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Abstract

Order fulfillment is vital for successful business-to-consumer e-commerce firms. For an e-tailer, customers
place orders from various geographically disperse locations, or, in the presence of multiple distribution
channels, from various channels. We consider a constant demand rate for each one of these markets in the
continuous time infinite time horizon setting. The distribution cost for shipping goods from fulfillment
centers to markets, the variable and fixed procurement costs, and the holding costs at the fulfillment
centers are captured. Demand from a market can be fulfilled from several fulfillment centers. We first
study the case of two centers and a single market. We show that only one of the centers is used by an
optimal policy. If, in addition, each facility has a market that must use an assigned center, this might
no longer be the case. An optimal policy might use one center for a period of time and the other one
for a different period of time. We develop simple cyclic policies that might outperform the strategy of
using a single center. We also study the general case of several centers and markets. We give properties
of optimal policies and we develop a lower bound. To this end, we first develop a Lagrangian type lower
bound for general weakly coupled semi-Markov decision processes and then we apply this bound to our
problem. Computational experiments show that the lower bound is often tight. We also numerically
study the benefit of cyclic policies.

1 Introduction

In late nineties we witnessed a boom in e-commerce. The proliferation of internet led to new business concepts
such as business-to-business exchanges, portals, e-procurement, online auctions, and business-to-consumer
strategies. There are many firms that offer business-to-business services, e.g. ChemConnect for exchanges
within the chemical industry, Dell uses its ValueChain.Dell.com system for rapid exchanges with its suppliers.
Especially the latest paradigm of business-to-consumer had the most significant influence on everyday life
of consumers since it involves them directly. In addition, online retailing is rising quickly; from $8 billion in
revenues generated by the US retailers in 1998 to $90 billion in 2004, Grosso et al. (2005). Many firms use
internet to sell directly to consumers, i.e. they use the direct channel. While direct sales are not confined
to internet (catalog and mail sales exist for a long time), they definitely became the most widespread direct
channel. The pioneers in this direction are the book retailer Amazon.com and the computer manufacturer
Dell who sell only through the direct online channel.

On the other hand there are several firms that use several distribution channels. Barnes & Noble, another
book retailer, uses its stores as a distribution channel and it offers a direct channel through their own web
site. Several firms, e.g. Barnes & Noble, Gap, Best Buy, Levi Strauss & Co., used or are using both channels:
the direct channel and the reseller channel. The direct channel also induces the so-called channel conflicts,
which most often come in the form of undercutting the traditional reseller channel. Some companies use
the direct channel as a mean of revenue while other companies are using it to induce sells in their reseller
channel. The profile of online shoppers is typically different than the profile of traditional shoppers. As an
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example, online book buyers tend to buy many more books and are more time sensitive than the traditional
book buyers.

To boost profitability, order fulfillment processes are critical. Amazon.com and Dell are two examples of
efficiency machines when it comes to fulfillment. When an online order is placed, the firm faces the decision
from which fulfillment center to ship. Fulfillment centers can be stores and warehouses owned by the company
or outsourced facilities to carriers such as FedEx Express, DHL, and UPS. For example, Amazon.com has
19 fulfillment centers and the fulfillment decision factors in real-time order data and ship dates in order to
develop optimal pick, pack, and ship processes. Which fulfillment center to use is an important decision
especially when the shipping cost is covered by the company. This is usually the case when the customer
selects the “standard” shipping option.

We study the inventory and fulfillment policies for the continuous time infinite time horizon problem with
deterministic demand rates, i.e. the economic order quantity setting. A firm must make the procurement
decision at any point in time during the time horizon and for each of the fulfillment centers. The demand rate
is given for each sales location or market, which are geographically dispersed. In the case of multiple channel
operations, each channel can have several sales locations. Pure e-tailers have only a single direct channel
and therefore sales locations can be identified with geographic markets. In addition to the procurement
cost, which includes the variable and the fixed component, the firm incurs the shipping cost, which depends
on the sales location. Besides the procurement decision, at any point in time a decision is made for each
center what fraction of a market’s demand to fulfill. Each center incurs a linear inventory holding cost. In a
manufacturing context, the procurement process is replaced by manufacturing, i.e. a decision is how many
units to manufacture.

In the business-to-consumer fulfillment setting, consumers are very segmented. Our model is applicable
at an aggregated level where consumers are aggregated based on demographics or channels. The presented
model is general enough to handle also business-to-business situations. Consider, for example, a semicon-
ductor manufacturer supplying a large computer manufacturer with several assembly plants. Each assembly
plant can be served from various semiconductor plants. The problem faced by the semiconductor manufac-
turer is to select a set of its own plants to satisfy the demand from the assembly plants of the computer
manufacturer.

In this paper we lay down the modeling framework for such infinite horizon planning. We start by
studying the special case of two centers and a single market. Not surprisingly, in this case we show that it
is optimal to fulfil all of the demand from a single center. Next we consider a similar case except that we
assume that each center has also a market that must be satisfied only by this center (local markets). We
show that using only a single center to fulfill all of the non local demand might not be optimal. We develop
a cyclic policy that in some cases performs better. In such a policy for a certain period of time one of the
two centers is used to fulfill the non local demand and in other times the other center is used. We also
asses the gap between such policies and the policy of using only a single center for non local demand. We
also consider the general case of several centers and markets. We first provide some structural properties of
optimal policies. In order to develop a lower bound, we first model the problem as a semi-Markov decision
process that is weakly coupled, i.e. only some constraints in the action space link various independent semi-
Markov decision processes. Based on the Lagrangian relaxation principle, we develop a lower bound for such
processes. This lower bound is then applied to our problem. While computing an optimal policy is very
hard and we do not know of any efficient algorithms, the derived lower bound results in a relatively simple
optimization problem that can easily be solved by standard optimization software tools. While computing
an optimal policy is At the end we perform numerical experiments. They show that the lower bound is often
tight. We also document the benefits of using the developed cyclic policies.

There are several important contributions of this work.

• We believe this is the first work on studying the problem with several fulfillment centers and markets
in an economic order quantity setting. To this end, we provide the model and we analyze selected
special cases, e.g., when is using a single center optimal.

• The developed cyclic policies are the second contribution. These policies are easy to implement.
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• Another important contribution is in studying the weakly coupled semi-Markov decision processes. We
give a lower bound in a very general setting. The approach is much more involved than the previously
studied weakly coupled Markov decision processes. To the best of our knowledge, this is the first study
of weakly coupled semi-Markov decision processes.

• Finally, it is a nontrivial and very technical task to use this semi-Markov bound in the context of
business-to-consumers fulfillment.

We start the presentation with the problem statement in Section 2. The case with two facilities is
considered in Section 3. The case with a single market is studied in Section 3.1. Two centers each one with
a local market and a single non local market is discussed in Section 3.2. Properties of optimal policies are
given in Section 4. The lower bound is developed in Section 5 and the computational experiments are given
in Section 6. We finish the introduction with a literature review.

Literature Review

Most of the related research is related to the multi-channel studies of firms. Many authors studied decentral-
ized systems with multiple channels. The main question is under what conditions is it beneficial to establish
a direct channel. Another important question is the pricing strategies for the direct and the reseller channel,
i.e. should the selling price be the same and if not, how to set it up. Tsay and Agrawal (2000), Chiang
et al. (2003), and Tsay and Agrawal (2004) study cons and pros of using both channels in a decentralized
system. They also compare three possible scenarios: the firm has only a direct channel, the firm has only
the reseller channel, and the firm is using both channels. Cattani et al. (2003) consider also different price
setting strategies between the two channels. Similarly, Boyaci and Gallego (2002) study pricing and channel
profits in a single warehouse multiple store setting. Boyaci (2005) assumes that channels are differentiated
based on the location and the channel related demand is substitutable. The distribution cost is not a factor.
Bernstein et al. (2005) study the impact of setting up a channel to “taste” the product, which then hope-
fully induces additional reseller demand. Cattani et al. (2004) and Tsay and Agrawal (2004) provide recent
surveys related to this line of research.

