
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Neural Network Retraining for Model Serving
Diego Klabjan

d-klabjan@northwestern.edu
Northwestern University

Evanston, IL, USA

Xiaofeng Zhu
xiaofengzhu2013@u.northwestern.edu

Northwestern University
Evanston, IL, USA

ABSTRACT
We propose incremental (re)training of a neural network model to
cope with a continuous flow of new data in inference during model
serving. As such, this is a life-long learning process. We address
two challenges of life-long retraining: catastrophic forgetting and
efficient retraining. If we combine all past and new data it can easily
become intractable to retrain the neural network model. On the
other hand, if the model is retrained using only new data, it can
easily suffer catastrophic forgetting and thus it is paramount to
strike the right balance. Moreover, if we retrain all weights of the
model every time new data is collected, retraining tends to require
too many computing resources. To solve these two issues, we pro-
pose a novel retraining model that can select important samples
and important weights utilizing multi-armed bandits. To further
address forgetting, we propose a new regularization term focusing
on synapse and neuron importance. We analyze multiple datasets
to document the outcome of the proposed retraining methods. Var-
ious experiments demonstrate that our retraining methodologies
mitigate the catastrophic forgetting problem while boosting model
performance.

CCS CONCEPTS
• Computing methodologies→ Lifelong machine learning.

KEYWORDS
lifelong learning, model retraining, continual training

ACM Reference Format:
Diego Klabjan and Xiaofeng Zhu. 2020. Neural Network Retraining for
Model Serving. In . ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Powered by deep learning, artificial intelligence is exceeding human
intelligence in several tasks. There are still challenges, as training a
deep neural network requires substantial data, computing resources,
and it does not generalize well. Model training and serving is not a
one-time task but an incremental learning process. Once an initial
model is well-trained on historical data, it is then periodically fine-
tuned or retrained based on a continuous flow of new data for
inference inmodel serving. New datamay be collected every second,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
, ,
© 2020 Association for Computing Machinery.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

day, or week. In model serving, there are two important decisions:
when to retrain the model and how to efficiently retrain it. We
focus on the latter aspect. Retraining a model using only new data
can lead to catastrophic forgetting [10, 17], i.e., the model forgets
the knowledge acquired in the past. It is a common practice that
a model is retrained on a periodic basis using all old data (data
used the last time the model has been (re)trained) and new data
(data acquired since the last time the model has been (re)trained).
However, this strategy becomes infeasible as data accumulates
during model serving. Our study focuses on efficiently retraining a
trained neural network model with new data. The amount of old
data a retraining process can access is selected dynamically and is
subject to computation efficiency.

We study how to efficiently retrain a model from three aspects:
mitigating catastrophic forgetting by identifying important neu-
rons, strategically buffering data, and dynamically re-optimizing
weights. We assume the following setting to address these aspects.
A model is initially trained with some training data and then fine-
tuned continually based on (a small amount of) new data. Fine-
tuning is triggered periodically, and its timing is not the scope of
this work. Every fine-tuning of a model is a retraining session. Old
and new data are relative to the incumbent retraining session.

Catastrophic forgetting is a major barrier for deep neural net-
works to learn continually. There have been many attempts to limit
forgetting. Some existing studies focus on consolidating synapses
that are important to the trained model. Weight importance can
be measured using the diagonal of the Fisher matrix [17] or gradi-
ent magnitudes of weights [1]. If weights are required to be stable
during retraining by imposing regularization, it can prevent the
model from learning new patterns in new data. Moreover, both
neurons and weights affect model outcome. We introduce a new
regularization term to encourage weight updates as long as the neu-
rons do not incur dramatic changes. Inspired by the discussion of
representation sparsity by Aljundi et al. (2018b), we present a more
efficient regularization term that captures both the importance of
neurons and synapses/weights. The other line of research to cope
with forgetting is to dynamically adjust the underlying network ar-
chitecture [24, 31]. In the context of model serving, this is inefficient
since current AutoML strategies require weeks of training.

As Mehta et al. [22], Lopez-Paz and Ranzato [21], and Kemker
et al. [15] conclude, memory replay approaches generally outper-
form regularization-based approaches. Given a limited data/memory
buffer size, memory replay approaches tune a model with new data
as well as a small subset of old data. Mehta et al. compare sev-
eral competitive methods, e.g., clustering and herding, to select
important individual samples from old data. As the authors state,
individual sample selection can be computationally expensive and
can be easily influenced by outlier data. Moreover, the same train-
ing samples in different training epochs can have very different

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

, , Klabjan and Zhu

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

stochastic gradient updates. To this end, we build a reward system
based on loss decreases or weight magnitude changes and use a
multi-armed bandit (MAB) algorithm to select batches of old data
that are influential in loss function optimization. Each arm corre-
sponds to a mini-batch with reward being the loss decrease or the
weight magnitude change, and the reward is observed only after
an arm is selected (a mini-batch is optimized). We use the standard
epoch-based weight optimization to warm up weights then use
an MAB algorithm to select mini-batches. Mini-batches selected
most often in the current (re)training session are used in the next
retraining session. We showcase superior results of the MAB-based
sampling method. We also demonstrate that the combination of the
MAB-based memory replay method and regularization can boost
the effectiveness of retraining.

Meta-learning in terms of directly or indirectly changing net-
work structures to address weight optimization is another major
innovation in continual learning. Network compression and weight
sharing among different tasks/domains are common ways of reduc-
ing the number of trainable parameters. Since continual learning
aims to enhance a trained model, prior studies address ensemble
ideas of expanding trained networks including AutoML. In addition,
we have already argued that AutoML-like methods are too slow.
In our retraining method, we do not consider additional trainable
parameters as we keep the architecture fixed but introduce a novel
way of tuning a subset of weights at a time. We cluster weights
after each (re)training session given weight changes in consecutive
epochs. In the subsequent retraining session, we use another re-
ward system based on loss decreases or weight magnitude changes
where each arm corresponds to a cluster of weights in an MAB
algorithm. In each retraining step, we use an MAB algorithm to
select an arm/cluster and only optimize the weights in this clus-
ter in a mini-batch. Then, we calculate the reward as the amount
of loss decrease or weight magnitude change. To this end, only a
small portion of weights receive gradient updates, and therefore,
computing resources are allocated dynamically.

The proposed MAB-based retraining methodology with the ad-
dressed three components outperforms the models that only rely
on regularization terms with reservoir sampling (a state-of-the-art
memory replay method) [28] and standard gradient optimization
on average by 0.48%. The improvements range from 0.07% to 1.53%
on a variety of network architectures including fully connected,
convolutional, and recurrent networks. Data samples selected based
on MAB yield a better model performance on average by 0.13% over
reservoir sampling. Strategically optimizing a subset of weights
using MAB with clustering improves model performance by 0.29%
over standard optimization where all weights are optimized for ev-
ery mini-batch. It turns out that MAB-based optimization produces
solutions that offer better generalizations.

The major contribution of our work is the development and in-
tegration of the addressed three strategies: mitigating catastrophic
forgetting, strategically buffering old data, and dynamically opti-
mizing weights by means of clustering and MAB. The retraining
model not only mitigates catastrophic forgetting but also performs
well on new data, i.e. it generalizes better. The model is generic
and can be applied to any (re)trained neural architecture with any
loss function. In summary, we present a simple way of mitigating
catastrophic forgetting by regularizing neuron changes, which also

boosts model performance on new data; we enhance memory replay
using MAB; and we propose a novel way of dynamically optimizing
weights using clustering and MAB.

The remainder of this paper is organized as follows. In Section 2,
we explain past studies related to our work. In Section 3, we detail
the three components in our methodology: synapse and neuron
importance, MAB-based memory replay, and MAB-based weight
optimization. In Section 4, we introduce the datasets and experimen-
tal settings and demonstrate the results. In the end, we conclude in
Section 5.

