25, 30] weights are also clustered for reducing the number
of trainable parameters in the retraining phase, the differences are
two-fold compared to our weight clustering. In compression and
pruning, first, weights are clustered based on their values and not
the difference in weight values in two consecutive epochs. Sec-
ond, in pruning only cluster centroids are trained in the retraining
phase, and the rest of the weights are discarded. In our context all
of the weights are used in subsequent MAB-based optimization de-
scribed in the next section. We do not discard any weights but only
strategically update a cluster of weights in each mini-batch of our
retraining phase. The common number of clusters per layer in our
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experiments is 3 to 20 obtained by measuring performance on the
validation dataset. Next, we explain how we efficiently re-optimize
weights using an MAB algorithm during retraining.

Algorithm 2MAB-based retraining with mini-batch updates

1: Cluster weights in each layer with respect to \𝑚
2: for each cluster 𝐶 do
3: \ = \𝑚

4: Perform one epoch to optimize only weights in 𝐶 (freeze
other weights)

5: Collect the decrease of loss of only optimizing this cluster
on one epoch as the initial reward of this cluster

6: end for
7: \ = \𝑚

8: for each epoch training on 𝐷𝑚 ⋃
𝐷𝑚+1 do

9: for each mini-batch do
10: Pull a cluster of weights (an arm) 𝐶 using an MAB algo-

rithm
11: Optimize only weights in𝐶 (freeze other weights) and this

mini-batch to update \
12: Collect the decrease of loss as the reward of this arm
13: Update the average reward of selecting this arm based on

its number of selections and the new reward
14: end for
15: end for

3.3.2 Dynamic Weight Optimization Using Multi-armed Bandits. In
this section, we explain the overall optimization algorithm. In a
retraining session, we first iterate over each cluster and only opti-
mize this cluster’s set of weights using a single epoch (all data for
this retraining session). We collect the loss decrease of pulling each
arm/cluster as the initial reward for this arm. For each cluster the
initial weights are reset to the initial values. After this initializa-
tion step, the mini-batches are processed in the usual epoch-based
fashion. For each mini-batch, we pull an arm/cluster of weights
using an MAB algorithm, collect the loss decrease of optimizing
only this arm (the rest of the arms are unchanged), and update the
average reward for the selected arm. The weights are now being
updated, but only the weights pertaining to the current mini-batch
and arm/cluster are being changed. We summarize this retraining
strategy MAB-MiniB in Algorithm 2.

An alternative strategy is to optimize over epochs by switching
the order of Line 9 and Line 10 of Algorithm 2. This version is called
“Epoch." We pull one arm/cluster of weights at the beginning of
every epoch and update only the weights in the selected cluster for
all of the mini-batches in that epoch. The reward corresponds to
the loss decrease or the L2-norm of gradients of the entire cluster.

We experiment with all aforementioned popularMAB algorithms
and choose the best one for each one of the MAB-MiniB and MAB-
Epochs algorithms. During each mini-batch training, only one clus-
ter/subset of weights receive gradient updates, but all weights are
optimized overall in a retraining session. As opposed to dropout–
where weights are randomly dropped–our retraining methodology
strategically decides which weights receive gradient updates when
training a mini-batch.

4 EXPERIMENTS AND RESULTS
In this section, we introduce the datasets we use, the different types
of neural networks, and the experimental setup. In addition to the
model retraining experiments, we also demonstrate the generaliza-
tion effects of combining weight clustering and MAB-based weight
optimization.

4.1 Model Retraining
4.1.1 Datasets and Experimental Setting. In order to simulate train-
ing a model with a continuous flow of new data, we create the fol-
lowing retraining setting. Given a public dataset, we first randomly
partition the data into 6 sets (one set of 50% and the remaining
sets of 10% each), then we further split each one of the sets into 3
subsets: training (70%), validation (10%), and test (20%). This yields
training data 𝑇𝑅, 𝑅1, 𝑅2, ..., and 𝑅5, validation data 𝑉𝐴, 𝐴1, ..., and
𝐴5, and test data 𝑇𝐸, 𝐸1, ..., and 𝐸5. We use 𝑇𝑅,𝑉𝐴,𝑇𝐸 for initial
training while each 𝑅𝑖 , 𝐴𝑖 ,𝑇𝑖 represents new data for retraining ses-
sion 𝑖 . When a new batch 𝑖 of data is received in model serving, we
execute retraining of session 𝑖; the algorithms from Section 3.2 are
used to select a subset of 𝑇𝑅 ∪ 𝑅1 ∪ · · · ∪ 𝑅𝑖 to use as training data.
In addition, in retraining session 𝑖 , we use𝑉𝐴∪𝐴1 ∪ · · · ∪𝐴𝑖 as the
validation dataset, and we employ inference on 𝑇𝐸 ∪ 𝐸1 ∪ · · · ∪ 𝐸𝑖 .
It is conceivable to potentially also use 𝐴𝑖 as validation, and 𝐸𝑖 for
test. We choose the former strategy since it offers great variability
in data, i.e., robustness.