There is also limited inventory management literature in a multi-channel setting. Chiang and Monahan
(2005) study the two echelon continuous review model with a single direct channel. A reseller channel
consists of a warehouse that supplies a single retailer. The retailer faces exogenous stochastic demand,
where costumers shop at the store. In addition, the direct demand is fulfilled from the warehouse. The
authors study base stock policies. A similar system is studied by Allgor et al. (2004) where several heuristics
are proposed for the multi-item version of the problem. Alptekinoglu and Tang (2005) study the stochastic
problem with several cross-docking depots (not holding inventory) and several markets. Their model assumes
stochastic demand but it is a finite horizon problem. The single period version where facilities carry inventory
and the market demands are assumed to be stochastic is discussed in Klabjan (2009).

The business-to-consumer setting is also considered in Bagga et al. (2005). In their work a single ware-
house supplies several stores, which fulfill the direct demand. They assume that a fixed order up-to-level
replenishment policy is followed and they study day-to-day operations, i.e. execution planning. They do
not allow demand from a location to be split among several stores, i.e. a single store must serve the entire
demand from a location. They present an integer program that does this assignment.

There is vast literature on economic order quantity, i.e. single item continuous time infinite time horizon
inventory problems. Many extensions to the basic model are given in Zipkin (2000). The more relevant to
our model are those that embed transportation decisions. Note that linear distribution cost yields the same
reorder quantity. Nonlinear distribution cost, such as those used by less than truckload carriers, is studied in
Swensetha and Godfrey (2002) and Russell and Krajewski (1991). There are also several manuscripts that
address production and distribution simultaneously. They are focused on operating a dedicated fleet, having
a single manufacturing plant and potentially several customers, Blumenfeld et al. (1985), Blumenfeld et al.
(1991), Hahm and Yano (1992), Burns et al. (1985). The integration of the economic order and production
quantity is considered in Hall (1996).
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There is similarity between the inventory routing problem and the problem studied herein. The literature
on inventory routing is too vast to summarize but surveys and reviews can be found in Goyal and Satir
(1989), Dror (2005), Campbell and Savelsbergh (2002), and Campbell and Savelsbergh (1998). In a single
item version of the inventory routing problem, a dedicated fleet of trucks need to be dispatched from several
depots to customers in an infinite time horizon setting. Consider the version of the inventory routing problem
where truck routes are restricted to be single leg, there are several depots, trucks are uncapacitated, and
customers do not incur any holding cost. Then this would be the problem studied here except for the following
two complicating factors: (1) a customer can receive a replenishment from several depots simultaneously,
and (2) there is holding cost at each depot. In addition, most of the inventory routing studies assume the
periodic review setting and not the continuous time decisions. The problem studied herein is simultaneously
a more restrictive version of the inventory routing model and also a generalization.

2 Problem Statement

We consider fulfillment centers or distribution facilities, for simplicity called facilities, N = {1, 2, . . . , n}
operated by a single corporation, i.e. a centralized system, and sales locations or markets M = {1, 2, . . . ,m}
in an infinite time horizon and a single item. Replenishments and shipments can be carried out at any point
in time (continuous time setting) and there is no leadtime. In a deterministic setting this is without loss of
generality. The per item procurement cost of facility i is denoted by ci. Whenever a replenishment order is
placed by facility i, a fixed cost ki is incurred. Each facility can carry inventory and let hi be the per unit
linear holding cost of facility i. Each market j has a constant deterministic demand rate Lj . At any point in
time demand from market j can be simultaneously fulfilled from several facilities. The per unit distribution
cost between facility i and market j is denoted by fij . This cost can, for example, be correlated to the
distance between the facility and the market. No backlogging is allowed. Figure 1 depicts the materials flow.
We assume that ki > 0, hi > 0 for every i ∈ N and Lj > 0 for every j ∈ M . In addition, we impose ci ≥ 0
for every i ∈ N and fij ≥ 0 for every i ∈ N, j ∈M .

Markets

Facilities

Demand: 
constant rate

Procurement

Distribution cost

Procurement cost:     
variable and fixed

Holding cost

Figure 1: Configuration for n = 3,m = 2

Next we define policies. Let Ii(t) be the inventory level at time t and facility i. Each decision epoch at
time t consists of the following two types of actions at each facility.

Decision 1: Should facility i be replenished and if yes by how much?

Decision 2: What fraction of the demand of market j should each facility satisfy during the time period
between now and the next decision epoch?

At each time t, let Dij(t) be the fraction of demand rate Lj of market j that is fulfilled from facility i
between time t and the next decision epoch. The action space requirement Decision 2 from above imposes
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that at any point in time t we have
∑
i∈N Dij(t) = Lj for each j ∈M . A possible trajectory for 2 facilities

and a single market is depicted in Figure 2.
In addition to decisions Dij , in each time period we decide upon the replenishment quantity yi at facility

i, Decision 1 above. We say that a facility has a breakpoint at a decision epoch if the trajectory has a
breakpoint at this decision epoch, i.e. at the decision epoch at time t the total demand rate

∑
j∈M Dij(t−)

at facility i just before time t is different from the total demand rate
∑
j∈M Dij(t) at time t (or just after t).

Let us assume that the next decision epoch is at time t1 > t. The total procurement cost is
∑
i∈N (ciyi +

kiδ(yi)), where δ(z) is 0 if z = 0 and 1 if z > 0. The distribution cost equals to (t1 − t)
∑
j∈M,i∈N fijDij(t)

(on the link between facility i and market j we sell Dij(t) · (t1 − t) units for a per unit distribution cost
fij). In addition each facility i incurs a linear holding cost with the per unit cost hi. Note that holding
cost accounting cannot be given by a simple formula since the trajectory at a facility does not have the nice
saw-tooth structure.

The goal is to find a policy that minimizes the long-run average cost. It is easy to see that an optimal
trajectory at each facility has the zero-inventory ordering property. Further properties of optimal policies
are given in Section 4. We call this problem the multi-market problem.

3 The Two Facility Case

In this section we study the case with n = 2. In the first part we assume a single market and then we study
the case when each facility has its own market whose demand must be fulfilled only from the corresponding
facility.

3.1 A Single Market

Consider two facilities and a single market with demand rate L1. The main result in this section states that
it is optimal to use only a single facility.

Theorem 1. If there is a single market, there is an optimal policy where one facility serves all of the demand.

From Theorem 1, the value of the optimal policy is min{(c1+f11)L1+
√

2k1L1h1, (c2+f21)L1+
√

2k2L1h2}
and the facility that attains this minimum serves all of the demand. The square root term comes from the
standard economic order quantity long-run average cost and the first linear term accounts for the linear in
time procurement and distribution costs. The technical proof of this result is given in Klabjan (2009). This
result can be extended to the case of n facilities and a single market.

3.2 Three Markets

In this section we assume that each one of the two facilities has a market whose demand must be fulfilled
from a particular facility. We can interpret the two facilities as being two retail stores. Each store serves its
own demand from the geographical region corresponding to its location. In addition, the two stores must
fulfill the demand from a remote market where extra distribution cost is incurred.

Formally, the remote market has a demand rate L and each facility i has its own local demand with rate
Li. (For ease of exposition we do not denote the market demand rates by L1, L2, L3.) Thus the distribution
cost equals to f11 = f22 = 0, f12 = f21 = ∞ and f1, f2 is the distribution cost between facility 1, 2 and
the remote market, respectively. At any time t we have D11(t) = L1, D22(t) = L2, D12(t) = D21(t) =
0, D1(t) + D2(t) = L. Here we denote by D1(t), D2(t) the demand of facility 1,2 from the remote market,
respectively. For ease of notation we define c̃ = c1 + f1 − c2 − f2.