2 RELATEDWORK
In this section, we distinguish our study from related research ar-
eas: continual learning and multi-task/sequential learning. We also
detail competitive techniques that are proposed for solving cata-
strophic forgetting. Lastly, we introduce popular MAB algorithms
used in our models.

2.1 Continual Learning
Most continual learning studies, especially multi-task/sequential
learning studies, do not allow access to old data [2, 20]. Given this
restriction, only regularization techniques can be applied. General
continual learning focuses on retaining knowledge acquired from
old tasks by studying task ordering and parameter shifting. The
objective in retraining is to tune a previously (re)trained model to
have a good performance on both new and old tasks (data in terms
of model serving). General continual learning studies focus on the
aspect of changes in tasks and thus the aforementioned prior works
rely on the presence of different tasks [27], but this is not the goal
of our study. For this reason, continual learning studies focusing
exclusively on multiple tasks are not applicable to the process of
retraining.

2.2 Catastrophic Forgetting
We next introduce three major advances in solving catastrophic
forgetting: regularization, memory consolidation, and ensemble
networks.

In regularization studies, when the weights of a trained network
are being tuned with new data, weights that are important to the
previous training session are kept relatively stable to maintain
the performance on old data. The original loss function is then
combined with a regularization term to penalize updates of the
important weights when retraining on a new session or task. Re-
garding measuring the importance of weights, Kirkpatrick et al.
[17] propose the elastic weight consolidation (EWC) algorithm, an
established benchmark model that utilizes the diagonal of the Fisher
matrix. In particular, Aljundi et al. [1] propose the memory aware
synapses (MAS) model, another well-known benchmark model, by
measuring how different weights influence model outputs. Aljundi
et al. [2] make a breakthrough by introducing sparsity at the neu-
ron level and propose the selfless learning (Selfless) model. In spite
of their effectiveness, the EWC and MAS models only consolidate
weights, which can prevent a model from learning using new data.
The Selfless model takes the relatedness of pairs of neurons into
consideration, which is computationally intensive and often pro-
hibitive in model serving. The newly proposed regularization terms

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Neural Network Retraining for Model Serving , ,

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

in our methodology consider only individual neurons and is thus
more computationally efficient. It turns out that the performance
is also superior.

Intuitively, if a model can access all old training data in any
retraining session, catastrophic forgetting would be maximally
reduced. Memory replay studies in continual learning solve cata-
strophic forgetting by selecting a small portion of old data or by
generating synthetic important samples [21]. These existing mem-
ory replay approaches usually require additional training for select-
ing samples. Reservoir sampling is commonly used for choosing a
pre-defined number of random samples without replacement from a
population in a single pass [28]. It creates a reservoir pool of a fixed
size, and it maintains a random uniform distribution when replac-
ing a sample in the pool with a new sample. It is commonly applied
in data streaming when it is difficult to fit all samples into memory.
Inspired by reinforcement learning, we utilize a more promising
sampling approach, MAB, to choose important training batches for
network retraining. Sampling is done in each (re)training session
in an online learning fashion. Our method of selecting important
batches is more practical and efficient than selecting individual
samples.

Ensemble networks, sometimes referred to as meta-learning in
continual learning, take a different direction to overcome cata-
strophic forgetting by designing multiple networks for different
tasks or expanding trained networks [13]. The biggest limitation is
that memory usage increases with new data or new tasks in training
and even inference. Our methodology does not introduce additional
parameters, and we use an MAB algorithm to selectively optimize
a subset of weights in mini-batch retraining. Unlike models that
freeze network layers [7], of which some weights are frozen during
an entire (re)training session, all weights in our methodology are
considered, albeit not in each iteration.

2.3 Multi-armed Bandits
We briefly introduce competitive MAB algorithms that are used
for creating a reward system in our retraining methodology. The
MAB problem is to select an action among a finite number of ac-
tions. The reward is observed after the action is executed by the
environment. The five commonly used MAB algorithms are ex-
pected improvement (EI) [3], upper confidence bound (UCB) [4],
Thompson sampling (TS) [14], exponential-weight algorithm for
exploration and exploitation (EXP3 and EXP4) [5, 6], and top-two
expected improvement (EI2) [23]. We choose the best MAB algo-
rithm in our retraining methodology based on the experimental
performance under different settings.

The use of MAB algorithms for continual learning is studied
by Graves et al. [12]. However, the purpose of their data sampling
approach is to overcome forgetting by taking different tasks as
arms, which is different from our study where we consider arms as
mini-batches or clusters of weights.

3 NEURAL NETWORK RETRAINING
METHODOLOGY

In this section, we describe the three components of the new re-
training methodology. We let \𝑚 denote the model parameters

trained on data 𝐷𝑚 (the “old” data). The newly arrived data is de-
noted by 𝐷𝑚+1. After observing 𝐷𝑚+1, an oracle determines that
the model needs to be retrained, and thus the task is to efficiently
find model parameters \𝑚+1 on samples 𝐷𝑚 ⋃

𝐷𝑚+1 (or an approx-
imately selected subset). Given sample 𝑥 and ground truth 𝑔, we
let 𝐿\ (𝑥, 𝑔) denote the loss function and let 𝑙𝑚+1 (\) denote the
objective function of model𝑚 + 1 given parameters \ .

3.1 Synapse and Neuron Importance
We first lay out the methodology of our regularization term. Given a
generic neural network model with 𝑁 layers {𝑌𝑗 }𝑁𝑗=0, the equations
specifying the dynamics are

𝑌𝑖+1 = 𝑓𝑖+1 (𝑊𝑖𝑌𝑖 + 𝐵𝑖), (1)

where 𝑌𝑖 denotes the vector of neurons in layer 𝑖 ,𝑊𝑖 and 𝐵𝑖 denote
the matrix and vector of weights between layer 𝑖 and layer 𝑖 + 1,
and 𝑓𝑖+1 denotes the activation function in layer 𝑖 + 1. The trainable
parameters are \ = {𝑊𝑖 , 𝐵𝑖 }𝑁𝑖=1. We denote neuron values of the
trained model by 𝑌𝑚

𝑖
on 𝐷𝑚 . Note that 𝑌𝑖 = 𝑌𝑖 (\), but we explicitly

show this dependence only when needed for clarity. A second
subscript, when present, relates to individual neurons.

In regularization approaches, in training session𝑚 + 1, weights
that are important to training session𝑚 are “consolidated.” From
(1), we can easily conclude that the magnitudes of weights with
respect to model outputs are partially influenced by the magnitudes
of both neuron activations and weights because of the chain rule

𝜕𝑙𝑚+1

𝜕𝑊𝑖−1
=
𝜕𝑙𝑚+1

𝜕𝑌𝑁

𝜕𝑌𝑁

𝜕𝑊𝑖−1
𝜕𝑌𝑁

𝜕𝑊𝑖−1
=
𝜕𝑌𝑁

𝜕𝑌𝑖

𝜕𝑌𝑖

𝜕𝑊𝑖−1
.

(2)

The proposed loss function is

𝑙𝑚+1 (\) = 𝐸 (𝑥,𝑔)∼𝑝 (· |𝐷𝑚
⋃

𝐷𝑚+1)𝐿\ (𝑥,𝑔)+

𝛼

𝑁∑
𝑖=1

∑
𝑘

𝜕 ∥𝑌𝑁 ∥2
2

𝜕𝑌𝑖𝑘

���
𝑌=𝑌𝑚

(𝑌𝑖𝑘 (\) − 𝑌𝑚𝑖𝑘)
2+

𝛽
∑
𝑠

𝜕
𝑌𝑁 (\̄)

2
2

𝜕\̄𝑠

���
\̄=\𝑚

(\𝑠 − \𝑚𝑠)2,

(3)

where the first term captures standard loss, the second term captures
neuron activities, and the last term regularizes trainable parameters.
Values 𝛼 and 𝛽 are hyperparameters. We weigh the last two terms
by gradient values. Term (𝑌𝑖𝑘 (\) −𝑌𝑚𝑖𝑘)

2 captures the change in the
neuron activity, which is an approximation to 𝜕𝑌𝑖

𝜕𝑊𝑖−1,𝑘
. This term

in (2) is multiplied by a linear combination of 𝜕𝑌𝑁
𝜕𝑌𝑖

approximated
by the L2 norm, which justifies the weights in the regularization
terms in (3).

