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Abstract

Fleeting, the assignment of aircraft types, each having a different capacity, to the scheduled flights is
an essential component of an airline’s overall scheduling process and exerts a huge impact on its rev-
enue. In order to address the high level of uncertainty in the market demand when the fleeting decision
is made and to capture the network effects (i.e., spill and recapture) for a more accurate estimate of
passenger flow, we present a two-stage stochastic model which incorporates an attractiveness-based
spill and recapture framework. Such a model considers spill and recapture based on passenger utility
from itineraries. Solution approaches based on a distributed framework, namely MapReduce, are
developed to reduce the computational time, and numerical results are reported using real data from
a medium-size airline to evaluate and compare the proposed procedures.

Keywords: airline fleeting; attractiveness-based spill and recapture; stochastic programming; par-
allel computing; MapReduce.

1 Introduction

Airlines around the world continue to face increasing capital and operational costs. As competition
intensifies, they have been forced to cut costs and uphold revenue by utilizing their equipment capacity
more efficiently to accommodate passenger demand. This is generally known as the fleet assignment
problem, which deals with assigning aircraft of different capacities to the scheduled flight legs based on
availabilities, costs, potential revenue and itinerary-based passenger demand. Due to the large number of
scheduled flights and the dependency of other airline operations (e.g., crew scheduling) on fleet assignment,
solving the underlying fleet assignment model (FAM) is never an easy task. What further complicates
the problem are:

· Stochastic demand: the fleet assignment decision is made 10 - 12 weeks in advance of departure,
and at such an early stage, the level of market demand uncertainty is usually high. Deterministic
models using average demand are thus inadequate to reflect the final demand realization.

· Network effects: to have a more accurate estimate of passenger flow and revenue, spill and
recapture effects need to be properly addressed in an itinerary-based FAM. In reality, passengers
spilled from an itinerary usually compare all the available options in the market and choose the
most attractive one in terms of price, departure and arrival time, number of stops, total duration,
and other factors that affect their preferences.

As a result, airlines usually solve an initial FAM based on early demand forecasts, and later swap aircraft
assignments in response to demand variations (demand driven dispatch). In terms of spill and recapture,
they either assume a constant recapture rate or penalize any spill or unmet capacity in the objective
function.

In this paper, we present a two-stage stochastic model to explicitly consider potential market scenarios.
The first stage is a basic fleet assignment model which decides the assignment of fleet types to flight
legs. The second stage then finds the optimal passenger flow on available itineraries for each scenario
based on the assigned capacities and the demand estimated for each itinerary. Our model inherits
the attractiveness-based spill and recapture framework from Wang et al. (2014) which does not consider
demand stochasticity, and by doing so, any spilled passenger is recaptured with a probability proportional
to the attractiveness of an alternative itinerary. Another novelty of the proposed model is the integration
with a production simulator which generates market scenarios and solves the corresponding second stage
problems by considering bookings of multiple periods over the past year and advanced options such
as up- and down-sells. This brings our model closer to a point of potential integration with airlines’
decision support systems and making immediate impact. Unfortunately, due to the size of the model and
the number of scenarios under consideration, solving it directly is computationally challenging. Hence,
developing effective solution methodologies is also a focus of this paper.

Studies on fleet assignment can be traced back 30 years. Abara (1989) was one of the first researchers
to examine realistically-sized FAM using a connection network. In contrast, Berge and Hopperstad (1993)
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and Hane et al. (1995) were among the first researchers to use the time-space network, which has quickly
become the dominant method to formulate FAM. A notable effort in modeling fleet assignment is the
itinerary-based FAM proposed by Barnhart et al. (2002), which combines the basic fleet assignment
model with a passenger mix model to explicitly capture network effects. Unlike our attractiveness-based
approach, they assume that the rate of recapture is calculated through a Quantitative Share Index (QSI)
and remains constant regardless of what options/itineraries are available in the market.

