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1 Neural network assumptions

We call a neural network f, an n-headed neural network if

L fr:R™ = ], R% ie. itmaps b to (a1, as, ..., a,) with a; € R¥,

2. foreachi, 1 < i < n, we have a; = f}i o feii—1 o..ofliofiofi_i0..0 fi(b)foran
integer ¢ not depending on 7, £; > t + 1, and each f;, f; is a typical neural network single
layer parameterized by a matrix and a bias vector, and it includes an activation function.
Vector 7 corresponds to all these parameters.

In GMVAE, neural networks corresponding to ¢4 _, ¢, are 2-headed neural networks (mean and
covariance) with ¢, ¢,, denoting all of the respective parameters. Probability pyg is a 1 or 2-headed

network with parameters 6, and pg for 8 = (Bk,, Bk, ---, Bk ) consists of a (2 Zle Kc) -headed
neural network.

Assumption 1. In each network q4_, q4,,, Do, and pg, the last layer in each head fl?L has an identity
activation function.

Assumption 2. Neural network pg: for B’ = (B, ..., Bk, +1, ---, B ) consists of pg with simply
two additional heads, while all other network architectures are the same.

Lemma 1. Under Assumption 1 for an n-headed network, we have that given any @ = (@1, ...., G ),
there exists T = T(a) such that f.(b) = @ for every b.

Proof. Let a be given. We define 7 to consist of O matrices and biases for each layer except f} In

f}i , the matrix is O but the bias is @;. Since f}i has the identity activation, it follows f,(b) = @ for
every b.
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2 Proof of Proposition 1

Proposition 1. Ler us assume that v € X is distributed as © ~ pgya = B(uz), C = 1, and
Assumption 1 holds. Then the optimal GMVAE loss is constant with respect to K. In fact, we have
that min —Ex [L(K)] = —Ex[log Puaw| for every K > 1 and a globally optimal solution reads

p(z; ¢7) = pe=1,1(w; B*) = ps

o*(wy¢r)  =oiy(wiBF) =0l

wlayidn) =0 (1)
o?(z,y; 0%) =1

1z 6%) = fiy

for any constant vectors (i, 0.

Proof. Note that (¢%, ¢% | 5*,0%) exist due to Assumption 1 and Lemma First, we show that
(6*, 5*) given in (I) maximize the log likelihood Ex [log pg s(x|y = 1)] and results in pg- g (z|y =
1) = pdara- We have

K L(paaalpe,s(x|y = 1)) = Ex [10g paaw) — Ex [log pes(x|y = 1)]

and thus maximizing Ex [log pg g(z|y = 1)] is equivalent to minimizing K L(pgan||pe,s(z|y = 1)).
The global minimum of K L(paaa||pe,s(z|y = 1)) is clearly when pgaa = po,s(z|y = 1). This is
indeed the case for (6*, 5*), since

pox g (zly =1) = / P+ .6+ (x,v,w, z|ly = 1)dwdzdv

w,z,v

= / po- (x]2)pp- (z|lw, y = 1,v)p(v]y = L)p(w)dwdzdv

— [ o eluy = 10)ploly = Dp(w)dudzds

= Ddata (2)
because of GMVAE’s generative model factorization and (T)). Now we have

EX [Ingdata] = EX [Inge*,,B* (l"y = 1)]

p@*,ﬁ*(xazawvka = 1):|:|
q¢*('U,'LU,Z‘-T,y: 1)
ge+ (v, w, zlz,y = 1)
Ex |Ey . (o slmoet) |1 3
+ Ky |: qpx (v w,z|z,y=1) |:Og pe*,,e*(Z,w,v|x,y _ 1) ( )
= Ex[L(K; 9%, dy, B7,0%)] + Ex[VG(67, ¢y, 57,07)] 4)

where VG(¢%, ¢k, 3*,60%) corresponds to (B). We next show that VG(¢%, ¢%, 5*,6%) = 0.
This together with the facts that maximized Ex [L(K; ¢, ¢, 3,0)] corresponds with minimized
Ex[VG(¢., ¢, 8,0)], and VG(¢., ¢u, 5,0) > 0 (it is a KL divergence), shows optimality.

