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1. Introduction

The stochastic lot-sizing model has been studied extensively in the inventory literature. Most of

the research has focused on models with complete information about the distribution of customer

demand. However, in most real-world situations, the distribution of customer demand is not known;

only historical data is available. Thus, a common approach is to hypothesize the general family

of demand distribution and then estimate the parameters specifying the distribution using the

historical data. Once the probability distribution has been identified, the inventory problem is

solved following the estimated distribution. This implies that the inventory policy is determined

under the assumption that the demand distribution is correct.

In this paper, we consider a different approach that recognizes that the estimated customer

demand distribution may not be accurate. We analyze the single-item stochastic finite-horizon

periodic review lot-sizing model, under the assumption that the demand is subject to an unknown

discrete distribution and only historical demand observations (given by histograms) are available.

Rather than first estimating the demand distribution and then optimizing inventory decisions, as

in the classical approach, we combine these two steps to minimize the worst case expected cost

over a set of all possible distributions that satisfy a certain goodness-of-fit constraint. In this way,

we combine the sample fitting and the inventory optimization, and characterize a robust inventory

control policy based on the historical data.

The notion of robust inventory control is not new in the literature. Bertsimas and Thiele [1]

analyze distribution-free inventory problems, in which demand in each period is assumed to be a

random variable that takes values in a given range. That is, each period demand is assumed to be

a random variable controlled only by two values: the lower and the upper estimator. To capture

the trade-off between robustness and optimality, a parameter is defined to control the budgets of

uncertainty at every time period. They show that for a variety of problems, the structures of

optimal policy remains the same as in the associated model with complete information about the

distribution of customer demand. A related model is analyzed in Bienstock and Ozbay [2].
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The paper by Liyanage and Shanthikumar [3] is related to our research. The authors provide

concrete examples in a single period (newsvendor) setting that illustrate that separating the dis-

tribution estimation and the inventory optimization, as is done in the classical approach, may lead

to suboptimal solutions. They propose the use of operational statistics where they assume the de-

mand distribution function belongs to a specific (predetermined) family and estimate the (single)

parameter of the family in the inventory optimization model.

Thus, the robust optimization approach from Bertsimas and Thiele [1] does not use any histor-

ical data except for lower and upper bound on customer demand. On the other hand, Liyanage

and Shanthikumar [3] use historical data but predetermine the family of distribution, and in fact

restrict to distribution characterized by a single unknown paramater. Our research combines both

strategies by integrating curve fitting with robust optimization. Specifically, we consider the set of

demand distributions that satisfy a certain data fitting criterion with respect to historical data and

characterize the optimal policy to minimize the maximium expected cost.

The main contributions of this paper are as follows:

1. We develop a robust minimax model that only requires historical data. The set of demand

distributions is directly related to the testing of data fitting. We also show that this set can be

defined by a set of second order cone constraints and therefore is computationally tractable.

2. The optimal policy to the robust model has the same structure as the corresponding policy

in the classical stochastic lot-sizing model. In particular, the optimal policy is base-stock for

the multi-period inventory problem without fixed ordering costs, and an (s, S) policy if the

fixed ordering cost is considered.

In Section 2 we describe our robust model which incorporate historical data and present the

optimality equation in a compact form. The structure of the optimal policies are characterized in

Section 3. Finally, some direct extensions of our results are presented in Section 4.

2. Formulation of Robust Stochastic Lot-Sizing

The classical multi-period inventory problem considers a finite planning horizon of T periods. For

each period t = 1, ..., T , let D̃t be a random variable representing demand in that period. We assume

that D̃t has a discrete distribution for any t, and D̃1, ..., D̃T are independent but not necessarily

identical. The sequence of events in the model is as follows. At the beginning of each period, t,

the decision maker reviews the inventory level, xt, and places an order for qt (possibly zero) units.
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Since lead time is assumed to be zero 1, this order arrives immediatley and hence increases the

inventory level up to yt, where yt = xt + qt. After observing demand, D̃t, the net inventory at the

beginning of period t + 1 is reduced to

xt+1 = yt − D̃t t = 1, ..., T − 1.