Compared to EWC, our regularization terms are based on model
outputs, which does not require additional weight importance cal-
culations after each training session. Compared to MAS, we add the
second term for regularizing the sensitivity of outputs with respect
to neurons. The Selfless model also considers weight and neuron
importance, but it has computationally expensive operations of
calculating pairwise relatedness of neurons. The weights in (3) can
be easily computed by backpropagation.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

, , Klabjan and Zhu

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3.2 MAB-based Memory Replay
In this section, we propose a new memory replay method utilizing
MAB algorithms. Although regularization methods can marginally
solve catastrophic forgetting, we show in our experiments that
when integrating with an adequate memory replay method, the
retraining performance can be boosted notably. We propose an
online memory replay algorithm that selects optimal mini-batches
in training session𝑚 + 1 for training session𝑚 + 2.

Training samples contribute differently to loss decreases in a
training session. Inspired by the data influence discussion in [18],
we build a reward system based on loss updates from different
training samples. As it can be difficult to take each training sample
as one arm with a large dataset [9, 18], we consider each training
mini-batch as one arm, and every one-step gradient update on a
mini-batch is an arm pull action.

The setting is that in the current (re)training session we select a
subset of samples that are going to be used in subsequent training
steps. Formally, while training on 𝐷𝑚 ⋃

𝐷𝑚+1 the goal is to select
a subset of samples 𝑆 and set 𝐷𝑚+1 = 𝑆 for training in the next step
based on𝐷𝑚+1 ⋃𝐷𝑚+2. The key idea is to train for a certain number
of epochs based on an optimization technique and then to switch
to a strategy of selecting a mini-batch in each training step based
on MAB or “simulating” such a behavior. In the former case a mini-
batch is selected based on MAB while in the latter case standard
epoch-based training is performed. In each step we record which
mini-batch would have been selected if MAB-based training had
been employed. The selection of a mini-batch is based on an MAB
algorithm. We select the best MAB algorithm by experimenting
with all of the previously introduced MAB algorithms in Section 2.3.
The arms/mini-batches used most often are part of 𝑆 (for training
session𝑚 + 2).

Each arm pull gives a stochastic reward since the weights are
different in each pull, and we propose two reward collection meth-
ods: 1) the loss change when making a gradient update based on
the mini-batch (denoted by MAB-Loss in experiments) and 2) the
L2-norm of gradients of the mini-batch (labeled as MAB-NGrad in
experiments). The gradient norm strategy is based on importance
sampling proposed in [29]. Given mini-batch 𝐵 and parameters
\ that have just been updated based on 𝐵, the reward is defined
as

∑
𝑖∈𝐵

∇𝑙𝑚+1
𝑖

(\)
2

2 where 𝑙𝑚+1
𝑖

is the loss component of 𝑙𝑚+1

pertaining to sample 𝑖 .
The reward of each arm may change when we pull the same

arm at a different training step due to the different underlying
parameters. We aim to choose the most influential mini-batches
during training and use them for the subsequent retraining session.
We list our MAB-based memory replay algorithm with respect to
reward corresponding to the decrease of loss and simulated MAB in
Algorithm 1, where hyperparameter 𝑞 controls how many epochs
we use for warming up weights (in the experiments we label this
version as MAB-Sim). We have attempted a version where the
selected mini-batch based on MAB is also processed, Steps 6 and 7
are replaced by “for each remaining training iteration” and Step 8
by “processing the recorded mini-batch in Step 7”. This variant is
denoted by MAB-Opt in the experimental section.

Algorithm 1 MAB-based memory replay algorithm

1: Input: 𝐷𝑚 ⋃
𝐷𝑚+1

2: Output: 𝑆 ⊂ 𝐷𝑚 ⋃
𝐷𝑚+1

3: Perform 𝑞 epochs using epoch-based loss optimization
4: Collect the decreases of loss when training on mini-batches

in the 𝑞𝑡ℎ epoch as the initial rewards of corresponding mini-
batches

5: for each remaining epoch do
6: for each mini-batch 𝑏 do
7: Record whichmini-batch (an arm) would be selected based

on an MAB algorithm
8: Conduct a one-step gradient update based on the mini-

batch 𝑏 {The recorded MAB mini-batch might be different
from the processed mini-batch}

9: The reward received of the mini-batch 𝑏 is the decrease
of loss of this mini-batch

10: end for
11: end for
12: Order all mini-batches based on the number of times they have

been selected in Step 7
13: Select the top mini-batches as 𝑆
14: 𝐷𝑚+1 = 𝑆

3.3 MAB-based Weight Optimization
Training in model serving must be performed quickly since infer-
ence on a “stale” model is dangerous. One solution to expedite
optimization is to train only on a subset of weights at a time. We
propose a novel way of updating weights during retraining sessions.
The weights are first clustered, and then an MAB algorithm selects
one cluster at a time. In this context an arm corresponds to a cluster.

3.3.1 Weight Clustering. We have found that a noticeable number
of weights in each layer have strong correlations. We have ana-
lyzed the weight values and their pairwise correlations in each
layer among different epochs. Figure 1 shows an example of pair-
wise correlations of 10 random weight pairs in each layer of the
LeNet model that is trained on the MNIST dataset 1. The subplots
correspond to the first convolutional (CNN) layer, the second CNN
layer, the first fully-connected (FC) layer, and the second FC layer.
We compute the Pearson correlation of the pairs for every 10 con-
secutive epochs. The figure shows that many pairs of weights move
in tandem, and there are many pairs with a correlation close to 1.
Furthermore, the correlation values are fairly stable with only a few
abrupt changes during training. Optimizing over a set of weights
that converge in sync should be efficient.

We demonstrate the weight and partial derivative relationships
of one weight pair in the first layer of the LeNet model in Figure 2.
Figures 2a and 2b illustrate the value series and the partial derivative
series of the pair. Figures 2c and 2d also illustrate the series of
the same pair but using a different weight initialization seed. By
comparing Figures 2a and 2c, the two weights each end up with
different values when they are close to convergence. Nevertheless,
in later epochs they have a strong correlation. This correlation
relationship can be easily verified in Figures 2b and 2d as the partial

1http://yann.lecun.com/exdb/mnist/

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Neural Network Retraining for Model Serving , ,

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
Epoch

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

(a) The 1st CNN layer

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
Epoch

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

(b) The 2nd CNN layer

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
Epoch

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

(c) The 1st FC layer

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
Epoch

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

(d) The 2nd FC layer

Figure 1: The correlation of random pairs of weights in LeNet trained on the MNIST dataset

derivatives of the two weights become close regardless of the initial
weights. Ideally, all weights should have gradients close to 0 when
a model converges. However, as most deep learning tasks are non-
convex problems, not all weights converge at the same rate [11].

The novelty of our weight clustering method is that we cluster
weights that converge in sync and retrain them together. One option
is to cluster the weights based on correlation but in such a case a
distance-based algorithm must be used which does not scale. In
order to capture trends in weights, we do not use weight values
as features but the change in a weight value in two consecutive
epochs. We select the values in the last 20% of the epochs and use
standard Euclidean distance as the distance measure in clustering.
We have attempted K-Means and DBSCAN clustering algorithms
to cluster the weights in each layer with the former performing
better.

We obtain the final clusters of all weights as follows. If the largest
number of clusters in different layers is𝐾 , we create𝐾 arms/clusters.
For cluster 𝑖, 1 ≤ 𝑖 ≤ 𝐾 , we select a random cluster from each layer

and cluster 𝑖 is the union of all such sets. Those clusters at layers
that have already been selected, are not selected for subsequent
clusters (it is possible that some layers end up with no clusters to
select from in subsequent iterations). Note that, for example, cluster
𝐾 could consist of only a cluster of a single layer (the layer with
the largest number of clusters).

