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Abstract—Generative adversarial nets (GANs) have been suc-
cessfully applied to the artificial generation of image data. In
terms of text data, much has been done on the artificial generation
of natural language from a single corpus. We consider multiple
text corpora as the input data, for which there can be two
applications of GANs: (1) the creation of consistent cross-corpus
word embeddings given different word embeddings per corpus;
(2) the generation of robust bag-of-words document embeddings
for each corpora. We demonstrate our GAN models on real-world
text data sets from different corpora, and show that embeddings
from both models lead to improvements in supervised learning
problems.

I. INTRODUCTION

Generative adversarial nets (GAN) [1] belong to a class
of generative models which are trainable and can generate
artificial data examples similar to the existing ones. In a GAN
model, there are two sub-models simultaneously trained: a
generative model G from which artificial data examples can
be sampled, and a discriminative model D which classifies
real data examples and artificial ones from G. By training G
to maximize its generation power, and training D to minimize
the generation power of G, so that ideally there will be no
difference between the true and artificial examples, a minimax
problem can be established. The GAN model has been shown
to closely replicate a number of image data sets, such as
MNIST, Toronto Face Database (TFD), CIFAR-10, SVHN, and
ImageNet [1], [2].

The GAN model has been extended to text data in a
number of ways. For instance, [3] applied a long-short term
memory (LSTM) [4] generator and approximated discretization
to generate text data. SeqGAN [5] is another model that
mainly addresses two problems faced by GAN models in
text generation: difficulty in passing gradient updates to the
generative model due to discrete tokens and limitation of
discriminative model in assessing partial sequences. Moreover,
[6] applied the GAN model to generate dialogues, i.e. pairs of
questions and answers. Meanwhile, the GAN model can also
be applied to generate bag-of-words embeddings of text data,
which focus more on key terms in a text document rather than
the original document itself. Such a model is provided by [7]
using the energy-based GAN [8]. In addition, GAN is used by
[9] along ideas from conditional variational autoencoders to

generate plausible paraphrases that conveys the same meaning
as the original sentence.

To the best of our knowledge, there has been no literature
on applying the GAN model to multiple corpora of text data.
Multi-class GANs have been proposed [10; 11], but a class in
multi-class classification is not the same as multiple corpora.
Because knowing the underlying corpus membership of each
text document can provide better information on how the text
documents are organized, and documents from the same corpus
are expected to share similar topics or key words, considering
the membership information can benefit the training of a text
model from a supervised perspective. We consider two problems
associated with training multi-corpus text data: (1) Given a
separate set of word [12], how to obtain a better set of cross-
corpus word embeddings from them? (2) How to incorporate
the generation of document embeddings from different corpora
in a single GAN model?

For the first problem, we train a GAN model which discrim-
inates documents represented by different word embeddings,
and train the cross-corpus word embedding so that it is similar
to each existing word embedding per corpus. For the second
problem, we train a GAN model which considers both cross-
corpus and per-corpus “topics” in the generator, and applies
a discriminator which considers each original and artificial
document corpus. We also show that with sufficient training, the
distribution of the artificial document embeddings is equivalent
to the original ones. Our work has the following contributions:
(1) we extend GANs to multiple corpora of text data, (2) we
provide applications of GANs to finetune word embeddings and
to create robust document embeddings, and (3) we establish
theoretical convergence results of the multi-class GAN model.

Section II reviews existing GAN models related to this paper.
Section III describes the GAN models on training cross-corpus
word embeddings and generating document embeddings for
each corpora, and explains the associated algorithms. Section
IV presents the results of the two models on text data sets, and
transfers them to supervised learning. Section V summarizes
the results and concludes the paper.

II. LITERATURE REVIEW

In a GAN model, we assume that the data examples x are
drawn from a distribution px(·), and the artificial data examples



G(z) := G(z, θg) are transformed from the noise distribution
z ∼ pz(·). The binary classifier D(·) outputs the probability
of a data example (or an artificial one) being an original one.
Because the probabilistic structure of a GAN can be unstable
to train, the Wasserstein GAN [13] is proposed which applies
a 1-Lipschitz function as a discriminator.

