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Abstract

There are classification tasks that take as inputs groups of im-
ages rather than single images. In order to address such sit-
uations, we introduce a nested multi-instance deep network.
The approach is generic in that it is applicable to general data
instances, not just images. The network has several convolu-
tional neural networks grouped together at different stages.
This primarily differs from other previous works in that we
organize instances into relevant groups that are treated dif-
ferently. We also introduce a method to replace instances that
are missing which successfully creates neutral input instances
and consistently outperforms standard fill-in methods in real
world use cases. In addition, we propose a method for man-
ual dropout when a whole group of instances is missing that
allows us to use sparser training data and obtain higher accu-
racy at the end of training. With specific pretraining, we find
that the model works to great effect on our real world and
public datasets in comparison to baseline methods, with our
improvements ranging from 1% to 5%.

Introduction
In the area of visual recognition, the majority of the research
so far has related to singles instances of an image. Single in-
stance is the case where each individual image, an instance,
is tied to a label, and consequently there is no ambiguity of
the label at the instance level. Perhaps the most well known
data set of this type is ImageNet, which contains millions
of labeled images. The single instance case is not compre-
hensive, however, and many real-world data sets do not have
labels tied to individual instances, but rather to groups of in-
stances. The groups of instances are commonly called bags,
and these bags form the basis for training a classifier instead
of individual instances.

The goals of multi-instance problems vary greatly de-
pending on the data and desired application. The earliest
cases were just binary problems, but over the years this has
expanded and there is no true “typical” multi-instance case.
In the context of visual recognition, a bag may be a large
image and the instances are smaller crops of this image, or
a bag could consist of several distinct whole images that are
treated as instances. What type of training works best for
multi-instance problems is highly problem specific. In some
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cases, the bag labels can be pushed to instance labels and the
multi-instance problem is reduced to a single-instance prob-
lem. Often this is not appropriate and it is better to have a
multi-instance network that takes all instances as input si-
multaneously.

For the multiple instance network with images, it is com-
mon for copies of the network to share convolutional lay-
ers to map from the instances to embeddings. These embed-
dings can be merged in some manner and trained on in a
standard way to classify at the bag level. In this paper, we
introduce an expansion of the multi-instance model, which
we call the nested multi-instance model. The nested multi-
instance model groups instances within a bag to form sub-
bags for every bag, and the overall architecture of the nested
network can be seen in Figure 1. Our problem has instances
that naturally fall into sub-bags, and so only these similar
instances inside of a sub-bag share convolutional layers to
get their embeddings. After these embeddings are obtained,
they are merged first at the sub-bag level and then at the
bag level. At the sub-bag level, we use either an average or
max over these embeddings to get the representation of the
sub-bag, but we must concatenate at the bag level because
the embeddings originate from different subspaces. This al-
lows us to fine-tune the weights shared within sub-bags to a
higher degree, since the gradient is not affected by a vastly
different instance.

To provide a practical application context for the method,
consider a website for reselling used wedding dresses from
user to user, for example preownedweddingdresses.com1.
Each dress for sale has some combination of images and
structured information, but these are not always complete.
The different sub-bags for images correspond to different
perspectives of the dress, such as front, back, side, collar, or
sleeves. From these images, we can partially extract infor-
mation about the dress. This includes, for example, filling in
missing fields from the structured data, or evaluating other
important aspects such as style, remaining value, and dam-
age. Given the nature of the data, the sub-bags can have dif-
ferent numbers of images from dress to dress, and in some
cases one of the sub-bags may not have any images at all.
While this paper was originally inspired by a problem in the

1https://www.preownedweddingdresses.com/used-wedding-
dresses



insurance space, it is applicable in more general cases. The
problem can be cast as a classification task based on multi-
ple views of complicated objects where no single view can
a priori be determined to be the most relevant, but rather a
combination of views combined with an understanding of
the typical types of views induces a grouping that can be ex-
ploited by specializing parts of the network. The reported re-
sults are on a proprietary data set containing several million
images and an appropriately constructed multi-view dataset
based on Shapenet, a large-scale dataset of 3D shapes.

