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Abstract

In order to accept future high-yield booking requests, airlines protect seats from low-yield
passengers. More seats may be reserved when passengers faced with closed fare classes can
upsell to open higher fare classes. We address the airline revenue management problem with
capacity nesting and customer upsell, and formulate this problem by a stochastic optimization
model to determine a set of static protection levels for each itinerary. We apply an approximate
dynamic programming framework to approximate the objective function by piecewise linear
functions, whose slopes (marginal revenue) are iteratively updated and returned by an
efficient heuristic that simultaneous handles both nesting and upsells. The resulting allocation
policy is tested over a real airline network and benchmarked against the randomized linear
programming bid-price policy under various demand settings. Simulation results suggest that
the proposed allocation policy significantly outperforms when incremental demand or upsell
probability are high. Structural analyses are also provided for special demand dependence
cases.

Key words: network revenue management, capacity nesting, customer upsell, approxi-
mate dynamic programming

1 Introduction
Airline Revenue Management (RM) is about making a decision whether or not a booking request for a seat of a fare
class should be accepted at a particular point in time. If the request is accepted, the revenue is immediately collected.
Otherwise, the airline reserves the seat for an elite passenger who might book in the near future. Formally, RM is to
maximize revenue by managing a capacity-constrained flight network. An RM control policy for such a purpose is
often constructed based on the (primal and/or dual) solutions of a resource allocation problem. Constructing a good
control policy has been an interesting topic to both practitioners and researchers for decades. Challenges are mainly
due to the size of the flight network, the dynamic nature of the airline business, and the stochastic booking behaviors
of customers. These challenges essentially drive the airline industry to the quest for simple and efficient heuristics.

At the beginning of the decision process, an underlying optimization problem allocates seats to passenger classes
before passengers start booking (this optimization problem is typically resolved later during the booking process). By
allocating the right amount of seats to each class, seats can be protected from low-yield passengers, who usually book
their tickets earlier and are able to take seats that could later be sold to high-yield passengers. In practice, instead of
using the allocation solution as is, allocations are nested over fare classes to set up protection levels, so that high-yield
passengers with depleted allocations are allowed to book seats originally allocated to low-yield classes. A popular
alternative to an allocation policy is the bid-price policy consisting of a threshold price (bid price) for each itinerary.
A booking from a passenger paying a fare above the bid price is accepted given the itinerary is open. The optimal bid
price is usually approximated by summing the (approximated) marginal value of a seat over all flights in the itinerary.
Lastly, by assuming a relationship between the passenger population and fare level (price elasticity), the fare can be
adjusted to achieve a similar capacity protection effect. For further details, we refer the reader to Williamson (1992)
and Talluri and van Ryzin (1998) for bid prices, Bitran and Caldentey (2003) for pricing solutions, de Boer et al.
(2002) for numerical experiments, and McGill and Van Ryzin (1999) for a comprehensive review of RM.

Although the bid-price policy has been extensively studied, the traditional seat allocation policy remains popular,
owning to the fact that many existing RM systems are built to handle allocation policies due to their capability to
include customer behavior (cancellation, no-show, and upsell) more intuitively and provide a more granular control
over the network. With the ever tightening revenue margin nowadays, capturing customer behavior is vital to the
prosperity of the airlines.

In practice, bid-prices are used not as a control policy but as a set of required inputs to prorate itinerary fares and to
decompose the flight network during the pre-optimization phase, where the marginal value of a seat is approximated
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by a dual solution of a relaxed seat allocation model. After the fares are prorated, virtual classes are defined at the
flight level and mapped to the original fare classes. The protection level for each virtual class is then determined by
an efficient leg-based heuristic that captures customer behavior. Our work simplifies existing allocation-based RM
systems by eliminating the use of the proration scheme and the need of defining virtual classes, and provides an
allocation policy that requires no changes in management practice.

In this paper, we model a network RM problem by a stochastic program under an assumption that bookings are in
a low-to-high arrival order. The model first maximizes revenue by allocating seats to each itinerary subject to flight
capacity. Given an itinerary-level allocation and a demand sample, the problem then maximizes sales by distributing
available seats to each fare class while capturing capacity nesting and customer upsell. We apply approximate dy-
namic programming (ADP) to approximate the objective function by piecewise linear functions. The slopes for each
piecewise linear function are estimated by an efficient heuristic that locally adjusts class-level seat allocations and are
iteratively updated given new demand information. Several other sophisticated algorithms are developed to reduce the
running time of the heuristic. In addition, some special cases of demand dependence are considered: when demands
are independent, we show that our model is the same as the model in Curry (1990), and the nested allocation policy,
similar to the partitioned allocation policy, enjoys the asymptotic optimality in Cooper (2002). When demands depend
only among fare classes but not across itineraries, we analyze a sufficient condition under which the objective func-
tion is concave. Simulation results on a medium airline network using a real-world dataset are discussed. Sensitivity
analyses are conducted to access the performance of the nested allocation policy by varying demand magnitudes and
upsell probabilities.

Our contributions are as follows.
1. We provide an innovative stochastic programming formulation to model the network RM problem which con-

siders both capacity nesting and customer upsell at the itinerary level.
2. We are the first to solve the network RM problem in question and develop a parallelizable ADP algorithm that

approximates the complicated objective function. The ADP algorithm allows us to closely approximate the
problem by a linear program that can be solved using any efficient linear programming technique. Furthermore,
it does not require techniques that introduce additional layers of suboptimality, e.g. linear relaxations, network
decomposition by fare proration, or the use of virtual classes, and returns a static allocation policy that can be
easily stored and implemented.

3. We devise a sophisticated heuristic to be served as the core of the ADP algorithm. It efficiently determines the
set of protection levels and approximates the revenue and seat margin. We numerically show that it significantly
outperforms the path-independent heuristic by Gallego et al. (2009) when the number of fare classes is high.

4. We justify the use of the nested allocation policy by revealing its asymptotic optimality when capacity and
demand are high and demands are independent.

5. We generalize the results of Brumelle and McGill (1993) and the positive regression dependence in Cooper and
Gupta (2006) to multiple classes when demands are discrete and only depend among fare classes.

6. We benchmark our allocation policy against RLP bid-prices to provide a comprehensive numerical study on the
performance of the nested allocation policy when demands are scaled and when upsell probabilities cannot be
accurately forecasted, a common problem in practice.

We outline our paper as follows. Section 2 provides a general overview on several well-known seat allocation
models. Section 3 presents our itinerary-based nesting model with upsell, and Section 4 elaborates details on the ap-
proximate dynamic programming algorithm that we apply to solve our model. Several other heuristics and algorithms
are also presented. Section 5 discusses asymptotic optimality of the nested allocation policy when demands are inde-
pendent, and the structure of the objective function when demands depend only among fare classes. Section 6 reports
simulation results, and Section 7 concludes the paper.

1.1 Literature Review
We briefly discuss previous works closely related to our materials. Starting with two passenger classes defined by
their fares, Littlewood (1972) derives the optimality condition to determine the optimal protection level for the lowest
fare class when passengers book first. Brumelle and McGill (1993), Curry (1990), and Wollmer (1992) independently
generalize the optimality condition to multiple classes. While Wollmer (1992) handles discrete demand, Curry (1990)
assumes continuous demand, and Brumelle and McGill (1993) is applicable to both. Furthermore, Curry (1990)
proposes a two-step optimization procedure to obtain protection levels at the itinerary level. While we also consider
the RM problem at the itinerary level, it is formulated as a stochastic program that can be solved efficiently with upsell.
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Another distinction is in Curry’s assumption of independent demand, while we allow demand to be correlated for our
structural analysis of the revenue function.

Adding to the classical results of Littlewood (1972), Brumelle et al. (1990) analyze the effect of dependent demand
on optimal booking limits for the case with two fare classes. Two special cases are considered. The first case is about
correlated demands. The second case is about demand dependence on seat availability. They show that the policy
structure for these two special cases is monotonic under a mild condition on the structure of the demand distribution.
We extend their results for the first case to handle multiple fare classes.

A stochastic approximation algorithm is proposed by van Ryzin and McGill (2000) to approximate optimal pro-
tection levels. Their assumptions are the same as those in Brumelle and McGill (1993) that demands are independent
and arrive in an low-to-high order. The algorithm does not rely on an apriori distribution and provably converges to
optimality. However, their algorithm is single leg, and hence, does not capture the network effect.

Higle (2007) models the seat allocation problem by two-stage stochastic programming. Her model captures de-
mand at the origin-destination level and computes protection levels at the flight level. Our two-stage stochastic model
is similar, but we consider demand and protection levels at the itinerary level, and capture both the low-to-high order
and customer upsell. Also, we do not require classes to be defined at the network level (across itineraries), which is
nontrivial and required in her model for her flight-level nesting scheme to work.

Taking the two-stage framework one step further, Chen and Homem-de-Mello (2010) model the network RM
problem by multi-stage stochastic programming. However, doing so rises tractability concerns, let alone they do not
capture upsell.

Recent attentions have been given to integrating customer upsell with traditional revenue management models.
Fiig et al. (2010) derive a fare adjustment scheme to handle discrete choice models. The scheme was tested by a
passenger origin-destination simulator. Gallego et al. (2009) develop choice-based EMSR methods for a problem with
multinomial logit (MNL) demand. They show superior performances over both EMSR-b with upsell in Belobaba
and Weatherford (1996) and an adapted version of Fiig et al. (2010). We compare our algorithm directly with the
path independent algorithm in Gallego et al. (2009) which has been the most promising heuristic, and achieve similar
results when the number of classes is no more than three, but our algorithm significantly outperforms theirs when the
number of fare classes exceeds three.

Zhang and Adelman (2009) propose the use of approximation dynamic programming to solve the network RM
problem with customer choice. They provided multiple bounding results and a column generation algorithm to handle
the MNL choice model with disjoint consideration sets studied in Liu and van Ryzin (2008). The ADP framework
they applied is similar to ours. However, they estimate the set of products to sell instead of a set of seats to protect and
do not consider upsell.

2 Overview of Revenue Management
Let T be the set of time periods (reading days), F be the set of flights, I be the set of itineraries, If be the set of
itineraries that use flight f , Ci = {1, 2, . . . , |Ci|} be the set of fare classes on itinerary i ordered by fares ri1 ≥ · · · ≥
ri|Ci|, J = {(i, c)}c∈Ci,i∈I be the set of products (itinerary-fare combinations), Jf be the set of products that use
flight f , Πj be the nested allocation (protection level) of product j, Kf be the number of available seats on flight f , yi
be the number of seats allocated to itinerary i, xic for j = (i, c) be the number of seats allocated to product j, zic be
the number of empty seats extracted from all classes lower or equal to class c on itinerary i, Djt be a random variable
that represents the number of booking requests for product j at time t, and djt be its realization. If the demands are
aggregated over all time periods, or each class of demands has a designated arrival time period, then the subscript to
time t is ignored.

Any multidimensional quantity is denoted in bold. A superscript ∗ denotes the optimal value of a problem. A
subscript refers to the sliced set in the subscripted dimension, e.g. Πi is the set of protection levels over all classes on
itinerary i. Minimum and maximum operation is assumed component-wise, and (·)+ represents max{·, 0}. For ease of
notation, we define the set of protection levels for classes not lower than c by Πc

i = {Πi1, . . . ,Πic}, the set of feasible
itinerary-level allocations by I(K) = {y :

∑
i∈If yi ≤ Kf for f ∈ F and yi ∈ N for i ∈ I}, and the set of feasible

product-level allocation by J (K) = {x :
∑
j∈Jf xj ≤ Kf for f ∈ F and xj ∈ N for j ∈ J}. The summations in

I(K) and J (K) represent the requirement that the total allocation to itinerary or product cannot exceed the number
of seats available. Additionally, we define P(Πi, yi) = {xi : xic = min{yi,Πic} − Πic−1 for c ∈ Ci} a policy
function that maps a set of protection levels (nested allocations) to a set of partitioned (non-nested) allocations given

3



the total number of seats available for an itinerary. We define its inverse function by N (xi) = {(Πi, yi) : Πic =∑
c′≤c xic′ for c ∈ Ci, yi =

∑
c∈Ci

xic}.
Starting with the dynamic programming (DP) formulation of the RM problem with independent demand described

in Talluri and van Ryzin (1998), we discuss several tractable approximation models to the DP value function in each
time period. The DP accurately models the problem if the probability of having more than one arrival in between two
time periods is negligible, or as a special case, if arrivals in between two time periods only belong to the same class
(see Robinson (1995)). Mathematically, the optimality equation is

vt(K) = E

 max
x∈J (K)

0≤xj≤Djt,j∈J

∑
j∈J

rjxj + vt−1

Kf −
∑
j∈Jf

xj


f∈F

 (1)

with v0(·) = 0. For each time period t, a decision has to be made about the number of accepted products. In the end,
the DP returns a table of dynamic controls to indicate which classes are open for each possible demand scenario over
all time periods. Major challenges include the curse of dimensionality (see Powell (2007)) and tremendous storage
requirements of the dynamic controls. Promising techniques have been developed to cope with these challenges by
approximating the value function in a way that a set of static controls can be efficiently retrieved. Several related
models are presented in sequel.