Although in network compression or network pruning studies
[13, 16, 25, 30] weights are also clustered for reducing the number
of trainable parameters in the retraining phase, the differences are
two-fold compared to our weight clustering. In compression and
pruning, first, weights are clustered based on their values and not
the difference in weight values in two consecutive epochs. Sec-
ond, in pruning only cluster centroids are trained in the retraining
phase, and the rest of the weights are discarded. In our context all
of the weights are used in subsequent MAB-based optimization de-
scribed in the next section. We do not discard any weights but only
strategically update a cluster of weights in each mini-batch of our
retraining phase. The common number of clusters per layer in our

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

, , Klabjan and Zhu

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

experiments is 3 to 20 obtained by measuring performance on the
validation dataset. Next, we explain how we efficiently re-optimize
weights using an MAB algorithm during retraining.

Algorithm 2MAB-based retraining with mini-batch updates

1: Cluster weights in each layer with respect to \𝑚
2: for each cluster 𝐶 do
3: \ = \𝑚

4: Perform one epoch to optimize only weights in 𝐶 (freeze
other weights)

5: Collect the decrease of loss of only optimizing this cluster
on one epoch as the initial reward of this cluster

6: end for
7: \ = \𝑚

8: for each epoch training on 𝐷𝑚 ⋃
𝐷𝑚+1 do

9: for each mini-batch do
10: Pull a cluster of weights (an arm) 𝐶 using an MAB algo-

rithm
11: Optimize only weights in𝐶 (freeze other weights) and this

mini-batch to update \
12: Collect the decrease of loss as the reward of this arm
13: Update the average reward of selecting this arm based on

its number of selections and the new reward
14: end for
15: end for

3.3.2 Dynamic Weight Optimization Using Multi-armed Bandits. In
this section, we explain the overall optimization algorithm. In a
retraining session, we first iterate over each cluster and only opti-
mize this cluster’s set of weights using a single epoch (all data for
this retraining session). We collect the loss decrease of pulling each
arm/cluster as the initial reward for this arm. For each cluster the
initial weights are reset to the initial values. After this initializa-
tion step, the mini-batches are processed in the usual epoch-based
fashion. For each mini-batch, we pull an arm/cluster of weights
using an MAB algorithm, collect the loss decrease of optimizing
only this arm (the rest of the arms are unchanged), and update the
average reward for the selected arm. The weights are now being
updated, but only the weights pertaining to the current mini-batch
and arm/cluster are being changed. We summarize this retraining
strategy MAB-MiniB in Algorithm 2.

An alternative strategy is to optimize over epochs by switching
the order of Line 9 and Line 10 of Algorithm 2. This version is called
“Epoch." We pull one arm/cluster of weights at the beginning of
every epoch and update only the weights in the selected cluster for
all of the mini-batches in that epoch. The reward corresponds to
the loss decrease or the L2-norm of gradients of the entire cluster.

We experiment with all aforementioned popularMAB algorithms
and choose the best one for each one of the MAB-MiniB and MAB-
Epochs algorithms. During each mini-batch training, only one clus-
ter/subset of weights receive gradient updates, but all weights are
optimized overall in a retraining session. As opposed to dropout–
where weights are randomly dropped–our retraining methodology
strategically decides which weights receive gradient updates when
training a mini-batch.

4 EXPERIMENTS AND RESULTS
In this section, we introduce the datasets we use, the different types
of neural networks, and the experimental setup. In addition to the
model retraining experiments, we also demonstrate the generaliza-
tion effects of combining weight clustering and MAB-based weight
optimization.

4.1 Model Retraining
4.1.1 Datasets and Experimental Setting. In order to simulate train-
ing a model with a continuous flow of new data, we create the fol-
lowing retraining setting. Given a public dataset, we first randomly
partition the data into 6 sets (one set of 50% and the remaining
sets of 10% each), then we further split each one of the sets into 3
subsets: training (70%), validation (10%), and test (20%). This yields
training data 𝑇𝑅, 𝑅1, 𝑅2, ..., and 𝑅5, validation data 𝑉𝐴, 𝐴1, ..., and
𝐴5, and test data 𝑇𝐸, 𝐸1, ..., and 𝐸5. We use 𝑇𝑅,𝑉𝐴,𝑇𝐸 for initial
training while each 𝑅𝑖 , 𝐴𝑖 ,𝑇𝑖 represents new data for retraining ses-
sion 𝑖 . When a new batch 𝑖 of data is received in model serving, we
execute retraining of session 𝑖; the algorithms from Section 3.2 are
used to select a subset of 𝑇𝑅 ∪ 𝑅1 ∪ · · · ∪ 𝑅𝑖 to use as training data.
In addition, in retraining session 𝑖 , we use𝑉𝐴∪𝐴1 ∪ · · · ∪𝐴𝑖 as the
validation dataset, and we employ inference on 𝑇𝐸 ∪ 𝐸1 ∪ · · · ∪ 𝐸𝑖 .
It is conceivable to potentially also use 𝐴𝑖 as validation, and 𝐸𝑖 for
test. We choose the former strategy since it offers great variability
in data, i.e., robustness.

The weights that lead to the highest accuracy on the validation
dataset for each (re)training session are used for inference on test.
We showcase our retraining model with six widely used benchmark
datasets. We use two datasets for image classifications: MNIST and
CIFAR-10 [19], two datasets that have feature concept drifts: SEA
and ELEC2, and two datasets for text classifications: IMDB3 and
REUTERS 4.

Our methods work with any type of a neural network. For sim-
plicity, we use the LeNet framework for the CIFAR-10 and MNIST
datasets, a three-layer perceptron (MLP) network for the SEA and
ELEC datasets, and an LSTM model followed by a softmax layer for
the IMDB and REUTER datasets.

The LeNet and LSTMmodels are trained using at most 50 epochs
with the first 20 epochs for warming up weights in the MAB-based
memory replay algorithm; the MLP models are trained using at
most 20 epochs with the first 10 epochs for warming up. All models
use the Adam optimizer, and we use early stopping of no accu-
racy increase on validation of up to 10−6 in 10 consecutive epochs
to avoid over-fitting. Using LeNet on the MNIST and CIFAR-10
datasets does not yield state-of-the-art performance numbers but
the gap is not too large. Dropout is not applied during MAB-based
weight optimization, as dropout also updates the gradients of a
subset of weights. Non-MAB methods are tuned with dropout and
batch normalization. In MAB-based weight optimization methods
we use the scree plot to determine the number of clusters, which is
justified later.

We compare the neuron consolidation method, denoted as NC, to
four benchmark regularization methods: fine-tuning using trained

2https://github.com/vlosing/driftDatasets
3https://datasets.imdbws.com/
4https://archive.ics.uci.edu/ml/datasets/reuters-21578+text+categorization+collection

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Neural Network Retraining for Model Serving , ,

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch

0.150

0.125

0.100

0.075

0.050

0.025

0.000

0.025

W
ei

gh
t v

al
ue

s

(a) Weight values

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Epoch

0.150

0.125

0.100

0.075

0.050

0.025

0.000

0.025

P
ar

tia
l d

er
iv

at
iv

e
va

lu
es

(b) Partial derivatives

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch

0.150

0.125

0.100

0.075

0.050

0.025

0.000

0.025

W
ei

gh
t v

al
ue

s

(c) Weight values

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Epoch

0.150

0.125

0.100

0.075

0.050

0.025

0.000

0.025
P

ar
tia

l d
er

iv
at

iv
e

va
lu

es

(d) Partial derivatives

Figure 2: The same pair of weights using different weight initialization seeds: Figures 2a and 2b use one seed, and Figures 2a and 2b use a
different seed

weights (Fine-tune) corresponding to not taking any action, EWC,
MAS, and Selfless. We also compare the MAB-based memory replay
algorithm to reservoir sampling, a popular memory replay algo-
rithm. For each model, we use four data settings: the union of all old
and new data (Union), random memory replay (Random-replay),
new data only (New-data), and our MAB retraining (MAB). We use
the same number of mini-batches in reservoir sampling, the ran-
dom replay, and the MAB retraining algorithms in every retraining
session of each dataset. The samples in the mini-batches for any
retraining session occupy 10% of the total training data captured
by the Union setting (same as the ratio of 𝑅𝑖 over the total training
data). We examine in the next section the impact of this choice.