Figure 1: Overview of the architecture for the nested multi-
instance network.

Figure 2: Network with second sub-bag missing and one
missing instance in the third sub-bag. The missing instance
is filled in with a neutral instance xn.

This paper describes three major contributions. The first
one is the introduction of the nested multi-instance model.
We have created a network which takes multiple sub-bags
as input and then runs the instances within the same sub-
bag through a shared CNN to get embeddings. These em-
beddings are merged at the sub-bag and bag level, before
being used as input to a standard feed forward network. Sec-
ond, we introduce methods to deal with missing instances
within a sub-bag. Sub-bags must have set sizes and must be
fully populated for training and testing, due to the require-
ment of deep learning frameworks we utilize to have a static
computational graph. There is software that allows for dy-

namic graphs, such as PyTorch and TensorFlow’s most re-
cent release, but it is unclear if this would actually be ap-
propriate for our model since dynamic settings are much
slower than static. We combine the use of present instances
and auxiliary optimization developed herein to populate the
sub-bags in neutral manner. The final one is unique to our
model, a method that addresses missing an entire sub-
bag from a bag. We address this using manual dropouts and
an organized approach with regard to the order in which the
given data is trained and the underlying minibatches.

Related work
The goals and methods used for previous multi-instance
work vary greatly depending on the problem characteris-
tics and available data. The goals can be placed into three
broad categories, (Amores 2013), called instance space, bag
space, and embedded space paradigms. The instance space
paradigm assumes the discriminative information is at the
instance level and so creates classifiers at the instance level.
This method then uses an aggregate of all the outputs to clas-
sify at the bag level (Xu et al. 2014; Maron and Lozano-
Pérez 1998; Andrews, Tsochantaridis, and Hofmann 2003;
Amores 2013). The bag space paradigm assumes that the
discriminative information is contained at a bag level. This
means the bags are compared for similarities and differ-
ences, and these comparisons are then used as input for
a standard learning algorithm (Wang and Zucker 2000;
Zhang et al. 2007; Belongie, Malik, and Puzicha 2002).
Our problem falls in the embedded space paradigm. In this
paradigm, the whole bag is mapped to a single feature vec-
tor, and this feature vector can be used as input to standard
learning algorithms (Opelt et al. 2006; Serre et al. 2007;
Chen and Wang 2004; Foulds 2008; Bunescu and Mooney
2007; Zhang and Zhou 2009).

In prior work using images, the instances are often crops
from larger images. For example, this is done with medi-
cal images. Here, the bag comprises the set of crops. In an
application for detecting cancer in an image, the bags have
binary (cancerous / non-cancerous) labels, and one cancer-
ous instance (image crop) means the whole bag is cancer-
ous. (Xu et al. 2014) use a shared instance level classifier for
the image crops, and then put a softmax classifier over the
instance level outputs to get the bag level prediction. This
instance space work has previously been used in (Xu et al.
2012), where these crops give a pixel-wise classification of
cancer for the whole image.

(Hou et al. 2015) handle gigapixel-size, labeled images,
and, similarly to the above, treat the whole image as a bag
and the crops as the instances. They employ a two-stage
training model. The first stage trains on crops with instance
level classifiers to see which crops give the strongest re-
sponses. From these a pre-set number of crops are then cho-
sen as the instances and trained by a multi-instance network.
This is done in the embedding space paradigm, so the in-
stances share a CNN and the outputs of the instance-level
networks are then trained for the bag-level prediction. A
similar two-stage embedded-space-paradigm training is seen
in (Yan et al. 2016). The authors aim to correctly identify
body parts from images of internal body slices. They use



crops instead of the whole image since many body parts
look the same except for a few key regions. The first stage
of training uses an instance-level classifier to try and find re-
gions that get a high response, using max pooling, and the
second stage uses these regions as instances and trains over
the instance-level classifier to get the label for the bag. Other
similar work includes (Zhu et al. 2016), who use the same
approach for mammogram classification, but expand on the
max pooling idea described in (Yan et al. 2016) by combin-
ing instances.