The weights that lead to the highest accuracy on the validation
dataset for each (re)training session are used for inference on test.
We showcase our retraining model with six widely used benchmark
datasets. We use two datasets for image classifications: MNIST and
CIFAR-10 [19], two datasets that have feature concept drifts: SEA
and ELEC2, and two datasets for text classifications: IMDB3 and
REUTERS 4.

Our methods work with any type of a neural network. For sim-
plicity, we use the LeNet framework for the CIFAR-10 and MNIST
datasets, a three-layer perceptron (MLP) network for the SEA and
ELEC datasets, and an LSTM model followed by a softmax layer for
the IMDB and REUTER datasets.

The LeNet and LSTMmodels are trained using at most 50 epochs
with the first 20 epochs for warming up weights in the MAB-based
memory replay algorithm; the MLP models are trained using at
most 20 epochs with the first 10 epochs for warming up. All models
use the Adam optimizer, and we use early stopping of no accu-
racy increase on validation of up to 10−6 in 10 consecutive epochs
to avoid over-fitting. Using LeNet on the MNIST and CIFAR-10
datasets does not yield state-of-the-art performance numbers but
the gap is not too large. Dropout is not applied during MAB-based
weight optimization, as dropout also updates the gradients of a
subset of weights. Non-MAB methods are tuned with dropout and
batch normalization. In MAB-based weight optimization methods
we use the scree plot to determine the number of clusters, which is
justified later.

We compare the neuron consolidation method, denoted as NC, to
four benchmark regularization methods: fine-tuning using trained

2https://github.com/vlosing/driftDatasets
3https://datasets.imdbws.com/
4https://archive.ics.uci.edu/ml/datasets/reuters-21578+text+categorization+collection
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(b) Partial derivatives
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(d) Partial derivatives

Figure 2: The same pair of weights using different weight initialization seeds: Figures 2a and 2b use one seed, and Figures 2a and 2b use a
different seed

weights (Fine-tune) corresponding to not taking any action, EWC,
MAS, and Selfless. We also compare the MAB-based memory replay
algorithm to reservoir sampling, a popular memory replay algo-
rithm. For each model, we use four data settings: the union of all old
and new data (Union), random memory replay (Random-replay),
new data only (New-data), and our MAB retraining (MAB). We use
the same number of mini-batches in reservoir sampling, the ran-
dom replay, and the MAB retraining algorithms in every retraining
session of each dataset. The samples in the mini-batches for any
retraining session occupy 10% of the total training data captured
by the Union setting (same as the ratio of 𝑅𝑖 over the total training
data). We examine in the next section the impact of this choice.

In the MAB settings we try different configurations for calculat-
ing rewards and weight optimizations in our retraining methodol-
ogy. We select the best MAB algorithm based on the experiments
and integrate it with NC (the choices are EI, EI2, EXP3, EXP4, UCB,
and TS).

We list all the different options as follows.
MAB-based weight optimization: (miniB) We pull an arm for every
mini-batch based on Algorithm 2. (Epochs) We change Algorithm
2 so that pulling an arm corresponds to selecting a cluster and
performing several epochs on the selected cluster. (FullEpochs)
Standard weight optimization based on epochs. No clustering and
MAB is used.
Reward: The reward setting applies to both memory replay and
weight optimization. (Loss) The reward is based on the loss change.
(NGrad) The reward is calculated with respect to the sum of the
square of the gradient norm in the mini-batch.
Memory replay: (Sim) We follow Algorithm 1. (Opt) We utilize the
best MAB algorithm to select mini-batches for the next and the
current retraining sessions. Mini-batches are not evenly iterated
over in the current (re)training session as in Algorithm 1.
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Gradient strategy: (Grad) In optimization we use gradient descent.
(KFAC) We use K-FAC as the training optimizer in (3) to calculate
natural gradients.