A 0/L policy is any policy such that in each time t either D1(t) = L,D2(t) = 0 or D1(t) = 0, D2(t) = L,
and trajectory breakpoints occur only when one of the two facilities replenishes. A possible 0/L trajectory
is depicted in Figure 3. Note that in a 0/L policy, at each point in time only one facility serves all of the
remote demand. However, this facility might not be always the same one.

The following proposition can be proved along the same lines as the proof of Theorem 1, which is given
in Klabjan (2009).
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Figure 2: A possible trajectory for n = 2,m = 1
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Figure 3: A 0/L trajectory

Theorem 2. There exists an optimal 0/L policy.

We show later that in this setting it might not be optimal to use a single facility to fulfill the remote
demand. We next design a family of policies that sometimes perform better than the single facility policy.
Consider the 2-slope cyclic policy, Figure 4. Let T = α1 + α2 be the cycle length. The cost of such a policy
is

g(α1, α2) =
1
T

(
k1 + k2 + c1(α2L1 + α1(L+ L1)) + c2(α1L2 + α2(L+ L2)) + f1α1L+ f2α2L+[
α2

1(L1 + L)
2

+
α2

2L1

2
+ α1α2L1

]
h1 +

[
α2

1L2

2
+
α2

2(L2 + L)
2

+ α1α2L2

]
h2

)
.

The best such policy is obtained by solving

min
α1>0,α2>0

g(α1, α2) .

A long but straightforward calculation from ∂g
∂α1

= ∂g
∂α2

= 0 shows that the best such policy is obtained by
setting

α1 =
h2T − c̃
h1 + h2

α2 =
h1T + c̃

h1 + h2

T =

√
2(k1 + k2)(h1 + h2) + Lc̃2

L1h2
1 + L2h2

2 + h1h2(L+ L1 + L2)
.

In addition, we need to require that α1 > 0, α2 > 0. Note that one of them is always positive but in general
it might not be the case that both of them are positive. If one of the two values is negative, then there does
not exist a 2-slope cyclic policy.

The value of the policy that uses only a single facility to satisfy the remote demand is

Zs = min{L1c1 +
√

2k1L1h1 + c2(L+ L2) + f2L+
√

2k2h2(L2 + L),

L2c2 +
√

2k2L2h2 + c1(L+ L1) + f1L+
√

2k1h1(L1 + L)} .

We call such a policy the trivial policy. We now compare 2-slope cyclic and trivial policies.
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α1
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Figure 4: A 2-slope cyclic trajectory

Proposition 1. Let c1 = c2 = f1 = f2 = 0, i.e. we consider only the fixed replenishment cost and the
holding cost. Then

1. the 2-slope cyclic policy can be better than the trivial policy,

2. the trivial policy can be arbitrarily better than the 2-slope cyclic policy,

3. the 2-slope cyclic policy can be at most by a factor of
√

3 better than the trivial policy.

Proof. Under the stated assumption of zero procurement and distribution cost, it is easy to see that the
value of the optimal 2-slope cyclic policy is

Zc =
√

2(k1 + k2)(L1h1 + L2h2 +
Lh1h2

h1 + h2
)

and that it always exists.
We show the first statement by means of an example. Let L = 2, L1 = L2 = h1 = h2 = k1 = k2 = 1.

For this choice we have Zs =
√

2 +
√

6. On the other hand Zc =
√

12 < Zs. This shows that the optimal
2-slope cyclic policy outperforms the trivial policy.

Next we show that the trivial policy can be arbitrarily better than the 2-slope cyclic policy. Let A1

denote the first term in the definition of Zs and A2 the second term. Consider L arbitrary small, i.e. L→ 0.
Then

Zc

A1
→
√

2(k1 + k2)(L1h1 + L2h2)√
2k1L1h1 +

√
2k2L2h2

.

As k1 →∞,k2 → 0, L2h2 →∞,L1h1 → 0, it is easy to see that Zc

A1
→∞. We conclude thatZ

c

Zs →∞.
We now show that the trivial policy cannot be worse than a factor of

√
3 from the optimal 2-slope cyclic
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policy. Let us assume that h1 > h2. We have

A1

Zc
=

1 +
√

k2
k1
· L2+L

L1
· h2
h1√

(1 + k2
k1

)(1 + L2h2
L1h1

+ Lh2
L1(h1+h2) )

≤
1 +

√
k2
k1
L2+L
L1

h2
h1√

1 + k2
k1
L2+L
2L1

h2
h1

=
1 +
√

2x√
1 + x

≤
√

3.

Here we denote x = k2
k1
· L2+L

2L1
· h2
h1

. The first inequality is a long but straightforward calculation and it uses
the fact h1 − h2 ≥ 0. The last inequality is easy to check as well. Clearly now it follows Zs

Zc ≤
A1
Zc ≤

√
3.

The notion of cyclic policies can easily be extended to the general multi facility and multi market setting.
Details about some of these more general cyclic policies are given in Section 6 and Klabjan (2009). Note also
that there is a symmetric 2-slope cyclic policy. This policy for facility 1 during the time period corresponding
to α1, α2 the slope is L1, L+L1, respectively. For facility 2, during the time period corresponding to α1, α2

the slope is L + L2, L2, respectively. The best of the two policies is from now on called the 2-slope cyclic
policy.

4 Properties of Optimal Policies

In this section we state results regarding the structure of optimal policies in the general setting. Most of
these results will be used later in Section 5.

Based on our definition of a decision epoch, we allow that at a decision epoch none of the facilities
replenishes and therefore all of the trajectories have a breakpoint at such a decision epoch. The next
theorem states that there is an optimal policy where in each decision epoch at least one facility replenishes.
Since we have the zero-inventory ordering property, this also implies that at least one facility stocks out.

Theorem 3. There is an optimal policy where in each decision epoch at least one facility replenishes.

The technical proof of this result is given in Klabjan (2009). In our problem statement we do not
explicitly require that the inventory level be below a certain upper bound at any point in time. It is easy to
explicitly add such a requirement. Next we show that even if arbitrarily large inventory levels are allowed,
in an optimal policy the inventory level is always bounded. This is not surprising due to the holding cost.

Proposition 2. There is an optimal policy such that the inventory level in each facility at any point in time
is always less than or equal to

max
i∈N

√
56 · ki ·

∑
j∈M Lj

hi
. (1)

Proof. We only sketch the proof here. The details are given in Klabjan (2009). The main idea is that if a
large replenishment is made, then it is less costly to make several smaller replenishments, see Figure 5. By
using such a strategy, we clearly decrease the holding cost, however the fixed cost increases since the new
trajectory has more replenishments. It can be shown that for a replenishment larger than the quantity given
in (1), the holding cost savings outweigh the increase in the fixed cost. It is easy to see that the variable
procurement and the distribution costs do not change.

We have already introduced trivial policies in Section 3.2 in the case of n = 2. A more general definition
follows next. A trivial policy is any policy where the demand Dij(t) does not depend on t for every i ∈
N, j ∈M . In a trivial policy the demand rate on any distribution link is constant throughout the planning
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Figure 5: The trajectories for the inventory upper bound proof

horizon, i.e. it is a stationary policy. The optimal trivial policy can be computed by solving the following
nonlinear optimization problem:

min
∑
i∈N

(ci
∑
j∈M

dij +
∑
j∈M

fijdij +
√

2kihi
∑
j∈M

dij)

∑
i∈N

dij = Lj j ∈M

d ≥ 0 .

Here dij is the stationary fraction of jth market demand satisfied by facility i. Note that this is a concave
program and therefore an extreme point optimal solution exists, i.e. for every j ∈ M there exists ij ∈ N
such that d∗ijj = Lj in an optimal solution d∗. We study the effectiveness of trivial policies by means of
numerical experiments in Section 6.