With respect to image replacement optimization, related
work has been done on inverting deep representations of im-
ages. (Mahendran and Vedaldi 2015) found that it is possible
to accurately reconstruct an image from its deep network
embeddings using CNNs. The goal of reconstruction is to
generate an image that matches the original in the embed-
ding space, but generally the solution is not unique. In order
to reduce the solution space and get a more natural repre-
sentation, they make use of natural image priors in their al-
gorithm. For our purposes we need only an image that acts
as a neutral element in the context of merging the embed-
dings within sub-bags. Our work in this respect heavily re-
lies on DeConv networks, as proposed by (Zeiler and Fergus
2014). Finally, we rely on the concept of dropouts, proposed
by (Srivastava et al. 2014), to deal with missing sub-bags.

An alternative way to handle image replacement, that
is, a varying number of images per sub-bag, would be
by means of recursive neural nets (Socher et al. 2011a;
2011b). These group “words” in a hierarchical way and
within a group process words one by one thus allowing to
have a flexible number of words per group. Such an ap-
proach is not adequate in our context since recursive neural
nets require an order on words in a group and groups in a
tree. In our case there is no order on images and imposing
random orders is not justifiable.

Nested multi-instance model
Model overview with non-variable bag composition
Standard multi-instance learning is done by grouping the in-
stances together in a bag2. Each instance in the bag is not la-
beled individually, but rather the bag is labeled as a whole. In
our model we have multiple sub-bags S within a bag B, that
is, a tuple of sub-bags forms a bag. Instances are grouped
into sub-bags by specific characteristics. If we have s sub-
bags and Ij instances in the jth sub-bag, we can write

B = (S1,S2, . . . ,Ss) ,
Sj =

{
xj1, xj2, . . . , xjIj

}
,

where xjk is the kth element in jth sub-bag Sj . In addition,
each bag is associated with a label y. If there are M classes,
then each y can take one ofM values. Each training example
can then be thought of as (B, y), the pair of the bag and its
associated label. The whole training set is denoted

B =
{

(B1, y1), (B2, y2), . . . , (BK , yK)
}

(1)

2We intentionally use the less restrictive notion of bag in con-
trast to set in order to allow duplicates of instances in the (sub-)
bags.

with K bags and associated labels.

We start by describing how one bag, B, is processed.
Each sub-bag Sj is associated with a distinct convolutional
network Cj , so we have s convolutional networks. At
this first stage, for every sub-bag Sj each instance is fed
forward through the corresponding network Cj . This can be
represented as

C = (C1, C2, . . . , Cs) ,
Cj =

{
Cj (xj1) , Cj (xj2) , . . . , Cj

(
xjIj

) }
,

where C is an s-tuple whose elements are bags with
cardinality Ij , see Figure 1. Each element in these sets is the
output of an instance being run through the convolutional
network. Thus each Cj (xjk) is a vector flattened from a
matrix that represents two-dimensional convolutions of an
image.

Now we introduce the aggregation function fa to re-
duce each set of output vectors to a single output vector. For
fa we explored element-wise average and max. Applying
the aggregation function, we get the output tuple

(O1,O2, . . . ,Os) = (fa(C1), fa(C2), . . . , fa(Cs)) .

The last step is to combine the sub-bag embeddings by con-
catenating these vectors into one vector denoted as

O = fa(C1) � fa(C2) � . . . � fa(Cs).

This vector is then used as the input for a standard fully con-
nected network. The fully connected layers produce a vector
H = H (O), where H ∈ RM , with M being the number
of classes. The softmax function is applied to H , yielding
a vector of probabilities for each class, P (B) ∈ RM . The
loss L is calculated over all K bag and label pairs, and is
written as

L =

K∑
i=1

DKL

(
yi ||P (Bi)

)
, (2)

with DKL representing the Kullback-Leibler divergence.
All of the above assumes both that sub-bags Sij are of the

same size for all i and all sub-bags are present for each bag.
Given the nature of the data, these assumptions do not hold.
The following two sections describe the ways in which we
account for variable sub-bag size and missing sub-bags.

