
Automatic Ontology Learning from Domain-Specific
Short Unstructured Text Data

Yiming Xu1, Dnyanesh Rajpathak2, Ian Gibbs3, and Diego Klabjan4

1 Department of Statistics, Northwestern University
2 Research and Development, General Motors

3 Global Vehicle Safety, General Motors
4 Department of Industrial Engineering and Management Sciences, Northwestern University

Abstract. Ontology learning is a critical task in industry, dealing with identifying
and extracting concepts captured in text data such that these concepts can be used
in different tasks, e.g. information retrieval. Ontology learning is non-trivial due to
several reasons with limited amount of prior research work that automatically learns a
domain specific ontology from data. In our work, we propose a two-stage classification
system to automatically learn an ontology from unstructured text data. We first
collect candidate concepts, which are classified into concepts and irrelevant collocates
by our first classifier. The concepts from the first classifier are further classified by
the second classifier into different concept types. The proposed system is deployed as
a prototype at a company and its performance is validated by using complaint and
repair verbatim data collected in automotive industry from different data sources.

Keywords: Ontology learning · Classification · Information retrieval

1 Introduction

Over 90% of organizational memory is captured in the form of unstructured as well as
structured text data. The unstructured text data takes different forms in different industries,
e.g. body of email messages, medical records of patients, contracts, fault diagnosis reports,
speech-to-text snippets, call center data (e.g. conversation, notes, replies, etc.), design and
manufacturing data, data generated over different social medical platforms, etc. Given the
ubiquitous nature of unstructured text data collected in industries, they provide a rich
source of information. For example, in automotive which is used as our running example or
aerospace industry in the event of fault or failure, the repair verbatims (commonly referred
to as verbatim) are captured during fault and root cause investigation [11]. These repair
verbatims capture valuable information indicating the nature of fault, the possible root
causes behind such faults, and the corrective actions taken to repair the faults. Such type of
knowledge when extracted provides a critical insight into ways the parts or components fail
during their usage and under different operating conditions and the root causes associated
with the faults. This knowledge provides useful information to business to improve the quality
of product to ensure avoidance of similar faults in the future. However, efficient and timely
extraction, acquisition, and formalization of knowledge from unstructured text data poses
several challenges: 1. the overwhelming volume of unstructured text data makes it difficult
to manually extract the critical concepts embedded in the data, 2. the lean use of language
and vocabulary results into inconsistent vocabulary, e.g. ‘vehicle’ vs ‘car,’ or ‘failing to work’
vs. ‘inoperative,’ etc., and finally, 3. different types of noises are observed in unstructured
text data, e.g. misspellings, run-on words, additional white spaces, and abbreviations.

An ontology [5] provides an explicit specification of concepts and resources associated
with domain under consideration. A typical ontology consists of concepts and their attributes
commonly observed in a domain, relations between such concepts, a hierarchy representing
how such concepts are related to each other, and concept instances representing ground-level
objects. For example, the concept ‘vehicle’ can be used to formalize a locomotive object and
vehicle instances, such as ‘Chevrolet Equinox.’ An ontological framework and the concept
instances can be used to share the knowledge among different agents in a machine-readable
format (e.g. RDF/S 5) and in an unambiguous fashion. Hence, ontologies constitute a powerful
way to formalize the domain knowledge for supporting different application, e.g. natural
language processing [2] [4], information retrieval [8], information filtering [13] among others.

In this work, we propose an approach to automatically learn a domain-specific ontology.
The process of ontology learning is divided into two phases: 1. a classifier is trained to classify
the collocates in a verbatim into concepts and irrelevant collocates and 2. concepts are further
classified into specific types. Note that a concept is also a collocate. We build a two-stage
classification framework rather than single stage because concepts have the notion of types
while irrelevant collocates have no such notion. Our input consists of a corpus made of short
text or verbatim and an incomplete set of concepts and their types in the domain under
consideration. The goal is to identify further concepts and their types. Note that a collocate
can be a concept in one verbatim but an irrelevant collocate in another verbatim. For the
first step, we use the concepts in the incomplete seed ontology as positive samples, while we
develop a new algorithm to create negative samples. In our classification models, we use both
linguistic features (POS, etc.) and word embedding features (word2vec). Polysemy pose a
significant problem since they occur frequently in short text. We capture them as features in
our models as follows. Given a 1-gram, we cluster the embedding vectors of collocates with
the number of clusters equal to the number of polysemy of the 1-gram based on WordNet [9].
Given an occurrence of the 1-gram, we use as a feature the centroid of the closest cluster.
We have also done two rounds of active learning to augment the training set.