5 Lagrangian Lower Bound

In this section we model our problem as a semi-Markov decision process. For a more general discussion of
semi-Markov decision processes see for example Bhattacharya and Majumdar (1989), Vega-Amaya (1993),
and Luque-Vásquez and Hernández-Lerma (1999). The resulting semi-Markov model is weakly coupled. We
develop a Lagrangian relaxation theory for weakly coupled semi-Markov decision processes. Weakly coupled
Markov decision processes have been recently studied, Hawkins (2003), Meuleau et al. (1998), Adelman
and Mersereau (2004), however we are not aware of any such study for semi-Markov decision processes.
The treatment of such processes is more involved. At the end of this section we apply this theory to the
multi-market problem in order to obtain a lower bound on the optimal value.

5.1 Semi-Markov Decision Processes

We first define semi-Markov decision processes and stationary deterministic policies. We do not define them
in a stochastic setting but only in a deterministic setting. Such processes are called semi-Markov decision
processes with Dirac’s transition kernels, Klabjan and Adelman (2006). It turns out that in many respects
such processes are even harder to study and analyze than their stochastic counterparts. Along the same line,
we do not consider randomized policies but only deterministic stationary policies.

We denote a semi-Markov decision process as sMDP(c, τ, s, S,K), where c is the cost function, τ the
transit time function, s the transition function, S the state space, and K the state-action space. For
simplicity we consider only state and action spaces in Euclidian spaces. Thus S ⊆ Rn and K ⊆ Rn+n for
some n. Given a state x, we can take any action a ∈ A(x). As a result we next move to the state s(x, a) ∈ S.
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The move takes τ(x, a) units of time and we incur cost c(x, a). The goal is to minimize the long-run average
cost.

Formally, we have K = {(x, a)|x ∈ S, a ∈ A(x)} and c : K → R, τ : K → R+, s : K → S. In addition we
define the action space A = {A(x)|x ∈ S} ⊆ Rn. A policy is a function f : S → A such that for every x ∈ S
we have f(x) ∈ A(x). For every policy f we define the long-run average cost starting in state x as

J(x, f) = lim sup
T→∞

∑T−1
j=0 c(x

j , f(xj))∑T−1
j=0 τ(xj , f(xj))

,

where x0 = x and xj = s(xj−1, f(xj−1)) for j = 1, 2, . . . .
We want to find a policy with as low long-run average cost as possible. For every x ∈ S let the optimal

average cost function be defined as J(x) = inff J(x, f). Note that we deliberately write infimum instead of
minimum since a single optimal policy might not exist. Let also ρ∗ = infx∈S J(x). The average cost problem
is to find ρ∗ and the corresponding x∗, f∗, if they exist, such that J(x∗, f∗) = ρ∗. We always assume that
ρ∗ <∞, i.e. there exists at least one policy with a finite long-run average cost.

A solution (u, ρ∗) to the optimality equation

u(x) = min{c(x, a)− ρ∗τ(x, a) + u(s(x, a))}

implies the existence of an optimal stationary deterministic policy, i.e. we can replace the infimums above
with minimums. The existence of such a pair is hard to show, Klabjan and Adelman (2006).

5.2 The Multi-Market Problem as a Semi-Markov Decision Process

Here we model our problem as a semi-Markov decision process. We give a formulation that is suitable for
applying the Lagrangian relaxation. We use the convention that 0/0 =∞ and also 0/∞ = 0,∞/0 =∞.

We clearly need to track the inventory level at each facility. Let xi be the current inventory level at
facility i. In addition, for cost accounting, we need to know the demand rate just before each decision epoch.
Let Di be the demand rate at facility i just before the current decision epoch, i.e. between the previous
decision epoch and the current one. The need for Di will be clear later. Similarly, let Fi be the distribution
cost incurred at facility i just before the decision epoch. We argue later about the role of Fi. For ease of
notation we write x = (xi)i∈N , D = (Di)i∈N , F = (Fi)i∈N .

We have two sets of action variables. Let yi be the replenishment quantity of facility i and let dij
be the demand rate between facility i and market j during the time until the next decision epoch. Let
d = (dij)i∈N,j∈M . In our case the action space does not depend on the state. Formally,

A = A(x,D, F ) = {(y, d)|
∑
i∈N

dij = Lj for all j ∈M,y ≥ 0, d ≥ 0} ,

and S = R3n
+ ,K = S ×A.

For ease of exposition we define the following quantities.

d̄i =
∑
j∈M

dij

F̄ = (
∑
j∈M

f1jd1j ,
∑
j∈M

f2jd2j , . . . ,
∑
j∈M

fnjdnj)

d̄ = (d̄1, d̄2, . . . , d̄n)

d̃i = (di1, di2, . . . , dim)

In view of Theorem 3 and since backlogging is not allowed, the next decision epoch is going to be at the
time when the first facility stocks out. Therefore

τ(x,D, F ; y, d) = min
i∈N

xi + yi
d̄i

10



and the inventory levels after this amount of time are x+ y− τ(x,D, F ; y, d) · d̄. By taking into account the
definition of D and F we conclude that F = F̄ and D = d̄ in the next decision epoch. To summarize, the
transition function is

s(x,D, F ; y, d) = (x+ y − τ(x,D, F ; y, d) · d̄, d̄, F̄ ) .

Cost accounting is very technical. The total procurement cost is
∑
i∈N ciyi and the total fixed cost is∑

i∈N kiδ(yi). Holding cost accounting is more involved and we explain it by an example, Figure 6. Consider
five decision epochs A1, A2, A3, A4, C2 spanning two consecutive replenishments at facility i. The holding
cost corresponds to the shaded area multiplied by the per unit holding cost. It is formed by four separated
regions. Consider the following relationship, where 4XY Z denotes the area of the triangle spanned by
vertices X,Y, Z.

1©+ 2©+ 3©+ 4©
= (4A1B1C4 −4A2B2C4) + (4A2B2C1 −4A3B3C1) + (4A3B3C3 −4A4B4C3) +4A4B4C2

= 4A1B1C4 + (4A2B2C1 −4A2B2C4) + (4A3B3C3 −4A3B3C1) + (4A4B4C2 −4A4B4C3) (2)

The last three expressions in brackets correspond to subtracting the area of the triangle defined by the
current inventory level and the previous demand rate from the area of the triangle defined by the current
inventory level and the next demand rate. Considering that the previous demand rate is encoded in the
state space, this can be calculated. The former demand rate is d̄i and the latter one is Di. Hence each one
of these three terms can be expressed as

x2
i

2d̄i
− x2

i

2Di
=
x2
i

2

(
1
d̄i
− 1
Di

)
=

(xi + yi)2

2

(
1
d̄i
− 1
Di

)
,

since in these decision epochs we do not replenish, i.e. yi = 0.
The first term in (2) equals to y2

i /(2d̄i), which is equivalent to (xi + yi)2/(2d̄i), since at this decision
epoch xi = 0. The two expressions can be written in a compact form as

(xi + yi)2

2

(
1
d̄i
− 1− δ(yi)

Di

)
.

We conclude that the total holding cost is∑
i∈N

(
hi(xi + yi)2

2

(
1
d̄i
− 1− δ(yi)

Di

))
.

The same trick can be used for the distribution cost. We obtain that the total distribution cost equals to∑
i∈N

(xi + yi)
(∑

j∈M fijdij

d̄i
− Fi(1− δ(yi))

Di

)
.

To summarize, the total cost equals to

c(x,D, F ; y, d) =
∑
i∈N

[
ciyi + kiδ(yi)

+
∑
i∈N

(xi + yi)
(∑

j∈M fijdij

d̄i
− Fi(1− δ(yi))

Di

)

+
∑
i∈N

(
hi(xi + yi)2

2

(
1
d̄i
− 1− δ(yi)

Di

))]
.

