
Single Item Lot-Sizing Problem with Minimum Order Quantity

Abstract

The traditional lot-sizing problem is to find the least cost production lot-sizes in several time
periods. We consider the lot-sizing model with both capacity constraints and minimum order
quantity requirements. We first show that the lot-sizing problem with linear cost functions,
general capacities and minimum order quantities is NP hard. We then show that the problem
is polynomially solvable in presence of constant capacities and minimum order quantities over
a finite planning horizon. We also identify a polynomially solvable case with general minimum
order quantities and infinite capacities. In the case of general capacities with the minimum
order quantities, and in the presence of linear holding, backlogging, procurement costs, and a
possible fixed component, we exhibit a fully polynomial time approximation scheme.

1 Introduction

The economic lot-sizing problem is a well-known problem in which a certain amount of a product
is produced to satisfy known and deterministic demands over a finite planning horizon. The tradi-
tional lot-sizing problem is defined for a system with a single product, a fixed ordering cost, and
a per item production and holding cost. The problem is to determine the production plan that
satisfies all of the demand without backlogging while minimizing the total production and inventory
holding costs. In the seminal work, Wagner and Whitin (1958) proposed a dynamic programming
algorithm for solving the single-item uncapacitated lot-sizing problem.

Extensions to the Wagner and Whitin’s lot-sizing problem have been studied since then. Zang-
will (1966) made an early attempt to incorporate concave cost functions and to allow backlogging.
He solved such a problem by formulating the problem as a network flow problem with concave arc
costs. Love (1968) considered the problem with inventory constraints and developed a partial char-
acterization of the structure of an optimal solution. The extension to allow capacity constraints is
of significant importance as capacity is frequently encountered in practice. Florian and Klein (1971)
studied the problem with constant capacities. They showed that it is polynomially solvable by ex-
ploiting the special structure of optimal production sequences. A dynamic programming algorithm
was given, which runs in O(T 4), where T is the number of time periods in the planning horizon.
This complexity was later improved to O(T 3) by van Hoesel and Wagelmans (1996). Pochet (1988)
proposed a tight and compact linear extended formulation with O(T 3) variables and constraints
for this problem. When the capacities vary and are non-decreasing over time, the problem is also
polynomially solvable under the conditions that the cost function is non-speculative and the set-up
costs are non-decreasing overtime. A compact mixed integer programming reformulation whose
linear relaxation solves this problem was proposed by Pochet and Wolsey (2007). The problem
with general capacities is much more difficult. Such a problem with fixed set-up cost has been
proven to be NP-hard by Florian et al. (1980).
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Similar to the capacity requirement, the minimum order quantity (MOQ) restriction, which
requires that the amount being produced has to be at least a certainty quantity, if produced at all,
is also widely used in many industries. According to www.sticky-marketing.net, MOQ’s are used
in the presence of limitations, such as, to the production of a single item or where handling does
not allow sales of very small or unitary number of items. MOQ also applies to production lines
with limitations on machines. Moreover, MOQ’s are often encountered in supply chains to enforce
economies of scale due to high set-up costs associated with production or transportation processes.
Snyder (1974) pointed out that when lot-sizes are small substantial savings are possible using
MOQ’s. Examples of MOQ’s exist widely in everyday businesses in many industries, e.g., apparel,
food, electric. In the case study by Fisher and Raman (1996), the company Sport Obermeyer
requires a minimum ordering quantity per order of their garments. The manufacturer of gift items
in Musalem and Dekker (2005) needs a specific chip to produce and the MOQ quantity for that chip
is 10,000 items. The Logoers Company specifies on its website http://www.thelogoers.com MOQ’s
for their overseas products such as bags, clothing, and novelties. According to Zhao and Katehakis
(2006), Home-Depot and Wal-Mart also have to honor the MOQ’s specified by their suppliers.

We propose an interesting version of the lot-sizing problem with a very practical aspect. It
considers time-dependent MOQs, which are required by many procurement contracts. We also
identify two polynomially solvable cases. The approach in one case is unique to MOQ’s. In
addition, we develop an FPTAS for the MOQ problem with backlogging. MOQ’s together with
backlogs pose a significant challenge as existing approaches cannot be extended in a straightforward
way.

There are several studies which explicitly consider MOQ. Anderson and Cheah (1993) proposed
a multi-item capacitated lot-sizing problem with both setup times, and lower and upper bounds on
the production level. They decomposed the problem into many single-item subproblems by applying
Lagrangian relaxation on the capacity constraints. Constantino (1998) provided a polyhedral study
of the multi-item MOQ. Mercé and Fontan (2003) considers MOQ with setups. They developed
an MIP-based algorithm and solved it over a rolling horizon. All these works study mathematical
programming based heuristics in the multi-item setting with MOQ. Our focus is on developing
polynomially solvable special cases and an FPTAS. Lee (2004) addressed the uncapacitated version
of MOQ with stepwise production costs and constant lower bounds on the production level. He
analyzed the optimal properties of the solution policy and proposed a polynomial time algorithm
to solve the problem. Our polynomially solvable costs differ from the setting in Lee (2004) since in
one case, we consider constant upper bounds, and in the other case, we allow non-constant lower
bounds, but no upper bounds.

The rest of this paper is organized as follows. Section 2 presents the general mathematical
formulation of the single-item multi-period lot-sizing problem with both MOQ requirements and
capacity constraints. It also shows that this general MOQ lot-sizing problem is NP-hard. Section 3
studies two polynomially solvable cases. The first case deals with constant capacities and MOQ’s.
The other case considers general MOQ’s and no capacities with a certain assumption on the cost
and MOQ values. In both cases, we study the structure of optimal solutions and then develop
polynomial algorithms based on the dynamic programming framework. Section 4 develops a fully
polynomial approximation scheme for the general single-item capacitated lot-sizing problem with
minimum order quantities and backlogging and with linear cost functions and a possible fixed
procurement cost.
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2 Problem Description and Complexity

In this section, we first formally describe the lot-sizing problem with MOQ. Then, we show that
the problem is NP-hard even in the absence of fixed costs.

We assume that demand and production happen at the beginning of each period. For i ∈
{1, . . . , T}, where T is the number of time periods, we let: di ≥ 0 represent the known demand
for the product in period i; di,j :=

∑j
t=i dt be the total demand from period i to period j; xi

be the amount produced in period i; Ii be the inventory that is carried over period i; pi() be
the production cost function for period i; and hi() be the holding cost from period i to period
i + 1. Furthermore, the amount of product produced in period i must be either 0 or between li
and ui, i.e., xi ∈ [li, ui] ∪ {0}. Clearly we can also choose not to produce at all. We also make
the following typical assumptions. There is no initial inventory, I0 = 0; the demand in each period
must be satisfied in that period, i.e., backlogging or lost sales are not allowed, which is equivalent
to It =

∑t
i=1 xi− d1,t ≥ 0;

∑t
i=1 ui ≥ d1,t for t = 1, . . . , T , which ensures the existence of a feasible

solution; at last, the functions pi() and hi() are nondecreasing concave and pi(0) = hi(0) = 0. It is
important to notice that with MOQ’s requiring the inventory level at the end of the time horizon
to be zero might yield an infeasible problem.