We note that in many circumstances, data sets are obtained
with supervised labels or categories, which can add explanatory
power to unsupervised models such as the GAN. For instance,
the CoGAN [10] considers pairs of data examples from different
categories, and the weights of the first few layers (i.e. close
to z) are tied. The conditional GAN where the generator G
and the discriminator D depend on the class label y was
proposed in [11]. Work [2] applied the class labels for semi-
supervised learning with an additional artificial class. However,
all these models consider only images and do not produce
word or document embeddings, therefore being different from
our models.

For generating real text, [3] proposed textGAN in which
the generator has an LSTM form, and a uni-dimensional
convolutional neural network [14; 15] is applied as the
discriminator. Also, a weighted softmax function is applied
to make the argmax function differentiable. The focus of our
work is to summarize information from longer documents, so
we apply document embeddings such as the tf-idf to represent
the documents rather than to generate real text.

For generating bag-of-words embeddings of text, [7] pro-
posed a GAN model with the mean squared error of a de-
noising autoencoder as the discriminator, and the output x is
the one-hot word embedding of a document. Our models are
different from this model because we consider tf-idf document
embeddings for multiple text corpora in the deGAN model
(Section III-B), and weGAN (Section III-A) can be applied
to produce word embeddings. Also, we focus on robustness
based on several corpora, while [7] assumed a single corpus.

For extracting word embeddings given text data, [12] pro-
posed the word2vec model, for which there are two variations:
the continuous bag-of-words (cBoW) model [16], where the
neighboring words are used to predict the appearance of each
word; the skip-gram model, where each neighboring word
is used individually for prediction. In GloVe [17], a bilinear
regression model is trained on the log of the word co-occurrence
matrix. In these models, the weights associated with each
word are used as the embedding. For obtaining document
embeddings, the para2vec model [18] adds per-paragraph
vectors to train word2vec-type models, so that the vectors
can be used as embeddings for each paragraph. A simpler
approach by taking the average of the embeddings of each
word in a document and output the document embedding is
exhibited in [19].

III. MODELS AND ALGORITHMS

Suppose we have a number of different corpora C1, . . . , CM ,
which for example can be based on different categories
or sentiments of text documents. We suppose that Cm =
{dm1 , . . . , dmnm

}, m = 1, . . . ,M , where each dmi represents

a document. The words in all corpora are collected in a
dictionary, and indexed from 1 to V . We name the GAN
model to train cross-corpus word embeddings as “weGAN,”
where “we” stands for “word embeddings,” and the GAN
model to generate document embeddings for multiple corpora
as “deGAN,” where “de” stands for “document embeddings.”

A. weGAN: Training cross-corpus word embeddings
We assume that for each corpora Cm, we are given word

embeddings for each word vm1 , . . . , v
m
V ∈ Rd, where d is

the dimension of each word embedding. We are also given
a classification task on documents that is represented by a
parametric model C taking document embeddings as feature
vectors. We construct a GAN model which combines different
sets of word embeddings Vm := {vmi }Vi=1, m = 1, . . . ,M ,
into a single set of word embeddings G := {v0i }Vi=1. Note
that V1, . . . ,VM are given but G is trained. Here we consider
G as the generator, and the goal of the discriminator is to
distinguish documents represented by the original embeddings
V1, . . . ,VM and the same documents represented by the new
embeddings G.

Next we describe how the documents are represented by
a set of embeddings V1, . . . ,VM and G. For each document
dmi , we define its document embedding with Vm as gmi :=
f(dmi ,Vm), where f(·) can be any mapping. Similarly, we
define the document embedding of dmi with G as follows,
with G = {v0j }Vj=1 trainable fG(dmi ) := f(dmi ,G). In a typical
example, word embeddings would be based on word2vec or
GLoVe. Function f can be based on tf-idf, i.e. f(dmi ,V) =∑V

j=1 t
m
ij v

m
j where vmj is the word embedding of the j-th word

in the m-th corpus Cm and tmi = (tmi1, . . . , t
m
iV ) is the tf-idf

representation of the i-th document dmi in the m-th corpus Cm.
To train the GAN model, we consider the following minimax

problem

min
C,G

max
D

M∑
m=1

nm∑
i=1

[log(D(gmi )) + log(1− D(fG(dmi )))

