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Abstract

We develop an abstractive summarization framework independent of labeled data for multi-
ple heterogeneous documents. Unlike existing multi-document summarization methods, our
framework processes documents telling different stories instead of documents on the same
topic. We also enhance an existing sentence fusion method with a uni-directional language
model to prioritize fused sentences with higher sentence probability with the goal of increasing
readability. Lastly, we construct a total of twelve dataset variations based on CNN/Daily Mail
and the NewsRoom datasets, where each document group contains a large and diverse collec-
tion of documents to evaluate the performance of our model in comparison with other baseline
systems. Our experiments demonstrate that our framework outperforms current state-of-the-art
methods in this more generic setting.

1 Introduction

The task of text summarization focuses on extracting the most salient information in one or a col-
lection of documents and formulate them in a concise and readable way. While most of the existing
works on multi-document summarization focus on homogeneous document groups with informa-
tion overlap, a more generic and also practical case is to have heterogeneous document groups with
more independent documents and only a minor information overlap. For example, in contrast to
traditional multi-document methods capable of summarizing multiple reviews for a particular prod-
uct, one use case of such a generic approach is to summarize a group of news articles in finance.
Another case of heterogeneous multi-document summarization is summarizing research articles in
a specific field, such as work studying COVID-19. In both cases, articles contain different stories or
arguments with the possibility of overlapping information.

The nature of heterogeneous document groups necessitates different methodologies. If articles
in a group discuss the same topic, then such overlapping information could be utilized to determine
the content of the summary (Chu and Liu, 2019). Simple extractive algorithms developed upon
graph-based ranking algorithms such as TextRank (Mihalcea and Tarau, 2004) can also be applied.
However, if the articles in a group convey different stories, such methods built upon the assumption
of overlapping information fail. Graph-based ranking algorithms for extracting salient sentences
also become suboptimal if directly applied since they can lose focus on the information, provided
there are multiple at once. In the case of summarizing a group of news articles, it is possible that
some articles are conveying the same story. If the articles are summarized individually, the resulting
group of summaries may still have overlapping and hence redundant information that should have
been unified. If the articles are summarized based on the overlapping information, key information
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from other non-overlapping news articles is lost. Hence, it is important to balance the need of
preserving useful information, while casting away redundant, overlapping information.

This work explores the problem of summarizing a more generic group of documents, keeping
the important information while retaining the least amount of redundancy, by adopting a two-stage
framework. The first extractive stage is to collect salient information from each individual article,
with the assumption that most articles have different stories from each other. The second abstractive
stage is to reduce redundant information from the previous extraction, where redundant sentences
are merged to preserve the information while reducing the number of sentences, with the assumption
that there exists a small number of articles with similar topics. We demonstrate in Section 5 that our
approach with few exceptions outperforms all other baseline methods on evaluation datasets that
match the aforementioned assumptions. The third stage aims at replacing the repetitive entities such
as names, locations, etc. incurred by the coreference resolution methods applied in the first stage
with proper pronouns. Even though this stage does not affect the informativeness of the summary,
it makes the summary sentences less redundant and more readable.

The contributions of this paper are four-fold. First, we, to the best of our knowledge, pioneer
the exploration of abstractive summarization of multiple heterogeneous documents by proposing a
novel, flexible three-stage framework independent of labeled data for tackling this task. Second, we
automatically construct datasets characterized by diverse information and provide the construction
algorithm for future studies in this field. Third, we augment the sentence fusion algorithm based
on a word graph and the k-shortest path algorithm (Filippova, 2010) by employing a unidirectional
language model, GPT2 (Radford et al., 2019), to dynamically compute the cost value based on
the sentence probability, improving the quality of generated summary sentences. Lastly, we pro-
pose reverse coreference resolution (RCR) designed to replace redundant entity names with their
corresponding pronouns, making the sentences more concise and easy to read.

2 Related Work

The task of text summarization has been widely studied and it can be categorized from three per-
spectives: (i) single vs. multi-document summarization tasks, (ii) supervised vs unsupervised sum-
marization methods and (iii) abstractive vs. extractive summarization forms. The framework we
propose is designed to perform abstractive text summarization on multiple documents in an un-
supervised manner. Many efforts have been spent on supervised text summarization, as has been
recapped by Shi et al. (2021). These learning-based methods are proved to be effective based on
benchmarking experiments. However, they require large training data, which may not be available
under many circumstances. Therefore, we intend to focus on methods that do not require labeled
data.