The problem is to minimize the total production and storage costs. The model reads

min
T∑
i=1

pi(xi) +
T∑
i=1

hi(Ii).

Ii = Ii−1 + xi − di i = 1, . . . , T

Ii ≥ 0 i = 1, . . . , T

I0 = 0

xi ∈ [li, ui] ∪ {0} i = 1, . . . , T.

Since we do not require IT = 0, hT (IT ) can be viewed as a penalty cost of the last period if
IT > 0. The following NP completeness result can be shown by a rather standard reduction from
the knapsack problem by setting li = ui for every i.

Proposition 1. The lot-sizing problem with MOQ’s is NP-hard even if pi and hi are linear for
every i.

The following section studies two special cases, which are shown to be polynomially solvable.

3 Two Polynomially Solvable Cases

We first discuss the constant MOQ and capacity case. This is followed by a different special case
with general MOQ’s and no capacities.

3.1 Constant MOQ’s and Capacities

We call period t a regeneration point if It = 0. Let Suv, called the production sequence, represent
a subset of a feasible production plan between two consecutive regeneration points u and v. Thus
a production sequence Suv has Iu = Iv = 0 and Iu+1 > 0, Iu+2 > 0, . . . , Iv−1 > 0. Since IT may
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not be equal to 0, for the last sequence SuT , we require IT ≥ 0 (instead of IT = 0). For notational
convenience, this last sequence is still called a production sequence even if IT > 0.

It is easy to see that any optimal production plan can be decomposed into a set of consecutive
production sequences. Such an observation is the basis of the dynamic programming recursion in
our algorithm. Let F (t), t = 1, . . . , T be the cost associated with an optimal production plan over
periods {0, . . . , t}. Given that I0 = 0, we have:

F (v) = min
0≤u<v

{F (u) + Zuv} v = 1, . . . , T, (1)

F (0) = 0. (2)

Value Zuv is the cost associated with an optimal production plan over production sequence Suv.
This can be regarded as a forward recursion, which is more appropriate in our case due to IT ≥ 0.
Wagner and Whitin (1958), Zangwill (1966), and Florian and Klein (1971) also used this dynamic
programming recursion formulation, either as a forward or backward recursion.

This dynamic programming recursion requires the cost computation of T (T + 1)/2 production
sequences. The structure of an optimal production plan for a production sequence is first studied
as follows.

Claim 1. For production sequence Suv, v < T and an optimal production plan, there exists at most
one period t, u + 1 ≤ t ≤ v in which the production level xt is strictly between lt and ut, and the
production level in all other periods i, u+ 1 ≤ i ≤ v, i 6= t is either 0, li, or ui.

Proof. Let I∗, x∗ be an optimal solution for the production sequence in question. Let us assume
we produce in periods {t1, t2, . . . , tz}, i.e., lti ≤ x∗ti ≤ uti for i = 1, . . . , z and x∗i = 0 for all other
time periods. Finding an optimal production plan for the production sequence Suv is equivalent to
solving the minimum cost network flow problem with concave cost functions on the network given
in Figure 1. The demand of the horizontally aligned nodes, which correspond to time periods,
equals to di. The bottom source node S has a surplus of duv. The flow of the inventory arcs must
be in [0,∞) with cost hi(). The production arcs from the source node to the time period nodes
must have flow within [li, ui] for i = t1, t2, . . . , tz and within [0, 0] for the remaining time periods.
The cost of these arcs is pi(). The optimal solution I∗, x∗ represents a feasible and optimal flow
in this network. Since the costs are concave, there exist an extreme point solution I, x (see, e.g.,
Bazaraa et al. (1993)). Extreme point network flow solutions are cycle free (see, e.g., Ahuja et al.
(1993)), i.e., the arcs with li < xi < ui, Ii > 0 form a spanning tree. All other arcs have flow of
either 0, li, or ui.

By definition of a production sequence, Ii > 0 for every arc and thus all these arcs are in the
spanning tree. Furthermore, let us suppose that there are two periods s1 and s2 with ls1 < xs1 <
us1 , ls2 < xs2 < us2 . Thus the corresponding production arcs of s1 and s2 are also in the tree.
Obviously, this is a contradiction since we have identified a cycle in the spanning tree. Therefore,
there is at most one period i with li < xi < ui.

Claim 2. For the last production sequence SuT there exists an optimal solution such that if IT > 0,
the production level in each period i, u+ 1 ≤ i ≤ T , is either 0 or li.

Proof. Suppose this is not the case. Let us consider an optimal solution such that IT > 0, and
at least one period i in production sequence SuT has xi > li. Let t0 be the last period in which
the production level is larger than the MOQ. Let t1 < t2 < · · · < tk, t1 > t0, denote all of the
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following periods which produce at their MOQ’s. Let α = min{xt0− lt0 , It1 , . . . , Itk , IT }. Obviously,
according to our choice we have α > 0. Note also that since SuT is a production sequence, we have
Ii > 0 for every i. Let us consider a new production plan x̄ defined by x̄i = xi if i 6= t0, and
x̄i = xi − α if i = t0. The corresponding inventory levels are denoted by Ī. It is not difficult to
see that x̄ is also a feasible and optimal solution. Since x is an optimal solution, and x̄ is obtained
from x by simply reducing the production level at period t0 by α, x̄ is also optimal. (Note that the
cost functions are non-decreasing.) We consider the following three cases.

Case 1. We have α = IT . In this case, ĪT = 0. And thus Claim 1 applies.

Case 2. We have α = Iti , 1 ≤ i ≤ k. In this case, Īti = 0, and StiT becomes a production sequence
where IT > 0 and the production level in each period s, ti ≤ s ≤ T , is either 0 or ls. And thus
Claim 2 applies.

Case 3. We have α = xt0 − lt0 . In this case, x̄t0 = lt0 . Thus we have identified an optimal solution
with one more period which produces at the MOQ.

We can repeat the process to obtain a solution satisfying the statement.

We have not yet used any assumptions of constant MOQ’s and capacities. Claims 1 and 2 hold
in general. Let us now assume that li = L, ui = U for every i = 1, . . . , T . The framework of the
algorithm is based on the dynamic programming recursion (1) and (2) which contains T (T + 1)/2
production sequences. Therefore, our main concern is to find an optimal production plan for a
production sequence Suv. We consider two cases: v < T and v = T .