The works that are most closely related to ours are Sherali and Zhu (2008) and Listes and Dekker
(2005). Sherali and Zhu (2008) propose a two-stage stochastic model in which the first stage conducts
an initial fleet assignment by making only family-level assignments to flight legs, while the second stage
performs subsequent family-based type-level assignments to accommodate passenger demand for each sce-
nario. They conduct polyhedral analysis and develop a Benders decomposition-based solution approach.
In our work, we do not consider the family-level assignment separately but complete all the assignment
tasks in the first stage. The second stage of our model focuses on attractiveness-based network effects
and is a more complicated production version that considers additional features such as up- and down-
sells and fare estimation. In terms of the solution approach, we develop Benders decomposition-based
algorithms tailored for a distributed computing environment to further reduce the computational time.
Listes and Dekker (2005) also take the stochasticity of demand into consideration, but they focus on fleet
composition1 rather than fleet assignment and they do not consider spill and recapture. Their solution
approach is based on progressive hedging (PH). Due to the size and complexity of individual scenarios,
they pursue the strategy of first finding a solution to the linear relaxation of the model, and then using a
simple rounding procedure to obtain integer results. In this paper, we also propose a heuristic algorithm
based on PH, but what makes our work significantly different from theirs are: 1) we incorporate a Benders
decomposition framework into the traditional PH; 2) we do not solve a linear relaxation of the model. To
address the computational challenge, we employ a distributed framework named MapReduce. We decide
to use MapReduce instead of other more traditional and in a certain sense more powerful architectures
such as MPI because Hadoop and MapReduce are now ubiquitous in practice. The majority of companies
have Hadoop installations and data scientists using them. This is definitely not the case for MPI.

The three algorithms developed in this paper are distributed versions of the classic Benders decom-
position and PH algorithms. In the Benders decomposition-based approaches, all the scenario-dependent
subproblems (i.e., the second stage of our model) are solved and the corresponding Benders optimality
cuts are generated simultaneously on cluster computers to reduce the computational difficulty of having
multiple scenarios. Our PH algorithm works similarly by solving the scenario problems in parallel. How-
ever, unlike the traditional PH approach, we solve each scenario problem by a Benders decomposition
algorithm and add the Benders cuts generated in previous iterations as extra constraints to the next
iteration. With such preservation of Benders cuts and the presence of binary variables in our model,
this approach is only a heuristic. We evaluate and compare these algorithms based on a medium-size
airline, and our computational results establish feasibility in using the two-stage stochastic model and the
aforementioned distributed methodologies to solve FAM. A 10 - 15% increase in profitability is observed,
and the optimality gaps from all the algorithms are less than 12%.

The contributions of this paper are as follows.

1. According to authors’ best knowledge, this is the first effort to apply MapReduce to address the
computational challenge of a large-scale two-stage stochastic program. An extension to multi-stage
is straightforward.

2. This is the first time that the stochastic nature of passenger demand is explicitly addressed under an
attractiveness-based spill and recapture framework. The two-stage stochastic model we formulate
is an improvement over the deterministic version proposed in Wang et al. (2014).

3. The incorporation of a Benders decomposition algorithm into PH, and preserving Benders cuts
from previous iterations as additional scenario problem constraints is a novel modification of the

1Fleet composition: given a set of aircraft types, the fleet composition problem is to determine the optimal number of
aircraft of each type to be used to maximize the profit.
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conventional progressive hedging approach.

4. We integrate the proposed algorithms with a production simulator developed by Sabre Airline
Solutions to solve the second stage, and thus make them immediately applicable to industrial
practitioners.

The rest of this paper is organized as follows. In Section 2, we formulate the two-stage stochastic
model with attractiveness-based spill and recapture effects. Section 3 presents the three distributed
algorithms based on MapReduce. Section 4 gives the findings from our computational experiments and
presents sensitivity analyses. Finally, we conclude in Section 5.

2 A Stochastic Formulation of the Problem

In order to take the stochastic nature of passenger demand into explicit consideration, we formulate
a two-stage stochastic model that considers several potential market scenarios. The entire formulation
relies on the notion of an embedded time-space network, which is typically used in formulating FAM and
representing flight schedule. To learn more about this network and its applications, we refer readers to,
for example Sherali et al. (2006).

The first stage of our model assigns aircraft to the scheduled flight legs on a daily basis so that the
following criteria are met: 1) Each flight leg is covered by exactly one fleet type; 2) Aircraft arriving at an
airport at a particular time must leave that airport at some time later to ensure the same daily schedule
and avoid deadheading; 3) Only available aircraft of each fleet type are used in the assignment. These
criteria are usually referred to as cover constraints, conservation of flow constraints and aircraft count
constraints. Since this part has been repeatedly formulated in the classic fleet assignment literature (e.g.,
Barnhart et al. (2002)), it is hence omitted in this paper. The second stage then utilizes the assigned ca-
pacity to accommodate the itinerary-based demand for each scenario, and adopts the attractiveness-based
network model of Wang et al. (2014) to handle the spilled passengers. We incorporate this framework
because:

1. Modeling spill and recapture is essential for passenger flow estimation and capacity planning, and
hence relates to the fleet assignment problem when matching fleet types with different capacities
to flight legs.