The ordering cost in each period t = 1, ..., T − 1 includes two components, a fixed ordering cost

K if qt > 0, and a unit ordering cost ct for each unit ordered. Inventory holding cost is charged at

a rate of ht for any unit of excess inventory at the end of a period, and a unit back-order cost bt

is incurred for any unit of unsatisfied demand. Similarly to classical inventory models, we assume

that all shortages are backlogged.

Thus, the total expected cost for period t given the inventory levels before and after ordering

(xt and yt respectively) is

C̃t(xt, yt) = KI(yt − xt) + ct(yt − xt) + E

[
ht

(
yt − D̃t

)+
+ bt

(
yt − D̃t

)−]
t = 1, ..., T,

where x+ = max(x, 0), x− = max(−x, 0), I(x) = 1 if x > 0 and I(x) = 0 otherwise.

In the dynamic programming formulation, we consider Ṽt(xt), t = 1, ..., T , which denotes the

optimal expected cost over the horizon [t, T ], given that the inventory level at the beginning of

period t is xt and an optimal policy is adopted over the horizon [t, T ]. We define Ṽt(xT+1) = 0.

Let θ ∈ [0, 1] be the discount rate. The optimality equation reads

Ṽt(xt) = min
yt≥xt

{
C̃t(xt, yt) + θE

[
Ṽt+1

(
yt − D̃t

)]}
t = 1, ..., T. (1)

Note that the distribution of D̃t, t = 1, ..., T is required to solve this dynamic programming formu-

lation.

In practice, information on the demand distribution is typically not known. Rather, the inven-

tory manager has historical data. Let Dt,i denote the ith possible value that the demand of period

t can take, and let Nt,i denote the number of samples that fall within [Dt,i, Dt,i+1). Finally, define

nt =
∑

i Nt,i.
2

We assume that Dt,0 = −∞ and Dt,Mt+1 = +∞, where Mt corresponds to the number of bins

a histogram representing the historical data associated with D̃t. The classical approach to identify

the best distribution representing the data is to use the goodness-of-fit test. In this approach, the

objective is to fit a distribution that “closely” folows the observed data.
1It can be easily extended to the case with nonzero lead time.
2For example, suppose that the planning horizon is one year and the time period is one month. Because of

seasonality, the demand is distributed differently in every month. The samples for the demand of period t, for
example, December, could be the historical demand in December in previous years.
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For this purpose, let Pt,i = P
(
D̃t ∈ [Dt,i, Dt,i+1)

)
be the probability that demand in period

t falls in the interval [Dt,i, Dt,i+1) when the fitted distribution is applied. Clearly, ntPt,i is the

expected number of observation that falls in this interval according to the fitted distribution.

In the classical goodness-of-fit approach, the chi-square method, the statistical test is∑
i

(Nt,i − ntPt,i)2

ntPt,i
≤ χ2

t t = 1, ..., T,

where the parameter χ2
t controls how close the observed sample data to the estimated expected

number of observations according to the fitted distribution, Pt,i. Since Pt,i should define a proba-

bility distribution, we have
∑

i Pt,i = 1 and Pt,i ≥ 0. Let Pt denote the vector of (Pt,i)i. The set of

distributions that satisfy the chi-square test is

Pt =

{
Pt

∣∣∣∣∣AtPt = bt,
∑

i

(Nt,i − ntPt,i)2

ntPt,i
≤ χ2

t , Pt ≥ 0

}
t = 1, ..., T. (2)

The linear constraints AtPt = bt capture the fact that
∑

i Pt,i = 1. They can also be used to model

more complicated properties of the distribution set, such as constraints on the expected value, any

moment or desired percentiles of the distributions.

We first provide an alternative characterization of Pt. We assume that every norm is the

Euclidian norm.

Proposition 1 The set of demand distributions Pt defined in (2) is equivalent to the projection of

the set {
(Pt,Qt)

∣∣∣∣∣AtPt = bt,
∑

i

N2
t,iQt,i − n2

t ≤ ntχ
2
t ,

∥∥∥∥[
Pt,i −Qt,i

2

]∥∥∥∥ ≤ Pt,i + Qt,i

}

on the space of Pt.