Let first v < T . By definition we have Iu = Iv = 0. Let us consider all possible values of Ig,
g ∈ {u+1, .., v−1}. Let there be M periods in which the production level is L, N periods in which
the production level is at capacity U , and at most one period in which the production level is ε
with L < ε < U . The production amount in all other periods is 0. We have ML+NU+ε = du+1,v,
where M ≥ 0, N ≥ 0, and 0 ≤ M + N ≤ T . Therefore, Ig takes one of the following two
forms. If the production level of ε is not yet observed, we have Ig = M̄L + N̄U − du+1,g. If
ε has already been used, we have Ig =

∑g
i=u+1 xi − du+1,g = M̄L + N̄U + ε − du+1,g = M̄L +

N̄U + (du+1,v −ML − NU) − du+1,g = dg+1,v − (M − M̄)L − (N − N̄)U , where 0 ≤ M̄ ≤ M ,
0 ≤ N̄ ≤ N , and Ig > 0. There are at most T possible values for both M and N , so together with
0 ≤M +N ≤ T, 0 ≤ M̄ ≤M, 0 ≤ N̄ ≤ N , there are at most T (T + 1)/2 + 4T 2 possible values for
Ig. In other words, the number of all possible values for Ig is O(T 2). We denote by Kg all possible
inventory levels of a period g ∈ {u + 1, . . . , v − 1}, and construct a network as in Figure 2. The
dependency on g comes from the fact that Ig > 0. The nodes and arcs are defined as follows.

� Nodes: There are v − u − 1 layers of nodes between u and v, each one corresponding to
the end of a time period. The nodes in each layer g correspond to Kg, which are labeled in
Figure 2.. They represent all possible values of Ig, g ∈ {u+ 1, . . . , v− 1}. The source node at
the utmost left corresponds to Iu = 0, and the sink node at the utmost right corresponds to
Iv = 0.

� Arcs: Between any two layers j and j + 1, j = {u, . . . , v − 1}, there is an arc from node
n1 = (rk1 , j), rk1 ∈ Kj to node n2 = (rk2 , j + 1), rk2 ∈ Kj+1 if rk1 − rk2 = dj+1 or L ≤
rk2 + dj+1 − rk1 ≤ U . The former case corresponds to no production in period dj+1, and the
cost of this arc is the holding cost hj(rk1). The latter case means that there is production in
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Figure 2: Network

period dj+1 and the cost of this arc is hj(rk1) + pj+1(rk2 + dj+1 − rk1), which is the holding
cost through period j and the corresponding production cost at the beginning of period j+1.

It is easy to see that the shortest path from node u to node v corresponds to an optimal
production plan over the production sequence Suv. There are at most T + 1 layers and each layer
has at most O(T 2) nodes. Hence, there are O(T 3) nodes and O(T 5) arcs. Since the network is
acyclic, the complexity of the shortest path algorithm is thus O(T 5).

For the production sequence SuT , there are two possibilities. The first is IT = 0, which is no
different from the previous case. The other case is IT > 0. In this case, Claim 2 holds. Let us
consider all possible values of Ig, g ∈ {u + 1, .., T}. Let us assume that in an optimal production
plan of SuT , there are M periods in which the production level is L, and the production amount
in all other periods is 0. Therefore, we have Ig =

∑g
i=u+1 xi − du+1,g = ML− du+1,g. There are at

most T possible values for M . We construct a network similar to Figure 2. However, since IT > 0,
the last period T has more than one possible inventory value. Thus, we need to add a pseudo
period T + 1 with value 0 at the end and connect it to every node in period T . The cost of an arc
from node (rk, T ) to the pseudo node T + 1 is hT (rk). Then, the shortest path from u to T + 1
corresponds to an optimal production plan over the production sequence SuT when IT > 0. The
complexity of finding such a shortest path is O(T 3). Therefore for production sequence SuT , the
shortest path over the two networks yields an optimal production plan with complexity O(T 5).

The overall algorithm solves the recursion (1) and (2). The total computation time of this
algorithm is O(T 5+2) = O(T 7). Thus this algorithm is polynomial.

3.2 The Infinite Capacity Case

The problem studied in this section has general MOQ’s but has no capacities. We exhibit a
polynomial algorithm under certain assumptions. We require the following assumptions.

Assumption A1. All cost functions are linear.

Based on Assumption A1, the objective function can be restated as

T∑
i=1

p̂ixi +
T∑
i=1

ĥiIi =
T∑
i=1

p̂ixi +
T∑
i=1

ĥi(
i∑

j=1

xi − d1,i) =
T∑
i=1

(p̂i +
T∑
j=i

ĥj)xi −
T∑
i=1

ĥid1,i,
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where pi(xi) = p̂ixi and hi(Ii) = ĥiIi. Let pi = p̂i +
∑T

j=i ĥj . The problem can now be regarded as
a lot-sizing problem with linear production cost pi and zero holding cost. It reads

min
T∑
i=1

pixi

i∑
j=1

xj ≥ d1,i i = 1, . . . , T (3)

xi ∈ [li,∞) ∪ {0} i = 1, . . . , T.

The next assumption imposes a relationship between pi and li.

Assumption A2. For the set of periods {tk|k = 0, · · · , n} defined by

t0 = max{argmin1≤i≤T pi}, · · · , tk = max{argmin1≤i<tk−1
pi}, · · · , tn = 1

we assume that (1) ltn ≥ ltn−1 ≥ · · · ≥ lt0, and (2) ltk ≤ lj for every j and k such that k ∈
{1, 2, . . . , n} and tk < j < tk−1, or k = 0 and j > tk.

We give a simpler condition that implies Assumption A2 as follows.

Proposition 2. Assumption A2 is fullfilled if p1 ≥ p2 ≥ · · · ≥ pT and l1 ≥ l2 ≥ · · · ≥ lT .

Proof. In this case, by definition we have t0 = T, t1 = T − 1, . . . , tn−1 = 2, tn = 1, i.e., the set
{t0, t1, . . . , tn} contains every time period in the problem. The first condition of Assumption A2 is
satisfied since l1 ≥ l2 ≥ · · · ≥ lT . The second condition is satisfied automatically since there is no
such period j.

We note that Proposition 2 requires non-increasing production costs as well as non-increasing
MOQ’s, which occurs often in practice. With these assumptions, we make the following observation.

Claim 3. There exists an optimal solution x∗ such that if i /∈ {t0, t1, . . . , tk, . . . , tn}, then x∗i = 0.

Proof. Let x be an optimal solution with at least one period i /∈ {t0, t1, . . . , tk, . . . , tn} such that
xi > 0. For one such i, suppose tk < i < tk−1. Consider solution x∗ such that x∗j = xj if j 6= i
and j 6= tk, x

∗
tk

= xtk + xi, and x∗i = 0, which means that x∗ is obtained by moving forward the
production amount xi from period i to period tk. According to Assumption A2, x∗ is a feasible
solution because x∗tk ≥ xi ≥ li ≥ ltk . It is very easy to see that (3) holds for x∗. Furthermore, the
cost of x∗ is lower than or equal to the cost of x since ptk ≤ pi, which comes from the definition of
t’s. By repeating this for every such i, we obtain an optimal solution that satisfies Claim 3.