The stochastic seat allocation model SP ∗(K) = maxx∈J (K)

∑
j∈J E[rj min{xj , Dj}] is widely used. It aggre-

gates demand for the remaining time periods and aims to maximize the expected revenue by allocating available seats
to each product. Revenue can only be extracted given that both bookings and allocations exist. While this model is
intuitive, it assumes a high-to-low booking arrival order and yields a set of partitioned seat allocations that do not
consider nesting. Its continuous relaxation is known as the probabilistic nonlinear programming model (PNLP), and
the deterministic version of PNLP is known as the deterministic linear programming model (DLP) (see Talluri and van
Ryzin (2004)).

To incorporate demand stochasticity while keeping the simplicity of DLP, Talluri and Van Ryzin (1999) propose
the use of a randomized linear programRLP ∗(K) = E[maxx∈J (K)

∑
j∈J rj min{xj , Dj}]. It has been theoretically

proven that RLP ’s bid-prices outperform DLP bid-prices, which are dual prices.
To capture nesting over multiple fare classes, Curry (1990) derives an itinerary-based allocation model, which

yields a set of static protection levels for each itinerary. It is optimal if the arrival order is low-to-high and can be
solved efficiently by a two-stage procedure. Let ξ be the number of remaining seats given to an itinerary. The model
with independent demand reads

IP ∗(K) = max
x∈J (K)

{∑
i∈I

Ri|Ci|(Πi, yi)

∣∣∣∣(Πi, yi) ∈ N (xi) for i ∈ I

}
and

Ric(Π
c−1
i , ξ) =

∫ ξ−Πic−1

0

[
ricdic +Ric−1

(
Πc−2
i , ξ − dic

)
fic(dic)

]
ddic

+
(
ric(ξi −Πic−1) +Ric−1(Πc−2

i ,Πic−1)
) ∫ ∞

ξi−Πic−1

fic(dic)ddic,

(2)

where Ri0 = 0, Πi0 = 0, and fj(·) is the demand density function for product j. The revenue function (2) is recursive
and has a state space of protection levels and remaining empty seats. It collects revenue by accepting booking requests
for class c and adjusts the remaining seats before proceeding to class c− 1. Note that since booking requests arrive in
a low-to-high arrival order, time index can be ignored. The discrete version of (2) can be found in Wollmer (1992).

All the optimization models discussed above are rather intuitive and well-studied. In the following sections, we
first discuss how to extend IP (K) to capture customer upsell when demands are multinomial logit. Our solution
method is then proposed.

3 Itinerary-based Nested Allocation Model with Upsell
In this section, we develop a network model that captures both capacity nesting and customer upsell by adding upsells
to IP (K) and assuming a low-to-high arrival order. Furthermore, we show that it has a stochastic formulation with a
structure that allows us to develop an efficient algorithm.
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For capacity nesting, a customer with its corresponding class closed may be given a seat from any lower classes.
For customer upsell, it is the opposite. A customer may be willing to pay more to obtain a seat if its corresponding
fare class is closed. The former is a choice of the airline with passengers accepting the requests. The later is a
choice of the customer with a probability that is usually assumed multinomial logit (MNL). For the MNL demand
model, the upsell probability for class c is determined by its attractiveness ac = exp(βssc + βrrc), where βs and βr
are the elasticities of the schedule and fare, and sc and rc are the schedule quality and fare of a class-c ticket. The
upsell probability from class c to c′ is computed based on the proportion of the attractiveness of higher classes, e.g.
pcc′ = ac′/(

∑c
l=1 al + a|Ci|), where a|Ci| is the attractiveness of alternative options. For more information about

MNL, we refer the reader to Gallego et al. (2009).
For an itinerary i, let Uicc′ be the number of upsells from class c to class c′, uicc′ be its realization, ηi be a

vector of accumulated upsells of size |Ci|, pi(c) = (pc1, . . . , pc|Ci|) be the vector of upsell probabilities for class
c with pcc = · · · = pc|Ci|−1 = 0 and pc|Ci| being the probability of selecting an alternative carrier. For a given
number of rejected bookings n, let q(n,p(c), c) = (Uic1, . . . , Uic|Ci|) be the vector of upsells for class c based on
a multinomial probability distribution B(n,p(c)). Note that for each realization uic, we have

∑
c′∈Ci

uicc′ = n and∑
c′∈Ci

picc′ = 1. The itinerary-based nested allocation model with upsell is

U ′∗(K) = max
x∈J (K)

{∑
i∈I

Vi|Ci|(Πi, yi,0)

∣∣∣∣(Πi, yi) ∈ N (xi) for i ∈ I

}
,

and the revenue function is

Vic(Π
c−1
i , ξ,ηi) =


E [ric min{ξ −Πic−1, Dic + ηic}

+Vic−1

(
Πc−2
i , ξ −min{ξ −Πic−1, Dic + ηic},
ηi + q(Dic − (ξ −Πic−1 − ηic)+,pi(c), c))] if ξ ≥ Πic−1,

E[Vic−1(Πc−2
i , ξ,ηi + q(Dic,pi(c), c))] otherwise,

where 0 is a vector of zeros of size |Ci|. When the number of the remaining seats is larger than the number of the
protected seats for higher classes, e.g. ξ ≥ Πic−1 , the revenue for class c is computed based on the minimum of the
available seats and the total demands (demands for class c plus upsells). If no seat is available for class c, all demands
for class c are declined, and the resulting upsells are added to ηi. The main differences between IP (K) and U ′(K)
are that the vector of the observed upsells ηi is now a part of the state space, and ηic the total number of upsells to
class c is added whenever demands are considered.

Proposition 1. Problem U ′(K) exhibits the following stochastic formulation:

U∗(K) = max
x∈J (K)

∑
i∈I
E [Qi(xi,Di)] . (3)

The revenue function for each itinerary i is

Qi(xi,di) = max
z
E

[∑
c∈Ci

ric min {xic + zic+1, dic + ψic}

]
(4)

subject to
zic = (xic + zic+1 − dic − ψic)+

c ∈ Ci (5)

(Uic1, . . . , Uic|Ci|) = q
(
dic − (xic + zic+1 − ψic)+

,pi(c), c
)

c ∈ Ci (6)

|Ci|−1∑
c′=c−1

Uic′c = ψic c ∈ Ci

zic ∈ N c ∈ Ci

where the first expectation is taken over demands, and the second expectation is taken over upsells given a demand
sample.
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Proof. We rely on the relationships ξ−Πic−1 = xic+zic+1 and ηic = ψic and prove the proposition by induction. For
a given itinerary i and c = 1, we have Vi1(∅, ξ,ηi) = E[ri1 min{ξ,Di1 + ηi1}] = E[ri1 min{xi1 + zi2, Di1 + ψi1}].
Suppose Vic−1(Πc−2

i , ξ,ηi) and E[
∑c−1
c′=1 ric′ min{xic′ + zic′+1, Dic′+1 + ψic′}] are equal. We have

Vic(Π
c−1
i , ξ,ηi)

=E[ric min{ξ −Πic−1, Dic + ηic}
+ Vic−1(Πc−2

i , ξ −min{ξ −Πic−1, Dic + ηic},ηi + q(Dic − (ξ −Πic−1 − ηic)+),pi(c), c)]

=E

[
ric min {xic + zic+1, Dic + ψic}

+ Vic−1

(
Πc−2
i ,

∑
c′>c

xic′ + xic + zic+1 −min {xic + zic+1, Dic + ψic} ,

ηi + q
(
dic − (xic + zic+1 − ψic)+

,pi(c), c
))]

=E

[
ric min {xic + zic+1, Dic + ψic}+ Vic−1

(
Πc−2
i ,

∑
c′>c

xic′ + zic,ηi + (Uic1, . . . , Uic|Ci|)
′

)]

=E

[
c∑

c′=1

ric′ min {xic′ + zic′+1, Dic′ + ψic′}

]
.

The third equality is by the definition of (5) and (6).

The problem (3) first maximizes the expected revenue by allocating seats to each product. Once the set of allocated
seats and a demand sample is given, sales are maximized while considering capacity nesting and customer upsell.
Constraints (5) and (6) are the definitions of zic and Uicc′ for c′ ∈ C. Note that if the expectation over upsell is
ignored, the revenue function Qi(xi,di) is similar to the objective function of DLP but with variable zic+1 to account
for the accumulated empty seats from lower classes and the term ψic to handles upsells to class c. This alternative
formulation of the problem has a structure that allows us to develop an efficient algorithm, which is discussed next.

4 Solution Methodology
We employ an ADP framework described in Powell et al. (2004) to solve our problem. It is specifically designed
for a two-stage stochastic problem with the following properties: the objective function is separable in the first stage
decision, stochastic information can be easily collected, and subgradient to the objective function can be computed.

The idea is to approximate the originally complicated objective function by basis functions which can be easily
encoded. In the algorithm, the first-stage problem is approximated by using the approximated objective function. The
first-stage solution together with some observed stochastic information are fed to the second-stage problem to estimate
the required slopes for updating the basis functions. As this procedure iterates and more information is observed, the
original objective function can be approximated arbitrarily closely under some conditions. Powell et al. (2004) show
under such conditions that the algorithm converges.

Beside some theoretical guarantees, there are two major practical benefits from applying this ADP framework: 1)
the first-stage problem is often easier to solve when the original objective function is replaced by some simple basis
functions, and 2) as the problem is separable in the first-stage decision, the second-stage problem can be parallelized.

This ADP framework especially suits our problem as 1) the objective function (3) can be separable in itineraries, 2)
demands and upsells can be easily simulated, and 3) slopes can be estimated directly based on the recursive structures
of (5) and (6). In our application, we use piecewise linear functions as the basis functions. To have the objective
function (3) separable in itineraries, we further decompose our problem into two sub-problems by adding an auxiliary
variable yi to represent the number of seats allocated to each itinerary, where the first sub-problem is

Usp1(K) = max
y∈I(K)

∑
i∈I

Usp2i (yi),
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and the second sub-problem is

Usp2i (yi) = max
x

{
E [Qi(xi,Di)] :

∑
c∈Ci

xic = yi and xj ∈ N for j ∈ J

}
.

A side benefit from this modification is that by decoupling the class-level allocations from the network-level capac-
ity constraints, we can focus on obtaining class-level allocation and accommodating upsells locally and independently
for each itinerary.

Let Si = minf3i{Kf} be an upper bound on the number of seats that can be allocated to itinerary i, and vis
be the marginal revenue of allocating one more seat up to level s. The ADP algorithm approximates Usp2i (yi) by a
piecewise linear function Qi(yi) =

∑l
s=1 vis + vis+1(yi − l) for a unique integer l satisfying l ≤ yi < l + 1. Note

that the function has Si many breakpoints, and we assume Qi(0) = 0. With the piecewise linear functions, the ADP
algorithm easily approximates Usp1(K) and obtains a set of itinerary-level allocations. For a given itinerary allocation
ȳi, an upsell heuristic (the core of the ADP algorithm, presented later) is run to approximate Usp2i (ȳi). It returns an
approximated marginal revenue of Usp2i (·) at ȳi. The margin is, in turn, used to refine the accuracy of Qi(·). In the
algorithm, a set of class-level allocations is also iteratively collected and updated for each itinerary allocation level
ever encountered. The complete ADP algorithm is presented in Algorithm 1.