Efforts on unsupervised methods can also be grouped into two categories: (i) single-document
summarization and (ii) multi-document summarization. In the field of unsupervised single-document
summarization, Zheng and Lapata (2019) employ BERT to better capture sentence semantics for
similarity computation and propose to build a directed graph where each vertex is a sentence and
the directed arcs indicate whether a sentence precedes or succeeds another sentence. They argue
that two sentences sharing similar information may have an asymetric relationship in that one sen-
tence may make sense on its own, the other sentence may not as it depends on its peer. Therefore,
they propose to utilize directed sentence centrality for single-document summarization, where the
centrality of a sentence or vertex in the graph is computed as the weighted sum of the weights of all
its adjacent incoming and outgoing edges, instead of summing the weights of all its adjacent undi-
rected edges. Despite that this method is developed for single-document summarization, it can be
generalized to a multi-document setting, as we show in our experiment, where it is used as a bench-
mark. Dohare et al. (2018) propose to generate abstractive summaries by first generating AMR
graphs (abstract meaning representation) for corresponding input stories, extract summary graphs
from the AMR graphs, and lastly create summaries from the summary graphs.

In the field of unsupervised multi-document summarization, Chu and Liu (2019) propose an
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end-to-end, unsupervised, abstractive, neural summarization model. Their model consists of two
parts: (i) an LSTM-based auto-encoder that learns a representation of each input text and (ii) a sum-
marization module that learns to generate summaries based on the representation encoded by the
auto-encoder. The content of all input texts is obtained as the mean of all last hidden and cell states
of the LSTM network. This information is then fed into the decoder of the auto-encoder to decode
a summary. Lastly, they evaluate average similarity of summary to all input texts by encoding the
summary again with the encoder of the auto-encoder and computing the average cosine distance
between the hidden states of each encoded input text and the hidden state of the encoded summary.
Their approach requires no labeled training data to summarize multiple documents. However, it
is also based on an assumption that all input texts to be summarized contain similar information.
This is often not the case in real world as often times documents to be summarized have different
gist. In contrast to neural-based summarization methods, Nayeem et al. (2018) propose an unsu-
pervised multi-document summarization system comprising of word graph-based (Filippova, 2010)
sentence fusion and integer linear programming (ILP)-based sentence ranking. They first apply hi-
erarchical agglomerative clustering with complete linkage to all sentences in the documents, where
the distance between two sentences are based on their continuous representations. For each cluster
of related sentences, they generate abstractive fused sentences by first constructing a word graph
and then apply k-shortest path on it. They not only merge similar sentences into a single one but
also substitute such lexicals as verbs or nouns with ones having functional similarities, making the
resulting sentence more abstractive. Then, they employ the concept-based ILP framework to find
the best subset of sentences by designing an ILP formulation so that they cover as many important
concepts as possible while ensuring the summary size is within some constraint. Zhao et al. (2020)
take a similar approach. However, instead of directly grouping and merging similar sentences, they
first construct a sentence graph, where a node corresponds to a sentence and an edge corresponds to
certain connections between two sentences. In addition to sentence similarity based on their contin-
uous representations, this proximity can be determined based on whether one sentence refers to an
entity in its preceding sentence, one sentence contains entities of the same type from the preceding
sentence, or if one sentence follows another based on discourse markers. After that, they apply
graph clustering to identify communities of sentence nodes in the graph.

Even though our framework shares sentence clustering and sentence compression with the two
aforementioned approaches, our approach is distinct from theirs in the following ways. First, they
apply hierarchical clustering to all sentences, whereas we apply the clustering only to per-document
summary sentences. Second, they adopt a 3-gram language model during the word graph construc-
tion phase to ensure the substituted lexicals are meaningful, whereas we adopt a uni-directional
language model during the k-shortest path phase to ensure the next token added to the path not only
contains useful information but also ensures that the path has high linguistic probability. Lastly, we
skip the ILP process used to select useful sentences after sentence fusion and instead narrow down
the salience for each document before sentence fusion. This is because we hypothesize that a real-
world group of multiple documents have no intrinsic connection to each other and hence performing
information extraction before sentence fusion could preserve more salient information.