The key contributions of our work are as follows. 1. In several domains, the collocates of
different sizes are not homogeneous and initially we develop a single classifier to classify the
collocates of different sizes, which provided only limited accuracy. To overcome this problem,
we identify a common set of features associated with collocates of different sizes and utilize
them to develop different classifiers where each classifier corresponds to each category of the
collocate. 2. The problem of polysemy is ubiquitous in text corpora. We resolve the problem
of polysemy by clustering word embeddings and assigning a 1-gram into an appropriate
cluster that is used as a feature. 3. In real-world data, it is common to find abbreviations.
We resolve the problem of abbreviation disambiguation and to the best of our knowledge
we are the first domain-specific proposal to disambiguate abbreviations by combining a
statistical and machine learning approach. 4. From the engineering perspective, ours is a
practical ontology learning system, which is successfully employed as a proof-of-concept tool
for extracting ontologies from real-world data at an industrial scale.

The rest of the paper is organized as follows. In the next section, we provide a review of
the relevant literature. In Section 3, we provide the problem description and an overview of
our approach. In Section 4, we discuss our model specifications, data preprocessing algorithms
and features used in classification. In Section 5, we discuss in detail the experiments and
evaluation of our classification models. And finally, in Section 6, we conclude our paper by
reiterating the main contributions.

5 https://www.w3.org/TR/rdf-schema/

2 Background and Related Works

A plethora of works have been done in ontology learning. There are three major approaches:
statistical methods (e.g. weirdness, TF-IDF, etc.), machine learning methods (e.g. bagging,
Naïve Bayes, HMM, SVM, etc.), and linguistic approaches (e.g. POS patterns, parsing,
WordNet, discourage analysis, etc.).

[15] built an ontology learning system by collecting the evidences from heterogeneous
sources in a statistical approach. The candidate concepts were extracted and the ‘is-a’ type of
relations were constructed by using chi-square co-occurrence significance score. In comparison
with [15], we use a structured machine learning approach so that it can be applied on unseen
data. In [15], all evidences were integrated into a big semantic network. The spreading
activation method was then employed to find the most important candidate concepts. The
candidate concepts were then manually evaluated before adding to an ontology. In comparison
with this, in our approach, the machine learning based methods are employed to make use
of the latent features embedded in the text data to automatically learn the ontology and
very limited human interventions are needed in our approach. The only human involvements
in our work are active learning and manually labeled training collocates, which are not
necessary but just a way to augment training data. Moreover, since our approach makes use
of different features identified from the data, e.g. context features, polysemy features, etc., it
exploits richer data characteristics compared to [15]. Finally, ours is a probabilistic model
that considers the context of a concept, which allows us to handle the extraction of unseen
phrases effectively. The model proposed by [15] is deterministic in nature, which does not
consider the context and therefore fails to handle previously unseen phrases.

[3] made use of cosine similarity, TF-IDF, a so-called C-value statistic, and POS to extract
the candidate collocates for constructing an ontology. This work is done in a statistical
and linguistic approach. [16] constructed a hierarchical ontology by employing support
vector machine that heavily relies on using POS as the primary feature to determine the
classification hyperplane boundary in a machine learning and statistical approach. While
POS is an important feature in text data, as we have discussed, additional features such as
the word embedding features further boost the performance of the classifier. Such features
consider the context in which specific phrases are referenced. As word embedding features
were not considered by [16] it is difficult to envisage how the context associated with each
concept was considered while extracting the relevant phrases. [10] evaluated the effectiveness
of word2vec features in ontology construction, which used the statistic based on 1-gram
and 2-gram counts to extract the candidate concepts. The ontology was then constructed
manually. In our work, we not only consider word2vec as one of the features but other
critical features such POS, polysemy features, etc., are utilized to provide us with a robust
probabilistic machine learning model. We do not use statistical features from other works
since word embedding features dominate statistical features.