Algorithm 1 ADP Algorithm to approximate Usp1(K)

1: Initialize vis for s = 1, . . . , Si and i ∈ I .
2: while stopping criteria are not met do
3: Solve ȳ = arg maxy∈I(K){

∑
i∈I Qi(yi)}

4: for all i ∈ I do
5: Run the upsell heuristic to obtain {x̂ic}c∈Ci

the partitioned allocations and v̂i the marginal revenue.
6: for all c ∈ Ci do
7: Update x̄ic(ȳi) by (1− βic)x̄ic(ȳi) + βicx̂ic
8: Update stepsize βic by McClain’s formula (see Powell, 2007, chap. 6).
9: end for

10: Update v̄iȳi by (1− αi)viȳi + αiv̂i.
11: Update stepsize αi by bias-adjusted Kalman filter stepsize rule (see Powell, 2007, chap. 6).
12: Set vi = arg min{

∑Si

s=1(δis − v̄is)2|δis+1 ≤ δis for s = 1, . . . , Si}.
13: end for
14: end while
15: return x̄ic(ȳi) for c ∈ Ci and i ∈ I .

Line 1 of the ADP algorithm initializes the marginal seat revenue (slope) for each possible allocation level over all
itineraries. Line 2 stops the algorithm when changes of the slopes are negligible. Line 3 approximates Usp1(K) with
its objective function replaced by the sum of the piecewise linear functions and returns the number of seats allocated to
each itinerary. Note that Qi(·) is concave, as its slopes {vis} are decreasing in s, a property ensured by the projection
operation in Line 12. This property enables us to linearize the approximation model and rewrite it into the following
equivalent linear program:

max
y∈I(K)

ρ

{∑
i∈I

Si∑
s=1

visρis :

Si∑
s=1

ρis = yi for i ∈ I, 0 ≤ ρis ≤ 1 for s = 1, . . . , Si

}
.

Given ȳi, Line 5 computes a set of new partitioned allocations and returns the seat margin at ȳi using the upsell
heuristic, which we developed to solve Usp2(ȳi). Line 7 updates the partitioned allocations based on {x̂ic}c∈C , and
Line 8 updates βic the stepsize for updating the allocation. Line 10 updates the slope using v̂i from Line 5 while Line
11 updates αi the stepsize for updating the slope. Note that α and β are in fact state-dependent, but the dependence is
dropped in Algorithm 1 for ease of notation. After the slope is updated, Qi(y) may not be concave in y. Line 12 then
imposes concavity on each piecewise linear function by finding the closest concave piecewise linear function, where
the distance is measured by the two-norm. An efficient projection algorithm can be found in Powell et al. (2004). With
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the well-approximated objective function, Line 15 returns a set of partitioned allocations given the latest allocation for
each itinerary from Line 3.

We now discuss the upsell heuristic which estimates the marginal revenue for Usp2i (·) at ȳi and yields a set of
partitioned allocations to be updated by the ADP. The heuristic iteratively adjusts the existing partitioned allocations
by removing seats from less-profitable classes to more-profitable classes. It first generates a set of demand scenarios,
finds the highest class having a positive allocation, and sets it as the current class ĉ. The algorithm then iteratively
reduces the number of allocated seats from class ĉ and reallocates the extracted seats to lower classes that can most
profitably utilize the seats. If no profitable lower class is found or no more allocation can be extracted, the algorithm
repeats with the next highest class having a positive allocation. This procedure continues until the highest class having
a positive allocation is also the lowest class. The algorithm is described in Algorithm 2.

Algorithm 2 Upsell heuristic to approximate Usp2i (yi)

Require: yi the total number of seats available.
1: Generate K demand samples {ζ1

ic, . . . , ζ
K
ic } for c ∈ Ci.

2: Initialize xic for c ∈ Ci using the upsell-adjusted algorithm.
3: Set the current class ĉ to the highest class with a positive allocation.
4: while class ĉ is not the lowest class do
5: Decrement xiĉ by 1.
6: Apply the revenue estimation algorithm to compute revenue r.
7: Find c′ a lower class that yields the highest margin δc′ by the margin estimation algorithm.
8: Increment xic′ by 1.
9: if ĉ = c′ or xiĉ = 0 then

10: Find c̃ the next highest class with a positive allocation.
11: if class c̃ exists then
12: Set ĉ = c̃
13: else
14: return xi, r + δc′ , δc′ .
15: end if
16: end if
17: end while

Line 1 generates demand samples used to estimate the total revenue and seat margin. Line 2 initializes class-level
allocations using the upsell-adjusted algorithm designed to handle upsells when the rejection event {

∑
c∈Ci

ζic > yi}
is very likely. Line 3 finds ĉ the highest class with a positive allocation. If ĉ is not the lowest class, Line 5 subtracts
a seat from class ĉ. Line 6 then applies the revenue estimation algorithm to compute the base revenue to which the
new margin is to be added. Line 7 estimates the new margin using the margin estimation algorithm, which also returns
c′ the class that is associated with the new margin and can most profitably utilize the seat. After the extracted seat is
added to class c′, the upsell heuristic then finds the next highest class having a positive allocation at Line 10. If such a
class exists, the algorithm starts the next iteration with that class. Otherwise, the algorithm returns the set of modified
allocations, the associated revenue, and the seat margin at Line 14.

For completeness, we also briefly summarize here the revenue estimation algorithm (Algorithm 3), the margin
estimation algorithm (Algorithm 4), and the upsell-adjusted algorithm (Algorithm 5) with their algorithmic details
documented in Appendix B.1, B.2, and B.3 respectively.

The revenue estimation algorithm is basically an implementation-level verbatim of Qi(xi,di). It takes xi the
number of seats allocated to each class, ζi the set of generated demand samples, and returns r the average revenue
over all demand samples along with all upsell information for the margin estimation algorithm to efficiently compute
the seat margin. It heavily relies on the nested recursive structure of (5) and (6) to compute the revenue directly.

The margin estimation algorithm recovers our single-seat allocation decision to provide a what-if margin. It re-
quires the same inputs as those for the revenue estimation algorithm, the upsell information, as well as the class c′ that
the extra seat is adding to. It starts with checking if there exists a rejected upsell from any lower classes. If a rejected
upsell is found, it returns the class-c′ fare. Otherwise, for any higher classes l = 1, . . . , c′, the algorithm searches for a
rejected booking and its corresponding upsell. If both are found, the algorithm recovers the margin as if there was no
upsell from class l. If a rejected booking exists but does not result in an upsell, the algorithm returns the class-l fare as
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the seat margin.
The upsell-adjusted algorithm is designed to handle situations when there are many rejected booking requests. It

takes yi the total number of available seats and ζi the set of demand samples, and returns xi a set of initial class-level
allocations for the upsell heuristic. The algorithm basically subtracts upsells from lower classes and adds them to the
observed demands for higher classes, and treats the total demand as if it is the original demand, e.g. approximating the
MNL distribution with the distribution of the demand. The upsell-adjusted algorithm then iterates until no profitable
upsell can be added to any higher classes over all demand samples.

5 Special Dependence Cases
In this section, we investigate structural properties of our model under special demand dependence cases. When
demand is independent, we show that the nested allocation policy is asymptotically optimal. A comprehensive analysis
on asymptotic optimality for partitioned allocation policy is given by Cooper (2002), yet a result for nested allocation
policies has not been derived. The asymptotic optimality ensures that when both capacity and demand are sufficiently
large, the allocation policy will perform arbitrarily closely to the optimal control policy. The idea is to scale both
the mean of the demand and capacity without scaling their variabilities. After the scaled means are normalized, the
variabilities are essentially eliminated. It results in having similar performance over a group of allocation policies from
different approximation models to v|T |(K), the value function of the optimal DP.

In the second part of this section, we investigate the case when there are correlations between demands. We
generalize the observation about the positive regression dependence in Brumelle et al. (1990) and Cooper and Gupta
(2006), and extend the results on the optimality conditions for correlated demands in Brumelle and McGill (1993) to
handle multiple classes. We do not only reveal the concavity of the revenue function under the positive regression
dependence, but also a sufficient condition for determining and verifying the optimality of the protection levels given
the total allocation to an itinerary.

5.1 Asymptotic Property
In this section, our goal is to show the asymptotically optimality of the nested allocation policy ofU(K) when demands
are independent. Let us validate P (K), the version of U(K) without upsell by showing that it is equivalent to IP (K)
when demands are independent. Our problem U(K) with independent demand is

P ∗(K) = max
x∈J (K)

∑
i∈I
E [Si(xi,Di)] ,

and the second-stage problem is

Si(xi,di) = max
z integer

∑
c∈Ci

ric min{xic + zic+1, dic}

zic = (zic+1 + xic − dic)+ c ∈ Ci (7)

At the first stage, seats are allocated to each product subject to flight capacity. At the second stage, bookings are
accepted based on the first stage allocations given a realization of the demand.

Proposition 2. Assuming independent and continuous demand with a low-to-high arrival order, P (K) and IP (K)
are equivalent.

Proof. By exploring the structure of (7) and expressing expectations by integrals, we can easily recover the recursive
structure of IP (K). See Appendix A.3 for details.

In fact, the assumption about continuous demand can be dropped, since Li and Oum (2002) establish the equiva-
lence between IP (K) and the model in Wollmer (1992). Thus, our model also works with discrete demand.

After we have verified that P (K) is in fact the correct model with independent demand, we next study the bounding
property of different approximation models to v|T |(K). Specifically, we show that P (K), the version of the nested
allocation model with deterministic demands, yields the same objective value as SP (K), the version of the stochastic
seat allocation model with deterministic demands, and the nested allocation policy of P (K) is provably better than the
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partitioned allocation policy of SP (K). With these two observations, we can directly apply the result from Cooper
(2002) to obtain asymptotic optimality of the protection levels.

Lemma 1. We have SP ∗(K) = P ∗(K).

Proof. By substituting stochastic demand by its expectation, we can rewrite the recursive structure of (2) by a revenue
function equivalent to that of SP (K). See Appendix A.1 for details.

Let us denote byRπ the revenue obtained by implementing the allocation policy constructed based on the solution
of problem π given a demand sample.

Lemma 2. We have ERP (K) ≥ ERSP (K) ≥ ERSP (K) for any arrival order.

Proof. The proof is based on the observation that applying the nested allocation policy under the worst arrival order
(low-to-high) yields a higher revenue than applying the partitioned allocation policy, which is arrival-order indepen-
dent, and the fact that the partitioned allocation policy from SP (K) is optimal under stochastic demand. See Appendix
A.2 for details.

Proposition 3. We have SP ∗(K) = P ∗(K) ≥ v|T |(K) ≥ ERP (K) ≥ ERSP (K) ≥ ERSP (K).

Proof. ’ Inequality v|T |(K) ≥ ERP (K) follows from optimality of (1). Inequality SP ∗(K) ≥ v|T |(K) is from
Cooper (2002). The proof is then completed by applying Lemma 1 and Lemma 2.

Proposition 3 states that in expectation, we do not need nesting, and the objective value of P (K) can be used as an
upper bound on v|T |(K). We can then directly apply Proposition 2 in Cooper (2002) to obtain asymptotic optimality
of the nested allocation policy of P (K). We apply superscript k to problem π to represent the version of π with its
demand and capacity being k times larger. Furthermore, we denote by Dk

jt = kDjt the k-time larger demand for
product j at time t.

Proposition 4. If the normalized k-time linearly-scaled arrivals converge in distribution to their unscaled means, e.g.
1
k

∑
t∈T D

k
jt
D−→
∑
t∈T EDjt, the nested allocation policy from P k(K) is asymptotically optimal as k →∞.

Proof. By Proposition 3, we have ERSPk(K)/vk|T |(K) ≤ ERPk(K)/vk|T |(K) ≤ 1. From Proposition 2 in Cooper

(2002), it follows ERSPk(K)/vk|T |(K)
k→∞−−−−→ 1, and in turn, we have ERPk(K)/vk|T |(K)

k→∞−−−−→ 1 as required.