2. In reality, (spilled) passengers constantly change their preferences based on all the available itineraries
in the market. This should be reflected in modeling.

The following notation is used. An itinerary always has the underlying market. Sometimes we show this
relationship explicitly in order to stress it.

Sets:

· L: set of scheduled flight legs, indexed by l.

· K: set of fleet types, indexed by k.

· M : set of all markets, indexed by m.

· ΠHA
m (l): set of all itineraries of the host airline (HA) that include flight leg l in market m, m ∈M ,

l ∈ L.

· S: set of scenarios in terms of demand realization, indexed by s.

Decision Variables:

· xlk = 1 if flight leg l is flown by fleet type k; 0 otherwise.
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· qsi : market share of itinerary i in market m under scenario s, i ∈ ΠHA
m , m ∈M , s ∈ S.

· qsm: market share of all the itineraries offered by other airlines in market m under scenario s, m ∈M ,
s ∈ S.

· qs: vector of market share over all markets under scenario s, s ∈ S. That is,
(
(qsi )i, (q

s
m)m

)
.

Parameters:

· Capk: seat capacity of fleet type k, k ∈ K.

· clk: cost of assigning fleet type k to flight leg l, k ∈ K, l ∈ L.

· ps: probability for realization of scenario s, s ∈ S.

· Ds
m: total demand realization for market m under scenario s, m ∈M , s ∈ S.

· Ds: vector of demand realizations over all markets under scenario s, s ∈ S. That is, Ds = (Ds
m)m.

The general form two-stage stochastic model reads as follows, where x = (xlk)l,k.

min
∑
l∈L

∑
k∈K

clkxlk −
∑
s∈S

psQ(x,Ds) (2.1)

s.t. Cover Constraints

Conservation of Flow Constraints

Aircraft Count Constraints

where, for each s ∈ S, we have

Q(x,Ds) = max
qs

r(Ds, qs) (2.2)

s.t. e(Ds, qs) ≤
∑
k∈K

xlkCapk l ∈ L (2.3)

qs ∈ V (2.4)

The objective function (2.1), together with (2.2), minimizes the total expected cost, or equivalently,
maximizes the total expected profit. The first stage includes the typical cover constraints, flow balance
constrains and aircraft count constraints to make the assignment of fleet types to flight legs. The second
stage is a passenger mix model with attractiveness-based spill and recapture. The objective is to find
the optimal passenger flow on all the available itineraries, subject to the limited capacity assigned to
the flights and the demand estimated for each itinerary. Unlike Wang et al. (2014) or any traditional
approaches, in this paper, we use a sophisticated production version of Qs(x,D

s) where bookings over a
year are accumulated and advanced options such as up- and down-sells are captured. A simplistic model
is given next.

2.1 A Simplistic Second Stage Model

The following additional notation is used in the simplistic model.

· fsi : average fare estimate for itinerary i under scenario s, i ∈ ΠHA
m , s ∈ S.

· Ai: attractiveness of itinerary i in market m, i ∈ ΠHA
m , m ∈ M . According to Wang et al. (2014),

the attractiveness can be quantified by eU , where utility U is a linear combination of a series of
attributes such as departure time, arrival time, number of stops, total duration and so on.
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· Am: attractiveness of all the itineraries from other airlines in market m, m ∈ M . This represents
passenger utility of flying with a different airline.

The model hence reads as:
Q(x,Ds) = max

qs

∑
m∈M

Ds
m

∑
i∈ΠHA

m

fsi q
s
i (2.5)

s.t.
∑
m∈M

Ds
m

∑
i∈ΠHA

m (l)

qsi ≤
∑
k∈K

xlkCapk l ∈ L (2.6)

∑
i∈ΠHA

m

qsi + qsm = 1, m ∈M (2.7)

Amq
s
i ≤ Aiq

s
m, i ∈ ΠHA

m , m ∈M (2.8)

qs > 0 (2.9)

Objective function (2.5) maximizes the revenue captured from all the itineraries of the host airline.
Constraints (2.6) impose that the total demand captured on all itineraries that include leg l cannot exceed
the capacity assigned to leg l. Constraints (2.7) and (2.8) ensure that the probability of recapturing the
spilled demand is proportional to the attractiveness of the alternative itinerary. This model modifies the
work of Wang et al. (2014), and is only used to explain the concept of attractiveness-based network effect.