[1] constructed an ontology by using the ‘weirdness’ statistic to extract candidate concepts.
Next, the collocation analysis was performed coupled with domain expert verification to
extract the ontology. There are two key differences between our approach and the one
proposed by [1]. First, our concept extraction classifier uses the existing ontology, stop
words list, and noise words list as the support mechanism to train the model, while in their
approach the notions of ‘weirdness’ and ‘peakedness’ statistics were used to extract the
candidate concepts. And second, in their work, there was a heavy reliance on domain experts
to verify the newly constructed ontology, whereas no such manual involvement is needed in
our framework either during concept extraction or classification stages. As very few of human

involvements are needed in our approach, it can be deployed as a self-sustained algorithm to
learn an ontology in a specific domain.

In our work, we also propose a new approach to disambiguate abbreviations. There are
several related works. [14] extracted features such as concept unique identifiers and then built
a classification model. [6] identified context based features for classification, but they assumed
an ambiguous phrase only has one correct expansion in the same article. [7] proposed a word
embedding based approach to select the expansion from all possible expansions with largest
embedding similarity. There are two major differences between our approach and these
works. First, we propose a new model which combines the statistical approach (TF-IDF) and
machine learning approach (Naive Bayes model) together, i.e. we measure the importance of
each collocate by TF-IDF and estimate the posterior probability of each possible expansion,
while in their work they either only applied machine learning classification models or simply
calculated statistical similarity between abbreviation and possible expansions. Second, in
these works strong assumptions were made, such as each phrase only has one expansion
in the same article and features are conditionally independent, while we do not have any
assumptions for our model and therefore it is more robust.

3 Problem Statement and Approach

In industry, the data from several sources provides valuable information. However, given
the overwhelming size of real-world data, it is usually impossible to manually go through the
data to discover all the critical information. In this work, we focus on unstructured short text
data. Here is a verbatim from the automotive industry: ‘Customer states the engine control
light is on with 10. The dealer identified internal short to the fuel pump relay. The engine
control module is replaced and reprogrammed and the DTCs are cleared.’ Our aim is to
extract concepts from the data, such as ‘engine control module,’ ‘fuel pump relay,’ ‘internal
short,’ ‘replaced and reprogrammed,’ etc., from each verbatim and further classify these
concepts into different types. For example, ‘engine control module’ is a part concept and
‘replaced and reprogrammed’ is an action concept.

In addition to the corpus which contains millions of verbatims, we are also given an
incomplete set of concepts and their types as part of an ontology. The concepts do not have
the corresponding verbatim and thus we assume that every occurrence of a concept from the
ontology is indeed a concept (regardless of the underlying verbatim).

Since a text corpus usually contains different types of noises, we start by cleaning the
verbatims; misspelling correction, run-on words correction, removal of additional white
spaces, and abbreviation disambiguation are employed to clean the data. Then we tag the
collocates of the verbatim phrases as concepts and irrelevant collocates to create the training
set. We use the incomplete ontology and a few additional manually identified concepts.
The irrelevant collocates are designed as the collocates between concepts and with certain
additional properties detailed in Section 4. Next, the non-descriptive stop words in our data
are deleted as they do not add any value to the task of classification.

Having deleted the stop words, the collocates are collected to provide necessary coverage
to the different lengths of the concept phrases, e.g. ‘Battery,’ ‘Fuel Cell,’ ‘Engine Control
Module,’ ‘Inoperative,’ ‘Rough Surface to Finish,’ etc. As we discuss in Section 4, we identify
several unique features related to concepts and irrelevant collocates, such as POS, polysemy
features, etc.

Next, by using the labeled data and the features identified from the data a classification
model is trained to classify collocates extracted from the verbatim into concepts and irrel-

evant collocates. The concept collocates and the features are then fed to the second stage
classification model which assigns types to them. In the concept and irrelevant collocate
classification, we have conducted two rounds of active learning to improve the performance.
In inference, the model takes raw verbatims and preprocesses them using our pipeline, and
then it extracts all candidate concepts without stop words and noise words. Finally these
concept candidates are fed as input to our two-stage classification system. Figure 1 shows
the overall process of our two-stage classification system.

