
Multimodal Learning on Temporal Data

Ye Xue1 , Diego Klabjan2 and Jean Utke3
1,2Northwestern Universion

3Allstate Insurance Company
yexue2015@u.northwestern.edu, d-klabjan@northwestern.edu, jutke@allstate.com

Abstract
In recent years, multimodal learning has attracted
an increasing interest. A special scenario of mul-
timodal learning, multimodal learning on temporal
data, is common but has not been well studied. In
multimodal temporal data, not all modalities of a
sample arrive at the same time. Because of that,
different types of samples may have different im-
portance in many use cases, where an early sample
with significant modalities may be more valuable
than a later one as early predictions can be made to
speed up decision making processes. Besides, sam-
ple correlations are very common in multimodal
temporal data, as samples accumulate in time and
a late sample may contain the same data existing in
an earlier sample. Training without the awareness
of the importance and correlation yields less effec-
tive models. In this work, we define multimodal
temporal data, discuss key challenges and propose
two methods that improve traditional multimodal
training on such data. We demonstrate the effec-
tiveness of the proposed methods on several mul-
timodal temporal datasets, where they show 1% to
3% improvements over the baseline.

1 Introduction
Deep learning is enjoying great success in the last decade.
It tackles numerous challenging tasks on unstructured data,
such as images and text, and enables people to build astonish-
ing applications that rely on deep learning techniques. How-
ever, each technique usually solves tasks with one modal-
ity. The Convolution Neural Network (CNN) is shown to
be very effective on image tasks and the Recurrent Neural
Network (RNN) and transformer [Vaswani et al., 2017] are
commonly used in language tasks. Although some recent
works use CNN in language tasks and transformer on image
tasks [Dosovitskiy et al., 2021], the tasks considered are still
single-modal tasks.

In recent years, multimodal learning is attracting an in-
creasing interest. As computer vision and language mod-
els are advancing rapidly, multimodal models start to pro-
vide break through improvements, which unlocks new appli-
cations that naturally involve two or more modalities. From

the healthcare field where fusing medical images and elec-
tronic health records shows improvements in performances
when compared to models that used only single modalities
[Huang et al., 2020; Li et al., 2021], to autonomous driv-
ing where intelligent systems are built to process various sig-
nals in different modalities [Feng et al., 2020; Prakash et al.,
2021].

Multimodal temporal data are a special type of multimodal
data very common in many real-world applications. Each
modality of a particular sample can arrive or become avail-
able at a different time. For example, in-hospital patients usu-
ally do not take all tests at the same time. Vitals and demo-
graphics are usually available at an early stage of admission.
Then various lab tests may be taken during the admission. If
further analyses are needed, medical images like X-rays and
text data such as bedside notes may finally become available.
Although lab tests needed for each patient can be different, a
common sequence of critical tests for a particular cohort may
still be defined, e.g., common tests that help identify stages
of cirrhosis [Bonekamp et al., 2009]. A multimodal tempo-
ral model should be trained on such data to assist physicians’
decision making.

More formally, we assume modalities sparsely arrive over
a total of T time steps in a fixed order (M0,M1, ...,MT).
Let T = {0, 1, ..., T}. Multimodal temporal data consist
of instances where each instance contains several multimodal
samples. An instance accumulates samples over time as new
modalities become available. A modality can be missing at
a certain time (sparse arrival). An instance Xi is constructed
from xi

t = (x̄i
1, x̄

i
2, ..., x̄

i
t), where x̄i

j , 1 ≤ j ≤ t is the feature
vector corresponding to modality Mj of instance i. If a cer-
tain modality Mj has not been received at time j (represented
as □), then x̄i

j = nullj . Here nullj is a fixed vector repre-
senting modality j (and being significantly different from all
feature vectors of modality j). We call vector xi

t a multimodal
sample and an instance is Xi = (xi

t|t ∈ T). A multimodel
temporal dataset consisting of N instances is then denoted
as D = {(Xi, yi)|i = 1, 2, ..., N} with yi being the ground
truth. In the multimodal temporal data problem, we assume
samples of all time steps are available in training and the goal
is to train a model that can make good predictions at any time
step given multimodal samples of various modalities.

The multimodal temporal scenario resembles the case of
online learning; new data arrive in the sequential order. How-

ever, in multimodal temporal data, it is the modalities of each
sample that arrive in a sequential order. Meanwhile, the in-
stances may also arrive in a sequential order, for example,
when new patients register. The latter is the case that online
learning addresses, but in this work, we focus on the former
case, which is the core characteristic of the multimodal tem-
poral data.

There are a few challenges to learning multimodal tempo-
ral data. First, there are possible missing modalities. It re-
quires a model that can handle inputs consisting of a various
sets of modalities. Omninet [Pramanik et al., 2019] has been
proposed recently to solve this challenge. Second, data that
are available at an earlier time may be more valuable if we
can get some useful signals for early predictions. Failure to
capture this may result in a model that does not consider cor-
rect attention and performs badly on valuable inputs. Third,
samples are correlated, as a late sample contains the same
data as an earlier sample. In such a case, a model may tend to
be overfitted on duplicated modalities.

In this work, we focus on the last two challenges. We pro-
pose a modality weight optimization method to address the
second challenge where some modalities are more valuable
than others. Each modality is associated with a weight during
training. The weights are embedded into the loss function and
guide training so that the model is aware of the importance of
each modality. We use Bayesian Optimization to find a good
set of weights.