3 Algorithms

The two-stage stochastic model developed in Section 2 has mixed binary variables in the first stage
and continuous variables in the second stage. Since the number of daily (or weekly) flights/itineraries
for a major airline can easily reach several thousands, and the proposed model also explicitly considers
multiple scenarios, it turns out to be a very hard problem. Efficient solution methodologies hence need
to be developed to mitigate the inherent combinatorial burden and to supply a practically good solution
within a reasonable computational time.

In this section, we first introduce a decision support simulator named Airline Planning and Operations
Simulator (APOS), and explain how to use it to generate random demand realizations and get Q(x,Ds).
We then present three distributed algorithms - two Benders decomposition-based algorithms and one
progressive hedging-based algorithm - to solve multiple scenarios concurrently to reduce the overall com-
putational time. All the distributed algorithms developed in this paper are based on the MapReduce
framework.

3.1 Integration of APOS

We start by formally introducing the Airline Planning and Operations Simulator (APOS). Airlines use
various methodologies in their planning processes. The most reliable and widely used method to assist
decision making is simulation that allows to replicate actual customer behavior in the controlled envi-
ronment and to carry out multiple experiments on the same set of inputs. APOS, provided by Sabre
Airline Solutions, was originally designed to fulfill these tasks for the sake of revenue management. In
particular, it reads historical customer booking information to generate forecast streams, which we call
potential demand realizations in the context of this paper, and then performs optimization algorithms on
the generated streams to achieve the highest expected revenue. With slight modification, the simulator is
able to provide the following two crucial functions which will be repeatedly used in designing our overall
algorithms.

1. Given a random seed, APOS generates a particular market level demand realization or scenario.
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2. Given a feasible fleet assignment solution (i.e., a feasible first stage solution), APOS solves the
attractiveness-based passenger mix model in the second stage and returns the highest revenue,
Q(x,Ds).2 Meanwhile, it also generates other outputs, such as the dual solution, to reveal more
information about the second stage model it solves.

Therefore, as shown in Figure 1, we incorporate APOS into the two-stage stochastic model as a
blackbox function to generate multiple scenarios and solve the corresponding second stage problem (2.2)
- (2.4) for any given scenario. Being a blackbox, how the simulator actually operates and what algorithms
it employs are out of the scope of this paper, and thus omitted.

Figure 1: Integration of APOS as a blackbox

3.2 Three MapReduce-based Decomposition Algorithms

In this section, we propose three decomposition algorithms to partition the problem into multiple smaller
subproblems - two primal decomposition methods based on Benders decomposition and one dual de-
composition method based on progressive hedging. Since all these algorithms involve solving multiple
independent subproblems with similar structures, parallel computing has great potential to reduce the
computational time by solving the subproblems simultaneously. Thus, all the algorithms to be exhibited
in this section are developed based on the distributed framework named MapReduce.

MapReduce is a software framework to submit and process parallelizable applications which deal with
vast amount of data on clusters of computers. In this paper however, we leverage this popular “big
data” technology to solve a large-scale stochastic program. A MapReduce program is typically composed
of mappers which turn each data record into a key-value pair and reducers which perform a summary
operation. In our case, a mapper instructs a number of reducers which scenario to solve, and then each
reducer calls APOS to solve the second stage model of the assigned scenario. Further details about the
implementation are listed in Section 4.1. The input to the algorithm includes a list of scenario ID’s (e.g.,
1, ..., |S|) and other standard input to FAM.

3.2.1 Two MapReduce-based Benders Decomposition Algorithms

Benders decomposition is a popular method for solving certain large-scale optimization problems, such as
the two-stage stochastic programming model formulated in this paper. The solution process of a typical
Benders algorithm alternates between a master problem and subproblems corresponding to different
scenarios. In our case, the master problem is solved by branch-and-bound in the space of the first stage
variables, and each subproblem is solved by executing APOS with a constant seed specifying the scenario.
The corresponding Benders optimality cut is then constructed by utilizing the dual information as the
classic Benders algorithm of Benders (1962) and Kalvelagen (2002). We omit the details of the classic
Benders algorithm since it has been well documented in a variety of literature.

In our MapReduce-based algorithms, all the scenario-dependent subproblems are solved in parallel
and the associated Benders cuts are generated separately. As we can observe from Figures 2 and 3, with
all these cuts available, the Benders algorithm can proceed with either of the following two directions: 1)
adding all the cuts to the master problem and repeat the solution process until some stopping criterion

2APOS offers a function mode named SBLP. It is developed based on the passenger mix model of Wang et al. (2014),
but also incorporates many practical considerations (up- and down-sells, cargo capacity, etc).
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is met; 2) aggregating all these cuts into a single cut by using the expected value of coefficients and then
adding it to the master problem to continue the solution process. The following Algorithms 1 and 2 are
hence developed in line with these two directions.