Fig. 1. The overall flow of the two-stage classification model.

4 Model Specifications

As discussed in the previous section, we construct the ontology by means of extracting
concepts from the unstructured text verbatims and determine whether the candidates are
concepts or irrelevant collocates. Several steps require word2vec which is trained on verbatims.
We then further assign classes to the concept collocates. However, before extracting candidate
concepts, data preprocessing is needed due to several types of noises.

4.1 Data preprocessing

To handle the noises, we define the correctness of a collocate by membership in the
English dictionary or the existing ontology. The following steps are undertaken.

1. Misspellings correction. We consider all possible corrections of a misspelled 1-gram
each with Levenshtein distance of 1. If there is only one correction, we replace the misspelled
1-gram by the correction. Otherwise, for each candidate correction we define its similarity
score to be the product of its logarithm of frequency and the word2vec similarity between
the misspelled 1-gram and its correction. The misspelled 1-gram is replaced by the correction
with the maximum similarity score.

2. Run-on words correction. We split run-on words into a 2-gram by inserting a
white space between each pair of neighboring characters. For a specific split, if both the left
1-gram and the right 1-gram are correct, we split the run-on 1-gram in such way. If there
are multiple possible splits with correct 1-grams, then for each correct split, we define its
similarity score to be the maximum of word2vec similarities between the run-on 1-gram and
the two 1-grams. The split with maximum similarity score is replaced as the correct split.

3. Removal of additional white spaces. We also observe several cases in the data
where there are additional white spaces inserted in a 1-gram, e.g. ‘actu ator.’ We try to

remove the additional white spaces to see whether it turns the two incorrect 1-grams into a
correct 1-gram and if it does, then we employ this correction.

4. Abbreviation disambiguation. Finally, it is ubiquitous in a corpus that same abbre-
viations have different expansions. It is critical to disambiguate the meaning of abbreviated
collocates. Typically, an abbreviation is a collocate that can be mapped to more than one
possible expansion (or full form), for example, ‘TPS’ could stand for ‘Tank Pressure Sensor,’
‘Tire Pressure Sensor’ or ‘Throttle Position Sensor.’ The abbreviations mentioned in our
data are identified by using the domain specific dictionary, which consists of commonly
observed abbreviations and their possible full forms. For an identified abbreviation with a
single full form, we replace that specific abbreviation with its full form. Otherwise we employ
the following model.

Suppose an abbreviation abbr has N possible full forms, namely, {ff1, ff2, ..., ffN},
where N > 1. We first collect the 1-gram collocates, which are co-occurring with abbr from
the entire corpus. The context collocates co-occurring with abbr are denoted as Cabbr and
the set of all co-occurring collocates for ffn, 1 ≤ n ≤ N are denoted as Cn. To prevent
meaningless expansions and to compare the posterior probabilities of ffi and ffj , we only
focus on the intersection of these sets: V = ∩Nn=1Cn ∩ Cabbr. Having identified the relevant
intersecting collocates, we measure the importance of each collocate in terms of TF-IDF.

Let vu ∈ R|V | be the TF-IDF vector of collocate u = abbr or full form u = ffi. Given
that ffn is associated with abbr, the probability of co-occurring concepts given ffn is then
estimated as P (abbr|ffn) =

∏|V |
i=1(

vffn,i

|V |∑
j=1

vffn,j

)vabbr,i . The intuition for this formula is that

if abbr and ffn are interchangeable, then they have the same distribution of co-occurring
concepts. Therefore, we estimate the probabilities of the co-occurring concepts of abbr with
those from ffn. Furthermore, we estimate the prior probability P (ffn) of ffn from its
document frequency. Therefore, by the Bayes theorem, P (ffn|abbr) ∝ P (abbr|ffn) · P (ffn).
We then replace abbreviation abbr by the full form with the largest posterior probability.