We tackle the third challenge of sample correlation by
breaking down the original temporal data into groups ordered
by time. The model is trained on one group at a time. By iso-
lating samples by time, we break the correlation introduced
by the temporal aspect of the data. However, this introduces
another issue, catastrophic forgetting, where the model’s per-
formance on an old group decreases after being trained on a
new group. We mitigate this issue by restricting the changes
on model weights with Elastic Weight Consolidation (EWC)
[Kirkpatrick et al., 2017].

We evaluate proposed methods by comparing them to the
traditional multimodal multitask training on several multi-
modal temporal datasets, which cover a wide range of modal-
ities, such as images, text, videos, audio recordings and time
series. The proposed methods show significant improvements
on all datasets. Our contributions are summarized as follows.

1. We define multimodal temporal data and study key chal-
lenges in training with such data.

2. Two methods are proposed to address these challenges
with code made public at http://xxx.

3. We conduct experiments on several multimodal tempo-
ral datasets and show that the proposed methods can im-
prove standard multimodal multitask training by 1% to
3%.

In Section 2, we discuss related work. The problem of mul-
timodal temporal data is defined in Section 3. We describe our
methods in Section 4. The datasets and experimental setup
are described in Section 5. Section 6 discusses the computa-
tional results and the conclusions are drawn in Section 7.

2 Related Work
A similar area to multimodal learning on temporal data is
multimodal time-series learning, also known as temporal
multimodal learning [Yang et al., 2017; Schockaert, 2020].
Different from traditional time series, multimodal time series
may contain multiple series of different modalities, such as
audio-visual data. An RNN or transformer-based model is
usually used with a fusion mechanism to learn a joint rep-
resentation of multiple modalities. The difference of multi-
modal temporal data is that, instead of having temporal fea-
tures in each modality, multimodal temporal data have modal-
ities arranged in time.

In traditional continual learning settings, tasks are usually
composed of data of the same modality. It has been recently
extended to the multimodal scenario. Sun et al. [2020]
propose a multimodal continual learning framework and a
method to jointly update feature vectors of multiple modal-
ities. Although data in each task can belong to a different
modality, one task is limited to one modality, which is not ap-
plicable in our multimodal temporal setting, where each task
may involve multiple modalities.

The sample correlation issue introduced by duplicating
modality data is different from the temporal autocorrelation
in time series analysis [Stojanova, 2013], where the previ-
ous data point might suggest the likelihood of the next data
point. The modalities in the multimodal temporal data are not
necessarily correlated. The sample correlation in our case is
similar to the data duplication issue, where sample removal
or downsampling are often used to handle duplication. But
in our case, a sample might only be partially duplicated with
others and any removing or downsampling causes data loss.

Another similar case of sample correlation is seen in [Lu
et al., 2020]. In training a model on multiple vision-and-
language datasets together, some samples in one dataset are
also present in whole or partially in other datasets. Although
in this work the authors do not model overlapping of modal-
ities, a dynamic stop-and-go mechanism is proposed to miti-
gate the overfitting problem, which might also be an issue in
our case due to sample duplication. Since early samples may
be duplicated in later samples multiple times, the model can
be quickly overfitted on some early samples. The dynamic
stop-and-go mechanism does not work well in our case as
the duplication is much more prevalent. Stopping training the
model on those early samples can not directly prevent over-
fitting as the model will also be trained and get overfitted on
their duplicates in later samples.

3 Problem Definition
In the multimodal temporal data problem, we assume sam-
ples across all time steps are available in training and de-
fine the set containing training, validation and test data as
D = {(Xi, yi)|i = 1, 2, ..., N}. In inference, predictions
can be made at any time, i.e., for any sample. The prediction
at a later time is usually better than at an earlier time as the
model makes a prediction with potentially more modalities.
But the predictions at an earlier time are usually more valu-
able from the usage perspective, e.g. early medical diagnosis.
Additionally, modalities are of different importance in terms

of quality, difficulty of acquisition, etc. Depending on actual
use cases, a model that performs in isolation better on im-
portant modalities and worse on less important ones may be
more valuable than a model performing in the opposite way.
In order to capture this, we define a weighted metric across
all types of samples with different modalities. The goal is
to train a model that has the best overall performance on all
types of samples.

To define this metric, we first need to define types of sam-
ples. The type of a sample xi

t is defined by its sparsity pattern
which because of the assumed fixed modality order we can
call the modality type

mi
t = (ei1, ..., e

i
t), e

i
j =

{
1 x̄i

j ̸= nullj
0 x̄i

j = nullj .

All possible modality types of a multimodal temporal dataset
are defined as M = {mi

t}i=1,2,...,N,t∈T . The model gets
different scores when making correct predictions on differ-
ent modality types. We define types based on modalities in-
stead of time because the time-based typing does not consider
the importance of modalities. For example, at the same time
t = 3, a sample may have modalities (video, image, text) and
another sparse sample may have modalities (video, □, text).
We may want to give more credit to the model if it makes
a correct prediction on the latter sample with less available
modalities. The time-based typing would not capture this.
The time-based typing is also a special case of the modality-
based typing when there are no missing modalities.