Algorithm 1 The MapReduce-based Multiple-cuts Benders Algorithm

1: Initialization:
LB := −∞, UB :=∞

2: Solve the first stage master problem
3: Update LB
4: while stopping criteria not met (e.g., UB − LB > ε) do
5: Call MapReduce to solve each second stage subproblem and generate Benders cuts C1, ..., C|S|

Mapper: Assign one scenario ID to each reducer
Reducer: Run APOS to solve the second stage of the assigned scenario s ∈ S, and generate Cs

6: Retrieve C1, ..., C|S|
7: Update UB
8: Add C1, ..., C|S| to the master problem
9: Solve the first stage master problem

10: Update LB
11: end while

Algorithm 2 The MapReduce-based Aggregate-cut Benders Algorithm

1: Algorithm 1 steps 1 - 7
2: Aggregate C1, ..., C|S| into a single cut C̄ using the expected coefficients
3: Add C̄ to the master problem
4: Algorithm 1 steps 9 - 11

In the above algorithms, the parallelization is done through the MapReduce framework and APOS is
treated as an integrated function, which can be repeatedly called in the reducing phase. The MapReduce
framework consists of mappers and reducers, in which mappers take the scenario ID’s (i.e., 1, ..., |S|) as
input and emit a unique ID to each reducer, and each reducer takes the solution of the master problem
as input via distributed cache (see Section 4.1 for details) and executes APOS to solve the second stage
subproblem based on the ID assigned to it. The two algorithms only differ in the way of handling Benders
cuts and thus have the same complexity.

3.2.2 A Progressive Hedging Algorithm based on MapReduce

When confronted with a two-stage stochastic program for which there exist effective algorithms to solve
individual scenarios, the progressive hedging (PH) method is another popular approach. However, in the
context of our model, it is not possible to explicitly solve the (deterministic) problem corresponding to
each scenario because APOS is considered a blackbox and thus we do not know how it generates the
scenario and what model and algorithms it employs. To get around this difficulty, a natural starting
point is to construct a Benders decomposition framework similar to what we developed in Section 3.2.1
so that the second stage of each given scenario can be solved by APOS without knowing the model or
the solution process. That being said, in each iteration of the to-be-proposed PH algorithm, Benders
decomposition is employed for solving scenario problems.

A MapReduce-based approach is again proposed to solve the independent scenario problems in parallel.
Mappers still read the scenario ID’s as input and then feed each reducer a unique ID. However, for any
given scenario s ∈ S, the reducer no longer only solves the second stage problem and generates a single
cut, but uses Benders decomposition to iteratively solve the complete model specified by scenario s. That
being said, if we let P s

1 and P s
2 be the first and second stages of the scenario problem P s, where s ∈ S,

the output from step 5 of Algorithms 1 and 2 is a Benders optimality cut corresponding to P s
2 while
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the output from the same step of the following PH algorithm is a solution to P s. The PH algorithm is
essentially a sequential version of Algorithms 1 and 2 performed on individual scenarios.

A potential issue with the above solution approach is that each scenario problem, although much
smaller than the overall problem, is still not easy to solve to optimality in a relatively short time. To
address this challenge, we modify the PH algorithm in such a way that the integrated Benders solution
process in every PH iteration is terminated earlier before an optimal solution is found and all the Benders
cuts generated from previous iterations are retained and added to the next iteration. It is easy to see
that these cuts are valid since they are based on the same scenarios with only objective function being
varied. This leads to the following Algorithm 3, taking ρ as a penalty factor.

Algorithm 3 The MapReduce-based Progressive Hedging Algorithm

1: Set v := 0
2: Initialize x̄(0) and (ws)(0)

3: while stopping criteria not met do
4: Set v := v + 1
5: Call MapReduce to solve each scenario problem in parallel and obtain (xs)(v)

Mapper: Assign one scenario ID to each reducer
Reducer: Use the Benders decomposition algorithm to solve the assigned scenario s ∈ S:

(xs)(v) := arg min
x

(∑
l∈L

∑
k∈K

clkxlk −Q(x,Ds) +
∑
l∈L

∑
k∈K

(ws
lk)(v−1)xlk +

ρ

2

∑
l∈L

∑
k∈K

‖xlk − x̄(v−1)
lk ‖2

)

s.t. 1st- and 2nd-stage constraints and Benders cut constraints from iterations v − 1, v − 2, ..., 0
6: Retrieve (xs)(v) and Benders cuts from each scenario
7: Set

x̄
(v)
lk :=

∑
s∈S

ps(xslk)(v), (ws
lk)(v) := (ws

lk)(v−1) + ρ
(
(xslk)(v) − x̄(v)

lk

)
8: Add retrieved Benders cuts to corresponding scenario problems
9: Substitute each ((xs)(v)) into (2.1), and set

x(v) := arg min
s

∑
l∈L

∑
k∈K

clk(xslk)(v) −
∑
s∈S

psQ
(
(xs)(v), Ds

)
10: end while

In the above algorithm, since all the scenario-dependent solutions from Step 6 are feasible, we sub-
stitute each of them into (2.1) for cost evaluation and pick the one with the minimal cost as an overall
primal solution. We also tried other more sophisticated ways of getting an overall solution, for example,
solving x(v) := arg min

s

∑
l∈L

∑
k∈K
−ωlkxlk subject to the cover constraints, conservation of flow constraints

and aircraft count constraints. The weight ωlk, l ∈ L, k ∈ K is determined by how many times fleet type
k is assigned to flight leg l across all scenario solutions. The more often k is assigned to l, the larger
the weight would be, thus leading to a smaller coefficient in the above expression and a higher chance of
xlk = 1 in the overall solution. In this paper, we go with the simple approach in Algorithm 3 as it gives
the best solution. Graphical illustrations of the three algorithms are given in Figures 2 and 3.
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Figure 2: Solution process flow of the two MapReduce-based Benders decomposition algorithms

Figure 3: Solution process flow of the MapReduce-based PH algorithm

4 Computational Experiments

4.1 Implementation

All computational experiments are conducted on a Hadoop cluster. The cluster consists of four 2.2GHz
Xeon CPU’s, each having 8 cores and hence resulting in 32 cores for parallel program execution. Each of
the four servers has 32 GBytes of main memory. They serve as data nodes and there is a separate named
node. Cloudera version 5 is the backbone Hadoop installation. All the optimization problems are solved
by IBM ILOG CPLEX Optimization Studio.
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To test the performance of the proposed algorithms, we use data from a medium-size airline which
involves 132 international flights and 20 fleet types. Since we have 32 cores, 32 scenarios are generated
by APOS to reflect market demand fluctuations. The input to the simulator includes information of
equipments (fleet types), flights, markets and days when booking information is updated and the forecast
is reoptimized. In our experiments, these days are specified as 366, 226, 107, 57, 35, 23, 17, 13, 9, 5,
3 and 1, so that bookings of various time periods over the past year are accumulated to capture the
cyclic nature of passenger demand. All the data is provided by Sabre Airline Solutions, and the utility
coefficients in attractiveness are calibrated by APOS.

By means of extensive numerical experiments, we notice that 5 hours of running time is enough to
get a good quality solution from the proposed algorithms, and running additional hours does not lead to
obvious further convergence. Therefore, for the rest of this section, running time not exceeding 5 hours
is imposed as a stopping criterion for Algorithms 1 - 3. The resulting optimality gaps are all around
10%. We also set the relative MIP gap tolerance (a Cplex parameter) to 10−2 to solve the first stage
master problem faster3. Since all three algorithms involve solving a Benders master problem somehow,
this setup is crucial in terms of expediting the overall solution approaches. Finally, instead of seeking an
optimal solution in every iteration of Algorithm 3, we stop the solution process of each scenario problem
after 15 minutes of execution or after 20 cuts are generated. The motivation of doing this is because: 1)
with the presence of binary variables, our PH approach is only a heuristic, and thus an optimal solution
in each iteration does not guarantee any overall convergence; 2) 15 minutes of execution or 20 Benders
iterations usually leads to a reasonably good solution for a single scenario problem, with the corresponding
optimality gap around 30%.

In Algorithms 1 - 3, both mappers and reducers are implemented in Python using Hadoop Python
streaming. Since Hadoop Python API does not support user-defined partitioning, to ensure each reducer
only processes one scenario, we mimic the partitioning function by: 1) randomly generating 32 java string
hashcodes with equal length; 2) using them as scenario IDs. As a result, the default partitioner, which
partitions the data using Java string hashcode as hash key, splits the output from the mappers into 32
segments (scenarios) and gives them to 32 reducers.