4.2 Preparation of training set

The process of classifying the data into concepts and irrelevant collocates starts by labeling
some of the raw collocates in order to create the training set. Given the scale of real-world
data, it is impossible to manually label each raw sample collected. To overcome this problem,
we rely on the existing incomplete ontology. We tag the data by using the incomplete ontology
which tags all occurrences of concepts in the incomplete ontology as concepts. The collocates
that are not tagged by the incomplete ontology are potentially irrelevant collocates or the
concepts not covered by the incomplete ontology. For the purpose of avoiding repetitions and
keeping concepts as complete as possible, only the longest collocate is marked as a concept.
For example, if ‘engine control module’ is marked as concept, then its subgrams such as
‘engine’ or ‘module’ are not labeled as concepts. The remaining collocates that are not tagged
by the incomplete ontology are extracted and labeled as irrelevant collocates.

However, since the size of the incomplete ontology is limited, it is of great importance to
augment the current training set. We collect all of the collocate in verbatims which meet
some frequency criteria. These frequently appeared collocates are then manually labeled to
augment the training data.

In inference, given a verbatim, we collect all possible collocates without stop words and
noise words in them, then these collocate candidates are passed to the two-stage classification
system.

4.3 Feature engineering

In our model, different features such as discrete linguistic features, word2vec features,
polysemy centroid features, and finally the context based features are identified. To this end,
we are given a collocate (either labeled as concept or irrelevant) and the underlying verbatim.
These features are discussed in detail next.

1. Discrete linguistic features. The following linguistic features are recognized: 1)
POS related to each collocate identified by employing Stanford parts of speech tagger [12],
2) the POS tags of the three nearest left side 1-grams of the collocate, 3) the POS tags of
the three nearest right side 1-grams of the collocate, 4) the POS tag of the nearest concept
on the left side of the collocate, 5) the POS tag of the nearest concept on the right side of
the collocate.

2. Word2vec features. We also consider the continuous word2vec vector associated
with each collocate as one of the features to improve the performance of the model. We train
a Skip-Gram model with respect to frequent 1-grams. When the word2vec embedding is not
available, we consider it as a zero vector. For a collocate, the associated feature vector is the
average word2vec embedding of all of its 1-grams.

3. Context features. We consider the ‘context’ word2vec feature of each collocate. For
a collocate T , we take the 3 left 1-grams and 3 right 1-grams of T in its verbatim and obtain
the word2vec embeddings of these 6 1-grams. The context feature is the concatenation of
the average of the 3 embedding on the left and the average on the right. If a collocate is
toward the beginning or the end of the verbatim and thus has less than 3 embeddings, then
all missing are not considered in the average. If none is present, we set the average to be the
zero vector.

4. Polysemy centroid features. Furthermore, we also consider the polysemy of a
1-grams. We employ the following two steps as shown in Figure 2. 1. For each collocate T , we
take 1,000 verbatims in which T is mentioned and calculate the context feature vector V (T)
for T in each selected verbatim. Then we use WordNet to obtain the number p of polysemies
of T . Further, we use the k-Means algorithm to cluster these 1,000 V (T) vectors, with the
number of clusters set to p. 2. Having these polysemy centroids ready to use, for a collocate
T ′, we find the context vector from its verbatim. The feature vector of T ′ corresponds to the
closest centroid among those obtained in step 1 for T ′ with respect to the context features of
T ′.

Fig. 2. (1) Obtain all possible polysemy centroids of a collocate: for a collocate T , we cluster context
vectors and save the cluster centroids C1(T), ..., Cp(T). (2) Create polysemy centroid feature of a
collocate: for a new collocate T ′, let m = argmin{d(V (T ′), C1(T

′)), ..., d(V (T ′), Cp′(T
′))} denote

the index of the closest centroid, where d is the Euclidean distance. Vector Cm(T ′) is our polysemy
feature for T ′.

5. Features based on the incomplete ontology. We also find that the incomplete
ontology plays a significant role in classification. For a collocate, we split it into 1-grams,

and add a feature vector of the same length as the collocate, with each element being set to
be 1 if this 1-gram exists in the incomplete ontology, otherwise 0.

4.4 Classification

We use the random forest model as the classification model. We have also experimented
with support vector machine, XGBoosting etc., but the experiments showed that random
forest outperforms other models. We have fine-tuned the following important hyperparameters
in random forest: the number of trees in the forest is 10, no maximum depth of a tree, the
minimum number of samples required to split an internal node is 2.