3 Background

In this section, we describe the preliminary work that our methodology is based on.

3.1 TextRank

The first stage of our framework is extracting key sentences from each document. We adopt Tex-
tRank, (Mihalcea and Tarau, 2004), an extractive summarization algorithm. Given a set of all sen-
tences in a document, it first build an undirected graph G = (V, E) where V is the set of vertices
and E the set of undirected edges; each edge eij connects two vertices vi and vj and is assigned a
weight wij . A vertex vi corresponds to a sentence in the document and the weight wij corresponds
to the similarity score between sentence vi and vj .
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Once the graph is built, the following formula introduced by Mihalcea and Tarau (2004) is
applied to compute the score for each vertex

Sk+1(vi) = (1− d) + d
∑

vj∈N(vi)

wji∑
vk∈N(vj)

Sk(vj),

where Sk(vi) denotes the score for vi at iteration k, N(vi) all neighbors of vi, and d the damping
factor, which is set to 0.85. The score for each vertex is set to 1.0 at iteration 0. Then, the score for
each vertex is computed iteratively until convergence is reached. A convergence is achieved when
the difference between the scores computed at two successive iterations for any vertex is smaller
than a threshold τpagerank. Lastly, all vertices, i.e. sentences, are ranked by their scores and the top
r% sentences are extracted as important information.

3.2 Word Graph-based Sentence Fusion

In the second stage, to merge a group of similar sentences into fewer ones, we adopt the word
graph-based sentence fusion algorithm proposed by Filippova (2010). Given a set of sentences
S = {s1, ..., sn}, the algorithm iteratively constructs a weighted, directed word graph G = (V, E),
where each vertex vi ∈ V corresponds to a word in a sentence along with its parts-of-speech (POS)
tag and each edge eij ∈ E captures the word vi is followed by vj in a sentence. Initially, G has
two vertices: a dummy start and end vertex. At each iteration more vertices and edges are added
to the graph from one sentence, where the start vertex is connected to the first word in the sentence
and the last word in the sentence connected to the end vertex. If a word in a new sentence has the
same POS tag as a word already existing in G, the vertex corresponding to this word is reused. The
computation for the weight of each edge, detailed in (Filippova, 2010), is designed to generate (i)
grammatical paths based on strong links, i.e. it is significantly frequent for words to appear together,
and (ii) informative path, i.e. paths containing salient words are encouraged. After constructing the
word graph, the algorithm employs the k-shortest path algorithm to find the top k paths in the graph.

3.3 Pointer Generator Network

For the RCR stage, we designed a model based on the concept of the pointer generator network
proposed by See et al. (2017). The goal of this network is to replace repetitive entity names with
the proper pronouns, and retain the rest of the content by copying every other word. Let h∗

t be the
weighted sum of encoder hidden states with attentions as weights, known as the context vector at
time step t, st the decoder state at time step t, and V, V′, b, b′ learnable parameters. A probability
distribution over all words in the vocabulary V as possible output tokens is defined as

Pvocab = softmax(V′(V[st,h
∗
t ] + b) + b′), (1)

with Pvocab(w) as the probability of word w. For words w out-of-vocabulary (OOV) Pvocab(w) is
set to 0. Following See et al. (2017), the generation probability pgen for the time step t is defined as

pgen = σ(w⊤
h h

∗
t +w⊤

s st +w⊤
x xt + bptr). (2)

Lastly, the probability of a word that encompasses out-of-vocabulary (OOV) words is defined as

P (w) = pgenPvocab(w) + (1− pgen)
∑

i:wi=w

ati, (3)

where the attention distribution ati for the i-th time step is calculated as in Bahdanau et al. (2014):

eti = v⊤ tanh(Whhi +Wsst + battn), (4)

at = softmax(et). (5)
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Figure 1: An overview of the framework. In the first stage, an unsupervised single-document sum-
marization method, e.g. TextRank, is employed to extract useful information (i.e. sentences with
non-black color) from each document. In the second stage, sentences with overlapping information
(i.e. sentences with the same color) are first grouped with a clustering algorithm, e.g. a hierarchical
agglomerative clustering algorithm. In the same stage, the clustered sentences are compressed with
sentence fusion techniques, such as word graph and the k-shortest path-based algorithm, to reduce
redundancy. The last stage is RCR.