There are a few important observations about our model. The cost function is separable with respect to
facilities. It is possible to model the problem only with the inventory variables x, however in this case the

11
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Figure 6: Holding cost accounting

cost function depends on τ and therefore it is no longer separable. Same cannot be said about the transit
time function, however τ is the minimum of several single facility functions. The real linking part among the
several facilities are the action space constraints

∑
i∈N dij = Lj . If these constraints were not present, then

it seems plausible that the problem would decompose with respect to facilities. At this point we will use the
idea from the Lagrangian relaxation, which is standard in integer programming and it has been extended to
Markov decision processes. We neglect these constraints but we add a penalty λj for each violation. In the
next section we present a general framework for weakly coupled semi-Markov decision processes.

5.3 Lagrangian Lower Bound for Weakly Coupled Semi-Markov Decision
Processes

In this section we consider semi-Markov problems that are weakly coupled. Such problems consist of several
independent processes that are linked only by constraints in the action space and in a specific form by the
transition function and the transit cost function.

We consider a semi-Markov decision process sMDP(c, τ, s, S,K) with the following properties and optimal
value ρ∗.

c(x, a) =
∑
i∈N

ci(xi, ai) (3)

τ(x, a) = min
i∈N

τi(xi, ai) (4)

s(x, a) = α(x, a)− τ(x, a) · β(x, a) (5)
α(x, a) = (α1(x1, a1), α2(x2, a2), . . . , αn(xn, an)) (6)
β(x, a) = (β1(x1, a1), β2(x2, a2), . . . , βn(xn, an)) (7)

H(x, a) =
∑
i∈N

Hi(xi, ai) (8)

A(x) = {a ∈ Rn|ai ∈ Ai(xi), H(x, a) ≥ b} (9)

Here ci, τi, αi, βi are functions from R2 to R for each i. For each i ∈ N the function Hi is a function from R2

to Rm for a given m. We denote by Hi
k the kth component. In addition, b is a vector in Rm and Ai are any
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one dimensional action spaces. Condition (3) states that the cost is separable, while (4) states that the joint
transit time is the minimum of individual transit times. Requirements (5)-(7) impose a weak separability of
the transition function. If β(x, a) = 0, then the transition function is indeed separable. Finally, note that
(8) and (9) require that the action space is separable except for constraints H(x, a) ≥ b.

Let us fix an arbitrary λ ∈ Rm+ . For each i ∈ N we consider the semi-Markov decision processes defined by
sMDPλi (ci−λHiτi, τi, αi−τiβi, Si,Ki), where S = S1×S2×· · ·×Sn and Ki = {(xi, ai)|ai ∈ Ai(xi), xi ∈ Si}.
We require that for each i ∈ N there exists a pair (vλi , ρ

λ
i ) that solves the optimality equation

vλi (xi) = min
ai∈Ai(xi)

{ci(xi, ai)− λHi(xi, ai)τi(xi, ai)− ρλi τi(xi, ai) + vλi (αi(xi, ai)− τi(xi, ai)β(xi, ai))} . (10)

This implies that sMPDλ
i has an optimal stationary deterministic policy. Here we implicitly assume that

the minimum in the right-hand side of (10) is attained. The following is the main result of this section.

Theorem 4. Let us assume that

1. H ≥ 0,

2. ρλi ≥ 0 for every i ∈ N ,

3. βi(xi, ai) ≥ 0 for every i ∈ N and (xi, ai) ∈ Ki,

4. vλi is nondecreasing for every i ∈ N ,

5. ||vλi ||∞ < M <∞ for every i ∈ N , and

6. there exists a constant ζ > 0 such that τi(xi, ai) ≥ ζ for every (xi, ai) ∈ Ki and i ∈ N .

Then
λb+

∑
i∈N

ρλi ≤ ρ∗ .

If β = 0, then condition 4 is not needed.

Proof. Since H(x, a) ≥ b for any (x, a) ∈ K and λ ≥ 0, we obtain λH(x, a) ≥ λb. In addition, since τ ≥ 0
we in turn get (λ ·H(x, a))τ(x, a) ≥ (λ · b)τ(x, a) for every (x, a) ∈ K.

We consider sMDP(c+ λb− λHτ, τ, s, S,K) and let ρ̃λ be the optimal value. It is clear from the above
that ρ̃λ ≤ ρ∗. We next show that λb+

∑
i∈N ρ

λ
i ≤ ρ̃λ.

Let v̄λ(x) =
∑
i∈N v

λ
i (xi) for every x ∈ S and ρ̄λ = λb+

∑
i∈N ρ

λ
i . We first show that

v̄λ(x) ≤ inf
ai∈A(xi)

for every i∈N

{c(x, a)− λH(x, a)τ(x, a)− (ρ̄λ − λb)τ(x, a) + v̄λ(s(x, a))} (11)

for every x ∈ S.
Let us consider an arbitrary (x, a) such that (xi, ai) ∈ Ki for every i ∈ N . We have

s(x, a)i = αi(xi, ai)− τ(x, a)β(xi, ai) ≥ αi(xi, ai)− τi(xi, ai)β(xi, ai) . (12)

Here we used condition 3 and (4). Since vλi is nondecreasing (condition 4), it follows

vλi (s(x, a)i) ≥ vλi (αi(xi, ai)− τi(xi, ai)β(xi, ai))

and therefore
v̄λ(s(x, a)) =

∑
i∈N

vλi (s(x, a)i) ≥
∑
i∈N

vλi (αi(xi, ai)− τi(xi, ai)β(xi, ai)) . (13)

By definition we have c(x, a) =
∑
i∈N ci(xi, ai). SinceH ≥ 0 (condition 1), λ ≥ 0, and τ = min{τ1, . . . , τn},

we get

− λH(x, a)τ(x, a) ≥ −
∑
i∈N

m∑
k=1

τi(xi, ai)λkHi
k(xi, ai) = −

∑
i∈N

λHi(xi, ai)τ(xi, ai) . (14)

13



From condition 2 and (4) we obtain
ρλi τ(x, a) ≤ ρλi τi(xi, ai) . (15)

From (13), (14), and (15) we obtain

c(x, a)− λH(x, a)τ(x, a)− (ρ̄λ − λb)τ(x, a) + v̄λ(s(x, a))

≥
∑
i∈N

[
ci(xi, ai)− λHi(xi, ai)τi(xi, ai)− ρλi τi(xi, ai) + vλi (αi(xi, ai)− τi(xi, ai)β(xi, ai))

]
≥
∑
i∈N

vλi (xi) = v̄λ(x) .

We have also used (10). Since x, a are arbitrary, we conclude that (11) holds.
To finish the proof, we argue that ρ̄λ − λb ≤ ρ̃λ. For ease of notation let c̃ = c − λHτ . Let ε > 0 be

arbitrary and let us fix x ∈ S. By definition of ρ̃λ there exists a policy f = fε such that

lim sup
T→∞

∑T−1
j=0 c̃(x

j , f(xj))∑T−1
j=0 τ(xj , f(xj))

≤ ρ̃λ + ε .

From (11) we obtain

v̄λ(xj) ≤ c̃(xj , f(xj))− (ρ̄λ − λb)τ(xj , f(xj)) + v̄λ(s(xj , f(xj)))

for j = 0, 1, . . . , T − 1, where x = x0. By summing these inequalities we obtain

ρ̄λ − λb ≤
∑T−1
j=0 c̃(x

j , f(xj))∑T−1
j=0 τ(xj , f(xj))

+
v̄λ(xT )− v̄λ(x)∑T−1
j=0 τ(xj , f(xj))

. (16)

From condition 5 we obtain |v̄λ(xT )− v̄λ(x)| ≤ 2Mn and from condition 6 it follows
∑T−1
j=0 τ(xj , f(xj)) ≥

Tζ. As T goes to infinity, the last term in (16) tends to 0. Therefore we obtain

ρ̄λ − λb ≤
∑T−1
j=0 c̃(x

j , f(xj))∑T−1
j=0 τ(xj , f(xj))

≤ ρ̃λ + ε .

Since ε is arbitrary, it follows that ρ̄λ − λb ≤ ρ̃λ. This completes the proof.
If β = 0, then in (12) we have equality and subsequently the nondecreasing property is not required.