From (T)) we have that pg+ (2|2) = pgaw () for all z and z and thus with (Z)) we have

:EX |:Eq¢*(v,w,z|x,y=1) |:10g

Poe g (2w, vy = 1) = po+ (22, w, v,y = 1)pg« (2, w,v|y = 1)
po- g+ (xly = 1)
Do~ (x|Z)pﬁ* (vaa v|y = 1)
B pdata(l’)
= pp (2, w,vly = 1). (5)

The reconstruction term py(x|z,w,v,y = 1) = py(x|z) for every 6 because in GMVAE, data
reconstruction depends only on z and is independent of w and v (see §3.1 of the paper).

Also from Bayes’ and GMVAE’s generative model factorization, we have the following simplification

pp+(zlw,y = 1,v)p(v|y = 1)p(w)
pa-(z,wly = 1)

pp(v|z,w,y =1) =



_ e (zlw,y = 1, 0)p(v]y = 1)p(w)
e (lwy = Dp(wly =1)
_ ppe(zlwy =1 v)plvly =1) ©)
2w Ppe (2w, y = 1,0 )p(v' |y = 1)
=p(vly=1) (N
where (T)) is only used in the last line. Substituting (3) into VG(¢%, ¢%, 8*, 6*) we obtain

VG(¢2, 07,87 6)

g (v,w7z|x,y = 1) ]
po- g+ (2, w,v|lz,y = 1)
g+ (v, w, 2|z, y = 1)]
pg*(z,w,v|y = 1)

= Eq¢* (v,w,z|z,y=1) |:10g

= Eqw(v,w,zmyﬂ) {log

P+ (v]z, w,y = 1)qg: (wlz,y = 1)qy: (2|7)
pp (2|w,y = 1,v)p(w)p(v]y = 1)

= Eppe wlzw,y=1)g4x (wle.y=1)q4x (]2) [10%

M-

= IE%:] (wlz,y=1)asx (2]2) log qg+ (2|7) — pa-(v =jlz,w,y = 1)logpg~(z|lw,y = 1,v = j)

j=1

+ KL(qg;, (w|z,y = 1)||p(w))
+ Eqd’fu (w\a:,y:l)qd,; (z]z) [KL(pﬁ* (1)|Z, w,y = 1)||p(v|y = 1))]

=0
due to (I)) and (7). To complete the proof, simply note that negating (@) yields
—Ex[L(K; 8%, ¢, B, 07)] = —Ex [log paatal O

3 Proof of Proposition 2

Lemma 2. For every § > 0 and pi, there exists o* such that if f(z) is the pdf of a d-dimensional
Normal random vector with mean 1 and diagonal covariance o? then

f(z) <& forevery =
Proof. Letu = (%(27r)_d/2)1/d and o = (u, ..., u). We have

f(z)znﬁexp{_%i%(zi_w}SHUZ-;%:‘S' =

4 %

Proposition 2. Let us assume C = 1, Assumptions 1 and 2 hold, and that p(v|y = 1) is uniform in
the appropriate dimension. We have

mln{_EX[E(K7¢z7¢waﬁ79)]} - mln{_EX[£<K + 1;¢Z7¢’w7/8)9)]} Z €K
where —log2 < log(K/(K + 1)) < ek forall K.

Proof. We show that for every solution (¢, ¢!, 6’,0") tomin Ex [ L(K; ¢, dw, B, 0)], there exists

w?
a corresponding solution (¢%, ¢%, 5%, 6*) such that

Let us assume that (¢, ¢),, 5',0’) minimizes —Ex[L(K; ¢,, ¢, [, 0)]. Then we can choose

01 =9,
o =9, ®)

which is a valid choice by Assumption 2, and have 5* such that

pp (z|lw,y =1,v) = pg(z|lw,y = 1,v) forallv < K )



pg=(zlw,y=1v=K+1)<J§ forevery z,w (10)

for any fixed 0 < § < 1/e. Conditions (9) and (I0) are always possible due to Assumptions 1
and 2 and Lemmas and In essence, we choose 3* such that the first K subcluster generative
distributions are the same as the case 5’ but we take the (/K + 1)-th subcluster generative distribution
to map all points w to the same Normal distribution with large enough covariance.