We denote the algorithms by specifying the appropriate configu-
ration for each option. For example, algorithm MAB-MiniB-Loss-
Sim-Grad (NC) encodes all of the alternatives of the underlying
algorithm. The alternatives pertain only to MAB options and NC
is used for regularization since it works best (this is established in
the next section).

We report the accuracy of the test datasets in each retraining
session given the aforementioned comparison settings.

4.1.2 Model Retraining Results. We first study the impact of the
different memory replay strategies. To this end we consider the 5
different strategies and for each one of them we find the best setting
with respect to all other algorithmic choices, e.g., regularization and
the underlying optimization. In benchmark algorithms we do not
consider NC in order to compare only against previously known
strategies. Likewise, for the strategies developed herein we select
the best performer and NC is also an option. This also implies that
we compare our best algorithm with respect to the previously best
known algorithm under the different memory replay strategies.
Since models use most of the data in the union setting, we expect
this setting to be an upper bound with respect to the accuracy
performance.

Table 1 and Figure 3 compare accuracy under the best MAB
setting to the best benchmark model results under the union set-
ting, the random replay setting, the new data setting, and reservoir
sampling. In the table the numbers in bold present the best per-
former while the underlined numbers correspond to the second
best algorithm; they are the averages across all 5 retraining ses-
sions. Figure 3 breaks down the numbers by session and it also
specifies the underlying algorithmic strategy. The table reveals that
in 3 datasets MAB outperforms all other models, including the best
Union setting. For CIFAR-10 and REUTERS the latter is best, how-
ever MAB outperforms all of the remaining models. Union is much
more computationally demanding, which is going to be established
later; thus we claim that MAB is very robust and it is the algorithm
of choice.

In Figure 3, we illustrate the trends of the relative improvements
of the best union results, the best new data results, the best reservoir
sampling results, and the best MAB results over the best random
replay results in the five retraining sessions of the six datasets.
The improvements achieved by MAB-MiniB-Loss-Sim-Grad (NC)
indicate the performance boost of Algorithms 1 and 2. The bestMAB
sampling algorithms corresponding to the six datasets are EI2, EI2,
EXP3, TS, EXP3, and EI respectively.We observe that only New-data
and Union sometimes outperform the MAB strategy. The numbers
in Table 1 are average accuracies over the 5 sessions shown in Figure
3. The integrated MAB retraining model has better performances
than the best random replay and reservoir sampling models in
most sessions and datasets. In particular, the MAB retraining model
sometimes performs better than the best models under the union
setting. Because the SEA and the ELEC datasets have concept drifts,
the union data setting does not always outperform the memory
replay setting or even the new data setting (the drift likely lingers
in the union setting even after a random creation of sessions). The

difference in performance between the MAB retraining setting and
the union setting for the REUTERS dataset is larger than the rest
because REUTERS has 46 classes which essentially require a large
amount of old data for retraining.

In Table 2, we show the average relative accuracy improvements
of the best MAB model MAB-MiniB-Loss-Sim-Grad (NC) over the
best benchmark models for the six datasets (we divide by MAB-
MiniB-Loss-Sim-Grad (NC)). The models correspond to the models
in Figure 3 and Table 1. Positive values reveal that MAB-MiniB-
Loss-Sim-Grad (NC) outperforms. Union is the best performer with
a much higher computational time, however MAB outperforms all
other choices including reservoir, which is deemed state-of-the-art.
The overall improvement with respect to reservoir is 0.48%.

CIFAR-10 MNIST SEA ELEC IMDB REUTERS
Union 67.59 99.13 85.23 77.10 84.45 62.42
Random-replay 65.30 98.89 85.17 73.17 82.96 58.06
New-data 64.30 98.72 85.25 70.60 84.05 57.85
Reservoir 65.56 98.88 85.21 77.51 86.37 58.22
MAB 65.79 99.05 85.27 77.67 86.68 59.11

Table 1: Best average accuracy (%) for the bestMAB retrainingmodel
(MAB-MiniB-Loss-Sim-Grad (NC)) denoted as MAB, and the best
benchmark models under different training settings for the six
datasets

CIFAR-10 MNIST SEA ELEC IMDB REUTERS
Union -2.50 -0.08 0.05 0.74 2.64 -5.30
Random-replay 0.92 0.16 0.12 6.15 4.48 1.81
New-data 2.49 0.33 0.12 10.01 2.88 2.18
Reservoir 0.52 0.17 0.07 0.21 0.36 1.53