Variable instances within a sub-bag
Deep learning packages, such as Tensorflow and Theano, re-
quire a fixed computational graph implying a static network
topology. For this reason, it is necessary for the network to
have a fixed size. This means that the number of sub-bags
and number of instances per sub-bag must be fixed for each
bag. In this section we describe our approach to accommo-
date a variable number of instances per sub-bag while still
assuming that all sub-bags are present for each bag.

Each sub-bag Sj has an associated set of images from
which we create the required number of instances Ij . In the
simplest case, we create one instance per image when the
size of the image set equals Ij . We must be able to handle



bags that contain one or more sub-bags with different num-
bers of images. No matter how many sub-bags need to be
“modified,” each one can be done independently, and so we
discuss how to handle just one sub-bag. Let m be the num-
ber of images in the set and let I be the sub-bag size and C
be the corresponding network.

If m > I , we randomly select I distinct images during
each epoch of training and at test time. Once the I images
are chosen, an instance is created from each image by a
combination of scaling and taking a random crop or by tak-
ing a center crop in order to match the required size of the
CNN. For the final classification using the trained network
one would employ a similar approach with random samples
of the images and choose as final result among the vectors
P yielded by the samples that vector with the highest maxi-
mum norm or a similar selection criterion.

If m < I , we propose three methods to generate the
n = I −m instances from I images.

Reproduction: With max exact fill the sub-bag is
first filled as much as possible by replicating images. This
is done by replicating the m images bI/mc times. Then, for
each image, an instance is created by taking a center crop
of the image. Both the max and average aggregations are
invariant to this approach. This may leave o = I mod m
open instances in the sub-bag. With random reproduction
these remaining instances are chosen by randomly selecting
from the same number of images and taking a different crop
from each of these images.

Random fill: Instances are created by taking random
center or corner crops of images randomly selected from
the m images without replacement. Once the set has been
exhausted, the random selection starts again with the full
image set until all I instances are created.

Optimization: We first fill in the sub-bag with repro-
duction max exact fill. Under the max aggregation, the
remaining o images can be replicated individually again
to fill the sub-bag, because the max aggregation remains
invariant to this fill. For average aggregation, however, we
first calculate the element-wise average

µ =
1

I − o

I−o∑
i=1

C(xi)

of the embeddings obtained for the I − o instances we filled
so far. We create a neutral instance xn for which µ = C(xn),
that is, the average aggregation is invariant to filling the
remaining o slots with xn. The neutral instance xn is cre-
ated by solving an auxiliary optimization problem (3). This
makes use of deconvolutional layers that reverse the sub-
bag’s convolutional network. In this step, the network C it-
self does not change. Specifically, we are solving

xn = argmin
x∈X

‖C(x)− µ‖22 (3)

by stochastic gradient descent where X is the space of ar-
bitrary instances suitable as input to C. In order to eas-
ily compute the gradient in the given CNN implementation

framework, we add an extra layer corresponding to the in-
put (the original input layer now becomes the first bottom
layer). This new input layer has a neuron for each pixel and
channel. Each input neuron is connected to one and only one
neuron in the first bottom layer (the original input layer). The
weights on these connections are free and correspond to x.
The first bottom layer is then followed by networkC with all
weights fixed. It is straightforward to see that this network
models (3) and thus standard backpropagation with respect
to x can be applied.

Sub-bag dropout
In standard dropout, random units are dropped out of the net-
work with a uniform probability at each training instance.
For our model, we are interested in dropout at the sub-bag
level applied to the embeddings, O, that are the input of
the fully connected network H . Consequently, no individual
units, but rather whole sets of units Oj are dropped. With s
sub-bags as candidates for dropout there are 2s possible con-
figurations. To represent each configuration c we introduce
a tuple, δc ∈ {0, 1}s,that is, a tuple of 0s and 1s of length
s. A 1 corresponds to the sub-bag being present in c and a 0
corresponds to a missing sub-bag in c. Figure 2 shows a case
of one missing sub-bag.