If demands are not independent to each others, the arrival order affects the magnitude of the demands. As a result,
Lemma 2 does not necessary hold (it is now possible to have ERP (K) < ERSP (K)), and Proposition 4 is invalid.
The above result is not as obvious as it seems. Since the revenue function is not concave in general, the deterministic
upper bound on v|T |(K) cannot be simply implied by Jensen’s inequality. To see this, suppose we have only two
classes. The objective function of P (K) becomes r2 min{ξ −Π1,ED2}+ r1 min{Π1 + (ξ −Π1 −ED2)+,ED1}.
Its stochastic version is E[r2 min{ξ −Π1, D2}] + r1E[E[min{Π1 + (ξ −Π1 −D2)+, D1}|D2]]. We can ignore the
first term because of Jensen’s inequality. Without relying on Lemmas 1 and 2, it is necessary to show min{Π1 + (ξ −
Π1−ED2)+,ED1} ≥ E[E[min{Π1 +(ξ−Π1−D2)+, D1}|D2]] for P ∗(K) ≥ ERP (K) to hold, and this condition
is not true in general even when demands are independent. Since the function is not concave and is non-increasing
in D2, the conditions for Jensen’s inequality over this multivariate function are not satisfied. In the next section, we
study some more structural properties of the revenue function when demands are correlated.

5.2 Optimality Condition for Correlated Demands
In this section, we show a sufficient condition that allows the objective function to be concave in the number of
remaining seats, and optimality condition for determining protection levels. Let dci = {dic, . . . , di|Ci|} be a vector
of the realized demands for classes c, . . . , |Ci|. The modified IP (K) that captures dependent demands among fare
classes is:

max
x∈J (K)

{∑
i∈I
Gi|Ci|(Πi, yi, ∅)

∣∣∣∣(Πi, yi) ∈ N (xi)

}
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and for each itinerary i ∈ I , the revenue function is

Gic(Πc−1
i , ξ,dc+1

i ) =


ricE[min{ξ −Πic−1, Dic}|dc+1

i ] if ξ ≥ Πic−1

+E[Gic−1(Πc−2
i , ξ −min{ξ −Πic−1, Dic},dci )|d

c+1
i ]

E[Gic−1(Πc−2
i , ξ,dci )|d

c+1
i ] Otherwise.

(8)

In general, the revenue function Gic(·, ξ, ·) is not concave in ξ with a reason similar to the example provided in the
last paragraph of Section 5.1. However, with the following assumption, it is possible to show that Gic(·, ξ, ·) is in fact
concave. For ease of notation, index to itinerary i is ignored from now on.

Assumption A1. The probability of event E occurs given Y ≥ φ is nondecreasing in φ.

Assumption A1 is the generalized version of the positive regression dependence described in Cooper and Gupta
(2006). The intuition can be seen from a two-class example: if fewer seats are allocated to the lower class, the
probability of spilling booking requests from the higher class is higher, e.g. P [d1 ≥ x − φ|d2 ≥ φ] ≥ P [d1 ≥
ξ − φ − 1|d2 ≥ φ − 1], where φ = ξ − Π1. By applying this assumption, we can generalize the results in Brumelle
and McGill (1993) with demand dependency only among fare classes. Let dc(E) = dc+1 ∪ {Dc ∈ E} be the set of
observed demands given dc+1 and {Dc ∈ E}. We have the following concavity result.

Proposition 5. Under Assumption A1, and if for all l ≤ c− 1, the protection level Πl satisfies

rl ∈
[
δ+
x=Πl−1

Gl−1(Πl−2, x,dl(Dc ≥ ξ −Πl−1)), δ−x=Πl−1
Gl−1(Πl−2, x,dl(Dc > ξ −Πl−1))

]
, (9)

then Gc(Πc−1, ξ,dc+1) is concave in ξ.

Proposition 5 shows the concavity of (8) in ξ given the sub-differential condition on the expected revenue function
and a set of protection levels that satisfies the condition. This sub-differential condition is similar to the one in Brumelle
and McGill (1993), but now depends on the observed demands of the lower classes.

Proposition 6. Condition (9) is the optimality condition for the protection level Πc−1 given any Πc−2 that satisfy
Proposition 5.

The proofs of Propositions 5 and 6 can be found in Appendix A.4. Proposition 6 ensures that the set of protection
levels that satisfies the sub-differential condition in Proposition 5 is indeed optimal. These two results provide a way
to verify the optimality of Π if demand correlation exists, although the protection levels now depend on the observed
demands for lower classes.

6 Computational Experiments
In Section 4, we have discussed the ADP algorithm and a set of heuristics that we develop to solve the network RM
problem with upsell. In this section, we split our discussion in two parts. The first part focuses on accessing the
performance of the upsell heuristic (Algorithm 2), while the second part is devoted to the ADP algorithm (Algorithm
1). The reason to analyze the upsell heuristic separately is that the heuristic by itself is the most important part of the
ADP algorithm which returns a set of class-level allocations and a seat margin to update the slope of the approximating
function. Hence, its performance is vital to the accuracy of the ADP. The second part establishes the performance of
the ADP framework for solving the RM problem at the network level. Both parts include simulation details and output
comparisons.

In the first part of this section, the nested allocation policy from the upsell heuristic is benchmarked against the
solutions of the algorithm in Wollmer (1992), the path independent choice-based algorithm in Gallego et al. (2009),
and the optimal dynamic program with upsell. The algorithm in Wollmer (1992) is chosen because it is developed
directly based on the optimality condition of the revenue function (2) assuming independent demand. It allows us to
observe the degree of revenue improvement by incorporating upsell. The path independent algorithm in Gallego et al.
(2009) is selected simply due to its unparalleled solution quality and efficiencya. It relies on a simplified optimality

aAlthough Gallego et al. (2009) has a path dependent algorithm that provides slightly better performance (< 1% in average), its implementation
is more complicated and requires more running time. As our upsell heuristic significantly outperforms the path independent algorithm, we consider
the path independent algorithm adequate for our benchmarking purpose.
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condition of the revenue function (2) with aggregated demand and upsell. The optimal dynamic program with upsell
is used to obtain optimality gaps for the algorithms. It evaluates all possible sets of the protection levels by computing
their revenues over a large set of demand samples. In the end, we also investigate the accuracy of the marginal revenue
returned by the upsell heuristic and the effect of the projection operation from Line 12 of the ADP algorithm before
testing our solution at the network level.

In the second part of this section, we run the ADP algorithm and benchmark its allocation policy against the RLP
bid-price policy on a real airline network with 136 flights, 309 itineraries, and 31 reading days. In the absence of
a scalable method that simultaneously incorporates nesting, upsell, demand stochasticity, and network information,
we select the RLP as it captures demand stochasticity and network information while providing scalability, reliable
performances, and theoretical guarantees (see Talluri and Van Ryzin (1999) and Topaloglu (2009)) despite its incapa-
bility to capture upsell. We test our proposed allocation policy over various demand magnitudes to access the effect
of the network fill rate, and different upsell probabilities to study the sensitivity of the policy to inaccurate probability
forecasts.

Let us now present the architecture of the simulation module that we used to evaluate control policies. The flow
of the simulation for the first reading day is summarized in Figure 1. Simulations for all other reading days have
similar architecture. Mean demands and flight capacities are first queried from the database. While the capacities
are loaded directly to the optimization module, the mean demands are randomized and scaled, and used to generate
an arrival sample path for the simulation before loading to the optimization module to estimate the required policy.
The order of the arrivals between two reading day are randomized before the control policy from the optimization is
applied. Note that this violates the low-to-high arrival order assumption of our model, and hence, provides a more
realistic simulation environment for a fair comparison to the bid-price policy which is independent to arrival orders.
Upsells are then generated based on the rejected arrivals and accumulated with remaining empty seats. In the end,
the revenue is computed based on the number of arrivals accepted for each class, and the flight capacities are updated
before moving to the next reading day.

Update Capacity

Evaluator

· Bid prices

· Protection Levels

Arrival (T-1, 0)

Arrival (T, T-1)

Capacity

Simulate Arrivals

Shuffle Arrival Order

Accept/Reject

Record Revenue and 

Consumed Capacity

Database

Randomize and Scale 

Demand

Capacity

T-1

Demand for each t

Optimization Optimization

Revenue at T

Generate Upsells

Figure 1: Flow chart of simulation at time T , the first reading day.

Let Ksim be the number of demand sample paths generated across the entire booking period for simulation,
and Kopt be the number of demand samples generated for the optimization problem in question. For all single-leg
simulation experiments, we follow the same simulation settings of Gallego et al. (2009) by setting both Ksim and
Kopt to 100, 000 to eliminate the effect of the standard error. Furthermore, all examples in Gallego et al. (2009) as
well as some constructed cases are tested. For each itinerary, all algorithms being tested allocate remaining seats,
e.g. ξ − Π|Ci|−1, to the lowest class except for the upsell heuristic which allocates the remaining seats by the upsell-
adjusted seat allocation algorithm (Algorithm 5). For all network simulation experiments, due to the large amount of
parameters we test, we restrictKsim andKopt to 100 and 50 respectively. Although the number of simulation samples
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for simulation is relatively small, our results lead to insightful conclusions, and are all valid under a 10% significant
level with more than half of them also valid under a 5% level.

All simulation experiments have been run on a cluster of 50 servers. Each server has two 3.2 GHz Intel(R)
Xeon(TM) CPUs and 6GB of memory, yet only up to 3GB were used due to our 32 bits limitation. After the allocation
for each itinerary is determined (Line 3 of the ADP algorithm), the upsell heuristic is parallelized by itinerary over all
available processors. Results are stored in an Oracle 11g database and visualized in IBM Cognos.

6.1 Single Leg Comparison
We access the performance of the upsell heuristic (Algorithm 2) by comparing it with both the algorithm in Wollmer
(1992) for independent demand, the path independent choice-based algorithm in Gallego et al. (2009), and the optimal
dynamic problem with upsell that evaluates all possible sets of protection levels via simulation. Let us abbreviate
the path independent choice-based algorithm in Gallego et al. (2009) by PaInd, the algorithm to compute protection
levels for independent demand in Wollmer (1992) by Indep, the optimal DP with upsell by DP, and the upsell
heuristic by Upsell. All examples in Gallego et al. (2009) as well as some constructed examples are tested.

Let α be the fare or schedule quality multiplier, γ be the margin scaler, λ be the total demand, and 0 be the class to
represent the alternative option. To construct the examples, we set the fare for each class to rc = αexp(γ(|C| − c +
1)/|C|) and schedule quality to sc = αexp(γ(|C| − c+ 1)/(2|C|)). The fare and schedule quality for the alternative
option are the averaged fare and schedule quality. These functions are selected in a way that the margin increases
with the fare class, and the resulting fare closely matches the real world data given. For all constructed examples, the
elasticities of fare and schedule are set to be βr = −0.0035 and βs = 0.005 respectively. Table 1 shows simulation
settings for two/three/four/five-class examples, where the first four cases are taken from Gallego et al. (2009), and the
five-class example is constructed based on α = 100 and γ = 0.6. The first row refers to the number of classes in each
example. The second row show the elasticities of the schedule and price. The next row is the number of total booking
requests.

Table 1: Simulation settings for two/three/four/five-class examples

|C| 2 3 4 5

βr/βs -0.005 0.005 -0.0035 0.005 -0.0035 0.005 -0.0035 0.005
λ 26.67 25 50 20

Class fare scheduleb fare schedule fare schedule fare schedule

0 900 1100 1100 500 1000 600 846.01 268.67
1 1000 1200 1000 200 1000 400 2008.55 448.17
2 800 1000 800 200 900 300 1102.32 332.01
3 500 200 600 300 604.96 245.96
4 500 300 332.01 182.21
5 182.21 134.99

Optimality gap comparisons are summarized in Figure 2. For 2 and 3 classes, both Upsell and PaInd performs
close to DP with optimality gaps smaller than 1%, and the solution quality of Indep first sharply deteriorated before
gradually approaching optimality as the capacity increases. For 4 classes, we can see that Upsell starts to outper-
forms PaInd when the number of seats available is higher than 16, and its optimality gap is still less than 1% while
the optimality gap for PaInd is about 2% in several occasions. For 5 classes, the gaps for both PaInd and Indep
are significantly widened. This illustrates the drawback of estimating optimal protection levels based only on simple
probability statements that cannot fully capture the dynamic of upsells.

bThe quality of the schedule assigned to an itinerary. It reflects how attractive the departure time of the itinerary is to the customer.
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Figure 2: Optimality gap comparisons for two/three/four/five classes.