− log(eTkm
i
C(fG(dmi )))],

(1)

where D is a discriminator of whether a document is original
or artificial. Here kmi is the label of document dmi with
respect to classifier C, and ekm

i
is a unit vector with only

the kmi -th component being one and all other components
being zeros. Note that log(eTkm

i
C(fG(dmi ))) is equivalent to

KL(ekm
i
‖C(fG(dmi ))), but we use the former notation due to

its brevity.
The intuition of (1) is explained as follows. First we consider

a discriminator D which is a feedforward neural network
(FFNN) with binary outcomes, and classifies the document
embeddings {fG(dmi )}nm

i=1
M
m=1 against the original document

embeddings {gmi }
nm
i=1

M
m=1. Discriminator D minimizes this

classification error, i.e. it maximizes the log-likelihood of
{fG(dmi )}nm

i=1
M
m=1 having label 0 and {gmi }

nm
i=1

M
m=1 having

label 1. This corresponds to
M∑

m=1

nm∑
i=1

[log(D(gmi )) + log(1−D(fG(dmi )))] . (2)



For the generator G, we wish to minimize (1) against G so that
we can apply the minimax strategy, and the combined word
embeddings G would resemble each set of word embeddings
V1, . . . ,VM . Meanwhile, we also consider classifier C with
K outcomes, and associates dmi with label kmi , so that the
generator G can learn from the document labeling in a semi-
supervised way.

If the classifier C outputs a K-dimensional softmax prob-
ability vector, we minimize the following against G, which
corresponds to (1) given D and C:

M∑
m=1

nm∑
i=1

[log(1−D(fG(dmi )))− log(eTkm
i
C(fG(dmi )))

]
. (3)

For the classifier C, we also minimize its negative log-likelihood

−
M∑

m=1

nm∑
i=1

log(eTkm
i
C(fG(dmi ))). (4)

Assembling (2-4) together, we retrieve the original minimax
problem (1).

We train the discriminator and the classifier, {D, C}, and
the combined embeddings G according to (2-4) iteratively for
a fixed number of epochs with the stochastic gradient descent
algorithm, until the discrimination and classification errors
become stable.

Fig. 1 illustrates the weGAN model. The algorithm for
weGAN is summarized in Algorithm 1 in the appendix B.

B. deGAN: Generating document embeddings for multi-corpus
text data

In this section, our goal is to generate document embeddings
which would resemble real document embeddings in each
corpus Cm, m = 1, . . . ,M . We construct M generators,
G1, . . . ,GM so that Gm generate artificial examples in cor-
pus Cm. As in Section III-A, there is a certain document
embedding such as tf-idf, bag-of-words, or para2vec. Let
G = {G1, . . . ,GM}. We initialize a noise vector n =

(n1, . . . , ndn
) ∈ Rdn , where n1, . . . , ndn

iid∼ N , and N is
any noise distribution.

For a generator Gm = {Wm
h ,W

0
h ,W

m
o ,W

0
o } represented

by its parameters, we first map the noise vector n to the
hidden layer, which represents different topics. We consider
two hidden vectors, h0 for general topics and hm for specific
topics per corpus, hm = a1(W

m
h n), h

0 = a1(W
0
hn). Here

a1(·) represents a nonlinear activation function. In this model,
the bias term can be ignored in order to prevent the “mode
collapse” problem of the generator. Having the hidden vectors,
we then map them to the generated document embedding with
another activation function a2(·),

om = a2(W
m
o h

m + w0
oh

0). (5)

To summarize, we may represent the process from noise to the
document embedding as

Gm(n) = a2(W
m
o a1(W

m
h n) + w0

oa1(W
0
hn)). (6)
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Fig. 1: Model structure of weGAN.

Given the generated document embeddings G1(n), . . . ,GM (n),
we consider the following minimax problem to train the
generator G and the discriminator D:

min
G

M∑
m=1

En log
{
eTM+mD∗G(Gm(n))/

[eTM+mD∗G(Gm(n)) + eTmD∗G(Gm(n))]
}
,

(7)

where

D∗G ∈ argmax
D

M∑
m=1

Edm∼pm

[
log(eTmD(dm))

]
+

M∑
m=1

En[log(e
T
M+mD(Gm(n)))].