Before passing O as input to the fully connected layer, the
sub-bag dropout is performed by

djc = 1j · δcj , j = 1, . . . , s

dc = d1c � d2c � · · · � dsc

Dc = dc∆O

where the length of 1j and Oj are the same and equal to Ij
and Dc becomes the input to the fully connected network.
Note that djc is either a 0-vector or a 1-vector. Here, ∆ is
the Hadamard product. The output of the fully connected
layers is then Hc = H (Dc). Again, the softmax function
is applied to the output vector to get a vector of probabili-
ties P

(
Bi

c

)
calculated over a chosen configuration. The loss

function (2) becomes

L =

2s∑
c=1

∑
i∈Kc

DKL

(
yi
∥∥P (Bi

c

))
,

where the training set B and the corresponding set K of K
indices are partitioned such that i ∈ Kc iffBi has at least one
instance for each of the sub-bags present in configuration c.

Using standard dropout, at test time all the nodes would
be made active and the weights would be scaled. However,
since our dropouts are constructed with our data in mind,
even the test bags will need to have dropout applied.

Training
Training the whole network from scratch over all configura-
tions is a very hard task. Therefore, pretraining is critical for
learning. We adopt VGG16, introduced in (Simonyan and
Zisserman 2014), as the template for the CNN networks Ci

but use only the convolutional layers within our large nested
multi-instance network as opposed to the VGG16 network



with all layers which we will denote as C̄i. Even when shar-
ing convolutional networks within sub-bags, starting from
random weight initialization is intractable.

Pretraining

We bootstrap our approach by using VGG16 weights trained
on ImageNet data. ImageNet is sufficiently general to train
filters that are useful on our given data, however, this applies
more to the lower layers than to the final layers. To start pre-
training, we pair bag labels yj , see (1), with the individual
images inBj and train each sub-bag network C̄i, in standard
single instance fashion on the images in Bj that pertain to
the ith sub-bag. At the end of training, we have s separately
trained networks. We then cutoff the fully connected part of
the network C̄i, and save only the weights for the convolu-
tional layers for Ci. The specific phases of the training are
discussed next.

Training phases

We begin training over bags using the pretraining weights
for all s sub-bag networks Ci as initializations for the con-
volutional weights of the full network and random initial-
ization for the fully connected layers. Throughout all train-
ing phases exponential decay is used to control the learn-
ing rate. In the previous section we already mentioned the
configuration-induced partition of the training set, B =
2s⋃
c=1
Bc.

Phase 1: To boost convergence, we start with the full con-
figuration ĉ, ‖δĉ‖1 = s, that is, all bags in Bĉ have at least
one image for each sub-bag. Consequently, there is no need
for sub-bag dropouts during this part of the training, but
the missing images within sub-bags still are accounted for
as outlined in the previous section. Minibatches are created
from the elements in Bĉ; all layers are unlocked.

Phase 2: The weights updated during Phase 1 serve as
initialization for Phase 2. This phase has an outer sequence
governing weights locking as follows.

FC1: unlock weights in H , i.e. the fully connected layers,
and lock all weights in theCi, i.e. the convolutional layers

CL: lock all weights in H , unlock convolutional layers in
the Ci one at a time from top to bottom

FC2: unlock weights in H , lock all weights in the Ci

For each of the steps in the sequence we train on all ele-
ments in B but reset the learning rate before each step. Fur-
thermore, because the dropout configurations differ among
the subsets Bc and the dropout is effected by modifying the
full network definition, we group minibatches by the Bc they
were created from. By the same argument stipulating Phase
1, we partially order the Bc and their associated minibatches
for the epoch by starting with the richest information, i.e.
Bĉ, where ||δĉ||1 = s and then by decreasing values yielded
by ||δc||1 attaining s− 1, . . . , 1 and random order in case of
ties.

Experiments
Real world datasets: For the experiments described in this
part we used a real world proprietary data set and derived
training sets with classification labels originating in the in-
surance space. While we cannot share qualitative details
about the data, we can disseminate quantitative aspects to
illustrate accuracy results. We report on two distinct clas-
sification tasks denoted as “Case 1” and “Case 2.” In each
bag, we have three sub-bags, but the group of instances rep-
resented by each sub-bag differs between the two cases. The
test set BT ⊂ B consists of 10% of randomly chosen bags
in all experiments.