It is interesting to note that we are not able to prove that v̄λ(x) satisfies the optimality equation for
sMDP(c+ λb− λHτ, τ, s, S,K). Inequality (11) shows one direction. We point out that the theorem can be
easily extended to a stochastic setting by appropriately adapting conditions (5)-(7).

5.4 A Lower Bound for the Multi-Market Problem

In this section we apply the Lagrangian lower bound to the formulation presented in Section 5.2. In order
to carry out the analysis, we make a slight change to the actions space. Let L̂ =

∑
j∈M Lj . We redefine

A = A(x,D, F ) = {(y, d)|
∑
i∈N

dij ≥ Lj for all j ∈M,
∑
j∈M

dij ≤ L̂ for all i ∈ N, y ≥ 0, d ≥ 0} .

We can justify this in two steps. If we retain
∑
i∈N dij = Lj , j ∈ M , then it is obvious that constraints∑

j∈M dij ≤ L̂ are redundant and therefore they can be added to the actions space. In the second step,
since the cost function is nonnegative, it is easy to see that

∑
i∈N dij ≥ Lj , j ∈ M always implies equality.

To summarize, the dynamic program with the new actions space is identical to the original one. As in
Section 5.3, we denote by ρ∗ the optimal value of the dynamic program for the multi-market problem. We
first summarize some easy facts about the standard economic order quantity model and then we develop a
lower bound for the multi-market problem.
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5.4.1 Economic Order Quantity as Semi-Markov Decision Process

Consider the basic economic order quantity model with fixed procurement cost k and holding cost h. Let
the demand rate be denoted by r. Then the total cost in a cycle of length T is k + hTQ/2, where Q is the
order quantity. Since Q = Tr we obtain that the cost per unit time is kr/Q + hQ/2. The optimal order
quantity is Q =

√
2kr/h.

Now let us also assume that the per unit procurement cost is c and that for every demanded item we
pay a distribution cost of f per unit. Then the total cost of a cycle of length T is fTr + cQ+ k + hTQ/2.
After using Q = Tr we obtain that the cost per unit time is (f + c)r + kr/Q+ hQ/2, which gives the same
order quantity. In this case the long-run average cost is

ρ = (c+ f)r +
√

2khr . (17)

We can also model this simple problem as a semi-Markov decision process with the profit-to-go or value
function v and the long-run average cost of ρ. The state space x corresponds to the current inventory and the
replenishment quantity is y. The transition time between two decision epochs is (x+ y)/r. The optimality
equation reads

v(x) = min
y≥0
{cy + f(x+ y) + kδ(y) +

h(x+ y)2

2r
− ρx+ y

r
+ v(0)} . (18)

It is clear that y = 0 if x > 0 and y = Q if x = 0. The profit-to-go function v is given by

v(x) =

{
(c+ f)x 0 ≤ x < Q

hx2/(2r)− ρx/r x ≥ Q .
(19)

This function is depicted in Figure 7. Note that v is an increasing function.

5.4.2 Application to The Multi-Market Problem

In order to apply the result of Theorem 4, we need to identify the structure required by (3)-(9). We are
relaxing constraints

∑
i∈N dij ≥ Lj , j ∈M . We have

ci(xi, Di, Fi; yi, d̃i) = ciyi + kiδ(yi) + (xi + yi)
(∑

j∈M fijdij

d̄i
− Fi(1− δ(yi))

Di

)
+
hi(xi + yi)2

2

(
1
d̄i
− 1− δ(yi)

Di

)
i ∈ N

τi(xi, Di, Fi; yi, d̃i) =
xi + yi
d̄i

i ∈ N

αi(xi, Di, Fi; yi, d̃i) = xi + yi i ∈ N
αi(xi, Di, Fi; yi, d̃i) = d̄i i = n+ 1, . . . , 2n

αi(xi, Di, Fi; yi, d̃i) =
∑
j∈M

fijdij i = 2n+ 1, . . . , 3n

βi(xi, Di, Fi; yi, d̃i) = d̄i i ∈ N
βi(xi, Di, Fi; yi, d̃i) = 0 i = n+ 1, . . . , 3n

Ai(xi, Di, Fi) = {(yi, d̃i) :
∑
j∈M

dij ≤ L̂, yi ≥ 0, d̃i ≥ 0} i ∈ N

Di(xi, Di, Fi; yi, d̃i) = d̃i i ∈ N .

We also have bj = Lj for every j ∈M .
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Figure 7: The profit-to-go function of standard economic order quantity

The resulting optimality equation (10) for the decoupled semi-Markov decision process reads

vλi (xi, Di, Fi) = min
yi≥0,d̃i≥0,d̄i≤L̂

[
ci(xi, Di, Fi; yi, d̃i)−

xi + yi
d̄i

∑
j∈M

λjdij − ρλi
xi + yi
d̄i

+ vλi (0, d̃i,
∑
j∈M

fijdij)
]
.

(20)

Using the same arguments for cost accounting to those in Section 5.2, except that we reverse them, we obtain
that (20) is equivalent to

uλi (xi) = min
yi≥0,d̃i≥0,d̄i≤L̂

xiδ(yi) + ciyi +
hi(xi + yi)2

2d̄i
+
xi + yi
d̄i

∑
j∈M

(fij − λj)dij − ρλi
xi + yi
d̄i

+ uλi (0)

 .

A rigorous argument will be given later.
It is easy to see that only one market will be used, i.e.

∑
j∈M (fij − λj)dij = (fik − λk)dik for a k ∈M .

If we fix the demand rate dik (note that dik = d̄i), then by comparing this optimality equation with (18), we
see that the resulting problem is the standard economic order quantity problem with procurement cost ci,
the distribution cost fik − λk, fixed cost ki, and demand rate dik. Thus based on (17) the long-run average
cost is

ḡ(dik) = (ci + fik − λk)dik +
√

2kihidik .

Let µ = min0≤d≤L̂ ḡ(d). Clearly µ = 0 if ci + fik − λk ≥ 0 since the optimal demand rate d is 0. Let now
ci + fik − λk < 0. An elementary calculation shows that ḡ is increasing in [0, kihi

2(ci+fik−λk)2 ] and decreasing

on [ kihi
2(ci+fik−λk)2 ,∞]. In addition limd→∞ ḡ(d) = −∞ and ḡ(d̂) = 0 for d̂ = 2kihi

λk−ci−fik . Thus if L̂ < d̂, then

µ = 0, and if L̂ ≥ d̂, then the minimum is attained at d = L̂. We conclude that if λk ≤
√

2kihi
L̂

+ ci + fik,

then µ = 0. If λk >
√

2kihi
L̂

+ ci + fik, then µ = L̂(ci + fik − λk) +
√

2kihiL̂. From this expression it also
follows that k = argmaxj∈M (λj − fij). We conclude that

ρλi =

0 λk ≤ ci + fik +
√

2kihi
L̂

L̂(ci + fik − λk) +
√

2kihiL̂ otherwise.

If the assumptions in Theorem 4 are satisfied, then∑
j∈M

λjLj +
∑
i∈N

ρλi
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provides a lower bound on ρ∗. Clearly we want to find λ that maximizes this lower bound. This can be
written as the following optimization problem.

max
∑
j∈M

λjLj +
∑
i∈N

[
(L̂(ci − ti) +

√
2L̂kihi)χ(ti − ci −

√
2kihi/L̂)

]
(21a)

λj − ti ≤ fij j ∈M, i ∈ N (21b)
λ ≥ 0, t unrestricted. (21c)

Here χ(x) is 1 if x > 0 and 0 if x ≤ 0. It is easy to see that in an optimal solution ti = maxj∈M (λj−fij). The
following proposition is straightforward to prove and it shows that (21) is a concave optimization problem.

Proposition 3. The objective function (21a) is separable and concave.