Table 2: Average accuracy (%) improvements of the best MAB re-
training model over the best benchmark models under different
training settings for the six datasets

In order to isolate the impact of the MAB algorithm for weight
optimization, we consider MAB-FullEpochs-Loss-Sim-Grad (NC)
versus reservoir, which uses the same full epochs approach (we
divide by the latter). Note that in this setting the only difference is
MAB-based memory replay exhibited in Algorithm 1. The gaps are
shown in the top bar chart in Figure 4. The overall average across all
numbers is 0.13%. In order to assess only the impact of MAB-based
weight optimization, we examine the gap between MAB-MiniB-
Loss-Sim-Grad (NC) and MAB-FullEpochs-Loss-Sim-Grad (NC) (we
divide by the latter). These algorithms use the same memory replay
algorithm, and they only differ in weight optimization. The results
are shown in the bottom bar chart in Figure 4. The overall average
gap is 0.29% which demonstrates the efficacy of Algorithm 2.

Figure 5 illustrates the relative improvements of MAB-MiniB-
Loss-Sim-Grad over the other MAB configurations (addressed in
Section 4.1.1) for the six datasets. Starting with MAB-MiniB-Loss-
Sim-Grad we vary other options one by one. The MAB-Epochs algo-
rithms take the full dataset for optimizing each cluster of weights.
However, as we do not (re)train a model using many epochs, which
leads to a small number of arm pulls, we do not observe supe-
rior results compared to MAB-MiniB-Loss-Sim-Grad. MAB-MiniB-
Loss-Sim-Grad and MAB-MiniB-NGrad-Sim-Grad have a similar

8
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Figure 3: The relative accuracy improvements (%) of the best MAB retraining model MAB-MiniB-Loss-Sim-Grad (NC), the best benchmark
models under the union setting, the random replay setting, the new data setting, and reservoir sampling over the best model under the
random replay setting
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Figure 4: Impact in isolation of MAB-based memory replay and
MAB-based weight optimization

performance indicating that the reward function setting does not
have a huge impact. MAB-MiniB-Loss-Sim-KFAC is also competi-
tive in many datasets and sessions, however it also performs very
poorly in some situations (ELEC). In general, we observe that the
performance of KFAC is very unstable. The performance of MAB-
MiniB-Loss-Opt-Grad is the worst among the 5 considered, which
leads to the conclusion that performing MAB optimization for se-
lection of mini-batch is not a good strategy. In the rest of the paper,
we abbreviate MAB-MiniB-Loss-Sim-Grad simply as MAB.

Because neuron regularization has terms for both neurons and
weights, it is expected to be more computationally demanding than
EWC, MAS, and Fine-tune. Compared to Selfless in the union set-
ting, which also considers both neuron and weight importance, NC
regularization in the union setting is 18-22 times faster than Selfless
(measured on a 2080 Ti GPU) across the six datasets. The reduction
in the time comes from the fact that NC has only individual neu-
ron level terms while Selfless considers pairs of neurons. We find
this conclusion universal for all comparison settings and different
datasets.

We compare the average training time of MAB to the best bench-
mark regularization methods under the union setting, the random
replay setting, the new data setting, and reservoir sampling in Fig-
ure 6a. When training on the same amount of data, random replay
with Selfless is 3 times slower than MAB as demonstrated in the
top figure. The figure clearly indicates that Selfless is very slow and
the remaining three strategies have computational requirements in
the same range with MAB being the slowest one. We also compare
the average training time for different MAB configurations shown
in Figure 6b. MAB-Epochs-Loss-Sim-Grad has the shortest training
time, while MAB-MiniB-Loss-Sim-KFAC is the slowest, which is
expected. Except for KFAC, the remaining versions exhibit similar

30% 20% 5%
MAB Reservoir MAB Reservoir MAB Reservoir

CIFAR-10 66.25 66.11 66.16 65.69 64.20 63.77
MNIST 99.08 98.91 99.08 98.93 98.75 98.68
SEA 85.27 85.21 85.26 85.21 85.26 85.25
ELEC 77.77 77.30 77.16 76.72 71.44 71.25
IMDB 86.72 86.45 86.59 86.35 83.14 82.31
REUTERS 60.05 59.08 59.89 59.26 56.91 56.66

