
Learning Multiple Coordinated Agents under
Directed Acyclic Graph Constraints

Jaeyeon Jang
The Catholic University of Korea

Diego Klabjan
Northwestern University

Han Liu
Northwestern University

Nital S. Patel
Intel, Corporation

Xiuqi Li
Intel, Corporation

Balakrishnan Ananthanarayanan
Intel, Corporation

Husam Dauod
Intel, Corporation

Tzung-Han Juang
Northwestern University

A Proof of Theorem 1

For simplicity, let gik = ∑∞t=0 γ
tfik((sjt , ajt)∣j ∈ ∆(k))rk(skt ,{ajt ∣j ∈ ∆(k)}). We have

∑
i∈V

Ṽ
{πj ∣j∈Ω(i)}
i (si0)

=∑
i∈V

E{πj ∣j∈Ω(i)}[
∞
∑
t=0

γtsri((sjt , ajt)∣j ∈ Ω(i))]

=∑
i∈V

E{πj ∣j∈Ω(i)}[
∞
∑
t=0

γt ∑
k∈L∩Υ(i)

fik((sjt , ajt)∣j ∈ ∆(k))rk(skt ,{ajt ∣j ∈ ∆(k)})]

=∑
i∈V

E{πj ∣j∈Ω(i)}[∑
k∈L∩Υ(i)

gik]. (1)

Since gik has dependency only on {πj ∣j ∈ ∆(k)} and fik((sjt , ajt)∣j ∈ ∆(k)), we further have

∑
i∈V

E{πj ∣j∈Ω(i)}[∑
k∈L∩Υ(i)

gik]

=∑
i∈V

∑
k∈L∩Υ(i)

E{πj ∣j∈∆(k)}[gik]

=∑
k∈L

E{πj ∣j∈∆(k)}[∑
i∈∆(k)

gik]

=∑
k∈L

E{πj ∣j∈∆(k)}[
∞
∑
t=0

γt ∑
i∈∆(k)

fik((sjt , ajt)∣j ∈ ∆(k))rk(skt ,{ajt ∣j ∈ ∆(k)})]

≤∑
k∈L

E{πj ∣j∈∆(k)}[
∞
∑
t=0

γtrk(skt ,{ajt ∣j ∈ ∆(k)})]

=∑
k∈L

V
{πj ∣j∈∆(k)}
k (sk0). (2)

Preprint. Under review.

Finally, by combining (1) and (2), we derive

∑
i∈V

Ṽ
{πj ∣j∈Ω(i)}
i (si0) ≤∑

i∈L
V
{πj ∣j∈∆(i)}
i (si0). (3)

B Overview of the algorithm

In this section, an overview of the proposed training algorithm for MARLM-SR is described. The
algorithm consists of the outer and inner settings as shown in Fig. 1. In Fig. 1(a), in the inner setting,
the followers perform their subtasks in a DAG every time step. In Fig. 1(b), in the outer setting, two
different types of agents are trained to guide the followers to achieve a high team reward. First, the
leader provides goals to followers in each goal period based on the global state at the beginning of
a goal period. After each goal period, reward generator and distributor (RGD) provides synthetic
rewards to guide the followers to have a better exploration based on their achievements within the goal
period. Here, a single agent plays both the roles of the reward generator and the reward distributor.
Specifically, the reward generator generates a synthetic reward and the reward distributor distributes
the produced synthetic reward from the highest level followers (sinks) to the lowest level followers
following the DAG based on the achievement of the followers within the goal period. The team
reward based on the follower’s achievements in the episode is given to all outer agents. In other
words, these three outer agents must learn the policy to produce and distribute the goals and the
synthetic reward that coordinates the followers. On the other hand, in the inner setting, the followers
learn policies for high team and synthetic rewards by following the given goals well. If the followers
are guided well based on the policies of the outer agents and a high team reward is achieved, this
high team reward is given not only to the followers but also to the outer agents.