To improve the model performance, we have also introduced active learning to augment
the training data. We train 8 different classifiers and feed randomly sampled unlabeled data
to these classifiers. We gather the samples with 4 positive and 4 negative votes from the
eight classifiers. We manually label all such samples, which the classifiers fail to classify into
their correct classes due to the disagreements among them. All manually labeled samples are
added back into the training set and the process is repeated twice.

We also analyze feature importance. We use a backward elimination process in which
we initially start with all features and then drop one feature at a time and train our model
by using the remaining features. This is done for all features. Then we remove the feature
that yields the largest improvement to the F1-score when removed. This process is repeated
iteratively until removing any feature does not improve the F1-score. The final set of features
kept are Word2vec, Polysemy, POS, Context and Existing Ontology, which are the most
important features in our model. The features dropped are left POS, right POS, left three
POSes, right three POSes.

5 Computational Study

The ontology learning system is validated on a subset of an automotive repair (AR)
verbatim corpus collected from an automotive original equipment manufacturer, the vehicle
ownership questionnaire (VOQ) complaint verbatim collected from National Highway Traffic
Safety Administration6 and Survey data. The AR data contains more than 15 million
verbatims, each of which on average contains 19 1-grams. Here is a typical AR verbatim:
‘c/s service airbag light on. pulled codes 100 & 200..solder 8 terminals on both front seats
as per special policy 300b.clear codes test ok.’ The classification models are trained on
AR. To study the generality of our model, we also test on VOQ which contains more than
300,000 verbatims where the verbatims are significantly different from AR. In VOQ, the
issues are reported directly by customers, and thus it is more verbose in nature while AR is
more technical and professional. A sample from VOQ reads: ‘heard a pop. all of the sudden
the car started rolling forward....’ Finally, the Survey dataset is generated by selecting the
repair verbatims associated with different failures from AR and thus they look similar. Our
incomplete ontology contains slightly more than 9,000 collocates and has three types labeled
as A,B,C herein.

The classification system is implemented in Python 2.7 and Apache Spark 1.6 and ran on
a 32-core Hadoop cluster. We evaluate the performance of abbreviation disambiguation and
the performance of the first stage and second stage classification models.

6 https://www.nhtsa.gov/

5.1 Evaluation of abbreviation disambiguation

To evaluate the performance of the abbreviation disambiguation algorithm, we generate
three test datasets from the AR data source. On average, 5% of AR verbatims contain
an abbreviation, and each abbreviation has more than 2 expansions. Table 1 summarizes
the results of the abbreviation disambiguation algorithm experiment, which are manually
evaluated by domain experts.

Table 1. The result summary of abbreviation disambiguation algorithm. Nraw denotes the number
of raw verbatims, Nc denotes the number of abbreviations corrected and Ncorrect denotes the number
of correct abbreviation corrections.

Data Nraw Nc Ncorrect Accuracy
AR 1 10,000 204 154 0.75
AR 2 30,000 374 278 0.74
AR 3 45,000 407 312 0.77

As it can be seen in Table 1, the performance of the algorithm is stable, i.e. the accuracies
do not vary much on the three test datasets. On average, 75% of our corrections are correct,
which shows our algorithm is able to capture correct expansions of abbreviations. Note that
there might be abbreviations that are not captured by our algorithm if abbreviations are not
in the abbreviation list.

5.2 Performance of classifiers

Recall that the training data is from the AR data. Since the entire AR data is large,
our training set is sampled from AR in the following way: for each N-gram (N = 1, 2, 3, 4),
we randomly take 50,000 concepts and 50,000 irrelevant collocates which we regard as the
training set for the N-gram model. Among them, 2,000 are manually labeled and 2,000 are
from active learning. For evaluation, we generate three different test datasets. The first test
dataset consists of 3,000 randomly selected repair verbatim from the AR data but only 1,500
extracted candidate collocates are manually evaluated. The second test dataset consists of
23,000 verbatims from VOQ, and 1,500 candidate collocates are manually evaluated. The
third test dataset (Survey) is generated by selecting the repair verbatim associated with
different failures from AR. It consists of 46,000 verbatims and 1,000 extracted candidate
collocates are manually evaluated. These data are preprocessed by the data preprocessing
pipeline and the cleaned data are used in inference. In the AR test set, from 3,000 verbatims,
the algorithm extracts 39,000 concepts and irrelevant collocates. Among those classified as
concepts, slightly less than 30% are previously unseen unique concepts, which verifies that
our system is efficient in learning an ontology. After obtaining all extracted concepts and
their types, we then randomly select a subset of the results which are given to three Subject
Matter Experts (SMEs). The SMEs read the actual verbatims to identify the context and
then they manually evaluated each classification result. The Precision, Recall, and F1-score
for the test datasets based on the labels marked by the SMEs are given in Table 2.