In the MAB settings we try different configurations for calculat-
ing rewards and weight optimizations in our retraining methodol-
ogy. We select the best MAB algorithm based on the experiments
and integrate it with NC (the choices are EI, EI2, EXP3, EXP4, UCB,
and TS).

We list all the different options as follows.
MAB-based weight optimization: (miniB) We pull an arm for every
mini-batch based on Algorithm 2. (Epochs) We change Algorithm
2 so that pulling an arm corresponds to selecting a cluster and
performing several epochs on the selected cluster. (FullEpochs)
Standard weight optimization based on epochs. No clustering and
MAB is used.
Reward: The reward setting applies to both memory replay and
weight optimization. (Loss) The reward is based on the loss change.
(NGrad) The reward is calculated with respect to the sum of the
square of the gradient norm in the mini-batch.
Memory replay: (Sim) We follow Algorithm 1. (Opt) We utilize the
best MAB algorithm to select mini-batches for the next and the
current retraining sessions. Mini-batches are not evenly iterated
over in the current (re)training session as in Algorithm 1.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

, , Klabjan and Zhu

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Gradient strategy: (Grad) In optimization we use gradient descent.
(KFAC) We use K-FAC as the training optimizer in (3) to calculate
natural gradients.

We denote the algorithms by specifying the appropriate configu-
ration for each option. For example, algorithm MAB-MiniB-Loss-
Sim-Grad (NC) encodes all of the alternatives of the underlying
algorithm. The alternatives pertain only to MAB options and NC
is used for regularization since it works best (this is established in
the next section).

We report the accuracy of the test datasets in each retraining
session given the aforementioned comparison settings.

4.1.2 Model Retraining Results. We first study the impact of the
different memory replay strategies. To this end we consider the 5
different strategies and for each one of them we find the best setting
with respect to all other algorithmic choices, e.g., regularization and
the underlying optimization. In benchmark algorithms we do not
consider NC in order to compare only against previously known
strategies. Likewise, for the strategies developed herein we select
the best performer and NC is also an option. This also implies that
we compare our best algorithm with respect to the previously best
known algorithm under the different memory replay strategies.
Since models use most of the data in the union setting, we expect
this setting to be an upper bound with respect to the accuracy
performance.

Table 1 and Figure 3 compare accuracy under the best MAB
setting to the best benchmark model results under the union set-
ting, the random replay setting, the new data setting, and reservoir
sampling. In the table the numbers in bold present the best per-
former while the underlined numbers correspond to the second
best algorithm; they are the averages across all 5 retraining ses-
sions. Figure 3 breaks down the numbers by session and it also
specifies the underlying algorithmic strategy. The table reveals that
in 3 datasets MAB outperforms all other models, including the best
Union setting. For CIFAR-10 and REUTERS the latter is best, how-
ever MAB outperforms all of the remaining models. Union is much
more computationally demanding, which is going to be established
later; thus we claim that MAB is very robust and it is the algorithm
of choice.

In Figure 3, we illustrate the trends of the relative improvements
of the best union results, the best new data results, the best reservoir
sampling results, and the best MAB results over the best random
replay results in the five retraining sessions of the six datasets.
The improvements achieved by MAB-MiniB-Loss-Sim-Grad (NC)
indicate the performance boost of Algorithms 1 and 2. The bestMAB
sampling algorithms corresponding to the six datasets are EI2, EI2,
EXP3, TS, EXP3, and EI respectively.We observe that only New-data
and Union sometimes outperform the MAB strategy. The numbers
in Table 1 are average accuracies over the 5 sessions shown in Figure
3. The integrated MAB retraining model has better performances
than the best random replay and reservoir sampling models in
most sessions and datasets. In particular, the MAB retraining model
sometimes performs better than the best models under the union
setting. Because the SEA and the ELEC datasets have concept drifts,
the union data setting does not always outperform the memory
replay setting or even the new data setting (the drift likely lingers
in the union setting even after a random creation of sessions). The

difference in performance between the MAB retraining setting and
the union setting for the REUTERS dataset is larger than the rest
because REUTERS has 46 classes which essentially require a large
amount of old data for retraining.

In Table 2, we show the average relative accuracy improvements
of the best MAB model MAB-MiniB-Loss-Sim-Grad (NC) over the
best benchmark models for the six datasets (we divide by MAB-
MiniB-Loss-Sim-Grad (NC)). The models correspond to the models
in Figure 3 and Table 1. Positive values reveal that MAB-MiniB-
Loss-Sim-Grad (NC) outperforms. Union is the best performer with
a much higher computational time, however MAB outperforms all
other choices including reservoir, which is deemed state-of-the-art.
The overall improvement with respect to reservoir is 0.48%.

CIFAR-10 MNIST SEA ELEC IMDB REUTERS
Union 67.59 99.13 85.23 77.10 84.45 62.42
Random-replay 65.30 98.89 85.17 73.17 82.96 58.06
New-data 64.30 98.72 85.25 70.60 84.05 57.85
Reservoir 65.56 98.88 85.21 77.51 86.37 58.22
MAB 65.79 99.05 85.27 77.67 86.68 59.11

Table 1: Best average accuracy (%) for the bestMAB retrainingmodel
(MAB-MiniB-Loss-Sim-Grad (NC)) denoted as MAB, and the best
benchmark models under different training settings for the six
datasets

CIFAR-10 MNIST SEA ELEC IMDB REUTERS
Union -2.50 -0.08 0.05 0.74 2.64 -5.30
Random-replay 0.92 0.16 0.12 6.15 4.48 1.81
New-data 2.49 0.33 0.12 10.01 2.88 2.18
Reservoir 0.52 0.17 0.07 0.21 0.36 1.53

Table 2: Average accuracy (%) improvements of the best MAB re-
training model over the best benchmark models under different
training settings for the six datasets

In order to isolate the impact of the MAB algorithm for weight
optimization, we consider MAB-FullEpochs-Loss-Sim-Grad (NC)
versus reservoir, which uses the same full epochs approach (we
divide by the latter). Note that in this setting the only difference is
MAB-based memory replay exhibited in Algorithm 1. The gaps are
shown in the top bar chart in Figure 4. The overall average across all
numbers is 0.13%. In order to assess only the impact of MAB-based
weight optimization, we examine the gap between MAB-MiniB-
Loss-Sim-Grad (NC) and MAB-FullEpochs-Loss-Sim-Grad (NC) (we
divide by the latter). These algorithms use the same memory replay
algorithm, and they only differ in weight optimization. The results
are shown in the bottom bar chart in Figure 4. The overall average
gap is 0.29% which demonstrates the efficacy of Algorithm 2.