The model gets a reward based on its performance on sam-
ples of a certain modality type. Rewards are assigned based
on reward functions, which are pre-defined by users of the
model to quantify how certain modality type is valued. We
denote a reward function as rm(v(D(m))), where m ∈ M is
the modality type and v(D(m)) is the value of a performance
metric, such as accuracy, F1 score, etc., on the subset D(m)

of samples in D whose type is m. We use accuracy as an
example in later discussions for convenience. The function
provides a reward for a model when it achieves a certain ac-
curacy on a particular modality type during the evaluation.
The overall performance of a model is the total reward of all
types: R =

∑
m∈M rm(v(D(m))).

The reward function should satisfy the following character-
istics: it is an increasing function of accuracy given a particu-
lar modality type and it is an increasing function of the impor-
tance of a modality type given accuracy. In this work, we use
an exponential function rm(v) = am · vd as the base of the
reward function, where v represents accuracy. A more impor-
tant modality type m is associated with a higher coefficient
am. The coefficient d determines the increasing emphasis of
rewards. The values of these coefficients are chosen given a
particular use case, which are introduced later in Section 5.4.

4 Methodology
4.1 Background
Base Model
We use Omninet [Pramanik et al., 2019] to learn multimodal
temporal data. It is a transformer-based architecture that can

handle inputs in various modalities, thanks to the design of
temporal and spatial caches. Omninet encodes inputs by
learning the temporal and spatial representations and stores
them in caches. Each cache is a sequence of encodings, which
may come from different modalities. With caches, Omninet
can also handle inputs with missing modalities. Without such
property, the multimodal temporal data with potential missing
modalities can hardly be modeled effectively.

Bayesian Optimization
Bayesian optimization is a technique for optimization of
black-box functions. In this work, we treat the base model
trained on all samples with given loss function weights as
a black-box function and use Bayesian optimization to find
the best reward. Vanilla Bayesian optimization methods are
typically computationally expensive. In this work, we use a
more efficient method that combines Bayesian Optimization
and HyperBand (BOHB) [Falkner et al., 2018]. Hyperband
[Li et al., 2017] is a bandit strategy that dynamically allocates
resources to a set of configurations and uses successive halv-
ing [Jamieson and Talwalkar, 2016] to stop poorly performing
configurations. Essentially, BOHB first tries multiple config-
urations with a lower budget (e.g., by stopping a training pro-
cess early). Then it discards bad runs and continues training
only on the promising runs.

Continual learning
Continual learning is a concept to learn a model on a sequence
of tasks [Chen and Liu, 2018]. A common issue in contin-
ual learning is catastrophic forgetting, where the model for-
gets the knowledge learned from previous tasks after being
trained on new tasks. Elastic Weight Consolidation (EWC)
[Kirkpatrick et al., 2017] is a well-known method to effec-
tively handle the catastrophic forgetting issue. We leverage
this technique in our method to mitigate the catastrophic for-
getting issue when training on multimodal temporal data with
the idea of continual learning. Different from standard con-
tinual learning, where each task is trained once, we are not
limited by such a setting and train each task multiple times.

4.2 Modality Weight Optimization
Since different modality types are weighted differently in
testing according to reward functions, ideally the model
should be trained with such information as well. Without the
awareness of such information, the model would not neces-
sarily pay more attention to important modalities. As a re-
sult, the model might perform “equally” well on all modality
types or might even perform worse on more valuable modal-
ity types, which can all yield a subpar performance of the
total reward on all modality types.

To solve this issue, we propose a Modality Weight Op-
timization (MWO) method, where we assign weights w to
training samples to capture the impact of reward functions
and optimize the model θ by the following loss function:

θ̂(w) = argmin
θ

L(θ|w;D)

= argmin
θ

N∑
i=1

T∑
t=1

wi,tl(x
i
t, y

i;θ).

Here l can be any loss function approximating v, e.g.,
cross-entropy if the metric of interest is accuracy. Assigning
a unique weight for each sample is intractable as it introduces
too many parameters to optimize, considering that the train-
ing set is usually very large. Instead, we allow samples to
share weights. For example, the same weight may be shared
among samples with the same modality type or with other
characteristics, according to a specific use case. Therefore,
we also define a multiset function ∆ : w′ → w, where w′ is
a smaller set of shared weights.

Assigning weights to best reflect the impact of reward
functions is not trivial. Therefore, instead of manually as-
signing weights, we use Bayesian Optimization to learn the
best weights, which optimize the total reward. The objective
function is defined as:

J(w′) =
∑

m∈M
rm(v(D(m); θ̂(∆(w′)))).

We stress that the metric of interest is evaluated on the test
data subset of D(m) and the predictions depend on optimal
training weights θ̂.

4.3 Multimodal Continual Learning (MMCL)
Another challenge in the multimodal temporal problem is that
samples are correlated. The nature of the growth of instances
results in data duplication. In an instance, the data arriving
in the first time step also appear in other samples at a later
time step. Training with these correlated samples may cause
overfitting. Since later samples contain the same modalities
that appeared also in early samples, the model can be eas-
ily overfitted on early samples due to duplication. Simply
pausing training on overfitted samples does not work well on
the multimodal temporal data because other samples may still
contain duplicates.

To tackle this issue, we propose multimodal continual
learning (MMCL). The idea is to break down the whole data
with a mix of all modality types into groups in the order of
time. Each group contains a smaller set of modality types.
We denote all possible modality types of the group at time t
asMt = {mi

t|i = 1, 2, ..., N}. The groups are arranged in
the natural temporal order of modalities.