To validate that (21) gives a lower bound, we need to check the requirements stated in Theorem 4.
Conditions 1 to 3 are obvious. From (19) and the aforementioned analysis it is easy to see that

uλi (xi) =

{
(ci + fik − λk)L̂ xi < Qi
hix

2
i

2L̂
− ρλi xi

L̂
xi ≥ Qi ,

where

ρλi =
√

2kihiL̂+ (ci + fik − λk)L̂ (22)

Qi =
√

2kiL̂/hi . (23)

This holds only if λk − fik > Qi − ci. If this condition is violated, then uλi (xi) = 0 and ρλi = 0. In addition
we have vλi (xi, Di, Fi) = uλi (xi). From Figure 7 it follows that vλi is increasing and therefore condition 4
holds. By Proposition 2 we can assume from the very beginning that x is in a compact space, which implies
that it suffices to consider vλi only on a compact subset. This implies that these functions are bounded and
therefore condition 5 is satisfied. From the above analysis it also follows that τi(xi, ai) ≥ Qi/L̂ for every
i ∈ N and (xi, ai) ∈ Ki, which justifies condition 6.

6 Numerical Experiments

In this section we evaluate the proposed policies and the lower bound by means of computational experiments.
All of the experiments were performed on a Toshiba Portégé M200 Tablet PC with an Intel Pentium Mobile
1.70 GHz central processing unit and 512 MB of main memory. The optimization routines were coded in
Microsoft Visual Basic 6.3 and What’s Best 7.0 was used as the optimization solver.

The main purposes of the computational study are: (1) to establish how often and by how much the
alternative policies outperform the trivial policy, and (2) to evaluate the quality of the Lagrangian lower
bound, which is computed by solving (21). We perform an extensive sensitivity analysis study. The input
data were randomly generated as described later. We start by studying the two facility setting with local
markets and a single remote market.

6.1 Two Facilities with Local Markets and a Single Remote Market

In this section we use the notation introduced in Section 3.2. The input data are generated randomly with
the underlying distributions being uniform over a given interval. The holding cost at facility i is always a
random fraction ri of the procurement cost, i.e. hi = ri · ci. We always express ri as percents of ci. The
default values are: ki ∈ [100, 400], ci ∈ [5, 15], ri ∈ [50%, 80%], fj ∈ [1, 5], Lj ∈ [3000, 6000], L ∈ [3000, 6000]
for i = 1, 2 and j = 1, 2. For example, the fixed cost at both facilities is a random number between 100
and 400. For each experiment we generated 1,000 random instances and for each instance we computed the
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lower bound, the optimal 2-slope cyclic policy, and the optimal trivial policy. Every number in the figures
and tables that follow is an average over all randomly generated instances. To compute the optimal trivial
policy, the optimal 2-slope cyclic policy, and the lower bound it takes less than a second of computational
time.

We first study the effects of various cost components and demand values with respect to the trivial and
the 2-slope cyclic policy. In addition we also report the optimality gaps. For each experiment we document
the effectiveness of the 2-slope cyclic policies with respect to the optimal trivial policy. We record the
frequency, which is defined as the number of times the 2-slope cyclic policy outperforms the trivial policy.
The relative improvement, which we also call the improvement gap, is defined as 100 times the ratio of the
value of the trivial policy minus the value of the 2-slope cyclic policy over the value of the 2-slope cyclic
policy. We also measure the average of the improvement gaps and the maximum improvement gap of the
2-slope cyclic policy. The left charts in Figures 8-11 always show these values. In these charts the right axis
shows the frequency values and the other axis the values corresponding to the average and the minimum.
We also show the relative gap called the optimality gap between the two policies and the lower bound.
The values for “Maximum” correspond to the maximum optimality gap in all 1,000 instances. The average
values correspond to the average optimality gap among all of the instances. The minimum value shows the
minimum optimality gap among all positive optimality gaps. These three statistics are shown on right charts
in Figures 8-11. The two values pertaining to the minimum and the average are shown on the left axis and
the maximum scale is on the right axis. The frequency of zero optimality gaps is shown later.

In the first experiment we vary the fixed cost from the average value of a 100 to 1,500, Figure 8. As
the fixed cost increases, the effectiveness of the 2-slope cyclic policy keeps improving. The frequency varies
from 2% for the fixed cost in the range [0, 200] to 15% for the fixed cost in the range [1000, 2000]. The
value 15% means that for 150 instances out of 1,000, the 2-slope cyclic policy outperforms the trivial policy.
Similar trend is observed for the maximum and the average improvement gaps. The maximum observed
improvement is approximately 1.3% while the corresponding average improvement gap of the two policies is
0.4%. The improvements and their frequencies are definitely low. The same increasing trend is seen with
respect to the optimality gap. While the gap can be relatively large (up to 40%), the average optimality
gap is very low. It varies from 0.50% to 2.00%. Whenever the gap is positive, we see that it is always larger
than approximately 0.04%.
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Figure 8: The effect of the fixed cost

The sensitivity analysis with respect to the distribution cost is shown in Figure 9. All of the remaining
cost values correspond to the default ones, e.g. the fixed costs are random numbers in the range [100, 400].
The improvement and the optimality gap ranges are of the same order. We observe that with the increased
distribution cost, the 2-slope cyclic policy is less effective and the optimality gap decreases as the distribution
cost increases. The trends are less pronounced as when varying the fixed cost.

Next we vary the holding cost, Figure 10, while all other values correspond to the default ones. Recall
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Figure 9: The effect of the distribution cost

that the holding cost is expressed relative to the procurement cost, which is constant in this experiment.
Thus in this experiments we vary only ri. It is clear that with the increased holding cost, the 2-slope cyclic
policy becomes better. Likewise, the optimality gap keeps increasing.
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Figure 10: The effect of holding cost

To wrap up the sensitivity analysis we study the effect of different demand ranges. We are interested in
the ratio of the remote demand and the local demands. The demand ratio is defined as the average demand
of the two local markets over the average demand of the remote market. Note that the two local markets
have always the same range. For example, if L1, L2 ∈ [3000, 7000], L ∈ [1000, 3000], then the demand ratio
is 5, 000/2, 000 = 2.5. The demand ratio of the default data is 1.0. The results are shown in Figure 11. All
of the other parameters are kept at their default values. With the increased demand ratio, we observe a
decreasing trend in the frequency when the 2-slope cyclic policy outperforms the trivial policy. On the other
hand, the maximum and the average improvement gaps keep increases (with the exception of the demand
ratio 1.0). It seems that the 2-slope cyclic policy less frequently makes an improvement, however, whenever
it does, the improvement is larger. This has not been observed in the previous charts. The optimality gap
shows no trend.

We do not show the sensitivity analysis with respect to the procurement cost since the computational
experiments revealed that the effectiveness of the 2-slope cyclic policy and the optimality gaps are indifferent
to this cost.

In Figure 12 we show the corresponding histograms with respect to the default ranges. For the 2-slope
cyclic policy chart, we consider only those instances when an improvement is made. Based on the left chart
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Figure 11: The effect of the demand ratio

we see that most of the time only a slight improvement is made. Very seldom the improvements larger
than 0.50% occur. This clearly explains why is the average improvement gap low. The right figure shows
the optimality gap, which exhibits the usual normal distribution like shape. Large optimality gaps of 40%
happen rarely. Unfortunately zero gap instances are non existing.
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Figure 12: Histograms

6.2 3-slope Cyclic Policy and the General Case with 2 Facilities and 2 Markets

In this section we assume that n = 2,m = 2 and thus there is a distribution cost from both facilities to
either of the two markets. Due to higher computational times (approximately a second for each one of the
policy and the lower bound), in this section for each experiment we generated 500 instances.