Claim 3 states that in an optimal solution, the only possible periods in which we would produce
are {t0, t1, . . . , tk, . . . , tn}. Note that tn < tn−1 < · · · < t0. Based on this observation, we can adjust
the demand as d̄ti = dti,ti−1−1. For ease of notation, we relabel these periods as periods 1, 2, . . . , T ′

to obtain the following equivalent problem:

min
T ′∑
i=1

pixi

i∑
j=1

xj ≥ d̄1,i i = 1, . . . , T ′ (4)
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xi ∈ [li,∞) ∪ {0} i = 1, . . . , T ′,

where p1 ≥ p2 ≥ · · · ≥ pT ′ > 0 and l1 ≥ l2 ≥ · · · ≥ lT ′ .

This problem has infinite capacity, non-increasing linear production cost as well as non-increasing
MOQ’s. Next, we show that problem (4) is polynomially solvable by first observing a property of
a production sequence, based on which the polynomial algorithm is developed.

Claim 4. For a production sequence Suv, either u+ 1 = v, du+1 = 0 and thus the optimal solution
is xu+1 = 0; or there exists a k, u + 1 ≤ k ≤ v, and an optimal solution x such that xk+1 =
xk+2 = · · · = xv = 0 and for time periods u+ 1, u+ 2, . . . , k solution x follows the following greedy
algorithm:

xu+1 = max{lu+1, du+1}, and

xi =

{
0 if

∑i−1
j=u+1 xj ≥ d̄u+1,i, i.e., Ii−1 ≥ d̄i,

max{li, d̄u+1,i −
∑i−1

j=u+1 xj = d̄i − Ii−1} otherwise,

for i = u+ 2, u+ 3, . . . , k, where we redefine d̄k to be d̄k,v.

Proof. The statement trivially holds if v = u+ 1 since there is only one period in this production
sequence. Let x∗ be an optimal solution to the production sequence Suv and k the last period with
x∗k > 0. If v > u + 1 and k = u + 1, it is also trivial since the only production occurs in the first
period. Let us thus assume that v > u+ 1 and k > u+ 1.

Let x be the solution according to the greedy algorithm stated in the claim. It is not difficult
to see that x is a feasible solution. Let i, u + 1 ≤ i ≤ k, be the first period in which x∗i 6= xi.
Among all optimal solutions x∗, we select the one with i as large as possible. If no such i exists,
there is nothing to show. Otherwise, we must have x∗i > xi. To see this, if xi = 0, then x∗i >
0 = xi since x∗i 6= xi. If xi > 0, then I∗i−1 = Ii−1 < d̄i. Consider first xi = d̄i − Ii−1. Then

x∗i ≥ d̄u+1,i −
∑i−1

j=u+1 x
∗
i = d̄u+1,i −

∑i−1
j=u+1 xi = d̄i − Ii−1 = xi. Let now xi = li. If x∗i = 0, then

I∗i = I∗i−1− d̄i = Ii−1− d̄i < 0 yields a contradiction. Thus x∗i ≥ xi. Next, consider ε = x∗i −xi > 0.
We distinguish four cases.
Case 1. If i = k, then we can reduce x∗k by ε to xk. This new solution is feasible and it has lower
cost than x∗, which is a contradiction.
Case 2. If i < k, then we find the next period j, j > i, j ≤ k with x∗j > 0. Such a period
must exist since x∗k > 0. Since we deal with a production sequence, I∗j−1 > 0. If ε ≥ I∗j−1 and
xi > 0, we can reduce x∗i by I∗j−1 and increase x∗j by I∗j−1. Note that ε ≥ I∗j−1 and xi > 0 imply
x∗i − Ij−1 ≥ xi ≥ li, and x∗j > 0 implies x∗j(new) > x∗j ≥ lj . Therefore we get a new feasible solution

with one more production sequence (since the inventory in period j − 1 is reduced to 0) and no
higher production cost (since we delay the production of amount I∗j−1 from period i to period j).
This breaks Suv into two production sequences, contradicting our selection of x∗.
Case 3. If i < k, ε ≥ I∗j−1 and xi = 0, where j is the period identified in Case 2, then we have
ε = x∗i ≥ I∗j−1. If x∗i − li ≥ I∗j−1, we can move I∗j−1 units of production from i to j. This again
results in a new feasible solution with one more production sequence and no higher production
cost, which is a contradiction. Another possibility is that x∗i = li. If this is the case, there are three
subcases as follows. Let q > i be the smallest time period such that xq > 0.

(1) If there is no such q, it means that no production is needed from period i−1 onwards. Thus
reducing x∗i to 0 gives a new feasible solution x∗(new) of no higher cost.
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(2) If j ≤ q, we move the production of x∗i units from period i to j. This is a new feasible
solution since x∗j(new) > x∗j ≥ lj and I∗j−1(new) = Ij−1 ≥ 0. Note that I∗j−1(new) = Ij−1 because
x∗(new) agrees with x from period u+ 1 to at least period j− 1, and the last inequality follows from
feasibility of x.

(3) If j > q, we move the production of x∗i units from period i to q. This is feasible since from
li ≥ lq we obtain x∗q(new) = li ≥ lq and I∗q−1(new) = Iq−1 ≥ 0. Note that I∗q−1(new) = Iq−1 because
x∗(new) agrees with x from period u+ 1 to at least period q− 1, and the last inequality follows from
feasibility of x.

In all these three subcases, we have identified a new feasible solution x∗(new) with no higher
production cost and one more period where the greedy solution x and the new optimal solution
match, i.e., x∗i(new) = xi, which contradicts the selection of x∗.

The last possibility in Case 3 is 0 < x∗i − li < I∗j−1. In this case we can obtain a new feasible
solution x∗(new) with no higher cost by moving the production of x∗i − li units from period i to j.
This results in x∗i(new) = li, xi = 0, which again falls into the above three subcases.
Case 4. If i < k, and ε < I∗j−1, where j is the period identified in Case 2, we reduce x∗i by ε and
increase x∗j by ε. Again we have identified a new feasible solution without increasing the cost by
postponing some production to a later period. The fact that x∗i(new) = xi contradicts the choice of
x∗.

This completes the proof.

Note that for the last production sequence SuT , the inventory at the end of period T may not
be zero due to the MOQ requirements. It is not difficult to see that Claim 4 and its proof also
apply in this case.

We can now develop a polynomial algorithm using the same dynamic programming framework
(1) and (2). There are T (T + 1)/2 production sequences to consider. For each production sequence
Suv, we use the algorithm described in Claim 4 to find a feasible solution for each possible value of
k, k = u + 1, u + 2, . . . , v and then we choose the lowest cost one to obtain Zuv. It is not difficult
to see that the computation time of this polynomial algorithm is O(T 4).

4 Fully Polynomial Approximation Scheme

We have shown in Section 2 that the lot-sizing problem with general MOQ requirements is NP-hard.
In this section, we exhibit an FPTAS for a slightly more general version that allows backlogging.