From the implementation standpoint, passing information to or retrieving information from MapRe-
duce is not straightforward and hence needs further discussion. There is an overarching external scripts
that executes the highest level loop. In each outer iteration of Algorithms 1 and 2, we pass the first
stage master problem solution to each reducer using Hadoop Distributed Cache. Specifically, in each
iteration we write the solution to a text file and then cache it so that it is accessible to all the data
nodes (reducers). Once reducers finish solving all the subproblems, information to construct Benders op-
timality cuts (i.e., dual information, coefficient matrices and right-hand sides) is written to the Hadoop
Distributed File System (HDFS). To retrieve these cuts and add them to the master problem for next
iteration, the external script copies the output of reducers from HDFS to the local filesystem for further
processing. In Algorithm 3, Benders cuts and (xs)(v) corresponding to each scenario are retrieved in a
similar way through HDFS. However, the information passed to the reducers is significantly different since
each reducer no longer only solves the second stage subproblem and generates a single cut, but employs
Benders decomposition to solve a complete model (with both first and second stages). For this reason,
in every iteration of Algorithm 3, each reducer requires a scenario-dependent master problem and the
additional Benders cut constraints. Information to construct these models is written to a text file and
sent as distributed cache to make it accessible to all the reducers. No LP or MPS files are transferred in
the above implementation: only customized text files are used. Finally, APOS is a C++ library which is
called from a reducer through the standard Python-to-C++ interfacing.

4.2 Computational Results

In order to examine the benefits of the proposed algorithms, we take the airline’s current fleeting decision
as a benchmark solution. The most important computational results are presented in Table 1, in which
a positive sign indicates an increase in the objective value or a decrease in profit, and a negative sign

3The default setting of the MIP tolerance gap in Cplex is 10−4.
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indicates the opposite. These principles are followed by all the tables and figures presented in this section.
All solutions including the benchmark solution are compared with respect to the expected cost based on
the 32 generated scenarios. As we can see, the solutions from the proposed algorithms all yield cost
reduction against the benchmark, and a 10 - 15% improvement is often considered significant for airlines
with tight margins. The two Benders decomposition-based algorithms output similar objective values
and optimality gaps. The solution approach with 32 Benders cuts added to the master problem in each
iteration (Algorithm 1) gives a smaller objective value, while the approach adding a single aggregate cut
(Algorithm 2) renders a narrower optimality gap. Between these two, we also see more Benders iterations
in Algorithm 2, which is intuitive since we add fewer constraints to the master problem in every iteration
and that usually leads to a simpler problem and a faster solution process. Algorithm 3 yields the best
solution in Table 1. As shown in Figure 4, a solution superior to those given by the Benders algorithms
can be achieved within 3 hours. We also observe a large discrepancy in the objective values favoring
Algorithm 3 in the first two hours of execution. Thus, the superiority of this Benders-incorporated PH
approach is demonstrated and it is recommended when a quick solution is desired.

Table 1: Comparison of the three MapReduce-based algorithms
Obj. vs. Benchmark32 Optimality Gap # of Benders Iterations

Algorithm 1 -11.5% 11.9% 86
Algorithm 2 -10.2% 10.2% 189
Algorithm 3 -12.4% — 5, 465

Figure 4: Obj. vs. Benchmark32 in 5 hours

Due to the the presence of binary variables in our model, Algorithm 3 is simply a heuristic and
the optimality gap is theoretically intractable. Furthermore, since we conduct 32 independent Benders
decomposition processes in each iteration of Algorithm 3, a large number of Benders iterations (i.e., over
5,000) is expected.

Next, we evaluate both the benchmark solution and the solutions from the three algorithms on 1,000
scenarios for a more accurate cost estimate. The evaluation process is simple: given a solution xlk, l ∈ L,
k ∈ K, we are able to calculate

∑
l∈L

∑
k∈K

clkxlk in (2.1); then we pass xlk and 1,000 distinct scenario IDs
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sequentially to APOS to let it solve for each Qs(x,D
s), s ∈ S with |S|= 1, 000. With ps being a known

parameter, we can easily get the objective values corresponding to each solution. The results are given
in Table 2, where Obj. is obtained based on 32 scenarios and Eval. is evaluated based on 1,000 scenarios.
As we can see, the solutions from the proposed algorithms still yield improvement over the benchmark,
and Algorithm 3 still outputs the best result, followed by Algorithm 1 and then Algorithm 2. We also
notice that all three objective values increase compared to those evaluated based on 32 scenarios. This
is intuitive since our solutions are derived by solving the two-stage stochastic program with 32 scenarios,
they are unlikely to be optimal under the additional scenarios. Therefore, the percentage increase shown
in the second column of Table 2 can be considered as a measure of the robustness of a solution. Following
this argument, the solution from the PH approach appears to be the most robust one.