We also study a new set of policies. A 3-slope cyclic policy is depicted in Figure 13. In this policy during
a period or cycle facility 1 replenishes once and facility 2 replenishes twice. A similar policy can be obtained
by imposing that facility 1 replenishes twice and facility 2 once during the period. We call the 3-slope cyclic
policy the best of the two policies. We can compute the best 3-slope cyclic policy by solving two nonlinear
optimization problems that are given in Klabjan (2009). We call the 2-slope cyclic and the 3-slope cyclic
policies simply the slope policies.

We consider 3 cases, which are summarized in Table 1. We vary all of the parameters except the
distribution costs. The effect of the distribution costs is studied later. The values are selected in such a way
that we have a variety of different cost parameters for all cost components except the distribution cost.
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Figure 13: The 3-slope cyclic policy

ki ci fij ri Lj
Case 1 [100,300] [5,10] [0.1,2.1] [80%,100%] [2000,5000]
Case 2 [1000,1500] [5,10] [0.1,2.1] [100%,300%] [5000,10000]
Case 3 [500,1000] [2,5] [0.1,2.1] [80%,100%] [3000,6000]

Table 1: The input data for the three cases

The results are shown in Table 2. The table shows the effectiveness of the 3-slope cyclic policy, the
performance of slope policies, and the optimality gap under this more general setting. Frequency and
maximum have the same meaning as in Section 6.1. The first row “slopes vs. trivial” shows the relevant
values for the best value between the slope policies and the trivial policy. The average and the maximum
values correspond to the average and the maximum improvement of the slope policies with respect to the
trivial policy. The second row “gap” shows similar statistics but we compare the best of the policies and the
lower bound. The frequency value shows how often the optimality gap equals zero. The next row compares
the 3-slope cyclic policy versus the 2-slope cyclic policy. The frequency shows how often the 3-slope cyclic
policy outperforms the 2-slope cyclic policy. The average and the maximum columns show the average and
the maximum improvement of the 3-slope cyclic policy with respect to the 2-slope cyclic policy. The last
row compares the 3-slope cyclic policy versus the best value among all 3 policies. The frequency column
shows how often is the 3-slope cyclic policy the best one. The remaining two values show the improvement
whenever there is one.

The improvements of the slope policies are at the same level as those already observed. The improvement
happens rarely (less than 4%) and the average improvement is low. The results with respect to the optimality
gap are improved. First, note that the optimality gap is often zero (in more than half of the instances), which
means that the best of the trivial and the slope policy is optimal in many cases. The average optimality
gap is relatively low and the maximum gap is low as well (less than 8% in two cases and 29% in Case
2). The maximum optimality gap is substantially lower than in Section 6.1, where it was observed to be
as high as 45%. The last two rows reveal an interesting fact about the 3-slope cyclic policy. The next to
the last row shows that the 3-slope cyclic policy almost always outperforms the 2-slope cyclic policy and
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Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
Slopes vs. trivial 3.40% 0.40% 3.20% 0.17% 0.42% 0.26% 0.44% 0.55% 0.75%
Gap 61.00% 66.00% 53.40% 0.30% 0.32% 0.66% 5.34% 28.20% 7.62%
3-slope vs. 2-slope 95.40% 98.80% 94.40% 1.01% 2.08% 1.88% 2.31% 4.69% 4.15%
3-slope best 0.04% 0.00% 0.01% 0.09% 0.00% 0.17% 0.10% 0.00% 0.24%

Frequency MaximumAverage

Table 2: Effectiveness of using the 3-slope cyclic policy

the improvements can be quite high (up to 5%). On the other hand, as the last row shows, the 3-slope
cyclic policy is rarely the best policy among those considered. From these findings we observe an interesting
anomaly. In almost all of the cases, whenever the 2-slope cyclic policy outperforms the trivial policy, the
3-slope cyclic policy is worse than the 2-slope cyclic policy. On the other hand, whenever the 2-slope cyclic
policy is worse than the trivial policy, the 3-slope cyclic policy outperforms the 2-slope cyclic policy but not
the trivial policy.

In Table 3 we study the effect of the distribution costs. Case 1 instance has the distribution cost in the
range [0.1, 2] and the next one has fij ∈ [1, 5] for every i = 1, 2, j = 1, 2. In the third case we pick a random
arc among the four of them and we assign a random value in [0, 2]. Next we randomly pick an arc among
the remaining three arcs and give value [10, 12]. We next select a random arc between the two remaining
arcs and assign the distribution cost in the range [20, 22]. The last arc gets the cost in the range [30, 32].
Case 4 is generated in the same way except that the interval length 2 is replaced by 5. All of the remaining
values equal to the default values in Section 6.1. Average, maximum, and frequency columns correspond to
the improvement of the slope policies with respect to the trivial policy. The interpretation of the fifth and
the sixth column are identical to the corresponding columns in Table 2. The last four columns correspond to
the comparison of the best policy value and the lower bound. The last column shows the average optimality
gap among all instances that produce a positive optimality gap.

3-slope vs. Average
Average Maximum Frequency 3-slope best 2-slope gap=0 Average Maximum Positive

Case 1 0.00% 0.00% 0.00% 0.00% 71.00% 24% 0.66% 1.93% 0.87%
Case 2 0.00% 0.00% 0.00% 0.00% 77.00% 33% 0.57% 3.51% 0.75%
Case 3 0.09% 0.28% 0.28% 0.80% 94.20% 45% 0.34% 25.47% 0.61%
Case 4 0.06% 0.19% 2.60% 0.60% 95.80% 64% 0.21% 37.52% 0.59%

Policy Lower bound

Table 3: The effect of distribution costs in the case n = 2,m = 2

From Table 3 we observe that if all of the distribution costs are in the same range, then the slope policy
is ineffective. In this case it is better to simply run the trivial policy. As the distribution cost ranges vary
between facilities and markets (Case 3 and Case 4), the slope policies become more effective. In Case 4,
in more than 2% of the instances the slope policies outperform the trivial policy. In these two cases, the
3-slope cyclic policy is the best policy on average on 0.7% of the instances, which is better than what was
observed in Table 2. Unfortunately the improvements are not large. The lower bound as well becomes more
effective in Cases 3 and 4. In Case 4 it is zero in more than half of the cases. In all of the cases the average
optimality gap is low and it is the lowest in Case 4.
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6.3 Several Markets

In this section we study the case of 2 facilities and several markets. In particular, we consider m = 2, 6, 13, 26.
The 2-slope cyclic policy can easily be extended to the case of a general number of markets m. The underlying
optimization problem for computing an optimal 2-slope cyclic policy in this general case is given in Klabjan
(2009). Each reported value is averaged over 500 randomly generated instances.

The results are summarized in Table 4. The input data correspond to the default data given in Section 6.1.
This table shows the benefits of using the 2-slope cyclic policy versus the trivial policy. As the number of
markets m increases, the 2-slope cyclic policy more frequently outperforms the trivial policy. For m = 26,
this frequency is 11%, which is much better than all of these values observed so far. On the downside, the
relative improvements stay low. They actually decrease with an increasing number of markets.

Average Maximum Frequency
2x2 0.06% 0.19% 2.60%
2x6 0.01% 0.41% 6.00%
2x13 0.03% 0.11% 7.80%
2x26 0.02% 0.04% 11.00%

Table 4: Increasing number of markets

6.4 Concluding Remarks

We next summarize our main findings with respect to policies and the lower bound based on the computa-
tional experiments. The most important conclusion is that the trivial policy is very efficient and in many
cases very close to the optimal policy (less than 1% optimality gap). The slope policies become more effective
when the fixed and the holding costs are high. In addition, if the distribution costs vary among facilities
and markets, then slope policies more frequently outperform the trivial policy. Their benefits also increase
with an increased number of markets. With 26 markets they outperform the trivial policy 11% of the times.
However, the improvements are not large, on average approximately 0.02%.

The lower bound usually produces very good bounds. The average optimality gap is typically around
0.5% and approximately half of the times there is no gap at all. However, the gap does not appear to be
bounded by a constant since we have encountered cases with a 50% gap.
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