(8)

Here we assume that any document embedding dm in corpus
Cm is a sample with respect to the probability density pm.
Note that when M = 1, the discriminator part of our model is
equivalent to the original GAN model.

To explain (7-8), first we consider the discriminator D.
Because there are multiple corpora of text documents, here we
consider 2M categories as output of D, from which categories
1, . . . ,M represent the original corpora C1, . . . , CM , and
categories M + 1, . . . , 2M represent the generated document
embeddings (e.g. bag-of-words) from G1, . . . ,GM . Assume the
discriminator D, a feedforward neural network, outputs the
distribution of a text document being in each category. We
maximize the log-likelihood of each document being in the
correct category against D
M∑

m=1

Epm

[
log(eTmD(dm))

]
+

M∑
m=1

En[log(e
T
M+mD(Gm(n)))].

(9)
Such a classifier does not only classifies text documents into
different categories, but also considers M “fake” categories
from the generators. When training the generators G1, . . . ,GM ,
we minimize the following which makes a comparison between
the m-th and (M +m)-th categories

M∑
m=1

En log
eTM+mD(Gm(n))

eTM+mD(Gm(n)) + eTmD(Gm(n))
. (10)

The intuition of (10) is that for each generated document
embedding Gm(n), we need to decrease eTM+mD(Gm(n)),
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Fig. 2: Model structure of deGAN.

which is the probability of the generated embedding being
correctly classified, and increase eTmD(Gm(n)), which is the
probability of the generated embedding being classified into the
target corpus Cm. The ratio in (10) reflects these two properties.

We iteratively train (9) and (10) until the classification error
of D becomes stable. Fig. 2 illustrates the deGAN model. The
algorithm for deGAN algorithm is summarized in Algorithm
2 in the appendix B.

We next show that from (7-8), the distributions of the
document embeddings from the optimal G1, . . . ,GM are
equal to the data distributions of C1, . . . , CM , which is a
generalization of [1] to the multi-corpus scenario. The proof
of Proposition 1 is in the appendix A.

Proposition 1. Let us assume that the random variables
d1, . . . , dM are continuous with probability density p1, . . . , pM
which have bounded support X ; n is a continuous random
variable with bounded support and activations a1 and a2
are continuous; and that G1∗, . . . ,GM∗ are solutions to (7-
8). Then q∗1 , . . . , q

∗
M , the probability density of the document

embeddings from G1∗, . . ., GM∗, are equal to p1, . . . , pM . �

IV. EXPERIMENTS

In the experiments, we consider four data sets, two of
them newly created and the remaining two already public:
CNN, TIME, 20 Newsgroups (appendix C), and Reuters-21578
(appendix D). The code and the two new data sets are available
at github.com/deeplearning2018/emgan. For the pre-processing
of all the documents, we transformed all characters to lower
case, stemmed the documents, and ran the word2vec model on
each corpora to obtain word embeddings with a size of 300.
In all subsequent models, we only consider the most frequent
5,000 words across all corpora in a data set.

The document embedding in weGAN is the tf-idf weighted
word embedding transformed by the tanh activation, i.e.
f(dmi ,Vm) = tanh

(∑V
j=1 t

m
ij v

m
j

)
. For deGAN, we use L1-

normalized tf-idf as the document embedding because it is
easier to interpret than the transformed embedding using tanh.

For weGAN, the cross-corpus word embeddings are initial-
ized with the word2vec model trained from all documents. For
training our models, we apply a learning rate which increases
linearly from 0.01 to 1.0 and train the models for 100 epochs
with a batch size of 50 per corpus. The classifier C has a single

hidden layer with 50 hidden nodes, and the discriminator with a
single hidden layer D has 10 hidden nodes. All these parameters
have been optimized. For the labels kmi in (1), we apply corpus
membership of each document.