Kovalyov (1996) proposed a rounding technique to construct an FPTAS for a generalized knap-
sack problem. His method is applicable to problems with discrete domain sets, but is limited to
nondecreasing cost functions. His algorithm is inapplicable to our problem, since we consider both
production and backlog costs, and thus, having production at a lower level does not generally
guarantee a lower overall cost. Furthermore, his algorithm is developed for a single constraint.
van Hoesel and Wagelmans (2001) developed an FPTAS for the model with monotone concave
cost functions, but without MOQ’s. They showed that their FPTAS is rather general, and can be
applied to many cases. Chubanov et al. (2006) generalized van Hoesel and Wagelmans (2001) by
relaxing the concavity requirement. Their algorithm relies on the special structure of the under-
lying recursive functions to achieve fully polynomial running time without changing the feasible
domain of the problem. They use scaling to obtain the desirable approximation ratio. No MOQ’s
are considered. Chubanov et al. (2008) generalized the single-item capacitated lot-sizing problem
to the case of a non-uniform resource usage for production. A similar problem was discussed but
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it does not yield an FPTAS for our problem. The running time depends on N, which in our case is
pseudopolynomial in the input size. Halman et al. (2008) proposed a completely different FPTAS
for certain inventory problems. Their approach is more general since they allow inventory short-
ages and stochastic demand distributions, but requires a convex procurement cost function. They
do not address the minimum order requirement, and such an extension is non-trivial. Chauhan
et al. (2005) study the knapsack problem with MOQ’s. Their approach cannot handle backlogging
since in this case the state space of the underlying dynamic program becomes multidimensional
without an efficient way to trim it. In addition, in presence of backlogging, the objective function
is not a separable function of production quantities. Ng et al. (2008) extend the result by Chauhan
et al. (2005) by dropping some of the assumptions. Since they apply the same framework, it is not
applicable to our problem for the same reason.

Both approaches from Chubanov et al. (2006) and van Hoesel and Wagelmans (2001) are in-
applicable to our problem without major modifications. Most technical results of Chubanov et al.
(2006) rely on decrementing the order quantity, which may be prohibited by the MOQ require-
ment. Also, it may not be true that non-stable points of the recursive cost functions are sufficient
to guarantee the FPTAS result when the MOQ requirement is imposed. Halman et al. (2008)
cannot handle MOQ’s and, in addition, the approach breaks in the presence of fixed procurement
costs. The approach of van Hoesel and Wagelmans (2001) breaks down when any inventory level
at a period may no longer be able to freely attend any value less than or equal to the maximum
inventory level at the period given a limited budget and MOQ requirements. This property is cru-
cial in their treatment. While the result of Chubanov et al. (2006) is more general than the result
of van Hoesel and Wagelmans (2001), we focus on the methodology of van Hoesel and Wagelmans
(2001) to develop a new FPTAS that is necessary to address the MOQ requirements. Although
the high level ideas of our FPTAS are identical to the framework by van Hoesel and Wagelmans
(2001), the difference between the two approaches is significant.

4.1 Preliminaries

Our approach to obtain the FPTAS is to first reformulate and simplify the model by assuming
linear costs as in Section 3.2, and then to construct a �dual� problem. By doing so, we are able to
develop a pseudo-polynomial dynamic programming algorithm whose running time only depends
on the selected upper bound on the optimal objective value. In each time period in the planning
horizon, the dual problem is to maximize the production subject to a budget allowance.

Beginning with the problem described in Section 3.2 with the addition of backlogging, we stress
that the underlying assumption is to have linear cost functions. We show in Section 4.4 that the
inclusion of fixed procurement costs does not require significant changes. Formally, we consider

z∗ = min
xi∈[li,ui]∪{0} i=1,2,...,T

yi≥0 i=1,2,...,T

{
T∑
t=1

(ptxt + btyt)

∣∣∣∣ i∑
t=1

xt + yi ≥ d1,i i = 1, 2, . . . , T

}

where yi is the backlogging amount in time period i, and bi the backlogging cost in the same time
period. We note that yi = (d1,i −

∑i
j=1 xj)

+ for every i, and we do not require demand to be
satisfied at the end.

With this model at hand, we develop the dual problem for the dynamic programming algorithm.
The concept of the dual problem is to maximize the total production given an allowable budget
b ∈ {0, 1, 2, . . . , B} for the first t ∈ {1, 2, . . . , T} periods. We let B be an integer upper bound on
z∗, and let Ft(b) be the maximum value of the production given budget b. We have
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Ft(b) = max
xi∈[li,ui]∪{0} i=1,...,t

yi≥0 i=1,...,t


t∑
i=1

xi

∣∣∣∣ t∑
i=1

(pixi + biyi) ≤ b and
i∑

j=1

xj + yi ≥ d1,i i = 1, . . . , t


The budget constraint

∑t
i=1(pixi + biyi) ≤ b requires the total cost for the first t periods not to

exceed budget b. If the feasible set of Ft(b) is empty, we define Ft(b) to be −∞. We also assume
that a maximum over an empty set is −∞. If demand has to be satisfied (no backlogs) at the
end of the time horizon, we only need to select the best solution associated with any cost equal to
min{b|FT (b) ≥ d1T }.

4.2 Pseudo-polynomial Algorithm

We analyze xt for each period t to develop a dynamic programming algorithm. The goal is to
write Ft(b) in terms of Ft−1(a) for a ≤ b while satisfying all the necessary constraints in the dual
problem. Based on the structure of Ft(b), the following recursive structure can be easily verified:

Ft(b) = max
xt∈[lt,ut]∪{0}

a,yt≥0

{
Ft−1(a) + xt

∣∣∣∣Ft−1(a) + xt + yt ≥ d1,t and a+ ptxt + btyt ≤ b
}

where a can be interpreted as the maximum allowable budget for the first t − 1 periods. The
boundary condition is F0(a) = 0 for any a.

Let us first assume that Ft(b) is feasible. There are three cases to consider: 1) xt is zero when
it is not optimal to produce in period t, 2) xt attends the maximum production quantity ut, and
3) xt is in [lt, ut), the case when the production quantity is restricted by the budget.

Case 1. Let xt = 0. Without any production, if maxa≤b Ft−1(a) is no smaller than d1,t, we can
simply set a = b to maximize Ft−1(a). If Ft−1(b) < d1,t, backlogging is required, i.e., yt > 0. We
know that the backlogging quantity yt must equal to d1,t − Ft−1(a) if there exists an a such that
Ft−1(a) > −∞. By monotonicity of Ft−1(a) in a, we only need to search for a such that Ft−1(a) is
maximized while the constraint a+ bt(d1,t − Ft−1(a)) ≤ b is satisfied. If there exist multiple values
of a returning the same Ft−1(a), we select the largest one. Following this analysis, we can write

Ft(b) ≤


Ft−1(b) if Ft−1(b) ≥ d1,t,

max
0≤a≤b

{Ft−1(a)|a+ bt(d1,t − Ft−1(a)) ≤ b} if Ft−1(b) < d1,t,

−∞ otherwise.

(5)

Case 2. Let xt = ut. we can follow the analysis in Case 1 to obtain

Ft(b) ≤


ut + Ft−1(b− ptut) if Ft−1(b− ptut) ≥ d1,t − ut,
ut + max

0≤a≤b−ptut
{Ft−1(a)|a+ bt(d1,t − ut − Ft−1(a)) ≤ b− ptut}

if Ft−1(b− ptut) < d1,t − ut,
−∞ otherwise.