4 Methodology

In this section we describe the framework proposed for summarizing multiple documents that can
contain different gist. It consists of three stages, each with its own objective: (i) per-document
information extraction, (ii) information redundancy minimization and (iii) RCR. The first stage
aims at identifying and extracting salient information from each coreference-resolved individual
document. This is under the assumption that most documents in a document group, e.g. a group
of news articles from a time period, are independent of each other. Therefore, the task of finding
key information in one document is unrelated to finding key information in another. The second
stage aims at identifying sentences with similar information and merging those sentences into one
so that the final summary is free of redundancy. This is under the assumption that some documents
in a document group discuss the same story and hence the extracted information from the first stage
might be overlapping. Lastly, the third stage aims at removing excessive mentions of entities due to
the application of passage-wise coreference resolution. An overview of our framework is shown in
Figure 1.

4.1 Per-Document Information Extraction

Before we extract sentences from a document, we need to make sure the extracted sentences do not
contain ambiguous terms such as pronouns. In order to replace such terms with meaningful entities,
we adopt the coreference resolution model described in Clark and Manning (2016). After that,
we employ the TextRank algorithm (Mihalcea and Tarau, 2004) with one modification to perform
sentence extraction. In the original implementation, the similarity score is calculated based on
overlapping word. In our implementation, we adopt BERT to embed the sentences, and then use
the cosine similarity value computed from the sentence embedding vectors as the similarity score.
This is because BERT can capture more nuanced correlation between words and hence can map
sentences with similar meanings but few overlapping words to close locations in the vector space.
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4.2 Information Redundancy Minimization

There are two steps taken to remove redundant information: (i) sentence clustering and (ii) sentence
merging. The sentence clustering step aims at grouping similar sentences. We employ the hierar-
chical agglomerative clustering algorithm, similar to what is done by Nayeem et al. (2018). One
difference is that, instead of using the complete linkage criteria, we adopt the ward linkage criteria.
Unlike the complete linkage criteria, which determines the proximity between two clusters based on
the largest distance between a sentence in one cluster and a sentence in the other, the ward linkage
criteria computes the proximity based on the magnitude by which the summed square in their joint
cluster would be greater than the combined summed square in these two original clusters. This en-
sures that two clusters containing similar sentences are still merged even though there exists a small
number of outliers. Furthermore, we adopt a multi-stage clustering procedure, where we start with
a relatively large initial distance threshold to obtain n clusters from all m sentences. If a cluster
has more than m/n sentences, we further fine-grain this cluster with a distance threshold half of
the previous one, until the distance threshold reaches 0.5. The initial threshold value is denoted as
τcluster.

Whereas the common practice for the k-shortest path algorithm is to simply adopt the edge
weights as costs, we add a dynamic costs based on sentence probability computed during the k-
shortest path algorithm in order to further improve the grammacality of the generated sentences.
Specifically, we adopt GPT-2 (Radford et al., 2019), a uni-directional language model, to compute a
linguistic score based on each of the neighboring vertices of the last vertex of the current path. The
cost of adding a vertex v to an existing path p = [v1, v2, ..., vk−1] becomes

a · w + (1− a) · k

logP (vk | [v1 : vk−1])
,

where w is the edge weight proposed in Filippova (2010), P (vk | [v1 : vk−1]) is the probability of vk
given all previous words, and a is a weight for combining these two pieces of information. Notice
that we invert the average log probability because the higher the probability of a sentence, the lower
the cost should be for k-shortest path.

Furthermore, because a sentence cluster may still contain a few outlier sentences with other
meanings, we design an algorithm that ranks all k sentences based on their sentence probabilities
and then keep all distinct sentences determined by the Ratcliff/Obershelp Pattern Recognition algo-
rithm (Black, 2004). Two sentences are considered distinct from each other if their similarity score
is smaller than d.

4.3 Reverse Coreference Resolution

Replacing pronouns with actual entity names preserves key information from the original docu-
ments. However, when a sentence contains repetitive entity names, it becomes redundant and less
readable. Therefore, we propose a pointer generator network-based Reverse Coreference Resolution
model (RCR) that takes a sentence with repetitive entities as input, and produces an output sentence
with the extra entities replaced with proper pronouns.