For the noise distribution N for deGAN, we apply the
uniform distribution U(−1, 1). In (6) for deGAN, a1 = tanh
and a2 = softmax so that the model outputs document
embedding vectors which are comparable to L1-normalized
tf-idf vectors for each document. For the discriminator D of
deGAN, we apply the word2vec embeddings based on all
corpora to initialize its first layer, followed by another hidden
layer of 50 nodes. For the discriminator D, we apply a learning
rate of 0.1, and for the generator G, we apply a learning rate
of 0.001, because the initial training phase of deGAN can be
unstable. We also apply a batch size of 50 per corpus. For the
softmax layers of deGAN, we initialize them with the log of
the topic-word matrix in latent Dirichlet allocation (LDA) [20]
in order to provide intuitive estimates.

For weGAN, we consider two metrics for comparing the
embeddings trained from weGAN and those trained from all
documents: (1) applying the document embeddings to cluster
the documents into M clusters with the K-means algorithm, and
calculating the Rand index (RI) [21] against the original corpus
membership; (2) finetuning the classifier C and comparing the
classification error against an FFNN of the same structure
initialized with word2vec (w2v). For deGAN, we compare
the performance of finetuning the discriminator of deGAN
for document classification, and the performance of the same
FFNN. Each supervised model is trained for 500 epochs and
the validation data set is used to choose the best epoch.

A. The CNN data set

In the CNN data set, we collected all news links on
www.cnn.com in the GDELT 1.0 Event Database from April
1st, 2013 to July 7, 2017. We then collected the news articles
from the links, and kept those belonging to the three largest
categories: “politics,” “world,” and “US.” We divided these
documents into 21,674 training documents, from which 2,708
validation documents are held out, and 5,420 testing documents.

We hypothesize that because weGAN takes into account
document labels in a semi-supervised way, the embeddings
trained from weGAN can better incorporate the labeling
information and therefore, produce document embeddings
which are better separated. The results are shown in Table I and
averaged over 5 randomized runs. Performing the Welch’s t-test,
both changes after weGAN training are statistically significant
at a 0.05 significance level. Because the Rand index captures
matching accuracy, we observe from Table I that weGAN tends
to improve both metrics.

Meanwhile, we also wish to observe the spatial structure
of the trained embeddings, which can be explored by the
synonyms of each word measured by the cosine similarity. On
average, the top 10 synonyms of each word differ by 0.22 word
after weGAN training, and 20.7% of all words have different
top 10 synonyms after training. Therefore, weGAN tends to
provide small adjustments rather than structural changes. Table

https://github.com/deeplearning2018/emgan
http://www.cnn.com/
https://www.gdeltproject.org/


II lists the 10 most similar terms of three terms, “Obama,”
“Trump,” and “U.S.,” before and after weGAN training, ordered
by cosine similarity.

We observe from Table II that for “Obama,” ”Trump” and
“Tillerson” are more similar after weGAN training, which means
that the structure of the weGAN embeddings can be more
up-to-date. For “Trump,” we observe that “Clinton” is not
among the synonyms before, but is after, which shows that
the synonyms after are more relevant. For “U.S.,” we observe
that after training, “American” replaces “British” in the list of
synonyms, which is also more relevant.

We next discuss deGAN. In Table III, we compare the
performance of finetuning the discriminator of deGAN for
document classification, and the performance of the FFNN
initialized with word2vec. The change is also statistically
significant at the 0.05 level. From Table III, we observe that
deGAN improves the accuracy of supervised learning.

To compare the generated samples from deGAN with the
original bag-of-words, we randomly select one record in each
original and artificial corpus. The records are represented by
the most frequent words sorted by frequency in descending
order where the stop words are removed. The bag-of-words
embeddings are shown in Table IV.

From Table IV, we observe that the bag-of-words embed-
dings of the original documents tend to contain more name
entities, while those of the artificial deGAN documents tend
to be more general. There are many additional examples not
shown here with observed artificial bag-of-words embeddings
having many name entities such as “Turkey,” “ISIS,” etc. from
generated documents, e.g. “Syria eventually ISIS U.S. details
jet aircraft October video extremist...”