(6)
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Case 3. When xt = [lt, ut), we have the following recursion:

Ft(b) ≤ max
b−pt(ut−1)≤a≤b−ptlt

Ft−1(a) + xt(a) (7)

where

xt(a) =



−∞ if φt < lt,

φt if Ft−1(a) + φt ≥ d1t,

φt if Ft−1(a) + φt < d1t and φt ≤ ϕt,
ϕt if Ft−1(a) + φt < d1t, φt > ϕt, and ϕt ≥ lt,
−∞ otherwise,

. (8)

φt = min{(b − a)/pt, ut − 1} is the upper bound on the production without backlogs, and ϕt =
(b−a−bt(d1t−Ft−1(a)))/(pt−bt) is the maximum production with positive backlogs. The following
two claims establish this relationship.

Claim 5. If Ft−1(a) + φt < d1t, for any optimal solution xt, choosing yt = d1t − Ft−1(a) − xt is
optimal.

Proof. Suppose that we have an optimal solution (x̄t, ȳt) with ȳt > d1t − Ft−1(a) − x̄t = yt and
x̄t = xt. Then, we must have a + ptxt + btyt = a + ptx̄t + btyt < a + ptx̄t + btȳt ≤ b. We
consider x̃t = (b − a − btyt)/pt and ỹt = d1t − Ft−1(a) − x̃t. Note that x̃t > xt, and we have
Ft−1(a)+x̃t+ỹt = Ft−1(a)+x̃t+d1t−Ft−1(a)−x̃t = d1t. Thus, (x̃t, ỹt) satisfies ỹt = d1t−Ft−1(a)−x̃t,
is feasible to both budget and demand constraints, and yields a larger objective value. This is a
contradiction. Hence, solution (x̄t, ȳt) is not optimal.

Claim 6. Given any a, xt(a) yields the maximum production level.

Proof. Suppose Ft−1(a) + φt ≥ d1t. Clearly taking yt = 0 and xt = φt is feasible and optimal since
xt is bounded by φt and a+ptφt+bt(0) ≤ b by our definition of φt. Now suppose Ft−1(a)+φt < d1t.
We must have Ft−1(a) + xt < d1t for any xt ∈ [lt, φt] (if φt < lt, it is easy to see that no feasible
solution exists). By Claim 5, we can assume yt = d1t − Ft−1(a) − xt > 0, and thus, we have

xt ≤ b−a−bt(d1t−Ft−1(a))
pt−bt .

Suppose a+ ptφt + bt(d1t − Ft−1(a)− φt) ≤ b. We have

φt ≤
b− a− bt(d1t − Ft−1(a))

pt − bt
.

Together with the fact that xt ≤ φt, xt = φt maximizes the production.
Now suppose a+ ptφt + bt(d1t − Ft−1(a)− φt) > b. We have

φt >
b− a− bt(d1t − Ft−1(a))

pt − bt
≥ xt.

Hence, taking xt = b−a−bt(d1t−Ft−1(a))
pt−bt yields optimality.

Note that if b−a−bt(d1t−Ft−1(a))
pt−bt < lt, no feasible solution exists. Suppose such a solution x̃t

exists. Then, we have x̃t >
b−a−bt(d1t−Ft−1(a))

pt−bt , which implies a + ptx̃t + bt(d1t − Ft−1(a) − x̃) > b.
Together with the fact that ỹt is lower bounded by d1t−Ft−1(a)− x̃ by Claim 5, we conclude that
x̃t is infeasible for any choices of ỹt. Hence, any solution (xt, yt) is infeasible.
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Next, we summarize the findings.

Proposition 3. We have
Ft(b) = max{(5), (6), (7)}, (9)

where by (5), (6), and (7) we refer to the corresponding right-hand sides in these expressions.

Proof. We have already argued that Ft(b) ≤ max{(5), (6), (7)} if Ft(b) is feasible. If Ft(b) is
infeasible, the same inequality holds by definition. It remains to show that (5), (6), and (7) are all
less than or equal to Ft(b).

The first one is easy to establish by defining a = b, xt = 0 and yt = 0 if Ft−1(b) ≥ d1,t. If
Ft−1(b) < d1,t and there exists a such that a + bt(d1,t − Ft−1(a)) ≤ b, we can take xt = 0 and
yt = d1,t − Ft−1(a′) for a′ being optimal in the underlying expression.

To show that expression (6) is less than or equal to Ft(b), we either set xt = ut, yt = 0 or xt = ut,
yt = d1,t−ut−Ft−1(a′) based on the two cases in (6). We can apply similar arguments to those used
in the last case by choosing xt = xt(a

′) according to (8) and setting yt = (d1t−Ft−1(a′)−xt)+.

The dynamic programming algorithm computes Ft(b) for all t = 1, . . . , T and b = 0, 1, 2, . . . , B,
starting at the first period. We have φ′ = min{b/p1, u1} and ϕ′ = (b− b1d1)/(p1 − b1). Then, the
boundary condition is

F1(b) =



φ′ if l1 ≤ φ′ and φ′ ≥ d1,

ϕ′ if l1 ≤ φ′ < d1 and ϕ′ ≥ l1,
0 if l1 ≤ φ′ < d1, ϕ

′ < l1, and b1d1 ≤ b,
0 if l1 > φ′ and b1d1 ≤ b,
−∞ otherwise.

This can be showed by following the similar arguments presented in Claim (6). The running time
to evaluate F1(b) is clearly O(B). Using (9) for the remaining periods, we can easily see that the
running time for the entire backward recursion algorithm is O(TB2), where the extra order of B
results from the search of a in (5), (6), and (7).

4.2.1 Dynamic Programming Algorithm

We can develop an FPTAS directly by modifying the aforementioned pseudo-polynomial algorithm
to run over a trimmed set of budget values, which are polynomially many, and are multiples of an
integer constant K that depends only on the size of the problem instance and ε. Let us consider
b = 0,K, 2K, . . . , UK for a fixed K and integer U . Then, for any η = 0, 1, 2, . . . , U , we have the
following adapted problem:

F̄t(η) = max
xi∈[li,ui]∪{0} i=1,...,t

y1,...,yt≥0
n1
1,...n

1
t ,n

2
1,...n

2
t∈Z+


t∑
i=1

xi

∣∣∣∣∣∣∣∣
∑i

j=1 xj + yi ≥ d1i i = 1, . . . , t∑t
i=1(n1

i + n2
i ) = η

pixi ≤ n1
iK

biyi ≤ n2
iK

 .

We can interpret F̄t(η) as maximizing production subject to budget not exceeding ηK. If F̄t(η) is
infeasible, we define F̄t(η) = −∞.
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Given any multiplier η, we first analyze the normalized production and backlogging costs sepa-
rately, and show that the solution associated with these normalized costs is feasible to the adapted
recursion. Let n1

t be the production cost multiplier and n2
t be the backlogging cost multiplier at

time t.