Goal period

Inner setting

Follower 2

Follower 1

Follower 3

Follower 4 Follower 5 Follower 6

(a)

Leader

Reward
distributor

Goal 1 Goal 2 Goal 6

Reward
generator

Generate synthetic reward

Distribute synthetic
reward

Generate and provide goals

Outer setting

(b)

End of an episode

Figure 1: An overview of the proposed training algorithm.

C Experimental Environments

We evaluated our model in diverse and challenging environments with DAG constraints including a
real-world scheduling task. First, we created three environments to simulate DAG systems as shown
in Fig. 2.

Factory production planning case. As shown in Fig. 2(a), we construct a DAG with four nodes and
a depth of three in this case. In each episode, across ten goal periods with each lasting 40 steps, the
objective of the four agents is to maximize revenue by producing final products in accordance with
both the product’s value and the demand. The agents must cooperate to achieve this objective, given
that the values of the final products change every goal period. Additionally, costs are incurred from
both overproduction and parts that remain unused in the final products. In every goal period, each
final product is assigned a value of 2, 3, or 4 uniformly at random with each final product having a

2

A: 2a

B: a+b

C: 2b

Inventory

a

b

c

d

D: 2c

E: c+d

F: 2d

AD: A+D

BE: B+E

CF: C+F

Inventory

Level 1
subtask

Level 2
subtask 1

Level 2
subtask 2

Level 3
subtask

Inventory

Inventory

Inventory
cost

Revenue

AD
CF

BE

Value

(a) Factory production planning case

1Send product B

Send product A

A

B

Demand

A

B

A

B

HighLow

Level 1
subtask 1

Level 1
subtask 2

Level 1
subtask 2

Level 2
subtask 1

Level 3
subtask

Destination 1

Destination 2

Destination 3

(b) Logistics case

Predator 1 Predator 2

Predator 3

Predator 4

Level 1

Level 2

Level 3

Hierarchy of
preys

(c) Hierarchical predator-prey case

Figure 2: Illustrations of the use cases. Cooperation is necessary (a) to achieve a high profit, (b) to
satisfy demands while minimizing costs, and (c) to avoid being caught by predators for as long as
possible.

distinct value. We have set these values to create a significant difference in the value of each product.
For instance, the most valuable product holds a value twice that of the least valuable one. The agents
should cooperate to prioritize the production of the most valuable product first. In addition, the three
products collectively share a total demand of 10 in each goal period, distributed randomly. Ten is the
maximum number of final products that can be produced from scratch within a single goal period. We
randomly set the product values and demand to reflect a dynamic production and market environment.

In each subtask, a machine may or may not produce one type of a product. If a machine chooses to
produce a product, it consumes required parts, which are denoted by the blue boxes in the inventories,
and stores the produced product in its own inventory. For example, if the machine for level 2 subtask 1
produces ‘B’ and stores it, it consumes 1 part ‘a’ and 1 part ‘b.’ A machine cannot produce a product
without the necessary parts. They are subject to bill of material (except the machine in level 1). Final
products are made after processing all three levels. Revenue is the cumulative value of the produced
final products after an episode, and the factory is rewarded according to this revenue. Meanwhile,
the factory is penalized by inventory holding costs of stored parts. Inventory holding costs of 0.3
and 0.8 are assigned to each part in the inventory of level 1 and level 2. Regarding overproduction, a
penalty of 1 is imposed for each final product that is overproduced. We set two holding costs and the
overproduction cost randomly, but the cost imposed at a higher level is set to be greater than that at a
lower level.

Logistics case. In this case, the subtasks are to send a product either ‘A’ or ‘B’ at a time step. Similar
to the factory case, each node must have a product in the inventory given from lower level nodes
in order to send the product. Only the nodes in level 1 can send a product without constraint, but
they can provide only one type of a product. Each node can choose not to send any product as
well. If a product passes through all intermediate nodes in the graph, it arrives at one of the three
destinations that have specific demands for both ‘A’ and ‘B.’ In summary, as shown in Fig. 2(b), we
have a three-level DAG with five nodes, excluding the three destinations. This is because no tasks are
required at these destinations.