The model is trained on groups one by one in the time
order. When training on Mt, the training data consist of
Dt = {(xi

t, y
i)}i. To handle the catastrophic forgetting issue

and preserve the model’s performance on tasks in old groups,
we train the model by adding an EWC loss to all older groups
within a window. The window size is set to T − 1, that is, we
add an EWC loss to the model of the current group from each
of the other groups. After the model is trained on all groups
once, one pass of training is finished. We continue training
again starting from the first group. Multiple passes of train-
ing are performed. We index each group i based on its pass p
and time step t as i = (p− 1) · T + t. The group i is trained
with the following loss:

L(θi) = l(θi) +

i−1∑
j=max(i−T+1,1)

λi,j ·Ψ(θi, θ̂j , Fj),

Algorithm 1 MMCL
θ1 are the initial model weights; λ0 is the base value of
the EWC constraint; α, β and γ are hyper-parameters for
scheduling λ.

1: initialize θ1
2: for each pass p = 1, 2, ..., P do
3: for t = 1, 2, ..., T do
4: i← (p− 1) · T + t // current group index
5: k ← max(i− T + 1, 1) // oldest group index
6: for j = k, k + 1, ..., i− 1 do
7: if i < j or i mod T = j then
8: λi,j ← 0
9: else

10: λi,j ←

{
option 1 λ0

option 2 αj mod T

γ⌊i/T⌋βi mod T λ0.

11: end if
12: end for
13: Dt ← data with modality type ∈Mt

14: θ̂i = minθi(l(θi;Dt) +
∑i−1

j=k λi,j ·Ψ(θi, θ̂j , Fj))

15: Fi ← UpdateFisher(θ̂i,Dt)

16: θi+1 ← θ̂i
17: end for
18: end for

where Ψ(θi, θ̂j , Fj) =
∑

p Fj,p(θi,p− θ̂j,p)
2 is the EWC loss

on all parameter p and λi,j is the weight between the cur-
rent group i and older group j. After training the model on
a group, we update the Fisher matrix F for this group using
the UpdateFisher function, same as [Kirkpatrick et al., 2017].
The full training process is shown in Algorithm 1.

The hyper-parameters λ control forgetting. A larger value
of λ’s implies a stronger limitation of the model weight
changes so the weights stay within the low-loss manifold of
the older groups. The most straightforward way of specifying
λ is to use a constant value, as shown in Algorithm 1, line 7
option 1. However, it poses several limits. For example, it
implies that each group is equally important. When training
the model on an important group, we may want to apply less
emphasis from old groups, so the model has more freedom
to explore the model weight space to find the optimum for
the current group. When training the model on a less impor-
tant group, we want to apply a large weight from important
old groups, so that the model can preserve its performance on
those important groups.

Considering that the importance of a sample decreases as
the time step increases, we propose a scheduling scheme of λ
as follows:

λi,j =

{
0 (i mod T) = j or i < j

αj mod T

γ⌊i/T⌋βi mod T λ0 i > j.

where α, β, γ ∈ (0, 1). Value α assumes that an earlier group
receives a higher importance than a later group. Parameter β
imposes an increasing trend during training within each pass.
As we are training on less and less important groups within
a pass, we increase the model’s ability in preserving its per-

Figure 1: Example of a schedule of λ for 3 passes of training. In each
of the 3 heat maps, the y-axis shows the time steps of the current
groups and on the x-axis are the time steps of old groups. We reverse
the axis for better visualization. We have white blocks on diagonals
because we do not apply weights on the current model itself. These
heat maps show the following patterns. (1) In the same pass, given
a current group, the value of λ increases as the time step of an old
group decreases (left → right); (2) In the same pass, given an old
group, the value of λ on it increases as the training goes on (top →
down); (3) Given a current and an old group, the value of λ increases
as the training pass increases (left → right).

formance on old groups by increasing the constraint. Finally,
γ makes an increasing trend of constraints pass by pass, to
enhance the performance preserving as the model approaches
an optimum. Note that we separate the control of the intra-
pass increasing by β and inter-pass increasing by γ. This
introduces more flexibility in scheduling λ compared with a
uniform increasing trend controlled by one parameter. For
example, because of β, at the end of each pass, the emphasis
on each group reaches a very high value. The model is con-
sidered in a “preserving” mode. Starting the next pass, espe-
cially in early passes, we may want to encourage the model to
restart “exploring.” This can be achieved by properly setting
γ. Figure 1 shows the heat map of an example schedule of λ.

5 Datasets

5.1 BDD Multimodal Temporal Dataset

The Berkeley DeepDrive Video dataset [Yu et al., 2020] is a
dataset consisting of real driving videos (V) and GPS/IMU
(G) records. Similar to [Xu et al., 2016], we train an action
prediction model on this dataset. We consider 4 discrete driv-
ing actions: straight, stop, left turn and right turn. Each video
is truncated to 16s and temporally downsampled to 3Hz to
avoid duplicate frames.

We define an order of modality for this dataset as
(G,G,G,V,G,V,V,V) to simulate a use case where GPS sig-
nals usually arrive earlier than videos because GPS signals are
smaller. Then we convert it to a multimodal temporal dataset
(BDD), where data of each modality are 2s in length. We
assume a modality always arrives at the corresponding time
step. The BDD dataset in total contains 8 modality types. We
use the same splits of training, validation and test set as pro-
vided in the original data, and convert each split into a time-
line dataset. This also applies to other datasets introduced in
the following sections. In the BDD dataset, there are 154,696
training, 14,936 validation and 14,936 test samples.