Claim 7. If t ≥ 2 and F̄t(η) is feasible, there exists a solution such that n1
i + n2

i = dpixi/Ke +
dbiyi/Ke for i = 2, 3, . . . , t.

Proof. Given that F̄t(η) is feasible, the problem of finding n1
i and n2

i for i = 1, 2, . . . , t is sub-
ject to

∑t
i=1(n1

i + n2
i ) = η, n1

i ≥ dpixi/Ke, n2
i ≥ dbiyi/Ke and n1

i , n
2
i ∈ Z+ for i = 1, 2, . . . , t.

Since the problem is feasible, we have
∑t

i=1dpixi/Ke + dbiyi/Ke ≤ η. Thus, we can set n1
1 =

dp1x1/Ke + η −
∑t

i=1 (dpixi/Ke+ dbiyi/Ke), n2
1 = db1y1/Ke, and n1

i = dpixi/Ke and n2
i =

dbiyi/Ke for i = 2, 3, . . . , t. It is then easy to see that n1
1 + n2

1 = dp1x1/Ke + db1y1/Ke + η −∑t
i=1 (dpixi/Ke+ dbiyi/Ke) ≥ dp1x1/Ke+ db1y1/Ke.

Next, we show how to adapt (9) to achieve an FPTAS for the lot-sizing problem with MOQ. The
modifications are made separately for each case, where we assume that all encountered solutions
satisfy Claim 7 for t ≥ 2.

Case 1. When xt = 0, by the choice of the solution from Claim 7, the backlogging cost is no more
than some multiple of K, e.g, btyt ≤ n2

tK, which yields n2
t = dbtyt/Ke. Together with the demand

constraint requiring yt = d1,t − F̄t−1(η′), we follow the structure of (5) to obtain

F̄t(η) =


F̄t−1(η) if F̄t−1(η) ≥ d1,t,

max
0≤η′≤η

{F̄t−1(η′)|η′ + dbt(d1,t − F̄t−1(η′))/Ke ≤ η} if F̄t−1(η) < d1,t,

−∞ otherwise.

(10)

Case 2. When xt = ut, we have n1
t = dptut/Ke, n2

t = dbtyt/Ke, and yt = d1,t− ut− F̄t−1(η′). The
first two equations follow from the definition of n1

t and n2
t , whereas the last equation follows from

the demand constraint. Similarly to (6), the equation reads

F̄t(η) =


ut + F̄t−1(η − dptut/Ke) if F̄t−1(η − dptut/Ke) ≥ d1,t − ut,
ut + max

0≤η′≤η−dptut/Ke
η′+dbt(d1,t−ut−F̄t−1(η′))/Ke≤η−dptut/Ke

F̄t−1(η′) if F̄t−1(η − dptut/Ke) < d1,t − ut,

−∞ otherwise.

(11)

Case 3. When xt ∈ [lt, ut), we have n1
t = dptxt/Ke, n2

t = η − η′ − n1
t , and lt ≤ xt ≤ min{K(η −

η′)/pt, ut−1}. Note that given any η, K(η−η′)/pt is the production budget, and η′ =
∑t−1

i=1(n1
i +n2

i )
is the budget that is reserved for periods from 1 to t − 1. Since we are only interested in η′ that
yields K(η− η′)/pt ≤ ut− 1, it follows that η′ ∈ [η−bpt(ut− 1)/Kc, η−dptlt/Ke]. Then, we write

F̄t(η) ≤ max
η−bpt(ut−1)/Kc≤η′≤η−dptlt/Ke

F̄t−1(η′) + x̄t(η
′) (12)
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where

x̄t(η) =



−∞ if φt < lt,

φ̄t if F̄t−1(η′) + φ̄t ≥ d1t,

φ̄t if F̄t−1(η′) + φ̄t < d1t and φ̄t ≤ ϕ̄t,
ϕ̄t if F̄t−1(a) + φ̄t < d1t, φ̄t > ϕ̄t, and ϕ̄t ≥ lt,
−∞ otherwise,

and φ̄t = min{bK(η − η′)/ptc, ut − 1}, ϕ̄t = b(K(η − η′)− bt(d1t − F̄t−1(η′)))/(pt − bt)c.

Similarly to Proposition 3, we obtain the following result.

Proposition 4. We have
F̄t(η) = max{(10), (11), (12)}, (13)

where by (10), (11), and (12), we refer to the right-hand sides in these expressions. We also obtain
F̄1(η) = F1(ηK) for η = 0, 1, 2, . . . , U .

To prove that this algorithm exhibits an FPTAS, we need to show that given any budget, which
is a multiple of K, to the original problem, there is a feasible solution in the adapted problem with
the required budget bounded by multiples of T .

Proposition 5. For every integer η, we have F̄T (η + 2T ) ≥ FT (ηK).

Proof. Let x∗ be an optimal solution to FT (ηK), which clearly satisfies
∑T

t=1(ptx
∗
t + bty

∗
t ) ≤ ηK.

Let us define n1
t = dptx∗t /Ke and n2

t = dbty∗t /Ke for every t = 1, 2, . . . , T . This gives a solution
to F̄T (

∑T
t=1(n1

t + n2
t )). Observe that

∑T
t=1dptx∗t /Ke+ dbty∗t /Ke ≤

∑T
t=1(ptx

∗
t /K + bty

∗
t /K + 2) ≤

η + 2T , which completes the proof.

The next proposition is similar to a result in van Hoesel and Wagelmans (2001), which estab-
lishes an upper bound on the value of the multiplier. This upper limit is essential in proving the
required computational time for the FPTAS.

Proposition 6. There exists an integer η ∈ {0, 1, . . . , dB/Ke+ 4T} with F̄T (η) > −∞. Moreover,
the smallest such value η∗ does not exceed z∗/K + 4T .

Proof. Let us denote by p∗t the budget allocation for production in time period t based on an
optimal solution, and b∗t the budget allocation for backlogging. Clearly, z∗ =

∑T
t=1(p∗t + b∗t ). Let

us define n1
t = dp∗t /Ke, n2

t = db∗t /Ke and η̄ =
∑T

t=1(n1
t + n2

t ). From Proposition 5, we obtain

F̄T (η̄ + 2T ) ≥ FT (η̄K) ≥ FT (z∗) > −∞ since z∗ =
∑T

t=1(p∗t + b∗t ) ≤
∑T

t=1dp∗t /KeK + db∗t /KeK =

η̄K. We also observe that η̄+2T =
∑T

t=1(dp∗t /Ke+db∗t /Ke)+2T ≤
∑T

t=1(p∗t /K+b∗t /K+2)+2T =
z∗/K + 4T ≤ dB/Ke+ 4T . Thus, η̄ + 2T is an integer smaller than or equal to dB/Ke+ 4T with
F̄T (η̄ + 2T ) > −∞. This together with η∗ ≤ η̄ + 2T yields η∗ ≤ z∗/K + 4T .