As we can observe in Table 2, the concept/irrelevant collocates classification F1-score
on the AR dataset is relatively high since the test and training sets are from a similar
distribution, in which case the ontology learning system performs very well. In VOQ, since
the test data is not from a similar distribution, i.e. the VOQ verbatims are more verbose,

Table 2. The evaluation of concepts and irrelevant collocates classification algorithm.

Dataset Precision Recall F1-score
AR 0.81 0.90 0.85
VOQ 0.89 0.47 0.62
Survey 0.80 0.79 0.79

the performance on VOQ is much worse than that on AR. The Survey data is conditionally
sampled from AR, and therefore is also from a similar distribution as training, which results
in good classification performance. Moreover, on AR, the F1-score for each N-gram is 0.88,
0.81, 0.83, 0.86 for N = 1, 2, 3, 4, respectively. The F1-score for 1-gram is better primarily
because we have a polysemy centroid feature to capture polysemy meanings of 1-grams, which
very likely have different polysemies. For higher grams, the performance is also very good,
and we presume this is because longer concepts are more easily captured by the algorithm
while shorter concepts can be easily confused with irrelevant collocates.

Table 3. The evaluation of concept type classification algorithm.

Dataset Precision Recall F1-score
AR 0.82 0.82 0.82
VOQ 0.84 0.65 0.73
Survey 0.82 0.80 0.81

We follow the same approach to evaluate the performance of the second stage classifier
which takes as the input the concepts classified by the first stage and then assigns concept
types. The test set sizes are 800, 1,500, 900 for AR, VOQ and Survey, respectively. Note that
the ‘concepts’ passed to the second stage classifier could be incorrectly classified by the first
stage classifier, i.e. some inputs could be irrelevant collocates. Each irrelevant collocate input
to the second stage classifier is counted as falsely predicted regardless of the type predicted
by the classifier. Despite of this, as it can be seen from Table 3, the concept type assignment
model shows good Precision rate, however, the Recall rate is lower primarily because of the
false negative rate, i.e. the classifier misses on assigning types to long phrases. It is important
to note that although the VOQ dataset is generated from a completely different data source,
the second stage classifier shows a very good performance.

Next, we calculate feature importance by recording how much F1-score drops when we
remove each feature. The higher the value, the more important the feature. As we can see in
Figure 3, the features that contribute most to the F1-score are Word2vec, Context, Polysemy
and POS, which is consistent with our observation in backward elimination algorithm. The
two most important features are Polysemy (4.3%) and Word2vec (3.8%), which shows the
significance of applying word embeddings in ontology learning.

Table 4 shows typical examples of the correctly and incorrectly classified concepts and
irrelevant collocates. Note that only the collocates are shown in Table 4 but the features
are not shown. There are some critical reasons that are identified to contribute to the
misclassification. First, the POS tags associated with each collocate considered during the
training stage is one of the crucial features and it turns out that POS tags assigned by the
POS tagger on our data are inconsistent sometimes. For example, in ‘PARK LAMP,’ the
POS tagger tags it as ‘VBN NNP,’ while it should be tagged as ‘NNP NNP’ since ‘PARK’

Fig. 3. Change of F1-score when dropping each feature.

Table 4. Examples of classification results, where ‘NONE’ denotes irrelevant collocates.