Table 1: Test reward comparison

Datasets Baseline MWO MMCL

BDD 0.3665 +3.18% +2.40%
SIQ 0.1781 +1.27% +1.12%
ITV 4.6317 +1.32% +0.95%

5.2 Image-Text-Video Dataset
We create the Image-Text-and-Video (ITV) multimodal
temporal classification dataset from three common public
datasets. The image data come from the Cifar10 dataset
[Krizhevsky et al., 2009]. The original Cifar10 contains 10
classes. We group animals into one class and others into an-
other class. We balance two classes by moving images of
birds to another class. Text data come from the IMDB dataset
[Maas et al., 2011], which is a binary sentiment classifica-
tion dataset containing movie reviews that are labeled either
positive or negative. Videos come from the HMDB dataset
[Kuehne et al., 2011], which is a large human motion recog-
nition dataset with 51 actions. Actions are grouped into 5
types: general facial actions, facial actions with object ma-
nipulation, general body movements, body movements with
object interaction and body movements for human interac-
tion. We further group the 5 types into two classes. One
class contains general body movements and body movements
for human interactions and the other contains the rest of the
types.

We assign binary labels to the modified source datasets and
consider samples with the same label belonging to the same
class. That is, we treat images, text and videos of class 0 as
one class and the rest as another class.

For this dataset, we define an order of modality as
(I,T,T,I,V). To create an instance, we draw a sample for each
modality from the corresponding source dataset. To simu-
late a more general case, we introduce missing modalities
by sampling with a missing rate of 30% or higher. Since
the three source datasets differ in size, in order to utilize as
many samples from all sources, we adjust the missing rate
for each modality. Modalities from a smaller source dataset
have a higher missing rate. The final ITV dataset contains 17
modality types due to missing modalities. There are 61,070/
19,166/19,030 training/validation/test samples.

5.3 Social-IQ Dataset
Social-IQ [Zadeh et al., 2019] is a video question answering
dataset that contains 1,250 annotated videos, 7,500 questions
and 52,500 answers. Each question is provided with 4 correct
answers and 3 incorrect answers. All answers are sentences.
The task is to predict whether an answer is correct given a
video with a question. We break down each video into visual,
language and acoustic modalities. The visual modality con-
tains video frames extracted at 1fps. On average, each video
sample consists of 55 frames. Transcripts are the input of
the language modality. The acoustic modality contains audio
features, which are extracted from COVAREP [Degottex et
al., 2014]. They are pitch and frequency-related features and
provide different signals from transcript features.

Figure 2: Reward curves on validation set

Figure 3: Best modality weights

We turn the original Social-IQ into a multimodal tempo-
ral dataset, SIQ, by arranging inputs in the following order:
questions (Q), audios (A), transcripts (T) and frames (V). We
arrange them in this order to simulate a use case where a later
modality provides more useful signals. We quantify the use-
fulness of a modality by accuracy. The authors of Social-IQ
show an accuracy of 57.02, 57.22, 57.87 and 63.91 on ques-
tions, audios, transcripts and frames, respectively. The SIQ
dataset has 138,040 training, 16,884 validation and 16,884
test samples.

5.4 Reward Functions
For the BDD and SIQ dataset, we define reward functions
as rt(v) = 0.7t · v8. In these two datasets, we simulate
the scenario that the importance of an input decreases in
time. Also, since we assume there is no missing modality
in these datasets, the time-based reward function is the same
as modality-based reward function. For simplicity, we define
the reward function over time instead of modality. The coeffi-
cients are set to these values so that for all modality types, the
change in reward is reasonably large when accuracy changes.
The same logic also applies to the reward function of the other
dataset.

In the ITV dataset, we simulate a different scenario where
a sample with more available modalities has a lower reward.
We do not use the same reward function above. Usually,
a sample in a later time has more available modalities than
an earlier sample. However, this is not always the case
when there are missing modalities. For example, a sample
at time step 5 of instance A may only have 1 available modal-
ity due to missing modalities, while a sample at time step
2 of instance B may have 2 available modalities. The re-

ward function for this dataset is rm(v) = g(m) · v8, where
g(m) = 1− |m|−1

T . Function g(m) is set in such a way so that
it decreases linearly in [1, 0) as |m|, the number of modalities,
increases. Instead of an exponential modality multiplier 0.7t
used in the other two datasets, we use a linear function for
the multiplier here. We cannot experiment with all types of
functions and choose these two common types of functions,
so that our experimental results are more general.

6 Results
Our algorithms are implemented in PyTorch. For BOHB, we
use its official implementation1. All experiments are con-
ducted on NVIDIA GeForce RTX 2080 Ti GPUs. We use
Omninet as the base model and compare proposed methods,
MWO and MMCL, against vanilla multimodal training as the
baseline.

We tune learning rates for all models by grid search. For
MWO, we do not tune additional hyper-parameters in the
BOHB algorithm and use the default values in its official li-
brary. For MMCL, we find the best scheduling scheme of λ
by tuning α, β and γ. We empirically set λ0 to 10 with the
observation that the model barely changes when λ > 300.
We thus obtain a scheduling scheme in (0, 300]. Even with
a different λ0, we were still able to find a similar scheduling
scheme by manipulating α, β and γ. Therefore, we focus on
tuning these three hyper-parameters. We tune them on grids
(0.5, 0.6, 0.7, 0.8) with the following heuristics, considering
the large number of combinations. We randomly try some
combinations, then fix one hyper-parameter of the best com-

1https://github.com/automl/HpBandSter

https://github.com/automl/HpBandSter

bination and tune the other two using grid search. The model
may achieve a better performance with more tuning, but the
current tuning already yields many strong models.