Figure 3 shows the running time as a portion of the running time of DP. It is clear that the relative running time
of Upsell generally decreases as the number of classes increases. However, it sharply increases in the two-class
example after the point where capacity and demand level meet. The reason is that Upsell starts with more seats for
the highest yielding class (due to the upsell-adjusted seat allocation algorithm) and reallocates the seats one-by-one
to lower classes that are more profitable stochastically. This incurs additional overhead and algorithmic operations by
storing all information necessary (e.g. αkc , βkc , γkc in the upsell revenue estimation algorithm) to recompute a revenue
margin. It is also due to the fact that running DP for a problem with only two classes is relatively inexpensive. Such
an increase of running time is gradually diminishing in the number of classes, as the running time of DP exponentially
increases.  
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Figure 3: Percentage of the running time of DP for two/three/four/five classes from left to right, smaller the better.

In additional to the five cases discussed, extra simulation experiments were conducted for other cases that we
constructed based on the method we described in the beginning of Section 6. We tested α ∈ {100, 200, 300}, γ ∈
{2, 2.5}, C ∈ {2, 3, . . . , 10}, λ ∈ {10, 20, 30, 40, 50}, and capacity in [5, 10, . . . , 50]. Average relative optimality
gaps based on Upsell are given in Table 2, and the percentages of running time increased are given in Table 3. A
negative value means that Upsell is outperformed (it happens only once in Table 2 by a small percentage when the
number of class is 3, and the demand is low).

In general, Upsell outperforms both Indep and PaInd up to 26% and 24% respectively when the number
of classes increases or the number of total bookings decreases, yet the percentage of the running time also increases
as the running times for Indep and PaInd are fairly constant regardless of the number of the fare classes and the
magnitude of the demands. Interested reader may refer to Appendix 5 for the average running time of Upsell in
second and the average demand factor (demand-to-capacity ratio) for different number of classes and total demands.
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Table 2: Average relative optimality gap based on Upsell.

λ 10 20 30 40 50

|C| Indep PaInd Indep PaInd Indep PaInd Indep PaInd Indep PaInd

2.0 1.33% 0.09% 3.90% 0.12% 6.98% 0.17% 9.04% 0.10% 11.79% 0.21%
3.0 22.49% -0.21% 22.15% 0.35% 23.11% 0.80% 23.63% 1.16% 23.63% 1.44%
4.0 21.43% 3.62% 22.42% 3.98% 22.62% 4.36% 23.39% 4.53% 24.67% 4.77%
5.0 20.82% 10.62% 22.48% 10.10% 23.53% 9.32% 24.03% 7.97% 24.94% 6.81%
6.0 20.81% 14.51% 22.95% 13.86% 23.68% 12.30% 25.29% 10.87% 25.81% 9.04%
7.0 21.25% 17.45% 22.82% 16.41% 24.07% 14.50% 25.02% 12.25% 26.06% 9.95%
8.0 20.62% 23.52% 22.47% 21.67% 23.95% 19.49% 25.03% 16.79% 25.95% 13.76%
9.0 20.55% 19.43% 22.53% 18.21% 24.18% 16.24% 24.96% 13.74% 26.02% 11.28%

10.0 20.22% 24.19% 22.38% 22.59% 24.18% 20.18% 25.39% 17.44% 26.02% 14.50%

Table 3: Average percentage of running time based on Upsell

λ 10 20 30 40 50

|C| Indep PaInd Indep PaInd Indep PaInd Indep PaInd Indep PaInd

2.0 3.64% 1.77% 5.50% 1.55% 7.78% 2.24% 9.75% 2.68% 12.02% 3.12%
3.0 8.82% 7.03% 6.88% 4.66% 5.51% 2.87% 6.69% 2.88% 7.09% 3.07%
4.0 5.26% 4.65% 4.09% 2.81% 4.26% 1.98% 4.82% 2.24% 6.36% 2.47%
5.0 3.81% 3.30% 3.31% 2.17% 4.03% 1.81% 4.45% 1.78% 4.74% 1.75%
6.0 3.01% 2.70% 2.93% 1.87% 3.29% 1.51% 4.22% 1.54% 4.66% 1.53%
7.0 2.57% 2.50% 2.63% 1.71% 2.97% 1.38% 3.46% 1.29% 4.42% 1.43%
8.0 2.25% 2.23% 2.47% 1.60% 2.90% 1.35% 3.33% 1.24% 4.31% 1.36%
9.0 2.14% 2.28% 2.33% 1.58% 2.61% 1.27% 2.95% 1.14% 3.49% 1.14%

10.0 2.01% 2.19% 2.27% 1.58% 2.57% 1.29% 2.98% 1.16% 3.35% 1.12%

In order to closely approximate (4) with piecewise linear functions and iteratively update their slopes with marginal
revenues, we need to accurately estimate marginal revenue at each itinerary allocation level. Figure 4 illustrates how
accurate the marginal revenues are estimated by Upsell in two examples. In each example, demand for the alternative
buying option is two times of the total demand, and the attractiveness of a fare class is set to be the magnitude of its
demand. The figure on the left displays marginal revenue curves generated based on DP, Indep, and Upsell for a
four-class example with demand in {20, 15, 10, 5} and revenue in {100, 250, 500, 800}. It shows that the marginal
revenue curve generated based on Upsell collides with that of DP, while the margins from Indep are significantly
different. The figure on the right similarly shows the marginal revenue curves obtained from an example with fifteen
classes selected from a real world data set. Its demands are {2, 1, 24, 6, 10, 6, 15, 27, 2, 12, 8, 9, 3, 4, 23} and the
revenues are {19.89, 22.13, 29.49, 29.78, 32.11, 33.78, 44.49, 51.98, 56.34, 62.52, 74.27, 128.85, 135.05, 170.71,
272.26}. We did not include DP as it is intractable. Instead, we focus on how the projection operation in Line 12 of
Upsell changes the marginal revenues. We represent the projected marginal revenue curve by pjUpsell in the
figure. It is clear that the marginal revenue curve has several wedges, e.g. the objective function is not concave. After
being projected, the marginal revenue curve becomes monotonic while many of the original margins are preserved.
In summary, when the number of classes is small, Upsell is accurate in estimating marginal revenues, and the
projection operation can be safely applied to expedite the convergence rate of the ADP algorithm without significantly
altering the original revenue margins returned by Upsell.
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Figure 4: The marginal revenue curves for a four-class example (left) and a fifteen-class example (right).

6.2 Medium-Size Airline Network
In this section, we access the performance of the protection levels returned by the ADP Algorithm using a medium
airline network based on a real world data set. Table 4 summarizes the airline network, which has 136 flights, 309
itineraries, 31 reading days, 10.5 classes in average for each itinerary, and 80% capacity filled in average. We first
discuss details about the simulation and implementation settings. Then, we conclude this section with our simulation
results.

Table 4: Summary of the medium airline network

No. of flights 136 Min. demand factora 3%
No. of itineraries 309 Avg. demand factor 80%
No. of reading days 31 Max. demand factor 240%
Avg. No. of Classes 10.5

6.2.1 Implementation Details on the ADP Algorithm

To run the ADP Algorithm, we need to initialize the marginal revenues properly and determine appropriate stopping
criteria to prevent the algorithm from stalling without significantly trading off optimality. In our implementation,
marginal revenues are initialized based on the fare-adjusted seat allocation algorithm (Algorithm 6). The use of the
fare-adjusted seat allocation algorithm is solely for efficiency as marginal revenue for each possible itinerary allocation
level has to be computed. If the upsell heuristic is used instead, too much running time will be consumed without
improving solution quality significantly (due to the fact that initial marginal revenues, if not too far off, do not affect
the final solution, and running several more iterations of the ADP algorithm is considerably inexpensive). The ADP
Algorithm is stopped if the current revenue is in [µ ± 0.001σ], where µ and σ are the average revenue and standard
deviation computed based on the last 30 revenue points. This stopping criterion guarantees that revenue shifting is
unlikely. To expedite the algorithm, we cease learning (updating marginal revenues) for an itinerary if the difference
between its revenue from the last iteration and the revenue from the current iteration are less than 1% of its average
revenue over the last 10 iterations.

6.2.2 Simulation Settings

To access the performance of the nested allocation policy under multiple demand scenarios, we randomize and scale
the mean of the demands. To be more specific, the mean demands are randomized by a normal distribution and scaled
by a multiplier. The adjusted mean demand serves as the mean to generate demand samples for both simulation
and optimization. The standard derivation is selected to be a multiple of the non-scaled mean. This is designed to
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merely shift the demand without inflating its variability. Denoting the number of the original demands by Dict, the
randomized demand is Dict ∼ Round(N ormal((1 +m1)Dict, (Dict/m2)2)), where m1 ∈ {−0.4,−0.2, 0, 0.2, 0.4}
is the demand multiplier (see Appendix 6 for the corresponding demand factors), and m2 = 3 specifies the scaling
factor of the standard deviation in order to match the original mean value, e.g. about 99.7% of the random demands
fall into the interval of [Dict ±Dict]. We regenerate if the realized demand is negative.

In reality, upsell probabilities are difficult to estimate due to data censorship. It is important to examine how
forecasting error on upsell affect the performance of the nested allocation policy. Toward this end, we use two different
sets of upsell probabilities, one for simulation, and one for optimization (when upsell information is generated in
Algorithm 2). In both sets, the attractiveness of a class is set to be the value of its demand with a scaling parameter
to determine the attractiveness of the alternative option. Formally, the upsell probability is computed based on pjcc′ =

mj
3EDc′/

∑c−1
l=c′ EDl for c, c′ ∈ C, where j ∈ {simulation, optimization} and mj

3 is the scaling parameter. If
mj

3 = 0, no upsell occurs. If mj
3 = 1, no alternative exists. The values of mj

3 are selected in [0, 0.1, . . . , 0.9].
We benchmark our allocation policy against the bid-price policy from RLP. The number of arrivals for simulation

is 100 across the entire booking period, the number of demand samples generated per ADP iteration is 50, and 50
demand samples are generated for RLP.

6.2.3 Discussions

We first discuss results when demand varies and upsell probabilities are forecasted accurately, i.e. the upsell probabili-
ties in optimization are ”accurate”. The results are summarized in Figure 5. Each line represents results from a demand
multiplier ranging from −0.4 to 0.4. The figure shows in general that when demand increases (the demand multipliers
represent the different series), percentage of revenue improvement increases over all scales of upsell probabilities, and
are especially prominent in the central region where the upsell probability multiplier is in [0.3, 0.7]. The difference
can be as much as 5% between the lowest (-0.4) and highest (0.4) demand multipliers when the upsell probability
multiplier is 0.6. When the upsell probability multiplier increases, the percentage of revenue improvement increases
in a convex manner. Also note that the improvement is close for different demand multipliers, which suggests that the
improvement is fairly robust to the magnitude of the demand.
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Figure 5: Percentage of revenue improvement against upsell probability multiplier when upsell probabilities are fore-
casted accurately.