Our reverse coreference model consists of two parts, an encoder and an attention-guided de-
coder. Given an input sentence containing L tokens, the encoder embeds every token and produces
a vector of encoder states. The hidden layer size is denoted as hs. The decoder takes the embed-
ding of the previously predicted token xt, previous hidden state st and all encoder states as input
and computes the context vector h∗ by applying weighted average of the encoder states, with the
attention vector as the weights.

Similar to the generation probability used in the pointer generator network, the decoder com-
putes the replacement probability

pr = σ(w⊤
h h

∗ +w⊤
s st +w⊤

x xt), (6)

which determines whether or not at time step t a word should be copied from the original text, or
should be replaced with a word from a predefined set of N replacement words such as pronouns,
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etc. The replacement word distribution is

or = softmax(Wr(Wrhh
∗ +Wrsst +Wrxxt)), (7)

where Wrh, Wrs, Wrx ∈ Rhs×hs, and Wr ∈ Rhs×N are learnable weights. Similarly, the copy
word distribution is

oc = softmax(Wc(Wchh
∗ +Wcsst +Wcxxt)), (8)

where Wch, Wcs, Wcx ∈ Rhs×hs, and Wc ∈ Rhs×L are learnable weights. The final distribution
is defined as

concat([(1− pr)oc; pror]). (9)

The model is hence trained to identify if replacement should be done for a certain word, and
if so, which word from the N replacement words to choose from, and if not, what the index of
the word in the original sentence that should be copied is. To obtain the training data for RCR, it
suffices to use the output of the coreferencing model as input and use the original input sentences
of the coreferencing model as ground truth.

5 Experiments

In this section, we present our experimental details for evaluating the performance of our framework
compared with several other baseline approaches. We also discuss the decision behind designing
a novel dataset for evaluating multi-document summarization and point out the disadvantages of
some existing datasets.

5.1 Dataset Generation

Existing datasets on training or evaluating multi-document summarization systems such as Multi-
News, Opinosis and DUC2004 have one major flaw – each document group contains texts about
a shared topic. Whereas they still provide insights into the performance of many multi-document
summarization systems, they fail to assess the case where a document group contains various sto-
ries. In order to evaluate the efficiency of our system at summarizing multiple diverse documents,
we propose two variations of existing multi-document summarization datasets that are built on top
of existing datasets: the CNN/Daily Mail and Newsroom datasets.

The CNN/Daily Mail dataset (Nallapati et al., 2016) contains 311,672 online news article-
summary pairs, where on average each article has 766 words, and each summary includes 53 words.
The Newsroom dataset (Grusky et al., 2018) has in total 1,321,995 article-summary pairs, where on
average each article contains 658.6 words and each summary is composed of 26.7 words.

The generation process is described as follows. Given a collection of documents D with n
documents, we triple the number of documents and obtain a new collection D̂. The reason why we
triple the amount of original documents is that we want to mimic real world cases where a large
batch of documents may contain a few documents discussing similar topics. In our case, documents
discussing similar topics are the potentially duplicated documents. Then, we generate m groups of
documents by randomly drawing s documents from D̂ at a time. Here s denotes the scale, i.e. how
many documents each group has. Lastly, for each group, we generate the summary by concatenating
the summary of each corresponding document. However, even though there can be duplicated
documents in a group, we only keep one copy of the summary of such documents. This step is
taken to ensure that summarization systems being evaluated can identify redundant information and
avoid including such information twice in the summary. For each variation, CNN/Daily Mail and
Newsroom, we randomly generate three batches of datasets with three different random seeds, and
each batch has two different scales: s of 10 and 100. Therefore, there are in total 2 · 3 · 2 = 12
datasets. In addition, we use m = 100 for s = 10 and m = 10 for s = 100. We summarize in
Table 1 the statistics of the generated datasets.
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Table 1: A brief statistics of the dataset. The unit of length is the number of words. Notice that the
length of the articles and summaries are proportional to the scale of the dataset.

Dataset Mean Article Length Mean Summary Length

CNN/Daily Mail Scale 10 7575.49 494.70
CNN/Daily Mail Scale 100 75754.87 4946.40
Newsroom Scale 10 7411.31 301.35
Newsroom Scale 100 74113.11 3013.46

Table 2: Benchmarking results. Each group of three numbers correspond to the Rouge-1, Rouge-2
and Rouge-L scores. Our models consistently outperform other unsupervised methods except for
Rouge-L scores for the CNN dataset, where there are ties with AUMDSPSF.