3

Each episode consists of 300 time steps with 30 goal periods. In this case, we introduce randomness
into both the demand for the two products at the destinations and the shipping cost on each arc
to simulate a dynamic logistics scenario. The demand and the shipping cost vary in every epoch.
Specifically, we assign a shipping cost, drawn from a uniform distribution [0, 0.3], to each arc in order
to create subtle differences between them. Additionally, the demand follows the uniform distribution
with the lower and upper bounds in Table 1. We categorize destinations into high, medium, and low
demand to diversify demand based on the difficulty of reaching each one. For instance, to reach
destination 1, a product needs to traverse 1.67 arcs, while destination 2 requires an average of 2.00
arcs, and destination 3 requires an average of 2.50 arcs. At each destination, benefits are granted if
the demands are met. Specifically, benefits of 100, 300, and 200 are set for destinations 1, 2, and 3,
respectively. However, additional inventory holding cost or inventory shortage cost is given if the
demand is not met at each destination, and inventory holding cost is imposed at each node in the
graph as well. The inventory holding cost at levels 1, 2, and 3 is 0.3. We set the maximum shipping
cost and the inventory holding cost at each node to 0.3. This allows them to impact the total benefit,
but not significantly. Meanwhile, we set the additional inventory holding cost at the destinations to 3,
and the inventory shortage cost at the destinations to 8, so that they significantly influence the total
benefits. The inventory shortage cost is set higher than the inventory holding cost, which encourages
agents to prioritize shipping over holding inventory. All costs are deducted from the total benefits to
calculate the team rewards. Consequently, the maximum reward amounts to 600.

Table 1: The lower and upper bounds of the uniform distribution for each product at the three
destinations in the logistics case

Destination Product Lower bound Upper bound
Destination 1 A 5 10
(Low demand) B 3 7
Destination 2 A 110 130
(High demand) B 70 90
Destination 3 A 35 45
(Medium demand) B 80 100

Hierarchical predator-prey case. In this variant of the classic predator-prey game, the preys have a
hierarchy in which a higher level prey follows the parent prey (refer to the structure of the DAG in
Fig. 2(c)). The objective of this game is to guide the prey at the sink nodes to evade predators and
survive for as long as possible. Each time predators move one step to chase the preys in the highest
level. The preys also can move one step to move away from the predators. A prey can choose to
move in any direction, but cannot go beyond the boundary set by the parent prey. The boundary is 5
steps away from the parent prey. The total survival time of the preys at the sink nodes is given as the
team reward after each episode. In other words, the later the preys in the highest level are caught, the
higher rewards are given to the set of the preys. Thus, the parent preys must guide their children well
to provide safe areas to the preys in the highest level. An episode concludes when all the prey at the
sink nodes are caught, or when the maximum duration of 200 steps is reached. We set the length of
the goal period to 10. In each episode, the predators and the preys start at fixed positions, but the
predators randomly select their direction.

Real-world production planning case. We also investigated the performance of the proposed
algorithm in a real-world scheduling environment. For this environment, we developed a simulator
that sets a reasonable demand goal for each product type within a given time period based on the
actual production information of one of Intel’s high volume packaging and test factory (AT factory).
The purpose of this task is to schedule jobs so that each job goes through a specific sequence of
operations defined by product type. In this scheduling environment, the precedence constraints of
operations are not different according to product type, even though each product type requires a
different set of operations. For example, if operation ‘b’ comes after operation ‘a’ for a product
‘A,’ ‘b’ cannot come earlier than ‘a’ for any product. Thus, the unique DAG is built based on these
precedence constraints. Several stations are assigned for an operation and one station can only process
one operation. Thus, we group stations by target operation, and each group of stations is called a
station family. Even members in the same station family have a different set of products available. In
addition, the processing time of a product significantly varies depending on the type of operation.
In summary, jobs must be scheduled to meet demand goals while considering all these operational

4

constraints and relationships between operations. The AT factory is a large-scale line that contains
more than 75 stations, 10 operations, and 35 product types. This scheduling task is very challenging.