To minimize the maximum expected cost arising from any distribution in the set Pt, we have

the optimality equation of the robust model

Vt(xt) = min
yt≥xt

max
Pt∈Pt

{
Ct(xt, yt) + θ

∑
i

Pt,iVt+1(yt −Dt,i)

}
t = 1, ..., T, (3)

where Pt is defined by (2), Ct(xt, yt) denotes the cost incurred in period t

Ct(xt, yt) = KI(yt − xt) + ct(yt − xt) +
∑

i

Pt,i

[
ht (yt −Dt,i)

+ + bt (yt −Dt,i)
−]

,

and VT+1(xT+1) = 0 under the assumption that the salvage cost is 0.

We next give an alternative optimality equation.
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Proposition 2 The optimality equation of the robust stochastic model (3) is equivalent to

Vt(xt) = min
yt,Ut,pt,ut,λt

KtI(yt − xt) + ct(yt − xt) + pT
t bt − 2

∑
i

ut,iNt,i + λt

(
n2

t + ntχ
2
t

)
s.t.

∥∥∥∥[
pT

t − Ut,iAt,i − λt

2ut,i

]∥∥∥∥ ≤ pT
t − Ut,iAt,i + λt ∀i

Ut,i ≥ ht (yt −Dt,i) + θVt+1(yt −Dt,i) ∀i
Ut,i ≥ bt (Dt,i − yt) + θVt+1(yt −Dt,i) ∀i
yt ≥ xt,

for any t = 1, ..., T .

Note that this is not really the standard optimality equation since Vt+1(·) is present in constraints

and not the objective function.

3. Properties of Optimal Policies

We first study the linear ordering cost case (K = 0) and then we add economies of scale (K > 0).

3.1 Models with Variable Ordering Cost

Theorem 3 The base-stock policy is optimal for the robust stochastic model with the linear ordering

cost. In particular, let S∗t be an optimal solution to the following convex programming problem

min
yt,Ut,pt,ut,λt

ctyt + pT
t bt − 2

∑
i

ut,iNt,i + λt

(
n2

t + ntχ
2
t

)
s.t.

∥∥∥∥[
pT

t At,i − Ut,i − λt

2ut,i

]∥∥∥∥ ≤ pT
t At,i − Ut,i + λt ∀i

Ut,i ≥ ht (yt −Dt,i) + θVt+1(yt −Dt,i) ∀i
Ut,i ≥ bt (Dt,i − yt) + θVt+1(yt −Dt,i) ∀i.

The policy orders S∗t − xt units in period t if xt ≤ S∗t and no order is placed otherwise.

3.2 Models with Fixed and Variable Ordering Cost

We now assume that there is also a fixed ordering cost.

Theorem 4 An (s, S) policy is optimal for the robust stochastic model with fixed and variable

ordering cost. In particular, let St be the optimal solution to the minimization problem

min
yt,Ut,pt,ut,λt

ctyt + pT
t bt − 2

∑
i

ut,iNt,i + λt

(
n2

t + ntχ
2
t

)
s.t.

∥∥∥∥[
pT

t At,i − Ut,i − λt

2ut,i

]∥∥∥∥ ≤ pT
t At,i − Ut,i + λt ∀i

Ut,i ≥ ht (yt −Dt,i) + θVt+1(yt −Dt,i) ∀i
Ut,i ≥ bt (Dt,i − yt) + θVt+1(yt −Dt,i) ∀i,
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and let st be the smallest element of the set

{st | st ≤ St, ft(st) = ft(St) + K},

where

ft(yt) = ctyt + max
Pt∈Pt

∑
i

Pt,i

[
ht (yt −Dt,i)

+ + bt (yt −Dt,i)
− + θVt+1(yt −Dt,i)

]
.

The policy orders St − xt units in period t if xt ≤ st and no order is placed otherwise.

4. Conclusions and Extensions

In this paper, we propose a robust stochastic model for the multi-period lot sizing problem, in

which the demand distribution is unknown and the only available information is historical data.

This robust framework based on historical data can be applied to any finite-horizon dynamic

programming problem in which the stochastic inputs are subject to some discrete distribution.

We provide important theoretical insights on the structure of optimal policies. Interestingly,

the proofs of Theorem 3 and Theorem 4 (not given here), only use convexity of Pt. Thus, the

optimality of the base-stock policy and the (s, S) policy holds under the more general assumption

of Pt being convex.
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