Figure 5 illustrates the relative improvements of MAB-MiniB-
Loss-Sim-Grad over the other MAB configurations (addressed in
Section 4.1.1) for the six datasets. Starting with MAB-MiniB-Loss-
Sim-Grad we vary other options one by one. The MAB-Epochs algo-
rithms take the full dataset for optimizing each cluster of weights.
However, as we do not (re)train a model using many epochs, which
leads to a small number of arm pulls, we do not observe supe-
rior results compared to MAB-MiniB-Loss-Sim-Grad. MAB-MiniB-
Loss-Sim-Grad and MAB-MiniB-NGrad-Sim-Grad have a similar

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Neural Network Retraining for Model Serving , ,

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1 2 3 4 5
Training session

10

5

0

5

10

Re
la

tiv
e

ac
cu

ra
cy

 im
pr

ov
em

en
t

Union (EWC)
Random replay (EWC)
New data (Selfless)
Reservoir (Fine-tune)
MAB-MiniB-Loss-Sim-Grad (NC)

(a) ELEC

1 2 3 4 5
Training session

10

5

0

5

10

Re
la

tiv
e

ac
cu

ra
cy

 im
pr

ov
em

en
t

Union (K-FAC + Fine-tune)
Random replay (EWC)
New data (MAS)
Reservoir (Fine-tune)
MAB-MiniB-Loss-Sim-Grad (NC)

(b) REUTERS

1 2 3 4 5
Training session

6

4

2

0

2

4

6

Re
la

tiv
e

ac
cu

ra
cy

 im
pr

ov
em

en
t

Union (Selfless)
Random replay (Selfless)
New data (MAS)
Reservoir (Fine-tune)
MAB-MiniB-Loss-Sim-Grad (NC)

(c) CIFAR-10

1 2 3 4 5
Training session

6

4

2

0

2

4

6

Re
la

tiv
e

ac
cu

ra
cy

 im
pr

ov
em

en
t

Union (Selfless)
Random replay (Fine-tune)
New data (Selfless)
Reservoir (Fine-tune)
MAB-MiniB-Loss-Sim-Grad (NC)

(d) IMDB

1 2 3 4 5
Training session

0.4

0.2

0.0

0.2

0.4

Re
la

tiv
e

ac
cu

ra
cy

 im
pr

ov
em

en
t

Union (K-FAC+Fine-tune)
Random replay (EWC)
New data (Fine-tune)
Reservoir (K-FAC+Fine-tune)
MAB-MiniB-Loss-Sim-Grad (NC)

(e) MNIST

1 2 3 4 5
Training session

0.4

0.2

0.0

0.2

0.4

Re
la

tiv
e

ac
cu

ra
cy

 im
pr

ov
em

en
t

Union (Fine-tune)
Random replay (EWC)
New data (EWC)
Reservoir (K-FAC+Selfless)
MAB-MiniB-Loss-Sim-Grad (NC)

(f) SEA

Figure 3: The relative accuracy improvements (%) of the best MAB retraining model MAB-MiniB-Loss-Sim-Grad (NC), the best benchmark
models under the union setting, the random replay setting, the new data setting, and reservoir sampling over the best model under the
random replay setting

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

, , Klabjan and Zhu

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

MNIST CIFAR-10 SEA ELEC IMDB REUTERS0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

tiv
e

ac
cu

ra
cy

 im
pr

ov
em

en
t

(a) Gains from MAB-based memory reply exclusively

MNIST CIFAR-10 SEA ELEC IMDB REUTERS0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

tiv
e

ac
cu

ra
cy

 im
pr

ov
em

en
t

(b) Gains for MAB-based weight optimization

Figure 4: Impact in isolation of MAB-based memory replay and
MAB-based weight optimization

performance indicating that the reward function setting does not
have a huge impact. MAB-MiniB-Loss-Sim-KFAC is also competi-
tive in many datasets and sessions, however it also performs very
poorly in some situations (ELEC). In general, we observe that the
performance of KFAC is very unstable. The performance of MAB-
MiniB-Loss-Opt-Grad is the worst among the 5 considered, which
leads to the conclusion that performing MAB optimization for se-
lection of mini-batch is not a good strategy. In the rest of the paper,
we abbreviate MAB-MiniB-Loss-Sim-Grad simply as MAB.

Because neuron regularization has terms for both neurons and
weights, it is expected to be more computationally demanding than
EWC, MAS, and Fine-tune. Compared to Selfless in the union set-
ting, which also considers both neuron and weight importance, NC
regularization in the union setting is 18-22 times faster than Selfless
(measured on a 2080 Ti GPU) across the six datasets. The reduction
in the time comes from the fact that NC has only individual neu-
ron level terms while Selfless considers pairs of neurons. We find
this conclusion universal for all comparison settings and different
datasets.

We compare the average training time of MAB to the best bench-
mark regularization methods under the union setting, the random
replay setting, the new data setting, and reservoir sampling in Fig-
ure 6a. When training on the same amount of data, random replay
with Selfless is 3 times slower than MAB as demonstrated in the
top figure. The figure clearly indicates that Selfless is very slow and
the remaining three strategies have computational requirements in
the same range with MAB being the slowest one. We also compare
the average training time for different MAB configurations shown
in Figure 6b. MAB-Epochs-Loss-Sim-Grad has the shortest training
time, while MAB-MiniB-Loss-Sim-KFAC is the slowest, which is
expected. Except for KFAC, the remaining versions exhibit similar

30% 20% 5%
MAB Reservoir MAB Reservoir MAB Reservoir

CIFAR-10 66.25 66.11 66.16 65.69 64.20 63.77
MNIST 99.08 98.91 99.08 98.93 98.75 98.68
SEA 85.27 85.21 85.26 85.21 85.26 85.25
ELEC 77.77 77.30 77.16 76.72 71.44 71.25
IMDB 86.72 86.45 86.59 86.35 83.14 82.31
REUTERS 60.05 59.08 59.89 59.26 56.91 56.66

Table 3: Average accuracy under different sample ratios

30% 20% 5%
MAB Reservoir MAB Reservoir MAB Reservoir

CIFAR-10 461 400 377 208 218 162
MNIST 272 416 154 311 99 124
SEA 85 90 61 82 28 49
ELEC 84 81 48 46 18 18
IMDB 2010 1972 1089 1075 617 476
REUTERS 3669 3613 1445 1406 1140 1133
Table 4: Average training time (s) under different sample ratios

model training time. Although the union data setting usually yields
a better performance compared to MAB-based retraining, the union
data setting requires excessive training time and computation re-
sources. Figure 6c shows the average training time comparison of
the union setting, the random replay setting, reservoir sampling,
the new data setting, and the best MAB setting using the NC regu-
larization term, which is a superior regularization. Union is clearly
the slowest one, as expected, followed by MAB and then the re-
maining three algorithms. MAB is slower than these algorithms
despite all of them using the same number of samples due to the
extra time to run the actual multi-arm bandit strategy.

To showcase the robustness of the MAB retraining model against
reservoir sampling given different ratios of selected data samples,
we detail the average accuracy comparison in Table 3 and aver-
age running time in Table 4. In Table 3 we point out that in every
single case MAB outperforms reservoir. The relative accuracy im-
provements on average for ratios 30%, 20%, and 5% are 0.50%, 0.47%,
0.42%, respectively, while on average the training time of MAB in-
creases by 11.71%, 17.55%, and 19.33%, respectively. By using sparse
tensor operations the computational times of MAB can be further
improved since MAB is using only on average 25% of the weights
as discussed later.