We perform dimensional reduction using t-SNE [22], and plot
100 random samples from each original or artificial category.
The original samples are shown in red and the generated ones
are shown in blue in fig. 3. We do not further distinguish the
categories because there is no clear distinction between the
three original corpora, “politics,” “world,” and “US.”

We observe that the original and artificial examples are
generally mixed together and not well separable, which means
that the artificial examples are similar to the original ones.
However, we also observe that the artificial samples tend to
be more centered and have no outliers (represented by the
outermost red oval).

TABLE I: A comparison between word2vec and weGAN in
terms of the Rand index and the classification accuracy for the
CNN data set.

w2v-RI weGAN-RI
mean 67.88% 68.45%

sd. 0.02% 0.01%
w2v-accuracy weGAN-accuracy

mean 92.05% 92.36%
sd. 0.06% 0.03%

TABLE II: Synonyms of “Obama,” “Trump,” and “U.S.” before
and after weGAN training for the CNN data set.

Obama w2v Bush Trump Kerry Abe Ne-
tanyahu Rouhani Erdogan he Karzai Tillerson

Obama weGAN Trump Bush Kerry Abe Ne-
tanyahu Erdogan Tillerson he Carter Rouhani

Trump w2v Obama Pence Erdogan Bush
Duterte he Sanders Macron Christie Tillerson

Trump weGAN Obama Pence Bush Christie
Sanders Clinton Erdogan Tillerson Macron

Duterte
U.S. w2v US Pentagon United Iranian

NATO Turkish Qatar Iran British UAE
U.S. weGAN US Pentagon United Iranian

NATO Turkish Iran Qatar American UAE

10 5 0 5 10
10

5

0

5

10

Fig. 3: 2-d representation of original (red) and artificial (blue)
examples in the CNN data set.

B. The TIME data set

In the TIME data set, we collected all news links on time.com
in the GDELT 1.0 Event Database from April 1st, 2013 to
July 7, 2017. We then collected the news articles from the
links, and kept those belonging to the five largest categories:
“Entertainment,” “Ideas,” “Politics,” “US,” and “World.” We

TABLE III: A comparison between word2vec and deGAN in
terms of the accuracy for the CNN data set.

w2v-accuracy deGAN-accuracy
mean 92.05% 92.29%

sd. 0.06% 0.09%

TABLE IV: Bag-of-words representations of original and
artificial text in the CNN data set.

politics original India US Carter defense
Indian relationship China said military two

politics deGAN year US meeting used read
security along building worth foreign

world original Turkey Turkish Attack ISIS
said Kurdish Erdogan group bomb report

world deGAN cut company get lot made
code could Steve items may road block phone

US original climate change year study
according says country temperatures average
US deGAN area efforts volunteers town

weapons shot local nearly department also

http://time.com/
https://www.gdeltproject.org/


TABLE V: A comparison between word2vec, weGAN, and
deGAN in terms of the Rand index and the classification
accuracy for the TIME data set.

w2v-RI weGAN-RI
mean 70.96% 71.14%

sd. 0.02% 0.02%
w2v-accur. weGAN-accur. deGAN-accur.

83.79% 84.76% 85.38%
0.17% 0.08% 0.11%

divided these documents into 12,286 training documents, from
which 1,535 validation documents are held out, and 3,075
testing documents. Table V compares the clustering results
of word2vec and weGAN, and the classification accuracy of
an FFNN initialized with word2vec, finetuned weGAN, and
finetuned deGAN. The results in Table V are the counterparts
of Table I and Table III for the TIME data set. The differences
are also significant at the 0.05 level.

From Table V, we observe that both GAN models yield
improved performance of supervised learning. For weGAN, on
an average, the top 10 synonyms of each word differ by 0.27
word after weGAN training, and 24.8% of all words have
different top 10 synonyms after training. We also compare the
synonyms of the same common words, “Obama,” “Trump,”
and “U.S.,” which are listed in Table VI. In the TIME data
set, for “Obama,” “Reagan” is ranked slightly higher as an
American president. For “Trump,” “Bush” and “Sanders” are
ranked higher as American presidents or candidates. For
“U.S.,” we note that “Pentagon” is ranked higher after weGAN
training, which we think is also reasonable because the term
is closely related to the U.S. government. For deGAN, we
also compare the original and artificial samples in terms
of the highest probability words, which is shown in Table
VII. We also perform dimensional reduction using t-SNE
for 100 examples per corpus and plot them in Figure 4. All
these figures and tables show results similar to Section IV-A.