In this study, we simulated an environment where jobs need to be scheduled for five shifts, with
each shift lasting 12 hours (refer to Fig. 3). In the figure, only nine product types are present (right
vertical legend). The left vertical axis corresponds to stations. It shows that not all products are
processed in the same shift, but the AT factory has to fabricate a different set of products each shift to
meet ever-changing demands. In addition, the AT factory has a strict constraint that for most station
families only one product conversion is allowed in a shift. In other words, with the exception of a
few families that can execute multiple conversions, the other families have only one opportunity to
select a station and change product type for the selected station in a shift. Thus, it is catastrophic if an
agent makes a wrong conversion decision because the waiting jobs that are not current setup will not
have a chance to be processed for a long time. Therefore, an agent makes a conversion decision for
the assigned station family, including which station will perform the conversion and what the next
product type will be.

Figure 3: An example Gantt chart for a five shift schedule. We use arrows to distinguish a few
products, and we highlight some changeovers with a red circle.

D Hyperparameter settings

We implemented the proposed algorithm and the comparison algorithms by using the proximal
policy optimization (PPO) algorithm as the baseline learning algorithm for each agent in all MARL
algorithms. A fully-connected neural network with 2 layers of size 256 with ReLU activations is
applied to both actor and critic of each agent. Entropy regularization [1] is applied with a coefficient
of 0.01. We summarize the other hyperparameters for RL in Table 2. For the three artificial benchmark
cases, the step size k used to obtain the global state flow (GSF) gsfl at the l-th goal period is set to
three. In the real-world production planning case, we include only the initial and final global state of
each goal period in the GSF.

Table 2: Hyperparameters for our model and the baselines.
Hyperparameter Value

Episode length 1,200
Batch size 256
Learning rate 0.0001
Discount factor 0.9900
Clipping value 0.2000
Generalized advantage estimation parameter lambda 0.9500

E Ablation analysis in scheduling scenarios

We compared the five baselines for the ablation study in diverse scheduling scenarios. Specifically,
we trained the agents in the DAG using the five baseline algorithm: GS, SRM, LFM, RFM, and
the proposed algorithm, and simulate 1,000 scheduling episodes using the trained models. Fig. 4
shows the histogram of the completion rate on 1,000 episodes for each baseline, where each baseline

5

has the same x-axis values. Here, the completion rate is the ratio of the lots that pass all required
operations to demanded lots. We do not report the average value of the completion rate and the range
of the histogram for confidentiality. First, by introducing the concept of MARL, we were able to
improve the mean completion rate by 148.7%. This component contributes most significantly to the
performance improvement. A comparison between SRM and LFM/RFM reveals that the leader and
the RGD also contribute to performance improvement. Specifically, the RGD improves the mean
completion rate by 3.9%. Furthermore, by introducing both outer agents, we are able to improve the
mean completion rate by 8.5%. As a result, the proposed algorithm demonstrates a higher overall
completion rate compared to other baselines. It achieves an improvement of 169.6% in the mean
completion rate compared to GS.

Completion rate (ascending order)
0.00

0.05

0.10

0.15

0.20

0.25

Re
la

tiv
e

fre
qu

en
cy

(a) GS

Completion rate (ascending order)
0.00

0.05

0.10

0.15

0.20

0.25

Re
la

tiv
e

fre
qu

en
cy

(b) SRM

Completion rate (ascending order)
0.00

0.05

0.10

0.15

0.20

0.25

Re
la

tiv
e

fre
qu

en
cy

(c) LFM

Completion rate (ascending order)
0.00

0.05

0.10

0.15

0.20

0.25

Re
la

tiv
e

fre
qu

en
cy

(d) RFM

Completion rate (ascending order)
0.00

0.05

0.10

0.15

0.20

0.25

Re
la

tiv
e

fre
qu

en
cy

(e) Proposed

Figure 4: The histogram of completion rate over 1,000 scheduling scenarios (episodes) for the
ablation study.

References
[1] J. Schulman, P. Abbeel, and X. Chen. Equivalence between policy gradients and soft q-learning.

arXiv:1704.06440, 2017.

6

	Proof of Theorem 1
	Overview of the algorithm
	Experimental Environments
	Hyperparameter settings
	Ablation analysis in scheduling scenarios