For Case 1, we have more than 500,000 bags with 3 sub-
bags, and of these approximately 60% are full configuration
bags. Each bag is assigned one of four possible labels. For
training Phase 1, the layers in the Ci are initialized using
the weights resulting from pretraining, see the Training sec-
tion, while the weights in H are chosen by Glorot uniform
initialization.

Table 1 contains validation accuracies for various stages
of training with the different approaches to filling in missing
instances discussed previously. In addition to this, the table
also contains baseline results to show the increased perfor-
mance of the proposed network. The first of these baseline
results, listed under column “Shared sub-bags,” uses shared
weights amongst the different sub-bags and the optimiza-
tion fill-in method. The second (“Individual nets”) takes the
scores from the pretrained individual networks for all of the
present instances, and then averages these scores to make a
prediction for the bag.

Training Phase 2 is able to significantly improve the accu-
racy over all configurations, with excellent improvement in
both the first fully connected training stage (FC1) and in the
convolutional layer unlocking stage (CL). The table clearly
shows that training the entire model is beneficial and that
the naive approach of considering only full configurations is
fairly weak. The weights obtained at the end of Phase 1 ap-
plied only to full configurations BT ∩Bĉ yield an accuracy of
93%, which is, as expected, much higher than the accuracy
of 68% of the same weights tested on all configurations. This
drop is expected since at that point the model has not seen
any of the bags with missing sub-bags. Table 1 also exhibits
the comparison of different image fill-in strategies. While
the difference is not big, our new optimization method con-
sistently outperforms the remaining two strategies. Further,
the method with shared weights performs worse at all stages
of training, justifying the varying sub-bag weights. Worse
still is the aggregate prediction of the individual instances,
indicating that the multiple views are synergistic and should
not be aggregated naively.

Reproduction Random fill Optimization Shared sub-bags Individual nets
Phase 1 68.4 68.5 68.8 67.9 -
Phase 2, FC1 72.2 72.3 72.5 71.5 -
Phase 2, CL 75.0 75.1 75.3 73.3 -
Phase 2, FC2 75.6 75.7 75.9 74.1 67.5

Table 1: Test accuracies in percent for Case 1 with 3 in-
stances per sub-bag.



For Case 2, we have about 100,000 bags with 3 sub-bags,
and of these approximately 40% are full configuration bags.
Each bag is assigned one of seven possible labels, and the
experiments performed are the same as in the first case. In
Table 2, the same behavior is seen in the switch from full
configurations to all configurations, with the accuracy on the
full configuration test set at the end of Phase 1 being 84%.
Phase 1 again achieves the highest accuracies, with a large
drop when tested on all configurations. For this case there
is good improvement when training over the fully connected
layers in Phase 2, but training over the convolutional layers
does not significantly boost accuracy. It is possible that the
convolutional filters initialized with the pretraining weights
and further tuned in training Phase 1 were already sufficient
over all configurations, and consequently only little was to
be gained by training these layers further.

Reproduction Random fill Optimization Shared sub-bags Individual nets
Phase 1 64.1 64.2 64.2 63.6 -
Phase 2, FC1 68.2 68.3 68.4 67.7 -
Phase 2, CL 68.3 68.5 68.6 67.7 -
Phase 2, FC2 68.4 68.6 68.7 67.9 62.9

Table 2: Test accuracies in percent for Case 2 with 3 in-
stances per sub-bag.

Shapenet dataset: We also use a dataset created from
the Shapenet 3D dataset (Chang et al. 2015). The artificial
dataset was created by taking 2 images of 3D objects from
each of 3 different perspectives (top, front, back). One of the
two images is taken directly from the perspective of its re-
spective sub-bag (e.g. a direct front view) and the other is
taken at an angle offset from the first image by 30 degrees.
Due to the nature of the dataset we had to limit the num-
ber of images per sub-bag to two in order to retain sufficient
dissimilarity among the images within a sub-bag and also
sufficient separation between the sub-bags. As with the real
world data sets, the test set BT ⊂ B consists of 10% of ran-
domly chosen bags.