TABLE VI: Synonyms of “Obama,” “Trump,” and “U.S.” before
and after weGAN training for the TIME data set.

Obama w2v Trump Bush Xi Erdogan
Rouhani Reagan Hollande Duterte Abe Jokowi

Obama weGAN Trump Bush Xi Erdogan
Reagan Rouhani Hollande Abe Jokowi Duterte

Trump w2v Obama Erdogan Rubio Duter-
te Bush Putin Sanders Xi Macron Pence

Trump weGAN Obama Erdogan Rubio Bush
Sanders Putin Duterte Xi Macron Pence

U.S. w2v NATO Iran Japan Pentagon
Russia Pakistan Tehran EU Ukrainian Moscow
U.S. weGAN NATO Pentagon Iran Japan
Russia Tehran Pakistan EU Ukrainian Moscow

TABLE VII: Bag-of-words representations of original and
artificial text in the TIME data set.

Entertainment original show London attack
people proud open going right according way

home
Entertainment deGAN music actor Michael

John song going meeting James produced pop
vocal

Ideas original American would
service national young country year serve

security world
Ideas deGAN city project part

development grand bear often west new status
high agents

Politics original Assange embassy BBC
Swedish charges told authorities officials

Sweden

Politics deGAN members present
national committee party Paul sign Trump

removed brief
US original Charleston many

Carolina South funeral hand wrote political
words

US deGAN Davis head board
man relationship recent Sunday stone fire wrote

gay well
world original Erdogan Turkey

political power government two leaders
minister AKP

world deGAN suffering like know old
violence local daily young interest three first

man

V. CONCLUSION

In this paper, we have demonstrated the application of the
GAN model on text data with multiple corpora. We have
shown that the GAN model is not only able to generate
images, but also able to refine word embeddings and generate
document embeddings. Such models can better learn the inner
structure of multi-corpus text data, and benefit supervised
learning. The improvements in supervised learning are not large
but statistically significant. The weGAN model outperforms
deGAN in terms of supervised learning for 3 out of 4 data sets,
and is thereby recommended. The synonyms from weGAN
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Fig. 4: 2-d representation of original (red) and artificial (blue)
examples in the TIME data set.



also tend to be more relevant than the original word2vec model.
The t-SNE plots show that our generated document embeddings
are similarly distributed as the original ones.

APPENDIX A
PROOF OF PROPOSITION 1

Since X is bounded, all the integrals exhibited next are well-
defined and finite. It follows that for any parameters, Gm(n)
is a continuous random variable with probability density qm
and finite support due to continuity of n, a1 and a2. From (8),

D∗G = argmax
D

{
M∑

m=1

∫
pm(x) log(eTmD(x))dx

+

M∑
m=1

∫
qm(x) log(eTM+mD(x))dx

}

= argmax
D

{∫ M∑
m=1

pm(x) log(eTmD(x))

+

M∑
m=1

qm(x) log(eTM+mD(x))dx

}
. (11)

This problem reduces to

max
b1,...,bm

M∑
m=1

am log bm subject to
M∑

m=1

bm = 1, (12)

the solution of which is b∗m = am/
∑M

m=1 am, m = 1, . . . ,M .
Therefore, the solution to (11) is

D∗G(x) =
(p1(x), . . . , pM (x), q1(x), . . . , qM (x))∑M

m=1 pm(x) +
∑M

m=1 qm(x)
. (13)

We then obtain from (7) that q∗1 , . . . , q
∗
M , are solutions to the

following:

min
q1,...,qM

M∑
m=1

∫
qm(x) · log

[
qm(x)

qm(x) + pm(x)

]
dx

= min
q1,...,qM

c+

M∑
m=1

∫
qm(x) log

[
qm(x)