Table 2: Evaluation of the solutions on 1,000 scenarios
Eval. vs. Benchmark1,000 Eval. vs. Obj.

Algorithm 1 -9.8% +11.2%
Algorithm 2 -1.3% +17.1%
Algorithm 3 -22.6% +1.6%

4.2.1 Sensitivity Analysis on Cost Coefficients

We perform sensitivity analysis to examine how well the proposed algorithms work when operating
cost4 increases (or decreases) by 5 or 10%. The computational results are presented in Table 3. All the
evaluations are based on the 32 generated scenarios. As we can see, the solutions given by the proposed
algorithms are still 10 - 15% better than the benchmark however the operating cost varies. The only
exception happens when cost increases by 5%, in which case Algorithm 1 yields only a 1.2% improvement
over the benchmark while Algorithm 3 gives a surprisingly high 23.3%. Algorithm 3 seems to dominate
the other two in all cases, and from Figure 5, we can make a similar argument as in Section 4.2 that it
is able to reach a better solution faster. However, this dominant performance of Algorithm 3 does not
imply that the two Benders decomposition-based algorithms are no longer necessary. In fact, if a longer
execution time is available and an optimal solution is desired, we still need the two Benders algorithms
since Algorithm 3 is only a heuristic without any convergence guaranteed.5

From Table 3, we also see that the profit of the airline is very sensitive to the operating cost fluctua-
tions. For example, a 5% decrease of operating cost leads to an 80% increase in profit, while a 5% increase
reduces the profit by more than 85%. This proves the tight margin of airlines and the importance of
cutting costs by utilizing equipment and labor more efficiently.

Table 3: Sensitivity analysis on cost coefficients
Obj. vs. Benchmark32 Obj. Changes

Cost Coef ↓ 10% ↓ 5% ↑ 5% ↑ 10% ↓ 10% ↓ 5% ↑ 5% ↑ 10%
Algorithm 1 -11.6% -11.6% -1.2% -11.0% -165.7% -79.6% +88.1% +171.1%
Algorithm 2 -11.2% -12.4% -9.8% -10.8% -168.1% -83.2% +86.9% +172.2%
Algorithm 3 -13.1% -14.7% -23.3% -12.3% -167.3% -83.2% +85.6% +172.4%

4.2.2 Sensitivity Analysis on Number of Scenarios

Besides operating cost, how the number of scenarios impacts the final solution is also worth of exploring
because if considering more scenarios does not give a better solution, we rather consider a simpler model
with fewer scenarios to expedite the solution process. Therefore, in this section, we perform the proposed

4Operating cost refers to the cost coefficients in (2.1).
5Further experiments show that Algorithms 1 and 2 would prevail after 15 hours of running time.
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algorithms on 8 and 16 scenarios, and compare the solutions to the ones based on 32 scenarios. To see how
these solutions work in reality (with high uncertainty), they are compared with respect to the expected
cost based on 1,000 scenarios.

Table 4: Sensitivity analysis on number of scenarios
Eval. Changes

8 Scenarios 16 Scenarios 32 Scenarios
Algorithm 1 +6.3% +3.5% 0
Algorithm 2 +1.9% +3.5% 0
Algorithm 3 +1.3% +0.5% 0

As indicated in Table 4, fewer scenarios lead to worse solutions among all three algorithms. This
makes intuitive sense as the more scenarios we consider, the more likely our model is able to capture
the real demand fluctuation and hence give a solution working robustly under the level of uncertainty
possessed by 1,000 scenarios. An exception happens for Algorithm 2, in which case 8 scenarios perform
better than 16 scenarios.
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Figure 5: Obj. vs. Benchmark32 in 5 hours when operating cost changes

5 Summary and Future Research

In this paper, we have proposed a two-stage stochastic fleet assignment model that considers potential
demand scenarios and attractiveness-based spill and recapture effects. Most importantly, we developed
three MapReduce-based solution approaches to solve each scenario-dependent subproblem in parallel
to reduce the computational time. To examine the efficacy of the modeling and algorithmic strategies,
computational results using real data from a medium-size airline were presented. It would be of interest of
a follow-up paper to apply the proposed distributed framework to other stochastic problems, such as crew
scheduling and financial portfolio management. Further computational experiments should be potentially
conducted to examine if there exists an upper bound on the number of scenarios; once exceeding this
value considering more scenarios would not lead to any significant changes in the final solution. And
further research is necessary to incorporate additional features such as re-fleeting, flexible flight times
(departure and arrival time windows) and schedule balance into our model. From the implementation
standpoint, transferring the implementation to Apache Spark is also worthwhile attempting.
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