For this dataset, we have approximately 40,000 bags with
3 sub-bags corresponding to top, front, and back views of
the objects. This dataset has 13 classes after filtering out
objects that have very low representation (less than 1 per-
cent of the 40,000). This dataset has no natural missing in-
stances or missing sub-bags, thus we explore different meth-
ods of dropping instances and bags to report the model per-
formance under varying circumstances. We consider three
methods to create missing instances. For each of these three
methods, anywhere from 0 to 4 instances are removed with
uniform probability. The difference in the methods is in how
these instances are chosen once we have determined how
many to remove.

The first method is the simplest, and consists of randomly
dropping any instance with a uniform probability. The next
two methods deal with the relevance of the instances. We
measure instance relevance by looking at the correct class
probability for each instance using the individual pretrained
networks. One method drops the most relevant instances
(those with the highest class probability), while the other
drops the least relevant instances. Dropping instances natu-
rally leads to missing sub-bags as well, so it was not neces-

sary to further drop sub-bags after instance dropping. After
random instance dropping we are left with 80% full configu-
ration bags, after most relevant instance dropping 45%, and
after least relevant dropping 48%.

The same experiments are performed as in the real world
cases. We report the results for each of the three instance
dropping methods in Table 3. The accuracies on the full con-
figuration test sets at the end of Phase 1 are 95%, 91%, and
93% for random dropping, most relevant dropping, and least
relevant dropping respectively. As pointed out before, the
Shapenet dataset limits us to 2 instances per sub-bag and
the reproduction method always leaves the max or average
aggregation unchanged since the same image is replicated.
Thus for this dataset, the optimization approach cannot out-
perform reproduction, but the very close results of the opti-
mization approach are an indicator of the very small residu-
als for approximating the respective neutral instance.

Random Reproduction Optimization Shared sub-bags Individual nets
Phase 1 90.3 90.1 89.5 -
Phase 2, FC1 91.3 91.1 90.4 -
Phase 2, CL 91.5 91.1 90.7 -
Phase 2, FC2 91.8 91.5 90.9 90.2

Most relevant Reproduction Optimization Shared sub-bags Individual nets
Phase 1 81.3 81.2 80.7 -
Phase 2, FC1 83.0 82.9 82.1 -
Phase 2, CL 83.5 83.5 82.5 -
Phase 2, FC2 84.6 84.5 83.4 80.2

Least relevant Reproduction Optimization Shared sub-bags Individual nets
Phase 1 85.1 84.9 84.0 -
Phase 2, FC1 86.2 86.0 84.9 -
Phase 2, CL 87.1 87.0 85.7 -
Phase 2, FC2 87.5 87.4 86.8 85.3

Table 3: Test accuracies in percent for Shapenet dataset with
2 instances per sub-bag for each of the three instance drop-
ping methods.

The behavior for each of the 3 methods is in general the
same as the one observed in the real world datasets. The
random dropping method is similar to Case 2 in that there is
not much improvement within Phase 2 of training, while the
other two methods are more similar to Case 1. It is not sur-
prising that dropping the most relevant instances gives the
lowest accuracy, but it is interesting that randomly dropping
instances performs better than dropping the least relevant in-
stances. This is likely because the latter method leaves more
empty sub-bags, and so the information from the dropped
perspectives does not enter the model at all. While those in-
stances may be the least relevant on their own, it is seems
as those they have an important effect in the full model that
combines all the perspectives. Finally, we observe that opti-
mization closely tracks the reproduction method, meaning it
is indeed performing its intended function.

Additional Analysis: The previous results all use the av-
erage aggregation, but taking the max aggregation over the
embeddings avoids the need for optimization since the ag-
gregation is invariant to the reproduction of any number of
instances in the sub-bag. Table 4 shows a comparison for the
best results obtained from a comparison between the max
and average. For this comparison, we use Case 2, optimiza-
tion for the average aggregation, and random fill for max



aggregation. As stated previously, such a comparison is not
possible on the Shapenet dataset with 2 instances per sub-
bag, because any sub-bag with with one instance simply re-
produces the existing instance.