CIFAR-10 MNIST SEA ELEC IMDB REUTERS
Union 4,502 2,389 73 55 2,354 13,388
Reservoir 189 705 47 32 512 603
MAB 305 126 46 34 707 690

Table 5: The average training time of the six datasets

Table 5 shows the average training time of the most competitive
models used in Figure 3 for the six datasets. Union clearly has by
far the worst computational time, which in our opinion does not
justify the improvement in accuracy. MAB is slightly slower than
reservoir, but the difference is not large, i.e., they are on the same
scale. More importantly, MAB has better accuracy.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Neural Network Retraining for Model Serving , ,

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1 2 3 4 5
Training session

0

2

4

6

8

10

12

14

Re
la

tiv
e

ac
cu

ra
cy

 im
pr

ov
em

en
t

CIFAR-10

1 2 3 4 5
Training session

0

2

4

6

8

10

12

14

Re
la

tiv
e

ac
cu

ra
cy

 im
pr

ov
em

en
t

REUTERS

1 2 3 4 5
Training session

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

ac
cu

ra
cy

 im
pr

ov
em

en
t

MNIST

1 2 3 4 5
Training session

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

ac
cu

ra
cy

 im
pr

ov
em

en
t

ELEC

1 2 3 4 5
Training session

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
la

tiv
e

ac
cu

ra
cy

 im
pr

ov
em

en
t

SEA

MiniB-Loss-Sim-Grad (NC) MiniB-NGrad-Sim-Grad (NC) MiniB-Loss-Opt-Grad (NC) MiniB-Loss-Sim-KFAC (NC)

1 2 3 4 5
Training session

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
la

tiv
e

ac
cu

ra
cy

 im
pr

ov
em

en
t

IMDB

Figure 5: The relative accuracy improvements (%) of MAB-MiniB-Loss-Sim-Grad (NC) over the NC regularization term with other competitive
MAB configurations (MAB- is omitted in the legend)

As shown in later figures, MAB during retraining is using on
average only 25% of the weights however since sparse tensors are
not handled by our implementation, this potential benefit is not
captured in the computational times. We posit that a sparse tensor
implementation would bring the computational time of MAB below
the time of reservoir.

Next in Figure 7we showcase how the size of the selected samples
in memory replay based on Algorithm 1 affects the test accuracy.
The test accuracy increases when the ratio of the sample size over
the total training data size increases from 5% to 50%. The gap is
more pronounced in early sessions. The training time also increases
as this sample ratio increases, and we demonstrate in Figure 8. The

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

, , Klabjan and Zhu

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Union (Selfless) Random replay (Selfless) Reservoir (Fine-tune) New data (MAS) MAB0

1000

2000

3000

4000

Ti
m

e

(a) The best benchmark models and MAB

Epochs-Loss-Sim-Grad (NC) MAB MiniB-NGrad-Sim-Grad (NC) MiniB-Loss-Opt-Grad (NC) MiniB-Loss-Sim-KFAC (NC)0

1000

2000

3000

4000

5000

6000

7000

Ti
m

e

(b) Different MAB configurations (MAB- is omitted in labels)

Union (NC) Random Replay (NC) New Data (NC) Reservoir Sampling (NC) MAB0

100

200

300

400

500

Ti
m

e

(c) NC under different data settings

Figure 6: Average training time (s) on the CIFAR-10 dataset under
different settings

running time increases linearly, which is positive. Even for 50% it
is drastically lower than the corresponding best Union version for
these two datasets (the running time of Union (Selfless) for CIFAR-
10 is higher than 4,000 seconds and for REUTERS the time of Union
(K-FAC + Fine-tune) is more than 13,000 seconds as observed in Ta-
ble 5). This clearly demonstrates that MAB should be the algorithm
of choice. Note that in these two datasets Union outperforms MAB
the most in terms of accuracy.

The ratio of the number of weights optimized in every epoch over
the total number of weights in a network during a retraining session
is illustrated in Figure 9. At most 25% of weights are optimized in
every epoch of the CNN network on the MNIST dataset; at most
50.3% of the MLP network on the SEA dataset; and at most 16.2%
are optimized in the LSTM network on the IMDB dataset. Similar
to dropout, we observe that MAB-based weight sampling may take
more epochs before it meets the early stopping criteria compared to
the standard epoch-based weight optimization because MAB-based
weight sampling can keep searching for a better minimum due to
the exploration component while standard retraining soon meets
the early stopping criteria.

This is also evident in Figure 10b that compares the loss of MAB
and standard epoch-based training with the same memory replay
in the SEA dataset. Loss in MAB is more volatile, which is a further
confirmation that MAB explores more. It is also interesting to ob-
serve that the training loss of MAB is higher than that of standard
epoch-based training. On the other hand, from Tables 1 and 2 we
note that the test performance of MAB is superior, which indicates
that MAB generalizes better. The test accuracy is 0.8512 for MAB
while it is 0.8497 for standard epoch-based training. This is further
explored in Section 4.2.

We further examine the SEA dataset and MAB as an example to
show how the number of clusters in K-Means affects model accuracy
as illustrated in Figure 10. Figure 10a demonstrates the relationship
between the number of clusters in K-Means and model accuracy
during training, validation, and test phases. The best validation
accuracy is obtained at 𝑘 = 3. Thus, our default setting for the
number of clusters is 3. The number of times each cluster of weights
is selected during a retraining session is presented in Figure 10c. It
is clear that each cluster is selected approximately the same number
of times.

We also test the robustness of MAB by utilizing 10 different
random seeds on the SEA dataset. The mean accuracy of the ten
runs is 0.8511, the standard deviation is 0.0005, the minimal value
is 0.8506, and the max value is 0.8522. Very low standard deviation
attests to the robustness of the algorithm.

4.2 Model Generalization Results
We conduct model generalization experiments similar to those
in [26] by comparing MAB to the standard epoch-based weight
optimization utilizing dropout (Dropout) and batch normalization
(BN). We compare four training methods, Dropout, BN, Clustering
+ MAB, and BN + Clustering + MAB, on the same six datasets. (Note
that replay buffer has no role here.) In order to demonstrate the
model generalization effects of the training methods, we keep the
training data unchanged and augment the original test data. For the
MNIST and the CIFAR-10 datasets, we use the following popular
augmentation factors: image rotations by 45 degrees (clockwise
and counterclockwise), image shifting by 20 percent (left and right),
and zooming in by 80 to 90 percent. We denote the augmented
test datasets by CIFAR-10-A and MNIST-A. In addition, we employ
elastic transformation, another popular data augmentation method
proposed in [26]. We denote the transformed test datasets by CIFAR-
10-E and MNIST-E. For non-image datasets, e.g., SEA, IMDB, we
use the widely used synthetic minority oversampling technique
(SMOTE) [8] to add new test examples. In particular, we train using
the original training data and test on the combination of the original
test data and the augmented test data. The ratio of original test
and augmented test data is 50%. For the Clustering + MAB settings,
we train using the standard epoch-based weight optimization for
at most 𝑥 epochs and cluster the weights. Then, we train utilizing
MAB-based weight optimization to re-optimize weights for the
remaining epochs until the training session ends. Dropout and
BN are trained using at most 2 · 𝑥 epochs. We use the same early
stopping criteria as in all of the previous experiments. We set 𝑥
to be 50 for the MNIST, CIFAR-10, IMDB, and REUTERS datasets

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Neural Network Retraining for Model Serving , ,

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1 2 3 4 5
Training session

52

54

56

58

60

62

64

66

68

A
cc

ur
ac

y

CIFAR-10

5% 20% 10% 50%

1 2 3 4 5
Training session

52

54

56

58

60

62

64

66

68

A
cc

ur
ac

y

REUTERS

Figure 7: Accuracy with respect to the ratio of the number of the samples selected for MAB on CIFAR-10 (left) and REUTERS (right)

5% 10% 20% 50%0

100

200

300

400

500

Ti
m

e

(a) CIFAR-10

5% 10% 20% 50%0

200

400

600

800

1000

1200

Ti
m

e

(b) REUTERS

Figure 8: Average training time (s) for different sample ratios for
MAB

and 𝑥 to be 20 for the SEA and ELEC datasets which are the same
values as in previous experiments.

We show the accuracy results in Table 6. Boldface indicates the
highest value in each dataset. The best performance is achieved by
combining BN, clustering, and MAB. We find that Clustering+MAB
improves model generalization when training a neural network
over BN from 0.18% to 16.0% with the average improvement being
4.9%.