Figure 6 shows the percentage of revenue improvement for all tested combinations ofmsimulation
3 andmoptimization

3

when demands are not scaled, e.g. m1 = 0. The results are similar for other demand multipliers. See Table
7 in Appendix C for numerical values. The left figure shows results from simulations when msimulation

3 is in
{0, 0.1, 0.2, 0.3, 0.4} with each series corresponding to one value. Overall, we see that each improvement curve
slowly inclines until it is at its peak when msimulation = moptimization and gradually declines afterward. Largest im-
provement is about 2.29% when msimulation

3 = moptimization
3 = 0.4. The declining rate is faster when msimulation

3

is small. It also shows that whenmoptimization
3 ≤ msimulation

3 , improvement is almost guaranteed, except for the case
when upsell does not exist, e.g. msimulation

3 = 0. It signifies that it is better to underestimate the upsell probabilities
when solving the RM problem. The right figure show simulation results formsimulation

3 ∈ [0.5, 0.6, 0.7, 0.8, 0.9]. The
situation is just the opposite: overestimating upsell probabilities provides better results, and the revenue improvement
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can be as high as 33% when 90% chance a rejected customer will upsell and we forecast it accurately. The reason
of such an opposite behavior can be contributed to both the cascading effect of the upsells and the heuristic nature of
the upsell heuristic. When msimulation

3 ≥ 0.5, every rejected booking is more likely to upsell than opt for alternative
options. It results in pushing more low-class demands upward when msimulation

3 increases, and the phenomenon is
particularly obvious when there exists many classes. Since the effect is accumulated starting from the lowest class,
having additional seats for higher classes resulting from overestimating the actual upsell (moptimiation

3 ≥ msimulation
3 )

is beneficial. On the heuristic side, although the upsell-adjusted seat allocation algorithm intentionally allocates addi-
tional seats to higher classes, it still underestimates the number of seats required when there is such an upsell-cascading
effect. Also, it is worth to note that the upsell heuristic can only reduces seats from higher classes, and hence, would
not be able to push allocations upward and extract benefits from the cascading effect given an initial set of allocations
from the upsell-adjusted seat allocation algorithm.
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Figure 6: Percentage of revenue improvement against moptimization
3 when m1 = 0.
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Figure 7: Average running time of the ADP algorithm in minute.

Figure 7 shows the average running time of the ADP algorithm which takes longer to estimate a set of protection
levels when the upsell probability for optimization increases. The running time stretches from less than 30 seconds to
about 4 minutes. The reason for such an increase in running time is that when more upsells are available, the upsell
heuristic needs more enumerations to adjust the seat allocations and to compute the required margins to estimate the
benefit from upselling. On the other hand, the running time of the RLP are negligible, and hence, are not reported.

7 Conclusion
Despite the prevalence of the bid-price policy, we aim to capture capacity nesting and customer upsell by extending
an itinerary-based nesting model originally by Curry (1990). We show that the itinerary-based nesting model can
be rewritten into a stochastic program, which allows us to adapt an ADP framework to efficiently approximate the
originally complicated objective function. We also derive an efficient upsell heuristic based on the recursive structure
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of the problem, and integrate it with into the ADP algorithm to solve the network RM problem over a medium airline
network using a real world data set. Furthermore, we show the asymptotic optimality of the nested allocation policy
when demands are independent. When demands are correlated, we derive a sufficient condition under which the
objective function is concave in the remaining capacity. The result allows us to recursively check for the optimality of
the protection levels when demand history is given.

From our single-leg simulation experiments, we observe that the upsell heuristic significantly outperforms the
independent algorithm of Wollmer (1992) by 26% and the path independent algorithm of Gallego et al. (2009) by
24% when the number of classes increases. When the number of classes is large, the projection operation does not
significantly alter the seat margin, and thus, can be safely applied to expedite the ADP algorithm without losing much
accuracy. From our network experiments, we find that the percentage of revenue improvement by using our nested
allocation policy, compared against RLP bid-price policy, increases when demand is large and upsell is likely. When
upsell probabilities can be forecasted accurately, we do not do worse than the RLP bid-prices when there are no upsells,
and can improve the revenue up to 35% (∼ $420, 000) when the upsell probability is high. To be more encouraging,
the results are robust to demand magnitude, and hence, similar revenue improvement can be expected from a network
that is more or less capacitated. When upsell probabilities cannot be forecasted accurately, it is better to underestimate
upsell probability when upsell is less likely than opting for the alternative option. Otherwise, overestimating upsell
probability is more beneficial. In the end, we also want to stress the practicality of our algorithm by recalling that it
only takes 4 minute to finish over a medium airline network by using a dual-core machine.

Several interesting questions remain open: 1). Is there a way to estimate the bid prices based on our ADP algo-
rithm? Currently, the bid prices are itinerary-based and inferior to the RLP bid-prices. 2). Under what conditions
should we switch to the bid-price policy. Note that our itinerary-based allocation policy may not work well when the
network is heavily intertwined. 3). Can the ADP algorithm be easily extended to capture other customer behaviors
including cancellation and no-show?

8 Appendices

A Proofs

A.1 Lemma 1
Proof. Let D̄jt = EDjt be the expected demand, and D̄j =

∑
t∈T D̄jt the total expected demand. In the case with a

single itinerary, consider the deterministic version of (2) and rewrite the function into an optimization problem without
protection levels by substituting ξ −Πc−1 with xc. We have

Rc(Π
c−1, ξ) = max

0≤xc≤ξ,x∈N
rc min{xc, D̄c}+Rc−1(Πc−2, ξ −min{yc, D̄c}).

It is easy to see that solving the above DP is equivalent to solving

max

{∑
c∈C

rc min{xc, D̄c}
∣∣∣∣∑
c∈C

xc ≤ ξ and xc ∈ N for c ∈ C

}
.

By coupling the itinerary allocation decision with network capacity constraints, we have

max
y∈I(K)

∑
j∈J

rj min{xj , D̄j}
∣∣∣∣ ∑
c∈Ci

xic ≤ yi for i ∈ I and xj ∈ N for j ∈ J

 = SP ∗(K).

A.2 Lemma 2
Proof. Let HL be the high-to-low arrival order, LH be the low-to-high arrival order, R be a random arrival order, and
Rπ(O) be the revenue obtained by applying the optimal allocation policy of problem π under arrival order O. Then

we have RP (K)
(HL) ≥ RP (K)

(R) ≥ RP (K)
(LH) and RSP (K)

(HL) = RSP (K)
(R) = RSP (K)

(LH). The first
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observation is based on the fact that seats occupied by low-yield passengers in the LH arrival order can be given to
high-yield passengers in both the random and HL arrival orders, and the second observation is based on the fact that
since allocations are partitioned, arrival order does not matter. Suppose xπ is the optimal solution of problem π and
zπ is the extracted empty seats based on the optimal solution of problem π. We have

RP (K)
(HL) ≥ RP (K)

(R) ≥ RP (K)(LH) =
∑
i∈I

∑
c∈Ci

ric min{xPic + zPic+1, Dic}

≥
∑
i∈I

∑
c∈Ci

ric min{xSPic + zSPic+1, Dic}

≥
∑
i∈I

∑
c∈Ci

ric min{xSPic , Dic}

= RSP (K)(LH) = RSP (K)(R) = RSP (K)(HL).

Hence, we have RP (K)(R) ≥ RSP (K)(R), which implies ERP (K) ≥ ERSP (K). The last inequality is due to the
fact that SP (K) is optimal under stochastic demand.

A.3 Proposition 2
Proof. Following (2), it is easy to see

Rc(Π
c−1, ξ) = E[rc min{ξ −Πc−1, Dc}+Rc−1(Πc−2, ξ −min{ξ −Πc−1, Dc})].

Note that ξ−min{ξ−Πc−1, Dc} = Πc−1 + (ξ−Πc−1−Dc)
+. By mapping P(Π, ξ) and the definition of zc in (7),

we have

R|Ci|(Π
|Ci|−1, yi) =E

[
r|Ci|min{yi −Π|Ci|−1, D|Ci|}+R|Ci|−1(Π|Ci|−2,Π|Ci|−1 + z|Ci|)

]
=E

[
r|Ci|min{x|Ci|, D|Ci|}+ r|Ci|−1 min{Π|Ci|−1 −Π|Ci|−2 + z|Ci|, D|Ci|−1}

+ R|Ci|−2(Π|Ci|−3,Π|Ci|−2 + z|Ci|−1)
]

...

=E

r|Ci|min{x|Ci|, D|Ci|}+
∑

c′≤|Ci|−1

rc′ min{Πc′ −Πc′−1 + zc′+1, Dc′}


=E

 ∑
c′≤|Ci|

rc′ min{xc′ + zc′+1, Dc′}


=E[Si(xi,Di)]

For mapping N (x), we can follow the argument backward.

A.4 Propositions 5 and 6
Let X and Y be one-dimensional continuous random variables. By definition, fXY (x, y) = fX|Y (x|y)fY (y) =

fY |X(y|x)fX(x) where fY (y) =
∫∞

0
fXY (x, y)dx is the marginal density of Y at y. If the cumulative probability

function is differentiable, then the probability conditioning on zero probability event can be appropriately defined as

P[X ∈ E|Y = φ] = lim
ε→0

P [X ∈ E|Y ∈ [φ, φ+ ε)] =

∫
x∈E fXY (x, φ)dxdy

fY (φ)
.

This definition can be found in Grimmett and Stirzaker (2001).

Lemma 3. We have P[X ∈ E|Y ≥ φ] ≥ P[X ∈ E|Y = φ] for any event E.
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Proof. Under Assumption A1, for any ε > 0 and continuous random variable Y , if we have

P[X ∈ E|Y ≥ φ+ ε]−P[X ∈ E|Y ≥ φ] ≥ 0

P[X ∈ E, Y ≥ φ]−P[X ∈ E, Y ∈ [φ, φ+ ε)]

P[Y ≥ φ]−P[Y ∈ [φ, φ+ ε)]
− P[X ∈ E, , Y ≥ φ]

P[Y ≥ φ]
≥ 0

P[X ∈ E, Y ≥ φ]P[Y ∈ [φ, φ+ ε)]−P[X ∈ E, Y ∈ [φ, φ+ ε)]P[Y ≥ φ] ≥ 0

P[X ∈ E, Y ≥ φ]

P[Y ≥ φ]
− P[X ∈ E, Y ∈ [φ, φ+ ε)]

P[Y ∈ [φ, φ+ ε)]
≥ 0

P[X ∈ E|Y ≥ φ]− lim
ε→0

P[X ∈ E|Y ∈ [φ, φ+ ε)] ≥ 0

P[X ∈ E|Y ≥ φ]−P[X ∈ E|Y = φ] ≥ 0.

Similarly, if Y is a discrete random variable, the proof is equivalent by substituting ε with 1.

Let D
←−c = {D1, . . . , Dc} be the set of demands for classes 1, . . . , c, Dc = {Dc, . . . , D|C|} be the set of demands

for classes c + 1, . . . , |C|, d
←−c and dc be their realizations respectively, dc(Dc ∈ E) = dc+1 ∪ {Dc ∈ E} be the

updated set of observed events given observed demands dc+1 and event {Dc ∈ E}, fc(dc) be the marginal density of
demand dc, fc|c+1(dc|dc+1) be the conditional density of dc given a set of realized demands dc+1. Given a sample
path d, the revenue function is

gc(Π
c−1, ξ,d

←−c ,dc+1) =


gc−1(Πc−2, ξ,d

←−−
c−1,dc) if 0 ≤ ξ < Πc−1

rc(ξ −Πc−1) + gc−1(Πc−2,Πc−1,d
←−−
c−1,dc) if Πc−1 ≤ ξ < Πc−1 + dc

rcdc + gc−1(Πc−2, ξ − dc,d
←−−
c−1,dc) if Πc−1 + dc ≤ ξ

and

g1(∅, ξ,d
←−
1 ,d2) =

{
r1ξ if 0 ≤ ξ < d1

r1d1 if d1 ≤ ξ.

Note that Gc(Πc−1, ξ,dc+1) = Egc(·, ξ,D
←−c ,dc+1) and gc(·, ξ,D

←−c ,dc+1) is continuous and piecewise linear
in ξ with three break points. For the remaining paragraphs, we assume integral demands. It is then easy to see
that Gc(Πc−1, ξ,dc+1) is also continuous and piecewise linear in ξ with countably many breakpoints. To show that
Gc(Πc−1, ξ,dc+1) is concave in ξ, it suffices to show that the derivative on the left is no less than the derivative on the
right for all possible value of ξ. The corresponding right and left derivatives are showed below:

Gc(Πc−1, ξ,dc+1) =


rcE[min{ξ −Πc−1, Dc}|dc+1] if ξ ≥ Πc−1

+E[Gc−1(Πc−2, ξ −min{ξ −Πc−1, Dc},dc)|dc+1]

E[Gc−1(Πc−2, ξ,dc)|dc+1] otherwise.