We tune models on the validation data and select the best
based on their validation rewards. We train the best model 3
times with different random seeds and record the average re-
ward on the test data. The test results are shown in Table 1. It
shows the absolute test results of the baseline model and the
relative changes of our models over the baseline. Both pro-
posed methods outperform the baseline on all datasets. The
improvement ranges from 1% to 3%.

6.1 Modality Weight Optimization
Figure 2 shows the validation reward curves of the MWO
model on all datasets. The best validation reward of the base-
line model is shown as the horizontal dashed line. Each dot in
the plot is a result of training Omninet with specific modal-
ity weights. The BOHB kernel needs some initial data be-
fore making reasonable predictions [Falkner et al., 2018]. We
mark the end of the random initialization stage as a vertical
line. In the random initialization stage, Omninet is trained
with random modality weights. After that, it is trained with
weights proposed by the BOHB kernel. The number of ran-
domly initialized configurations depends on the size of the
parameters (i.e., modality weights) to optimize [Falkner et
al., 2018].

Since BOHB allows us to try more configurations with a
small budget, in the plots we see two groups of dots. One
group contains configurations running with the full budget
and the other is from those running with a smaller budget.
Budgets are defined in terms of training epochs. We deter-
mine the full budget by recording the number of epochs that
Omninet needs to achieve the best validation reward. We set
the smaller budget to 1/3 of the full budget, as we observe that
this is in many cases enough to determine whether a configu-
ration is a good one or not. We empirically limit the number
of BOHB iterations to 15 times the full budget for the ITV and
SIQ dataset, and 25 times for the BDD dataset. Although run-
ning more iterations might further improve the performance,
we observe that within these iterations the model can already
provide good improvements.

Figure 3 shows the best modality weights. Modality
weights are normalized and plotted with a line indicating the
average of all weights. Although the reward function im-
poses a decreasing importance score in the time order or as
more modalities are available, we do not see a clear decreas-
ing trend of the weights. We argue that the importance of
the modality itself on the target also plays a role. The model
may want to pay more attention to a particular modality that
contributes more to the overall performance regardless of the
small weight we put on it during evaluation. Interestingly,
the first modality always receives a very low weight. This
could be due to the fact that samples of the first modality are
duplicated the most, since later samples always contain the
available samples from previous time steps. Assigning a low
weight help the model be less biased towards those duplicated
samples. The learned modality weights are a result of balanc-
ing between the multiple aforementioned factors.

MWO shows a 3.18% reward gain on the BDD dataset,

Figure 4: MMCL reward

1.27% on the SIQ dataset and 1.32% on the ITV dataset.
They are the test results of the best models, which are selected
based on validation rewards shown in Figure 2. Interestingly,
the performance gap between our model and the baseline in-
creases as the number of time steps increases. For datasets
with a longer order of sequence, it is harder to balance the
weight of each modality type to achieve the optimal reward.
This does provide more opportunities for our model to im-
prove over the baseline. However, it also increases the com-
plexity of the problem and usually requires more iterations to
find a good solution.

Figure 5: MMCL vs. a training without EWC

6.2 Continuous Multimodal Temporal Training
MMCL improves the baseline by 2.4% on the BDD dataset,
1.12% on the SIQ dataset and 0.95% on the ITV dataset. Fig-
ure 4 shows the MMCL reward curve on the SIQ dataset. Af-
ter training on each group, we record the total reward cal-
culated on all groups in the validation set. Since we break
the data into multiple groups and train one after the other, an
epoch has a different definition between MMCL and the base-
line. Instead, we use an epoch-size unit, where in one unit
the model is trained on the same number of samples as one
epoch in training the baseline. In the plot, we name the group
with the corresponding modality that arrives at that time step.
More visualizations are shown in Appendix A.

Lambda Scheduling
In MMCL, besides adding the EWC loss to preserve the
model’s performance on old groups, we also train the model
on each group multiple times. An interesting question is

whether the EWC loss is needed if the model can re-learn the
knowledge on an old group. Figure 5 shows a comparison be-
tween MMCL and training without the EWC loss on the ITV
dataset. We observe a very large variation of the total reward
on the no-EWC training. For example, the performance drops
dramatically around the 8th, 9th and 12th epoch on modality
V, I and V, respectively. Without EWC, the model prioritizes
the current group. The performance drop may happen when
the current group contributes less to the reward, such as the
group with modality V. The EWC loss stabilizes the model’s
performance across groups as the model always tries to pre-
serve its performance on old groups.

Figure 1 shows an example of the best λ’s used in the SIQ
dataset. The values are calculated with α = 0.7, β = 0.7 and
γ = 0.5. We perform an ablation study on these three hyper-
parameters. Each time, we disable one hyper-parameter by
setting its value to 1. As shown in Figure 6, disabling any one
of them yields a performance degradation. Disabling β or γ
leads to more than 1% performance degradation, which in-
dicates the importance of emphasizing important groups and
enhancing the performance as the model approaches the opti-
mum.