(qm(x) + pm(x))/2

]
dx

= min
q1,...,qM

c+

M∑
m=1

KL(qm‖(qm + pm)/2),

where c = −M log 2 is a constant. From non-negativity of the
Kullback-Leibler divergence, we conclude that

(q∗1 , . . . , q
∗
M ) = (p1, . . . , pM ). �

APPENDIX B
ALGORITHMS FOR WEGAN AND DEGAN

Algorithm 1 Algorithm for weGAN

1) Train G based on f from all corpora C1, . . . , CM .
2) Randomly initialize the weights and biases of the

classifier C and discriminator D.
3) Until maximum number of iterations reached

a) Update C and D according to (2) and (4) given
a mini-batch S1 of training examples {dmi }i,m.

b) Update G according to (3) given a mini-batch
S2 of training examples {dmi }i,m.

4) Output G as the cross-corpus word embeddings.

Algorithm 2 Algorithm for deGAN

1) Randomly initialize the weights of G1, . . . ,GM .
2) Initialize the discriminator D with the weights of

the first layer (which takes document embeddings as
the input) initialized by word embeddings, and other
parameters randomly initialized.

3) Until maximum number of iterations reached
a) Update D according to (9) given a mini-batch of

training examples dmi and samples from noise
n.

b) Update G1, . . . ,GM according to (10) given a
mini-batch of training examples dmi and samples
form noise n.

4) Output G1, . . . ,GM as generators of document em-
beddings and D as a corpus classifier.

APPENDIX C
THE 20 NEWSGROUPS DATA SET

The 20 Newsgroups data set is a collection of news
documents with 20 categories. To reduce the number of
categories so that the GAN models are more compact and
have more samples per corpus, we grouped the documents
into 6 super-categories: “religion,” “computer,” “cars,” “sport,”
“science,” and “politics” (“misc” is ignored because of its
noisiness). We considered each super-category as a different
corpora. We then divided these documents into 10,708 training
documents, from which 1,335 validation documents are held
out, and 7,134 testing documents. We train weGAN and deGAN
in the the beginning of Section IV, except that we use a
learning rate of 0.01 for the discriminator in deGAN to stabilize
the cost function. Table VIII compares the clustering results
of word2vec and weGAN, and the classification accuracy of
the FFNN initialized with word2vec, finetuned weGAN, and
finetuned deGAN. All comparisons are statistically significant
at the 0.05 level. The other results are similar to the previous
two data sets and are thereby omitted here.

APPENDIX D
THE REUTERS-21578 DATA SET

The Reuters-21578 data set is a collection of newswire
articles. Because the data set is highly skewed, we considered
the eight categories with more than 100 training documents:

http://ana.cachopo.org/datasets-for-single-label-text-categorization
http://ana.cachopo.org/datasets-for-single-label-text-categorization


TABLE VIII: A comparison between word2vec, weGAN, and
deGAN in terms of the Rand index and the classification
accuracy for the 20 Newsgroups data set.

height w2v-RI weGAN-RI
mean 76.14% 76.74%

sd. 0.02% 0.08%
w2v-accur. weGAN-accur. deGAN-accur.

87.34% 89.90% 89.32%
0.04% 0.02% 0.15%

“earn,” “acq,” “crude,” “trade,” “money-fx,” “interest,” “money-
supply,” and “ship.” We then divided these documents into
5,497 training documents, from which 692 validation docu-
ments are held out, and 2,207 testing documents. We train
weGAN and deGAN in the same way as in the 20 Newsgroups
data set. Table IX compares the clustering results of word2vec
and weGAN, and the classification accuracy of the FFNN
initialized with word2vec, finetuned weGAN, and finetuned
deGAN. All comparisons are statistically significant at the 0.05
level except the Rand index. The other results are similar to
the CNN and TIME data sets and are thereby omitted here.

TABLE IX: A comparison between word2vec, weGAN, and
deGAN in terms of the Rand index and the classification
accuracy for the Reuters-21578 data set.

height w2v-RI weGAN-RI
mean 71.28% 71.43%

sd. 0.26% 0.07%
w2v-accur. weGAN-accur. deGAN-accur.

92.86% 95.10% 94.86%
0.09% 0.10% 0.10%
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