δ+
ξ Gc(Π

c−1, ξ,dc+1) =


rcP[Dc > ξ −Πc−1|dc+1] if ξ ≥ Πc−1

+
∑
d≤ξ−Πc−1

δ+
x=ξ−dGc−1(Πc−2, x,dc(Dc = d))P[Dc = d|dc+1]

E[δ+
x=ξGc−1(Πc−2, x,dc)|dc+1] otherwise.

δ−ξ Gc(Π
c−1, ξ,dc+1) =


rcP[Dc ≥ ξ −Πc−1|dc+1] if ξ > Πc−1

+
∑
d<ξ−Πc−1

δ−x=ξ−dGc−1(Πc−2, x,dc(Dc = d))P[Dc = d|dc+1]

E[δ−x=ξGc−1(Πc−2, x,dc)|dc+1] otherwise.

First, we show the following properties for the left and right derivatives.

Lemma 4. If Lemma 3 is satisfied, then

δ+
ξ Gc−1(Πc−2, ξ,dc(Dc ≥ φ)) ≥ δ+

ξ Gc−1(Πc−2, ξ,dc(Dc = φ)).

Proof. The proof is by the fact the left derivatives are mainly composed with conditional probabilities.
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Lemma 5. We have

δ+
ξ Gc(Π

c−1, ξ,dc+1(Dc+1 ∈ E)) = E[δ+
ξ Gc(Π

c−1, ξ,dc+1)|Dc+1 ∈ E,dc+2].

Proof. The proof is by induction on c. For c = 1. we have both sides equal to r1P[D1 > ξ|D2 ∈ E]. Suppose the
statement is true for c− 1, then we have

E[δ+
ξ Gc(Π

c−1, ξ,dc+1)|Dc+1 ∈ E,dc+2]

=

∑
d∈E δ

+
ξ Gc(Πc−1, ξ,dc+1(Dc+1 = d))P[Dc+1 = d|dc+2]

P[Dc+1 ∈ E|dc+2]

= rcP[Dc > ξ −Πc−1|Dc+1 ∈ E,dc+2]

+

∑
d∈E

∑
d′≤ξ−Πc−1

δ+
x=ξ−d′Gc−1(Πc−2, x,dc+2 ∪ {Dc = d′, Dc+1 = d})P[Dc = d′, Dc+1 = d|dc+2]

P[Dc+1 ∈ E|dc+2]

= rcP[Dc > ξ −Πc−1|Dc+1 ∈ E,dc+2]

+

∑
d∈E

∑
d′≤ξ−Πc−1

E

[
δ+
x=ξ−d′Gc−1(Πc−2, x,dc)|Dc = d′, Dc+1 = d,dc+2)

]
P[Dc = d′, Dc+1 = d|dc+2]

P[Dc+1 ∈ E|dc+2]

= rcP[Dc > ξ −Πc−1|Dc+1 ∈ E,dc+2]

+
∑

d≤ξ−Πc−1

δ+
x=ξ−dGc−1(Πc−2, x,dc+2 ∪ {Dc = d,Dc+1 ∈ E})P[Dc = d|Dc+1 ∈ E,dc+2]

= δ+
ξ Gc(Π

c−1, ξ,dc+1(Dc+1 ∈ E)).

The proof is completed.

The following is a direct result of Lemma 5.

Corollary 1. We have∑
d∈E

δ+
ξ Gc−1(Πc−2, ξ,dc(Dc = d))P[Dc = d|dc+1] = δ+

ξ Gc−1(Πc−2, ξ,dc(Dc ∈ E))P[Dc ∈ E|dc+1].

Note that Lemmas 4 and 5, and Corollary 1 are also applicable to the right derivatives.

Proposition 7. Under Assumption A1, and if for all l ≤ c− 1, the protection level Πl satisfies

rl ∈
[
δ+
x=Πl−1

Gl−1(Πl−2, x,dl(Dc ≥ ξ −Πl−1)), δ−x=Πl−1
Gl−1(Πl−2, x,dl(Dc > ξ −Πl−1))

]
, (10)

then Gc(Πc−1, ξ,dc+1) is concave in ξ.

Proof. Let δ2
ξGc(Πc−1, ξ,dc+1) = δ+

ξ Gc(Πc−1, ξ,dc+1)− δ−ξ Gc(Πc−1, ξ,dc+1) be the difference between the right
and left derivatives. We want to show δ2

ξGc(Πc−1, ξ,dc+1) ≤ 0 for all ξ. The proof is by induction on c. For the base
case with ξ > Π1, we have

δ2
ξG2(Π1, ξ,d3) =δ+

ξ G2(Π1, ξ,d3)− δ−ξ G2(Π1, ξ,d3)

=
[
δ+
x=Π1

G1(∅, x,d2(D2 = ξ −Π1))− r2

]
P[D2 = ξ −Π1|d3]

+
∑

d<ξ−Π1

δ2
x=ξ−dG1(∅, x,d2(D2 = d))P[D2 = d|d3]

=
[
r1P[D1 > Π1|d2(D2 = ξ −Π1)]− r2

]
P[D2 = ξ −Π1|d3]

−
∑

d<ξ−Π1

r1P[D1 = ξ − d|d2(D2 = d)]P[D2 = d|d3]

≤
[
r1P[D1 > Π1|d2(D2 ≥ ξ −Π1)]− r2

]
P[D2 = ξ −Π1|d3]
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−
∑

d<ξ−Π1

r1P[D1 = ξ − d|d2(D2 = d)]P[D2 = d|d3]

≤
[
δ+
x=Π1

G1(∅, x,d2(D2 ≥ ξ −Π1))− r2

]
P[D2 = ξ −Π1|d3]

−
∑

d<ξ−Π1

r1P[D1 = ξ − d|d2(D2 = d)]P[D2 = d|d3]

≤0.

The inequalities are obtained by applying (9) and Lemma 4. To verify at the break point ξ = Π1, we have

δ2
ξG2(Π1, ξ,d3) =r2P[D2 > 0|d3] + δ+

x=Π1
G1(∅, x,d2(D2 = 0))P[D2 = 0|d3]

−
∞∑
d=0

δ−x=Π1
G1(∅, x,d2(D2 = d))P[D2 = d|d3]

=r2P[D2 > 0|d3]−
∑
d>0

r1P[D1 ≥ Π1, D2 = d|d3]

=(r2 − r1P[D1 ≥ Π1|D2 > 0,d3])P[D2 > 0|d3]

=(r2 − δ−x=Π1
G1(∅, x,d2(D2 > 0)))P[D2 > 0|d3]

≤0.

Support the induction assumption holds for c− 1, e.g. δ2
ξGc−1(Πc−2, ξ,dc) ≤ 0. For ξ > Πc−1, we have

δ2
ξGc(Πc−1, ξ,dc+1) =

[
δ+
x=Πc−1

Gc−1(Πc−2, x,dc(Dc = ξ −Πc−1))− rc
]
P[Dc = ξ −Πc−1|dc+1]

+
∑

d<ξ−Πc−1

δ2
x=ξ−dGc−1(Πc−2, x,dc(Dc = d))P[Dc = d|dc+1]

≤
[
δ+
x=Πc−1

Gc−1(Πc−2, x,dc(Dc ≥ ξ −Πc−1))− rc
]
P[Dc = ξ −Πc−1|dc+1]

+
∑

d<ξ−Πc−1

δ2
x=ξ−dGc−1(Πc−2, x,dc(Dc = d))P[Dc = d|dc+1].

The first term of the last inequality is non-positive by Lemma 4, and the second term is non-positive due to our
induction assumption. Hence, δ2

ξGc(Πc−1, ξ,dc+1) ≤ 0. At the break point where ξ = Πc−1, we have

δ2
ξGc(Πc−1, ξ,dc+1) =rcP[Dc > 0|dc+1]

+ δ+
x=Πc−1

Gc−1(Πc−2, x,dc(Dc = 0))P[Dc = 0|dc+1]

−
∞∑
d=0

δ−x=Πc−1
Gc−1(Πc−2, x,dc(Dc = d))P[Dc = d|dc+1]

=rcP[Dc > 0|dc+1]−
∑
d>0

δ−x=Πc−1
Gc−1(Πc−2, x,dc(Dc = d))P[Dc = d|dc+1]

≤
[
rc − δ−x=Πc−1

Gc−1(Πc−2, x,dc(Dc > 0))
]
P[Dc > 0|dc+1] ≤ 0.

Similarly, the inequalities are obtained by applying (9) and Corollary 1. Hence, the right derivative is no larger than the
left derivative, and the continuous piecewise linear function Gc(Πc−1, ξ,dc+1) is concave in ξ when Πc−1 satisfies
(9).

Lemma 5 states that Gc(Πc−1, ξ,dc+1) is concave in ξ if the allocation policy Π satisfies (9),, which in fact are
also the optimality conditions for Π.

Proposition 8. Condition (9) is the optimality condition for the protection level Πc−1 given any Πc−2 that satisfy
Proposition 5.
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Proof. To proof this lemma, we inspect the left and right derivatives of Gc(Πc−1, ξ,dc+1) with respect to Πc−1:

δΠ+
c−1
Gc(Πc−1, ξ,dc+1) =


−rcP[Dc ≥ ξ −Πc−1] if ξ > Πc−1

+δ+
ξ=Πc−1

Gc−1(Πc−2, ξ,dc(Dc ≥ ξ −Πc−1))P[Dc ≥ ξ −Πc−1]

0 otherwise

δΠ−c−1
Gc(Πc−1, ξ,dc+1) =


−rcP[Dc > ξ −Πc−1] if ξ ≥ Πc−1

+δ−ξ=Πc−1
Gc−1(Πc−2, ξ,dc(Dc > ξ −Πc−1))P[Dc > ξ −Πc−1]

0 otherwise.

The left and right derivatives above together with (9) imply that δ+
ξ=Πc−1

Gc−1(Πc−2, ξ,dc(Dc ≥ ξ − Πc−1)) ≤ 0 ≤
δ−ξ=Πc−1

Gc−1(Πc−2, ξ,dc(Dc > ξ − Πc−1)), and by Lemma 5 that Gc−1(Πc−2, ξ,dc) is concave in ξ, Πc−1 that
satisfies (9) maximizes Gc(Πc−1, ξ,dc+1) as required.

B Algorithms

B.1 Upsell Revenue Estimation Algorithm
The upsell revenue estimation algorithm estimates the upsell revenue given demand samples and class-level partition
allocations. It heavily relies on the recursive structure of equations (5) and (6). It takes {xc} the set of class-level
partitioned allocations, {ζkc } the set of demand samples, {pcc} the set of upsell probabilities, and returns r the average
revenue over all demand scenarios along with reject and upsell information encoded by three indicating variables.

Let αkc be a binary variable that indicates if a class-c booking is rejected, βkc be a binary variable that indicates if an
upsell to class c is rejected owning to insufficient allocations, and γkcc′ be a binary variable that indicates if a rejected
class-c booking upsells to class c′. These three indicating variables are used to store information for the upsell margin
estimation algorithm (Algorithm 4) to compute revenue margins if an additional seat is given to any one of the classes.
The algorithm is summarized in Algorithm 3.
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Algorithm 3 Upsell revenue estimation algorithm

Require: xc for c ∈ C, pcc′ for c, c′ ∈ C, and ζkc for c ∈ C and k = 1, . . .K.
1: Set r = 0, αkc = 0, βkc = 0, and γkcc′ = 0 for c, c′ ∈ C and k = 1, . . . ,K.
2: for each demand sample do
3: Initialize z = 0, r′ = 0, and ucc′ = 0 for c, c′ ∈ C.
4: for c = |C|, . . . , 1 do
5: η =

∑|C|
c′=c+1 uc′c.