Summarization Models/
Algorithms CNN-10 CNN-100 NewsRoom-10 NewsRoom-100

LSMD 0.30 0.07 0.27 0.47 0.11 0.38 0.24 0.09 0.21 0.33 0.12 0.29
LSMD+RCR 0.30 0.07 0.27 0.47 0.11 0.38 0.24 0.09 0.21 0.33 0.12 0.29
AUMDSPSF 0.27 0.07 0.27 0.38 0.11 0.38 0.16 0.08 0.19 0.19 0.08 0.23
PacSum 0.23 0.07 0.25 0.27 0.09 0.34 0.16 0.09 0.16 0.18 0.08 0.23
CBCWE 0.24 0.06 0.23 0.33 0.09 0.35 0.17 0.06 0.16 0.21 0.08 0.23
TextRank 0.23 0.06 0.24 0.29 0.09 0.36 0.16 0.06 0.17 0.19 0.08 0.23

5.2 Baseline systems and Results

We evaluate our summarization framework using the ROUGE metrics. Particularly, we report
Rouge-1, Rouge-2 and Rouge-L for each dataset and algorithm. We evaluate our framework, with
(LSMD+RCR) and without RCR (LSMD) against all state-of-the-art unsupervised systems such
as AUMDSPSF proposed by Nayeem et al. (2018), CBCWE proposed by Rossiello et al. (2017),
PacSum proposed by Zheng and Lapata (2019) and TextRank proposed by Mihalcea and Tarau
(2004).

Whereas most systems have disclosed their source codes, we have to implement the AUMD-
SPSF ourselves. As described by Nayeem et al. (2018), we first group all sentences in the documents
using the hierarchical agglomerative clustering algorithm with complete linkage and the distance
threshold of 0.5. The sentence embedding is obtained through the encoder of a bi-directional GRU-
based auto-encoder, trained on the English monolingual news dataset obtained from statmt.org.1

Then, we construct a word graph for each sentence cluster with lexical substitution, run k-shortest
path to get the top 50 sentences, rank those sentences with TextRank and assign each sentence a
rank score. Lastly, we compute the score for each candidate according to Nayeem et al. (2018) and
select the top abstractive sentences based on their ILP formulation.

We follow Mihalcea and Tarau (2004) and set τpagerank to be 0.85. However, instead of taking
the top r% of sentences as the most informational content of an article, we retain top sentences with
rank scores higher than that of the immediately next sentence, which is typically significantly lower.
Then, we set the initial threshold value for clustering to τclustering = 2.0 as empirical studies show
that this results in the best balance of running time and performance. Furthermore, we set k to be 10,
because each sentence group under our framework has fewer sentences than the sentence groups do
in Nayeem et al. (2018). Lastly, we set the distance threshold d used to determine text similarity to
0.3. With this setup, our algorithm produces summaries with 47.6% abstractive sentences. The rest
of the summaries remain unmodified regarding the source texts, as they contain distinct information
that is not grouped into clusters and then merged.

We run experiments on all batches of datasets with all methods. Since each Dataset-Scale pair
1http://www.statmt.org/wmt13/translation-task.html
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Table 3: Some example no-RCR and simplified sentences produced by a trained reverse coreference
model.

Index No-RCR Sentences Simplified Sentences

1
trump responded using one of trump
favorite platforms , logging onto twitter
in the early morning hours

trump responded using one of his
favorite platforms , logging onto twitter
in the early morning hours

2
watch a former michael jackson’s
guitarist reflect on michael jackson
’s career

watch a former Michael Jackson ’s
guitarist reflect on his career

3
rather than helping out those in the
toughest shape , it looks like democrats
ended up helping democrats supporters

rather than helping out those in the
toughest shape , it looks like democrats
ended up helping their supporters

4
george was arrested in Texas this
weekend after cops say george assulted
george wife

george was arrested in Texas this
weekend after cops say he assulted his
wife

5

two scientists relied on two distinct
features of ancient settlements in the
near east : soils altered by human
activity

these scientists relied on two distinct
features of ancient settlements in the
near east : soils altered by human
activity