4.3 The Approximation Scheme

4.3.1 A Polynomial Ratio Approximation Algorithm

We provide a simple polynomial time approximation algorithm to compute an integer upper bound
B on z∗, which is at most 2Tz∗. The algorithm is adapted directly from van Hoesel and Wagelmans
(2001). The algorithm finds the smallest L such that the solution is feasible, and in each time period
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neither the production cost nor the backlogging cost exceed L. Let l be any value of L. We can
determine if there exists a feasible solution by checking both the upper bound on the production
levels and the upper bound on the number of backlogs iteratively via a simple dynamic algorithm.

Let us first define the upper bound on the production levels by

c̄t(l) =


ut if l/pt ≥ ut,
l/pt if lt ≤ l/pt < ut,

0 otherwise.

This is the maximum amount that can be produced with budget l. Clearly, the upper bound on
the number of backlogs is l/bt given that the backlogging cost must not exceed l. Furthermore,
we denote the maximum production levels given l by Mt(l) = Mt−1(l) + c̄t(l). The procedure to
check if there exists a feasible production plan for a given budget l begins with M0(l) = 0 and
stops if d1,t −Mt(l) > l/bt for any t = 1, . . . , T . The overall algorithm to find L by bisection can
be summarized as follows.

Step 1. Let l = maxt=1,...,T {ptut + btd1,t}.

Step 2. For t = 1, . . . , T ,

Step 2a. Compute c̄t(l) and Mt(l) = Mt−1(l) + c̄t.

Step 2c. If d1,t −Mt(l) > l/bt, continue the binary search for l on the upper subinterval.

Step 3. If d1,t−Mt(l) ≤ l/bt for all t = 1, . . . , T , continue the binary search in the lower subinterval.

Let L be the returned value of the algorithm. Clearly, L ≤ z∗ since l = z∗ provides a feasible
solution and L is the smallest such l. As we have to account for 2T many cost functions, the
value of the solution produced by this algorithm is at most 2TL ≤ 2Tz∗. The running time of the
algorithm is O(T log( max

t=1,...,T
{ptut + btd1,t})), and hence polynomial.

4.3.2 The Fully Polynomial Time Approximation Scheme

We first present the approximation scheme, then we argue that it is fully polynomial.

Step 1. Compute an upper bound B on z∗ by the algorithm presented in Section 4.3.1.

Step 2. Set K = max{bεB/(8T 2)c, 1}.

Step 3. Calculate F̄t(η) for all t = 1, 2, . . . , T and η = 0, 1, 2, . . . , dB/Ke + 4T based on Section
4.2.1.

Step 4. Choose the smallest b ∈ {0,K, 2K, . . . , (dB/Ke+ 4T )K} such that F̄T (b/K) > −∞.

Proposition 7. The above algorithm provides a solution value that does not exceed (1 + ε)z∗, and
its running time only depends on the size of the problem instance and 1/ε.

Proof. The bound on the solution returned by the algorithm can be easily obtained from the fact
that z∗ + 4TK ≤ z∗ + εB/(2T ) ≤ (1 + ε)z∗ since K ≤ εB/(8T 2) and B ≤ 2Tz∗. If dB/Ke <
T , then the running time O(T (dB/Ke + 4T )2) is obviously polynomial. Let us define UB :=
maxt=1,...,T {ptut + btd1,t}, and assume that dB/Ke ≥ T . If εB/(8T 2) > 1, then K > εB/(16T 2).
Otherwise, we have K ≥ εB/(8T 2). In both cases, the running time is O(T 5/ε2 + T logUB) =
O((T 5 logUB)/ε2).
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The main difference from the results of van Hoesel and Wagelmans (2001) is the fact that we
restrict the cost functions to be linear. This is necessary to develop a recursion to the dual problem
for the lot-sizing problem with MOQ. The dual problem in turn provides a basis to formulate the
pseudo-polynomial algorithm, which finally leads to the FPTAS.

Our result is also different from Halman et al. (2008) in that we do not account for the stochastic
nature of the demand. Furthermore, we can handle the minimum order quantity and fixed procure-
ment costs (as shown in the next section), which yields a non-convex procurement cost function
that violates the underlying assumption of their model. This fixed cost feature is a very important
generation of our approach (in addition to MOQ’s).

4.4 Fixed Procurement Costs

Consider the case when a fixed procurement cost is incurred whenever an order is placed. This can
be easily modeled by redefining the cost of production as

p̄t(xt) =

{
0 if xt = 0,

ptxt + St if xt ∈ [lt, ut]

where St is the fixed procurement cost for period t. As a result of this production function, (11)
and (12) are modified as follows.

F̄t(η) ≤


ut + F̄t−1(η − d(ptut + St)/Ke) if F̄t−1

(
η − dptut+St

K e
)
≥ d1,t − ut,

ut + max
0≤η′≤η−d(ptut+St)/Ke

η′+d(bt(d1,t−ut−F̄t−1(η′))/Ke≤η−d(ptut+St)/Ke

F̄t−1(η′) if F̄t−1

(
η − dptut+St

K e
)
< d1,t − ut,

−∞ otherwise.

(14)

F̄t(η) ≤ max
η−

⌊
pt(ut−1)+St

K

⌋
≤η′≤η−

⌈
ptlt+St

K

⌉{F̄t−1(η′) + x̃(η′)}. (15)

Here, x̃(a) has the same definition as x̄(a) but with φ̄t and ϕ̄t replaced by φ̃t = min{b(K(η− η′)−
St)/ptc, ut−1} and ϕ̃t = b(K(η−η′)−St−bt(d1t− F̄t−1(η′)))/(pt−bt)c, respectively. The recursive
formula (13) becomes F̄t(η) = max{(10), (14), (15)}. To complete the FPTAS, we also need to
include the fixed procurement costs in the algorithm in Section 4.3.1. We do so by redefining the
maximum production level as

c̄t(l) =


ut if l−St

pt
≥ ut

l−St
pt

if lt ≤ l−St
pt

< ut

0 otherwise.

The trivial upper bound in Step 1 is now maxt=1,...,T {ptut + btd1,t + St}. Then, we can follow the
same procedure as the one described in Section 4.3.1 to obtain an integer upper bound B on z∗. In
this way, an FPTAS for the MOQ problem with fixed procurement costs follows with the running
time O((T 5 logUB)/ε2).
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5 Conclusion

This paper considers a single item lot-sizing problem with both capacity constraints and minimum
order quantity requirements. We prove that with constant capacities and minimum order quantities,
the production sequences in the optimal solution have a special structure. Based on this, we
developed a dynamic programming approach to solve this problem in polynomial time. We also
identified a polynomial case of general minimum order quantities by imposing some assumptions on
cost functions. Furthermore, we consider the NP-hard version of the underlying problem in which
the capacity constraints and minimum order quantity requirements depend on the time period. By
dualizing the problem, we successfully develop a fully polynomial approximation scheme to cope
with its NP-hard nature, and hence, solve the problem approximately in polynomial time. We also
show that our results can be easily extended to capture the fixed procurement costs.
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