6: Update r′ by r′ + rc min{xc + z, ζkc + η}.
7: if ζkc > {xc + z − η}+ then
8: Set αkc = 1.
9: if c is not the highest class then

10: Generate {ucc′}c′=1,...,|C| based on B(ζkc − (xc + z − η)+,p(c)).
11: for c′ = 1, . . . , |C| do
12: if ucc′ > 0 then
13: Set γcc′ = 1
14: end if
15: end for.
16: end if
17: end if
18: if η > xc + z then
19: Set βkc = 1.
20: end if
21: Update z by

(
(xc + z − η)+ − ζkc

)+
.

22: end for
23: Update r by r + r′/K.
24: end for
25: return r, α, β, and γ.

For each demand scenario, the algorithm starts from the lowest class and compute the total upsell to the current
class c. Revenue is collected according to objective (4) at Line 6. If there exists a rejected booking in class c, αkc is
set to one to indicate that there exists a rejected booking. Furthermore, if c is not the highest class, γcc̃ is set to one to
record the class that the rejected booking is upselling to. The algorithm then checks if upsells to class c occupy all seats
allocated to class c. If it is the case, βkc is set to one to record the fact that there exists at least one upsell to class c. The
three variables α, β, and γ record information required to compute the seat margin in margin estimation algorithm.
By recording these rejection and upsell information, we can, instead of computing the finite differences based on the
estimated revenue for each class when one more seat is added, reduce the number of algorithmic operations by first
computing the base revenue (before a seat is added) and marginally estimating the seat margins for all classes. This
reduces the running time significantly when the number of classes is high. In the end, we update the number of empty
seats available for higher classes at Line 21 using equation (5).

B.2 Upsell Margin Estimation Algorithm
The upsell margin estimation algorithm computes the revenue margin if one more seat is given to a particular class
in question. All necessary information to compute the margin are encoded in arrays α, β, and γ (see Algorithm 3
for definitions). It requires the same inputs as those in the upsell revenue estimation algorithm (Algorithm 3) without
demand samples. In addition, ĉ the class in question is also needed to indicate which class the seat should be added,
and the margin should be computed. The algorithm is summarized in Algorithm 4.
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Algorithm 4 Upsell margin estimation algorithm

Require: ĉ, xc for c ∈ C, {αkc}, {βkc }, and {γkcc′}.
1: Initialize m = 0.
2: for each demand scenario do
3: Initialize m′ = 0.
4: if βkĉ = 1 then
5: m′ = rĉ.
6: else
7: for any higher classes c′ (class c inclusive) do
8: if αkc′ = 1 then
9: Find from γkc′,c̃ over classes in c′ + 1, . . . , 1 an upsell resulting from a rejected class-c booking.

10: if an upsell is found at class c̃ then
11: m′ = rc′ − rc̃.
12: else
13: m′ = rc′ .
14: end if
15: go to Line 19.
16: end if
17: end for
18: end if
19: Set m← m+m′/K.
20: end for
21: return m

The upsell margin estimation algorithm starts with checking if there exists a rejected upsell from any lower classes
to class ĉ. If an upsell exists, it returns the unit price of class ĉ at Line 5. This is due to the fact that if one more
seat was given, the rejected upsold booking should have been captured rather than being rejected. If such a rejected
upsell does not exist, then for any equal and higher classes c′ = 1, . . . , ĉ, the algorithm checks both if there exists a
rejected booking and if such a rejected booking results in an upsell. If both conditions are satisfied, we need to adjust
our margin according to Line 11. The reason is that if one more seat was allocated to class ĉ, the upsell should have
been impossible due to the nesting nature of the allocation policy. Thus, the resulting margin should be non-positive.
In the end, if an upsell cannot be found, the margin is set to be the unit price of class c′ at Line 13. Although the upsell
heuristic (Algorithm 2) can essentially start with allocating all seats to the highest class, the set of allocations returned
by this algorithm can significantly reduce the running time of the upsell heuristic.

B.3 Upsell-adjusted Seat Allocation Algorithm
The upsell-adjuste seat allocation algorithm effectively handles cases when spilling demand {

∑
c∈Ci

Dic > X} is
likely. It takes the number of total allocated seats, a set of demand samples, and a set of upsell probabilities, and
returns a set of class-level partition allocations for the upsell heuristic (Algorithm 2) to further adjust the allocations.
Given a set of demand samples and a set of partitioned allocations, the algorithm aggregates demand for higher classes
together with the upsells from lower classes. It essentially uses arrival distributions to approximate the upsell demands
that are multinomial logit. Once the demands are aggregated, the algorithm treats the aggregated demands as if they
are independent and updates the partitioned allocations by the fare-adjusted seat allocation algorithm (Algorithm 6).
The process repeats until no more rejection occurs in any demand sample.
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Algorithm 5 Upsell-adjusted seat allocation algorithm

Require: y, ζkc for c ∈ C and k = 1, . . . ,K, pcc′ for c, c′ ∈ C.
1: Initialize αkc = 0 for c ∈ C and k = 1, . . . ,K .
2: loop
3: Compute x using Algorithm 6.
4: Set βkc = 0 and ϕkc = 0 for c ∈ C and k = 1, . . . ,K.
5: for c = |C|, . . . , 1 do
6: for k = 1, . . . ,K do
7: d = max{ζkc − αkc , 0}.
8: z = max{xc − αkc , 0}.
9: βkc = max{d− z − ϕkc+1, 0}.

10: ϕkc = max{z + ϕkc+1 − d, 0}.
11: end for
12: end for
13: Using β, find from the last class, and record the first class ĉ with a rejected booking in at least one scenario.
14: if ĉ exists and is not the highest class then
15: for k = 1, . . . ,K do
16: Generate uk by a multinomial random number generator with p and βkĉ .
17: for c′ = ĉ− 1, . . . , 1 do
18: Update ζkc′ by ζkc′ + ukc′ .
19: Update αkc′ by αkc′ + ukc′ .
20: end for
21: Update ζkĉ by ζkĉ − βkĉ .
22: end for
23: else
24: return x.
25: end if
26: end loop

The algorithm first initializes α the array that stores accumulated upsells. Once the algorithm enters the infinite
loop, it computes the partitioned allocations by the fare-adjusted seat allocation algorithm at Line 3, the associated
rejected bookings at Line 9, and the empty seats at Line 10. Next, the algorithm starts from the lowest class and finds ĉ
the first class with a rejected booking in at least one of the demand samples. Demands to the corresponding upselling
classes are then adjusted according to Line 18. The upsells are accumulated and recorded at Line 19. In the end, the
number of rejected class-c bookings is subtracted from class ĉ demand.

B.4 Fare-adjusted Seat Allocation Algorithm
The fare-adjusted seat allocation algorithm is a heuristic that returns a set of partitioned allocations while account-
ing some upsell information. It takes y the number of total allocated seats, ζ a set of demand samples, p a set
of upsell probabilities, θc =

∑c−1
c′=1 pcc′ the probability that a rejected class-c booking ever upsells, and qc =∑c

c′=1 rcEDc/
∑c
c′=1EDc the average fare over all classes above or equal to class c. It returns a set of partitioned

allocations and a set of approximated revenue margins.
The algorithm relies on the derived optimal condition in Curry (1990) and a simple fare-adjusted criterion in Gal-

lego et al. (2009) to efficiently approximate a set of protection levels that accounts for upsell. Additional cares are
given to update marginal revenue and to turn the protection levels into partition allocations according to mapping
function P(Π, y). As observed in Gallego et al. (2009), the fare-adjusted criterion numerically yields a set of protec-
tion levels that tends to reserve more seats to higher classes. This is desirable as the upsell heuristic (Algorithm 2)
iteratively and profitably reallocates seats from higher classes to lower classes.
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Algorithm 6 Fare-adjusted seat allocation algorithm

Require: y, pcc′ for c, c′ ∈ Ci, ζkc for c ∈ C and k = 1, . . . ,K, and θc and qc for c ∈ C.
1: Estimate fc(s) p.d.f. and Fc(s) c.d.f. of the demands based on {ζkc } for c ∈ C.
2: Initialize π = 0, xc = 0 for c ∈ C, Ss = 0 and S′s = 0 for s = 0, . . . , y.
3: for c = |C|, . . . , 1 do
4: for s = π, . . . , y do
5: S′s = rc(1− Fc(s− π)) +

∑x−Π
s′=0 fc(s

′)Sx−s′ .
6: end for
7: if c is not the highest class then
8: π′ = arg mins=π,...,y{(rc−1 − θc−1qc) ≥ S′s(1− θc−1)}.
9: Ss = S′s for s = π, . . . , y.

10: xc = max{π′ −Π, 0}.
11: π = π′.
12: else
13: Ss = S′s for s = 0, . . . , y.
14: end if
15: end for
16: return x, S.

The algorithm first empirically estimates the p.d.f. and c.d.f. of the demands, which are then fed to Line 5 to
compute the seat margins based on the optimality conditions valid for independent demands (see Brumelle and McGill
(1993)). Once the seat margins are computed, the optimal protection level is determined for the current class based
on the adapted fare-adjusted criterion in Gallego et al. (2009) at Line 9. Next, the slope vector is updated, and the
corresponding partitioned allocation is computed.

C Tables
This section includes all results used to create the figures in the main document. Table 5 shows the running time of the
upsell heuristic (Algorithm 2) for various numbers of classes and demands (λ). In general, the running time increases
when the number of classes or demand increases.

Table 5: Average running time for the upsell heuristic and the associated demand factor

Average Running Time (s) Average Demand Factor

|C|\λ 10 20 30 40 50 10 20 30 40 50

2 21.61 31.93 36.36 37.52 36.95 0.48 0.97 1.45 1.94 2.42
3 8.95 18.28 30.56 42.07 49.94 0.50 1.01 1.51 2.01 2.52
4 18.97 35.26 52.70 68.25 82.66 0.52 1.04 1.55 2.07 2.59
5 32.33 57.19 82.19 106.25 124.61 0.53 1.05 1.58 2.11 2.64
6 51.95 87.38 119.88 150.91 173.12 0.54 1.07 1.61 2.14 2.67
7 69.53 117.82 163.87 203.67 236.21 0.54 1.08 1.62 2.17 2.71
8 99.63 159.36 211.73 259.14 295.22 0.55 1.09 1.64 2.18 2.72
9 112.35 193.95 269.92 332.24 382.36 0.55 1.10 1.65 2.20 2.75

10 142.37 235.57 317.42 390.32 450.86 0.55 1.10 1.66 2.21 2.76

Table 6 shows the minimum, average, and maximum demand factors over all flights for multiple demand multi-
pliers. When the demand multiplier is 0, then the average demand factor is 80% representing that the network is 80%
full. When the demand factor is above 100%, the number of bookings are more than the number of seats available.
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Table 6: Minimum, average, and maximum demand factors over all flights for different demand multipliers

Demand Multiplier min avg max

-0.4 0.02 0.48 1.18
-0.2 0.03 0.65 2.13

0 0.03 0.8 2.4
0.2 0.04 0.96 2.81
0.4 0.06 1.1 2.97

Table 7 shows the average percentage of improvement in revenue against RLP for different demand multipliers and
upsell probability multipliers. The average is taken over all generated demand sample paths, one for each simulation
experiment. The percentages showed are the revenue improvement of our proposed allocation policy over the RLP
bid-prices.

Table 7: Average percentage of revenue improvement against RLP over all simulations for different demand multipliers
and upsell probability multipliers when upsells are forecasted accurately.

Upsell Probability Multiplier\ Demand Multiplier -0.4 -0.2 0 0.2 0.4

0 -0.33% -0.26% -0.11% 0.28% 0.63%
0.1 -0.33% -0.19% 0.12% 0.60% 1.13%
0.2 -0.39% 0.08% 0.56% 1.34% 2.13%
0.3 0.30% 0.35% 0.90% 2.12% 3.25%
0.4 1.62% 1.69% 2.29% 3.53% 5.09%
0.5 3.64% 4.38% 4.64% 5.92% 7.96%
0.6 6.76% 8.50% 8.31% 9.90% 11.81%
0.7 13.64% 14.92% 15.36% 16.41% 18.06%
0.8 21.67% 23.65% 24.32% 24.70% 25.77%
0.9 30.77% 33.21% 32.75% 32.72% 34.06%
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