6
but apparently, kim achieved kim tiny
waist with one of the Kardashians’
beloved korsets

but apparently , kim achieved his tiny
waist with one of the kardashians ’
beloeved korsets

has three corresponding variations generated with three different random seeds, we summarize the
result by taking the average of all Rouge-1, Rouge-2, and Rouge-L scores for each Dataset-Scale
pair. We present in Table 2 the benchmarking results. Our framework consistently outperforms
all other unsupervised methods. The improvement is more significant when the dataset scale is
larger, i.e. when there are more heterogeneous documents to be summarized at once. Specifically,
for the CNN-based datasets, our model outperforms the second best system (AUMDSPSF) by 15%
for scale of 10 and by 24% for scale of 100 in terms of the Rouge-1 scores. Similarly, for the
NewsRoom-based datasets, our model outperforms the second best system by 59% for scale of 10
while by 62% for scale of 100 in terms of the Rouge-1 scores. This indicates that our method is
able to preserve key information in terms of unigram tokens regardless of their orders, while also
ensuring limited redundancy. In terms of the Rouge-L scores, our method does not significantly
outperform the existing systems. This indicates that, when it comes to in-sequence co-occurrences
of longest common subsequences, our model does not necessarily generate summaries that overlap
significantly more with the ground truth summaries.

Furthermore, we compare two different readability scores, the Dale-Chall readability score
(Dale and Chall, 1948) and the Ranked Sentence Readability Score (Martinc et al., 2021), as well as
the average sentence probability computed on our summaries. We notice in Figure 2 that both the
readability scores and average probabilities of summaries with sentences merged by the language
model-enhanced k-shortest path algorithm are slightly higher than those by the vanilla k-shortest
path algorithm. This may seem unusual at first, as to one’s instinct more complex sentences (i.e.
those with higher readability score) should correspond to higher average sentence probability. How-
ever, one should also realize that both readability formulas utilized take the sentence length into
account; specifically, longer sentences may lead to higher scores. It is likely that even though a sen-
tence or a summary has a higher readability score, it does not necessarily mean that it is harder to
comprehend. After all, readability scores are used mainly to classify texts for people of different ed-
ucational level, and for adult readers, minor difference in readability score should not be noticeable.
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Figure 2: Comparison among the average sentence log probabilities (the higher the better) and two
variances of readability scores (the lower the better) of summaries of the newsroom-seed100 dataset
generated with the language model-based k-shortest path and the vanilla k-shortest path.

On the other hand, average sentence probability produced by a well-trained GPT-2 reflects the prob-
ability of a word occurring after a sequence of words. A sentence with a higher probability means it
is more likely similar sentences or phrases exist in the training dataset, indicating the sentence may
be more grammatical. Therefore, we conclude that our language model-enhanced k-shortest path
algorithm helps promotes grammatical merged sentences, albeit it produces summaries with similar
Rouge scores to the ones by the vanilla k-shortest path algorithm.

5.3 Reverse Coreference Resolution Examples and Discussion

We train and test our pointer generator network-based model on sentences with up to 20 tokens,
including punctuation. While our model is able to generate some readable sentences that match the
semantics of the original redundant correspondants, only 37.6% of the validation examples result in
exact word-for-word match with our ground truth sentences. That said, summaries processed with
the RCR model produce better Rouge scores during evaluation, even though the improvement is
tiny (i.e. to the third or fourth significant digit).

The main drawback of our approach is poor handling of variable-length input sequence. Even
though we use padding to make sure all input sequences are of the same length, i.e. 20 tokens, at
decoding time, instead of predicting the padding token PAD, our model copies words from indices it
has already copied from. This results in sentences with repeating words. We alleviate this problem
by limiting the length of the output sequence to be the length of the input sequence. This reduces
the likelihood of having repeating words, but does not completely prevent them from occurring.
Furthermore, this problem worsens when we try training the model on longer sequences. This
indicates that our current model is not able to process long redundant sentences well.