Max Average
Phase 1 on BT ∩ Bĉ 84.1 84.5
Phase 1 on BT 63.7 64.2
Phase 2, FC1 on BT 68.0 68.4
Phase 2, CL on BT 68.3 68.6
Phase 2, FC2 on BT 68.3 68.7

Table 4: Comparison of max and average aggregations.

In addition to testing methods for instance embedding ag-
gregation, we also varied the maximum number of instances
used in each sub-bag from 2 to 4. In the case where 2 sub-
bags are used, the optimization method is actually not re-
quired at all, since the reproduction fills the sub-bag when-
ever there is a missing instance. Table 5a shows a summary
of the results obtained for both Case 1 and 2 using the opti-
mization method. There is an advantage to using 3 instances
over 2, but the difference between 3 and 4 seems not to
be significant. This last result is likely because only a very
small percentage of sub-bags contain 4 or more instances in
our data, and so further increasing the number of instances
does not supply more complete information. Rather, for
most sub-bags, instances are just reproduced more, which
increases the training time without the benefit of an accu-
racy increase. We conclude that the optimal number of in-
stances per sub-bag should be determined by the nature of
the data, in particular the distribution of the present number
of instances for the corresponding sub-bag.

Table 5: Instance and sub-bag analysis.

(a) Test accuracy results for
varying number of instances
per sub-bag after training
Phase 2.

Inst. per bag 2 3 4
Case 1 75.7 75.9 75.9
Case 2 68.6 68.7 68.6

(b) Accuracy drops from ap-
plying sub-bag dropout to full
configurations.

Acc. Drop Case 2 Shapenet
Sub-bag 1 7.1 4.9
Sub-bag 2 8.9 9.2
Sub-bag 3 4.5 2.5

As seen in Table 1 and Table 2, the optimization method
was able to achieve the highest accuracies out of all the
methods. Further, as Table 3 shows, the optimization method
also closely tracks exact reproduction in the case of two in-
stances, where the neutral instance is the one that gives the
same embedding as the instance which is present. This dif-
ference is more pronounced in Case 1 than in Case 2, and
this is likely due to the nature of the instances rather than a
varying effectiveness of the optimization approach. To fur-
ther explore optimization, we found that optimization be-
haves similarly for all of the missing instances. Figure 3
shows how the norm drops during training for 5 randomly
chosen examples. These were taken from the Case 2 data,
and selected from all sub-bags.

The overall structure of the network as shown in Figure
1 provides a relatively simple path toward a model-parallel

implementation. Our chosen implementation strategy places
the execution of all operations pertaining to a network Ci in-
cluding the embedding aggregation, on its own GPU. Like-
wise, the concatenation of the aggregated embeddings and
the fully connected layers H are placed on their own GPU.
Because of the dependency of H on all the Ci one could ar-
gue about reducing the idle resources by instead co-locating
H with one of the Ci. However, that would have the down-
side of an imbalance in the model-based memory require-
ments. With s = 3 our design requires a total of four
GPUs. We also note that optimization for several missing
images within the same bag similarly fits this parallelization
scheme. Thus, the extra computational time required to solve
these optimization problems is independent of the number
of sub-bags and we observed approximately 40 seconds per
bag.

Figure 3: L2 norm versus iterations for auxiliary optimiza-
tion.

As previously mentioned, there is a drop in accuracy after
Phase 1 when switching from testing on full configurations
BT∩Bĉ to testing on all other configurations, BT \Bĉ. Part of
this drop is due to the model not having seen bags with miss-
ing sub-bags before, but another explanation is that the set
BT \Bĉ has less complete information because of the missing
sub-bag(s). To test this explanation, we apply the dropout
to each sub-bag individually on full-configurations and note
the drop in accuracy. Using Case 2 and the Shapenet dataset
with the weights from the end of Phase 2, Table 5b shows the
accuracy drops for each of the three sub-bags. After training
over all configurations, these results show that all of the sub-
bags contribute to the accuracy over full configurations, and
also that the sub-bags are not equally predictive.
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