Figure 6: Ablation study for scheduling λ with (α, β,γ)

Restoring Learning Rate Factor
In our early experiments, we find that the model’s perfor-
mance stops improving after the first few groups, if we start
a new optimizer for each group. The reason might be that the
initial learning rate is too large for later groups after the model
has been trained on a few groups. In our training procedure,
the model may be trained on the same group multiple times.
When it starts to be trained on the same data the second time,
the model weights might be already close to the optimum and
a small learning rate is expected. This problem is more se-
vere considering that early samples are duplicated in the late
samples. The model might need a smaller learning rate even
before going into the second pass of training.

To overcome this issue, we propose a learning rate restor-
ing strategy. In this work, we train Omninet with the Adam
optimizer [Kingma and Ba, 2015] and schedule learning rate
using the Noam scheduler [Shazeer and Stern, 2018] same as
Pramanik et al., [2019]. We adjust the learning rate by restor-
ing the number of training steps from the previous group. We
observe a 1.3% improvement on the ITV dataset with this

strategy and also use it on the other two datasets. The reason
we do not restore the optimizer states, i.e., momentum values,
is that the data distribution of the next group is different from
the previous one. Restoring the momentum values does not
show improvements.

6.3 Discussions
The two proposed methods improve traditional multimodal
training by tackling different problems in learning from mul-
timodal temporal data. MWO shows a better performance
than MMCL on all datasets. It may be because MWO ben-
efits from directly optimizing the modality weights. MMCL
also considers the importance of modalities but in a more im-
plicit way by emphasizing important groups in EWC. How-
ever, MWO also takes a longer time to optimize. On average,
MWO takes 5 times longer than the baseline to achieve the
best validation reward and MMC only takes 1.2 times longer
than the baseline. We recommend MWO when achieving the
best performance is the top interest and suggest to use MMCL
to balance computing resources and performance.

7 Future Work and Conclusion
Reinforcement learning on multimodal temporal data is an in-
teresting direction, where an episode can be defined from the
first modality to the last one and each time step corresponds
to a state. Some challenges include but are not limited to: the
states are not necessarily correlated with each other in mul-
timodal temporal data and it is unclear how to define the en-
vironment and define interactions between the agent and the
environment.

In this work, we define and study multimodal temporal
data, which are common in real-world applications but have
not yet been well studied. We discuss key challenges and
propose a modality weight optimization method to address
the “importance” challenge, where some samples may be
more important than others. We propose a training algorithm
with elastic weight consolidation to address the “correlation”
challenge. The proposed methods demonstrate improvements
over standard multimodal multitask training on several mul-
timodal temporal datasets.

References
[Bonekamp et al., 2009] Susanne Bonekamp, Ihab Kamel,

Steven Solga, and Jeanne Clark. Can imaging modali-
ties diagnose and stage hepatic fibrosis and cirrhosis ac-
curately? Journal of Hepatology, 50(1):17–35, 2009.

[Chen and Liu, 2018] Zhiyuan Chen and Bing Liu. Lifelong
machine learning. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning, 12(3):1–207, 2018.

[Degottex et al., 2014] Gilles Degottex, John Kane, Thomas
Drugman, Tuomo Raitio, and Stefan Scherer. CO-
VAREP—a collaborative voice analysis repository for
speech technologies. In IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 960–964,
2014.

[Dosovitskiy et al., 2021] Alexey Dosovitskiy, Lucas Beyer,
Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,

Thomas Unterthiner, Mostafa Dehghani, Matthias Min-
derer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In 9th International
Conference on Learning Representations, 2021.

[Falkner et al., 2018] Stefan Falkner, Aaron Klein, and
Frank Hutter. BOHB: Robust and efficient hyperparam-
eter optimization at scale. In International Conference on
Machine Learning, pages 1437–1446, 2018.

[Feng et al., 2020] Di Feng, Christian Haase-Schütz, Lars
Rosenbaum, Heinz Hertlein, Claudius Glaeser, Fabian
Timm, Werner Wiesbeck, and Klaus Dietmayer. Deep
multi-modal object detection and semantic segmentation
for autonomous driving: Datasets, methods, and chal-
lenges. IEEE Transactions on Intelligent Transportation
Systems, 22(3):1341–1360, 2020.

[Huang et al., 2020] Shih-Cheng Huang, Anuj Pareek,
Saeed Seyyedi, Imon Banerjee, and Matthew P. Lungren.
Fusion of medical imaging and electronic health records
using deep learning: A systematic review and imple-
mentation guidelines. NPJ Digital Medicine, 3(1):1–9,
2020.

[Jamieson and Talwalkar, 2016] Kevin Jamieson and Ameet
Talwalkar. Non-stochastic best arm identification and hy-
perparameter optimization. In Artificial Intelligence and
Statistics, pages 240–248, 2016.

[Kingma and Ba, 2015] Diederik P. Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations, 2015.

[Kirkpatrick et al., 2017] James Kirkpatrick, Razvan Pas-
canu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago
Ramalho, and Agnieszka Grabska-Barwinska. Overcom-
ing catastrophic forgetting in neural networks. Proceed-
ings of the National Academy of Sciences, 114(13):3521–
3526, 2017.

[Krizhevsky et al., 2009] Alex Krizhevsky, Geoffrey Hinton,
et al. Learning multiple layers of features from tiny
images. https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.222.9220&rep=rep1&type=pdf, 2009.