Table 3: Average accuracy under different sample ratios

30% 20% 5%
MAB Reservoir MAB Reservoir MAB Reservoir

CIFAR-10 461 400 377 208 218 162
MNIST 272 416 154 311 99 124
SEA 85 90 61 82 28 49
ELEC 84 81 48 46 18 18
IMDB 2010 1972 1089 1075 617 476
REUTERS 3669 3613 1445 1406 1140 1133
Table 4: Average training time (s) under different sample ratios

model training time. Although the union data setting usually yields
a better performance compared to MAB-based retraining, the union
data setting requires excessive training time and computation re-
sources. Figure 6c shows the average training time comparison of
the union setting, the random replay setting, reservoir sampling,
the new data setting, and the best MAB setting using the NC regu-
larization term, which is a superior regularization. Union is clearly
the slowest one, as expected, followed by MAB and then the re-
maining three algorithms. MAB is slower than these algorithms
despite all of them using the same number of samples due to the
extra time to run the actual multi-arm bandit strategy.

To showcase the robustness of the MAB retraining model against
reservoir sampling given different ratios of selected data samples,
we detail the average accuracy comparison in Table 3 and aver-
age running time in Table 4. In Table 3 we point out that in every
single case MAB outperforms reservoir. The relative accuracy im-
provements on average for ratios 30%, 20%, and 5% are 0.50%, 0.47%,
0.42%, respectively, while on average the training time of MAB in-
creases by 11.71%, 17.55%, and 19.33%, respectively. By using sparse
tensor operations the computational times of MAB can be further
improved since MAB is using only on average 25% of the weights
as discussed later.

CIFAR-10 MNIST SEA ELEC IMDB REUTERS
Union 4,502 2,389 73 55 2,354 13,388
Reservoir 189 705 47 32 512 603
MAB 305 126 46 34 707 690

Table 5: The average training time of the six datasets

Table 5 shows the average training time of the most competitive
models used in Figure 3 for the six datasets. Union clearly has by
far the worst computational time, which in our opinion does not
justify the improvement in accuracy. MAB is slightly slower than
reservoir, but the difference is not large, i.e., they are on the same
scale. More importantly, MAB has better accuracy.
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Figure 5: The relative accuracy improvements (%) of MAB-MiniB-Loss-Sim-Grad (NC) over the NC regularization term with other competitive
MAB configurations (MAB- is omitted in the legend)

As shown in later figures, MAB during retraining is using on
average only 25% of the weights however since sparse tensors are
not handled by our implementation, this potential benefit is not
captured in the computational times. We posit that a sparse tensor
implementation would bring the computational time of MAB below
the time of reservoir.

Next in Figure 7we showcase how the size of the selected samples
in memory replay based on Algorithm 1 affects the test accuracy.
The test accuracy increases when the ratio of the sample size over
the total training data size increases from 5% to 50%. The gap is
more pronounced in early sessions. The training time also increases
as this sample ratio increases, and we demonstrate in Figure 8. The
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Figure 6: Average training time (s) on the CIFAR-10 dataset under
different settings

running time increases linearly, which is positive. Even for 50% it
is drastically lower than the corresponding best Union version for
these two datasets (the running time of Union (Selfless) for CIFAR-
10 is higher than 4,000 seconds and for REUTERS the time of Union
(K-FAC + Fine-tune) is more than 13,000 seconds as observed in Ta-
ble 5). This clearly demonstrates that MAB should be the algorithm
of choice. Note that in these two datasets Union outperforms MAB
the most in terms of accuracy.

The ratio of the number of weights optimized in every epoch over
the total number of weights in a network during a retraining session
is illustrated in Figure 9. At most 25% of weights are optimized in
every epoch of the CNN network on the MNIST dataset; at most
50.3% of the MLP network on the SEA dataset; and at most 16.2%
are optimized in the LSTM network on the IMDB dataset. Similar
to dropout, we observe that MAB-based weight sampling may take
more epochs before it meets the early stopping criteria compared to
the standard epoch-based weight optimization because MAB-based
weight sampling can keep searching for a better minimum due to
the exploration component while standard retraining soon meets
the early stopping criteria.

This is also evident in Figure 10b that compares the loss of MAB
and standard epoch-based training with the same memory replay
in the SEA dataset. Loss in MAB is more volatile, which is a further
confirmation that MAB explores more. It is also interesting to ob-
serve that the training loss of MAB is higher than that of standard
epoch-based training. On the other hand, from Tables 1 and 2 we
note that the test performance of MAB is superior, which indicates
that MAB generalizes better. The test accuracy is 0.8512 for MAB
while it is 0.8497 for standard epoch-based training. This is further
explored in Section 4.2.