Training Method CIFAR-10-A MNIST-A CIFAR-10-E MNIST-E
Dropout 67.67 98.65 43.31 88.17
BN 70.54 98.88 48.74 88.20
Clustering+MAB 79.16 99.09 48.92 90.29
BN+Clustering+MAB 80.45 99.14 49.23 90.59
Training Method SEA ELEC IMDB REUTERS
Dropout 84.09 61.98 72.07 59.66
BN 84.39 62.14 73.24 62.92
Clustering+MAB 84.54 72.09 76.09 65.31
BN+Clustering+MAB 84.88 73.24 78.34 65.61

Table 6: Accuracy (%) of different training methods for the six
datasets

5 CONCLUSION
In this paper, we propose a generic model for continual neural
network retraining. Our model integrates neuron importance for
encouraging gradient updates for new data, MAB-based memory
replay for optimal sampling, and dynamic weight optimization for
reducing the number of trainable weights during training and for
better generalization. We use various practical data settings to show
the robustness of our retraining model in CNN, MLP, and RNN net-
works. Although we demonstrate the effectiveness of the MAB
methodologies for the neural network retraining case, it would
be interesting to integrate clustering and MAB-based weight opti-
mization with AutoML. A promising direction to expand our work
would be to adjust a trained model when absorbing new features
and new classes. A convergence property of MAB-based training
in the convex and general setting is also of interest.

REFERENCES
[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and

Tinne Tuytelaars. 2018. Memory aware synapses: learning what (not) to forget.
In Proceedings of the European Conference on Computer Vision (ECCV). 139–154.

[2] Rahaf Aljundi, Marcus Rohrbach, and Tinne Tuytelaars. 2018. Selfless sequential
learning. arXiv preprint arXiv:1806.05421 (2018).

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

, , Klabjan and Zhu

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1 3 5 7 9 11 13 15 17 19 21 23 25
Epoch

21

22

23

24

25

Pe
rc

en
ta

ge
 (%

)

(a) MNIST

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch

10

15

20

25

30

35

40

45

50

Pe
rc

en
ta

ge
 (%

)

(b) SEA

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Epoch

9

10

11

12

13

14

15

Pe
rc

en
ta

ge
 (%

)

(c) IMDB

Figure 9: The average percentage of weights that are optimized in
each epoch

1 2 3 4 5 6 7 8 9 10
Number of clusters

0.846

0.848

0.850

0.852

0.854

0.856

0.858

0.860

A
cc

ur
ac

y

Training
Validation
Test

(a) Model accuracy versus the number of clusters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch

0.374

0.376

0.378

0.380

0.382

0.384
Lo

ss

Epoch-loss training
Epoch-loss validation
MAB-based training
MAB-based validation

(b) Loss for MAB (𝑘 = 3) and standard epoch-based retraining

1 2 3
Cluster

0

200

400

600

800

1000

C
ou

nt

(c) The number of times each cluster is selected (𝑘 = 3)

Figure 10: An MAB-based retraining session of the SEA dataset

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Neural Network Retraining for Model Serving , ,

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

[3] Jean-Yves Audibert and Sébastien Bubeck. 2010. Best arm identification in multi-
armed bandits. In Proceedings of the 23rd Annual Conference on Learning Theory
(COLT).

[4] Peter Auer. 2002. Using confidence bounds for exploitation-exploration trade-offs.
Journal of Machine Learning Research 3, Nov (2002), 397–422.

[5] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. 2002. The
nonstochastic multiarmed bandit problem. SIAM J. Comput. 32, 1 (2002), 48–77.

[6] Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert Schapire.
2011. Contextual bandit algorithms with supervised learning guarantees. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics (AISTATS). 19–26.

[7] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. 2017.
Freezeout: accelerate training by progressively freezing layers. arXiv preprint
arXiv:1706.04983 (2017).

[8] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of Artificial
Intelligence Research 16 (2002), 321–357.

[9] R Dennis Cook and Sanford Weisberg. 1980. Characterizations of an empirical
influence function for detecting influential cases in regression. Technometrics 22,
4 (1980), 495–508.

[10] Robert M French. 1999. Catastrophic forgetting in connectionist networks. Trends
in Cognitive Sciences 3, 4 (1999), 128–135.

[11] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. 2015. Escaping from saddle
points - online stochastic gradient for tensor decomposition. In Conference on
Learning Theory (COLT). 797–842.

[12] Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray
Kavukcuoglu. 2017. Automated curriculum learning for neural networks. In
Proceedings of the 34th International Conference on Machine Learning (ICML).
JMLR. org, 1311–1320.

[13] Song Han, Huizi Mao, and William J Dally. 2016. Deep compression: compressing
deep neural networks with pruning, trained quantization and Huffman coding.
In International Conference on Learning Representations (ICLR).

[14] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. 2012. Thompson sampling:
an asymptotically optimal finite-time analysis. In International Conference on
Algorithmic Learning Theory. 199–213.

[15] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L Hayes, and Christopher
Kanan. 2018. Measuring catastrophic forgetting in neural networks. In Thirty-
second AAAI Conference on Artificial Intelligence.

[16] Ozsel Kilinc and Ismail Uysal. 2017. Auto-clustering output layer: automatic
learning of latent annotations in neural networks. arXiv preprint arXiv:1702.08648
(2017).

[17] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. 2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of Sciences 114, 13 (2017), 3521–
3526.

[18] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via
influence functions. In Proceedings of the 34th International Conference on Machine
Learning (ICML). 1885–1894.

[19] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. Technical Report.

[20] Zhizhong Li and Derek Hoiem. 2017. Learning without forgetting. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 40, 12 (2017), 2935–2947.

[21] David Lopez-Paz and Marc’Aurelio Ranzato. 2017. Gradient episodic memory
for continual learning. In Advances in Neural Information Processing Systems
(NeurIPS). 6467–6476.

[22] Sanket Vaibhav Mehta, Bhargavi Paranjape, and Sumeet Singh. 2019. Evaluating
influence functions for memory replay in continual learning. In International
Conference on Machine Learning (ICML).

[23] Chao Qin, Diego Klabjan, and Daniel Russo. 2017. Improving the expected
improvement algorithm. In Advances in Neural Information Processing Systems
(NeurIPS). 5381–5391.

[24] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. 2016. Pro-
gressive neural networks. CoRR (2016).

[25] Kazumi Saito and Ryohei Nakano. 2007. Bidirectional clustering of weights for
neural networks with common weights. Systems and Computers in Japan 38, 10
(2007), 46–57.

[26] Patrice Y Simard, David Steinkraus, John C Platt, et al. 2003. Best practices for
convolutional neural networks applied to visual document analysis. In Proceedings
of the Seventh International Conference on Document Analysis and Recognition
(ICDAR), Vol. 3.

[27] Siddharth Swaroop, Cuong V. Nguyen, Thang D. Bui, and Richard E. Turner. 2019.
Improving and understanding variational continual learning. arXiv preprint
arXiv:1905.02099 (2019).

[28] Jeffrey S Vitter. 1985. Random sampling with a reservoir. ACM Trans. Math.
Software 11, 1 (1985), 37–57.

[29] LinnanWang, Yi Yang, Renqiang Min, and Srimat Chakradhar. 2017. Accelerating
deep neural network training with inconsistent stochastic gradient descent.
Neural Networks 93 (2017), 219–229.

[30] Junru Wu, Yue Wang, Zhenyu Wu, Zhangyang Wang, Ashok Veeraraghavan,
and Yingyan Lin. 2018. Deep 𝑘-Means: re-training and parameter sharing with
harder cluster assignments for compressing deep convolutions. arXiv preprint
arXiv:1806.09228 (2018).

[31] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. 2019.
Slimmable neural networks. International Conference on Learning Representations
(ICLR) (2019).

15

	Abstract
	1 Introduction
	2 Related Work
	2.1 Continual Learning
	2.2 Catastrophic Forgetting
	2.3 Multi-armed Bandits

	3 Neural Network Retraining Methodology
	3.1 Synapse and Neuron Importance
	3.2 MAB-based Memory Replay
	3.3 MAB-based Weight Optimization

	4 Experiments and Results
	4.1 Model Retraining
	4.2 Model Generalization Results

	5 Conclusion
	References