[Kuehne et al., 2011] Hildegard Kuehne, Hueihan Jhuang,
Estı́baliz Garrote, Tomaso Poggio, and Thomas Serre.
HMDB: A large video database for human motion recog-
nition. In International Conference on Computer Vision,
pages 2556–2563, 2011.

[Li et al., 2017] Lisha Li, Kevin G. Jamieson, Giulia De-
Salvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hy-
perband: Bandit-based configuration evaluation for hyper-
parameter optimization. In International Conference on
Learning Representations (Poster), 2017.

[Li et al., 2021] Yi Li, Junli Zhao, Zhihan Lv, and Zhenkuan
Pan. Multimodal medical supervised image fusion method
by CNN. Frontiers in Neuroscience, 15:303, 2021.

[Lu et al., 2020] Jiasen Lu, Vedanuj Goswami, Marcus
Rohrbach, Devi Parikh, and Stefan Lee. 12-in-1: Multi-

task vision and language representation learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10437–10446, 2020.

[Maas et al., 2011] Andrew L. Maas, Raymond E. Daly, Pe-
ter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In
Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Tech-
nologies, pages 142–150, 2011.

[Prakash et al., 2021] Aditya Prakash, Kashyap Chitta, and
Andreas Geiger. Multi-modal fusion transformer for
end-to-end autonomous driving. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7077–7087, 2021.

[Pramanik et al., 2019] Subhojeet Pramanik, Priyanka
Agrawal, and Aman Hussain. Omninet: A unified
architecture for multi-modal multi-task learning. arXiv
preprint arXiv:1907.07804, 2019.

[Schockaert, 2020] Cedric Schockaert. A causal-based
framework for multimodal multivariate time series valida-
tion enhanced by unsupervised deep learning as an enabler
for industry 4.0. arXiv preprint arXiv:2008.02171, 2020.

[Shazeer and Stern, 2018] Noam Shazeer and Mitchell
Stern. Adafactor: Adaptive learning rates with sublinear
memory cost. In International Conference on Machine
Learning, pages 4596–4604, 2018.

[Stojanova, 2013] Daniela Stojanova. Considering autocor-
relation in predictive models. Informatica, 37(1), 2013.

[Sun et al., 2020] Fuchun Sun, Huaping Liu, Chao Yang,
and Bin Fang. Multimodal continual learning using on-
line dictionary updating. IEEE Transactions on Cognitive
and Developmental Systems, 13(1):171–178, 2020.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in Neural Information Processing Sys-
tems, 30, 2017.

[Xu et al., 2016] Huazhe Xu, Yang Gao, Fisher Yu, and
Trevor Darrell. End-to-end learning of driving mod-
els from large-scale video datasets. arXiv preprint
arXiv:1612.01079, 2016.

[Yang et al., 2017] Xitong Yang, Palghat Ramesh, Radha
Chitta, Sriganesh Madhvanath, Edgar A. Bernal, and Jiebo
Luo. Deep multimodal representation learning from tem-
poral data. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5447–
5455, 2017.

[Yu et al., 2020] Fisher Yu, Haofeng Chen, Xin Wang,
Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht
Madhavan, and Trevor Darrell. BDD100K: A diverse driv-
ing dataset for heterogeneous multitask learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2636–2645, 2020.

[Zadeh et al., 2019] Amir Zadeh, Michael Chan, Paul Pu
Liang, Edmund Tong, and Louis-Philippe Morency.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf

Social-IQ: A question answering benchmark for artifi-
cial social intelligence. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8807–8817, 2019.

A MMCL Training Curves

(a) BDD

(b) ITV

Figure 7: MMCL validation rewards

Figure 7 shows the validation reward curves of MMCL on
the BDD and ITV datasets. In Figure 8, we plot the vali-
dation reward by tasks. Each task corresponds to training
on a particular group and the index of the task is the time
step of the given group. We plot the training on the ITV
dataset as an example. In each plot of a task, the reward
is the summation of rewards on all modality types that only
exist in this group. For example, the ITV dataset contains
5 modalities (I,T,T,I,V). Task 2 corresponds to a group of
modality types, including (0,1,0,0,0) and (1,1,0,0,0); task 3
corresponds to another group of modality types, including
(1,1,1,0,0), (0,0,1,0,0), etc.

It shows the model’s performance on a given group dur-
ing the whole training process. The orange dots in each plot
show the performance of the model after it has been trained
on the corresponding group. The vertical dashed lines mark
the end of each training pass. We observe that the model’s
performance on a particular group usually drops after being
trained on new groups. This is a typical pattern in contin-
ual learning. However, we observe that the model’s perfor-
mance bounces back after being trained again on the same
group. More importantly, the model’s performance generally
improves after each subsequent encounter (i.e., the model’s
performance on a certain group improves over passes), espe-
cially in early passes, which also demonstrates the need of
training on the same group multiple times.

Figure 8: MMCL reward by groups

	Introduction
	Related Work
	Problem Definition
	Methodology
	Background
	Base Model
	Bayesian Optimization
	Continual learning

	Modality Weight Optimization
	Multimodal Continual Learning (MMCL)

	Datasets
	BDD Multimodal Temporal Dataset
	Image-Text-Video Dataset
	Social-IQ Dataset
	Reward Functions

	Results
	Modality Weight Optimization
	Continuous Multimodal Temporal Training
	Lambda Scheduling
	Restoring Learning Rate Factor

	Discussions

	Future Work and Conclusion
	MMCL Training Curves