We present in Table 3 some example simplified sentences by our reverse coreference model.
The first four examples showcase the ideal simplification performed by the model. It is able to
learn the correct pronoun for people and even for political parties. The last two examples reveal
some problems. In example 5, the model mistakenly replaces “two” with “these,” which is not
only unnecessary but it also alters the original semantics of the sentence. This may be due to noisy
training data which are generated automatically using the existing coreference resolution model. In
example 6, our model fails to assign the correct pronoun to replace “kim” in the original sentence.
In this particular case, the pronoun “she” should be used in place of “he.” We believe this is due
to the name “kim” not only being used by male but also female human beings. Having seen this
name occur most of the time with the masculine pronoun “he” or “him,” the model learns biased
information about the gender of the name.
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5.4 Applications on Real World Data

We apply our method to news articles grouped by weeks as well as medical articles related to the
corona virus. We describe here the statistics of the datasets and the generated summaries.

Corona Virus Medical Research Paper Query The coronavirus has severely endangered public
health and damaged economies. To help fight the corona virus, with our summarization approach,
we build a query system named CAVIDOQS (CoronA Virus DOcument Query System) for corona
virus related research papers in the CORD-19 dataset (Wang et al., 2020). In short, users can type
in medicine-related entities as key words, and the system proposes a list of summary sentences con-
taining those keywords, where each summary sentence can be traced back to articles comprising
the corresponding information. Because each summary sentence comprises the key information
of the corresponding articles, we believe this enables researchers to quickly locate the paper that
is most relevant to their work. At the time we built CAVIDOQS, the dataset had 29,319 articles,
even though it has since grown. Our approach is ideal for this dataset, because, unlike other meth-
ods, ours does not assume that the documents to be summarized are discussing the same event or
topic. For example, an article in the CORD-19 dataset can be discussing the effect of a particular
protein on damping the replication of the SARS virus while another article can be discussing the
experiment of a vaccine on a group of people whose ages are from 30 to 50. Because different
medical researchers have different focus, directly applying existing multi-document summarization
approaches to CORD-19 may not result in an acceptable outcome, as it is hard for a system to au-
tomatically determine which content is more important for one researcher and which content for
another.

We first apply our summarization approach to bring down the number of sentences from over
300,000 to 55,721 summary sentences. This still leaves us with a large number of sentences to
consider. Therefore, on top of the summaries, we group them by certain keys. In the case of
the CORD-19 data, we identify various named entities using a named entity recognition model
trained on medical texts provided by ScispaCy (Neumann et al., 2019). Each key relates to summary
sentences containing it, and works as the base query term of our system.

News Articles Grouped by Week The aim of summarizing news articles grouped by weeks is to
provide financial analysts a brief overview of recent events in the past weeks. Indeed, this research
has been initiated by a large investment firm which also provided this dataset. We obtained news
articles in three categories: communication, finance and tech. Each category has 102 weeks of
articles, where each week relates to on average 589 articles for communication, 625 for finance and
668 for tech. There are on average 181,578 words and 7,091 sentences in a week of articles for the
category communication, 189,430 words and 7,513 sentences for the category finance, and 177,351
words and 7,109 sentences for the category tech. Our unsupervised multi-document summarization
approach manage to compress the information down to on average 6283 words and 151 sentences for
a week of articles for the category communication, 6982 words and 167 sentences for the category
finance, and 6358 words and 153 sentences for the category tech. It dramatically reduces the amount
of information and let a reader grasp the key information more efficiently.

6 Conclusion and Future Work

In this work, we first discuss the current limitations of existing multi-document summarization
methods as well as datasets. We proceed to propose a flexible three-stage framework to solve the
more generic task of summarizing documents with heterogenous content, which is proved by our
experiments to be better than existing unsupervised methods. For the first information extraction
stage, we employ the TextRank algorithm. For the second information condensation stage, we
employ hierarchical clustering to group similar information together, and the word graph and k-
shortest path-based sentence fusion algorithm to merge similar information. Lastly, for the third
repetition removal stage, we propose a pointer generator network-based reverse coreference model
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that, instead of replacing pronouns with the corresponding entities to reduce ambiguities, replaces
repetitive entities with appropriate pronouns to make the sentences more concise and readable. To
evaluate our framework in a more generic setting, we propose a simple data generation algorithm
that generates multi-document datasets based on existing single-document summarization datasets.

An interesting future work can be devising a supervised end-to-end model comprising of all
three stages by using a graph neural network to condense sentences instead of the traditional k-
shortest path algorithm.
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