We further examine the SEA dataset and MAB as an example to
show how the number of clusters in K-Means affects model accuracy
as illustrated in Figure 10. Figure 10a demonstrates the relationship
between the number of clusters in K-Means and model accuracy
during training, validation, and test phases. The best validation
accuracy is obtained at 𝑘 = 3. Thus, our default setting for the
number of clusters is 3. The number of times each cluster of weights
is selected during a retraining session is presented in Figure 10c. It
is clear that each cluster is selected approximately the same number
of times.

We also test the robustness of MAB by utilizing 10 different
random seeds on the SEA dataset. The mean accuracy of the ten
runs is 0.8511, the standard deviation is 0.0005, the minimal value
is 0.8506, and the max value is 0.8522. Very low standard deviation
attests to the robustness of the algorithm.

4.2 Model Generalization Results
We conduct model generalization experiments similar to those
in [26] by comparing MAB to the standard epoch-based weight
optimization utilizing dropout (Dropout) and batch normalization
(BN). We compare four training methods, Dropout, BN, Clustering
+ MAB, and BN + Clustering + MAB, on the same six datasets. (Note
that replay buffer has no role here.) In order to demonstrate the
model generalization effects of the training methods, we keep the
training data unchanged and augment the original test data. For the
MNIST and the CIFAR-10 datasets, we use the following popular
augmentation factors: image rotations by 45 degrees (clockwise
and counterclockwise), image shifting by 20 percent (left and right),
and zooming in by 80 to 90 percent. We denote the augmented
test datasets by CIFAR-10-A and MNIST-A. In addition, we employ
elastic transformation, another popular data augmentation method
proposed in [26]. We denote the transformed test datasets by CIFAR-
10-E and MNIST-E. For non-image datasets, e.g., SEA, IMDB, we
use the widely used synthetic minority oversampling technique
(SMOTE) [8] to add new test examples. In particular, we train using
the original training data and test on the combination of the original
test data and the augmented test data. The ratio of original test
and augmented test data is 50%. For the Clustering + MAB settings,
we train using the standard epoch-based weight optimization for
at most 𝑥 epochs and cluster the weights. Then, we train utilizing
MAB-based weight optimization to re-optimize weights for the
remaining epochs until the training session ends. Dropout and
BN are trained using at most 2 · 𝑥 epochs. We use the same early
stopping criteria as in all of the previous experiments. We set 𝑥
to be 50 for the MNIST, CIFAR-10, IMDB, and REUTERS datasets
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Figure 7: Accuracy with respect to the ratio of the number of the samples selected for MAB on CIFAR-10 (left) and REUTERS (right)
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Figure 8: Average training time (s) for different sample ratios for
MAB

and 𝑥 to be 20 for the SEA and ELEC datasets which are the same
values as in previous experiments.

We show the accuracy results in Table 6. Boldface indicates the
highest value in each dataset. The best performance is achieved by
combining BN, clustering, and MAB. We find that Clustering+MAB
improves model generalization when training a neural network
over BN from 0.18% to 16.0% with the average improvement being
4.9%.

Training Method CIFAR-10-A MNIST-A CIFAR-10-E MNIST-E
Dropout 67.67 98.65 43.31 88.17
BN 70.54 98.88 48.74 88.20
Clustering+MAB 79.16 99.09 48.92 90.29
BN+Clustering+MAB 80.45 99.14 49.23 90.59
Training Method SEA ELEC IMDB REUTERS
Dropout 84.09 61.98 72.07 59.66
BN 84.39 62.14 73.24 62.92
Clustering+MAB 84.54 72.09 76.09 65.31
BN+Clustering+MAB 84.88 73.24 78.34 65.61

Table 6: Accuracy (%) of different training methods for the six
datasets

5 CONCLUSION
In this paper, we propose a generic model for continual neural
network retraining. Our model integrates neuron importance for
encouraging gradient updates for new data, MAB-based memory
replay for optimal sampling, and dynamic weight optimization for
reducing the number of trainable weights during training and for
better generalization. We use various practical data settings to show
the robustness of our retraining model in CNN, MLP, and RNN net-
works. Although we demonstrate the effectiveness of the MAB
methodologies for the neural network retraining case, it would
be interesting to integrate clustering and MAB-based weight opti-
mization with AutoML. A promising direction to expand our work
would be to adjust a trained model when absorbing new features
and new classes. A convergence property of MAB-based training
in the convex and general setting is also of interest.
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Figure 9: The average percentage of weights that are optimized in
each epoch
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