COLLOCATE PREDICTED TRUE TYPE
RECOVER A A
NO POWER PUSHED NONE NONE
HIGH MOUNT BRAKE BULB B B
PARK LAMP NONE B
ROUGH IDLE RIGHT SIDE B NONE
ENGINE CUTS OFF NONE C

here is not a verb. Second, the real-world data comes in different flavors in terms of the stop
and noise words. While standard English stop words and noise words allow us to reduce
the non-descriptive collocates in the data, we need a more comprehensive stop and noise
word customized dictionary. Moreover, such a dictionary needs to be a living verbatim that
requires timely augmentation to ensure as complete coverage to such words as possible. For
example, ‘OFF,’ which is usually regarded as a stop word in English, should not be in our
customized stop words list since collocates such as ‘ENGINE CUTS OFF’ need ‘OFF’ for
grammatical accuracy. Third, collocates that are combinations of types are usually confusing.
In our data, collocates such as ‘ENGINE CUTS OFF’ consist of two classes fused together,
i.e. collocate ‘ENGINE’ is B, while collocate ‘CUTS OFF’ is C. To handle such cases, we
need to have more representatives within the training dataset.

6 Conclusion

We propose a two-stage classification system for automatically learning an ontology
from unstructured text data. The proposed framework initially cleans the noisy data by
correcting different types of noises observed in verbatims. The corrected text is then passed
through our two-stage classifier. In the first stage, the classification algorithm automatically
classifies collocates into concepts and the irrelevant collocates. Next, the concepts extracted
are provided as the input to the second stage classification algorithm which automatically
assigns further types to them. In our approach, we not only use the surface features observed
in the data, e.g. POS, but we also apply latent features such as word embeddings and
polysemy features associated with collocates. As shown in the evaluation, the combination of
surface features together with latent features provides necessary discrimination to correctly

classify collocates. Our system has been successfully deployed as a proof of concept in a real
world domain.

Bibliography

[1] Ahmad, K., Gillam, L.: On the move to meaningful internet systems 2005: Coopis, doa,
and odbase pp. 1330–1346 (2005)

[2] Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora using
formal concept analysis. Journal of Artificial Intelligence Research 24(1), 305–339 (2005)

[3] Doing-Harris, K., Livnat, Y., Meystre, S.: Automated concept and relationship extraction
for the semi-automated ontology management (seam) system. Journal of Biomedical
Semantics 6(1), 15 (2015)

[4] Girardi, M., Ibrahim, B.: Using English to retrieve software. Journal of Systems and
Software 30(3), 249–270 (1995)

[5] Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge
Acquisition 5(2), 199–220 (1993)

[6] HaCohen-Kerner, Y., Kass, A., Peretz, A.: Combined one sense disambiguation of abbre-
viations. Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics on Human Language Technologies: Short Papers pp. 61–64 (2008)

[7] Li, C., Ji, L., Yan, J.: Acronym disambiguation using word embedding. Association for
the Advancement of Artificial Intelligence Conference (2015)

[8] Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Ontological user profiling in recom-
mender systems. ACM Transactions on Information Systems 22(1), 54–88 (2004)

[9] Miller, G.A.: Wordnet: A lexical database for English. Communications of the ACM
38(11), 39–41 (1995)

[10] Pembeci, I.: Using word embeddings for ontology enrichment. International Journal of
Intelligent Systems and Applications in Engineering 4(3), 49–56 (2016)

[11] Rajpathak, D.G., Chougule, R., Bandyopadhyay, P.: A domain-specific decision support
system for knowledge discovery using association and text mining. Knowledge and
Information Systems 31, 405–432 (2011)

[12] Ratnaparkhi, A.: A maximum entropy model for part-of-speech tagging. Empirical
Methods in Natural Language Processing (1996)

[13] Shoval, P., Maidel, V., Shapira, B.: An ontology-content-based filtering method. Inter-
national Journal of Theories and Applications 15, 303–314 (2008)

[14] Stevenson, M., Guo, Y., Al Amri, A., Gaizauskas, R.: Disambiguation of biomedical
abbreviations. Proceedings of the Workshop on Current Trends in Biomedical Natural
Language Processing pp. 71–79 (2009)

[15] Wohlgenannt, G.: Leveraging and balancing heterogeneous sources of evidence in ontology
learning. The Semantic Web. Latest Advances and New Domains pp. 54–68 (2015)

[16] Yosef, M.A., Bauer, S., Hoffart, J., Spaniol, M., Weikum, G.: Hyena: Hierarchical
type classification for entity names. 24th International Conference on Computational
Linguistics pp. 1361–1370 (2012)

	Automatic Ontology Learning from Domain-Specific Short Unstructured Text Data