Inserting (©) and (T0) into (€) and combined with uniform priors, we get that
pp-(zlw,y=1,v=K+1)

Zj(:lpﬂ’(z|way: ]-,U :.7) +Pﬁ*(z|W,y= ]_,’U =K+ 1)
(11)

pp(v=K + 1l|z,w,y =1) =

and
pp(zlw,y = 1,0 =k)
K .
Zj=1pﬁ’(z|w7y =Lv=j) +p5*(z|way =Lv=K+1)

(zlw,y=1v=k
< Ilzﬁ(| y ) — = pp(v=k|z,w,y = 1) (12)
Zj:l p5/(2|w,y = 1,'U == ])

pg=(v =k|z,w,y=1) =

for all k < K. The absolute difference between the two posteriors for & < K in (I2) is bounded by a
factor of ¢ as follows:

’pﬁ*(v =klz,w,y=1) —pg(v=FKlz,w,y=1)
_ ‘ pa(zlw,y = 1,0 =k)
Y pe(Flw,y = 1o = )+ pge (zlw,y = L = K +1)
 pp(Flwy=1v=k) ‘
Y pe (zho,y = 1,0 = j)
pa(z|lw,y =1,v =K + 1)pg (z|lw,y = 1,0 = k)
(Ziips(ehoy = 1w =) +ppe (2wy = Lo = K +1))
1
Sicipe(elw,y = 1v =)

pﬁ’(z|way = 17” = k)

2
(205 por ey = 10 = )
= 0A(z,w,v =k). (13)

<4

Now we calculate ex given by
Ex[-L(K; 9., by, B, 0')] — Ex[-L(K + 15 6%, ¢, 87, 07)] = ex

Because of @), ex simplifies to

€K =
_ M -
—Ex Eqd)zj(wm,y:l)qd,;(z\z) Zpﬁ/(v :j‘szay: 1) long/(z|w,y: Lv :])
j=1
- K z
+Ex Eq¢zj(w|w,y:1)q¢;(z\z) Zp,ﬁ’*(v :j|zaway: 1) lng@* (Z‘w7y: 1v :.])
j=1

+ ]EX[Eq¢TU(w|J;,y:1)q¢; (z]z) [KL(p5’ (U|27w7y = 1)||pK('U‘y = 1))]]
—Ex[Eq,. (wlz.y=1)4,: (z]2) [KL(pg-(v]z,w,y = D[pr11(vly = 1))]]
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where px (vly = 1) indicates that v is K -dimensional, and eg) are the first two terms while e(;) are

the the last two terms.

We first analyze eg). For brevity, we combine the expectations and simply write E[-]. Together with

©), (TT), and (T3), we get

K
1 . .
e(K) :‘—]E Zpgf(v:ﬂz,w,y:1)10gp5/(z\w,y=l,U:j)
j=1
K
+E Zpg*(v:ﬂz,w,y:1)10gp5/(z\w,y:17v:j)
j=1

+Epg(v=K+1|z,w,y = 1) logpg« (z|w,y = l,v:K—i—l)]’

K
= ‘]E Zlogpﬁ/(2’|w,y: ]_,’U :j) (pﬁ*(’v :j|Z,w,y — 1) _pﬁ/(’U :j|Z,w,y: 1))
j=1
IE pp(z|lw,y =1,v =K +1)logpg-(z|lw,y = 1,v = K + 1) ‘
Zjl‘(:lpﬂ'(z|w7y =1lv=j)+psg(zlw,y=1,v=K+1)
K
<§-E Z logp[;/(z|w,yl,vj)‘A(z7w’yj)
j=1
1
T oogd)IE | = : ] =o(1), (14)
> b (2w, y = 1,0 = j)

where the last inequality follows from |« log | being increasing for < 1/e and in o(1) we consider
0 — 0.
2

Next we study €. For shorthand, let us define
log (K + 1)pg=(v = K + 1|z, w,y = 1))
(K 4+ Dpg-(z|lw,y =1,v =K + 1) )

g ;
(Zﬁﬂw@ww=L0=ﬁ+mw®Ww=Lv=K+D
:logpﬁ*(z‘w7y:17’u:K+1)+B(z7w)

and note that

|B(z,w)| =
<max{

=C(z,w).
We have

bg( (K +1) )’
Zf:lpﬁ’('z'way: 1,1} :.7) —&—p,@*(z\w,y: 1,U =K+ 1)

(K+1)
lo
g(Zﬁﬂw@wvaﬁ>

log< (K +1) )’}
S b (2lw,y =10 =j) +1/e

)

&
K

=E Zpgz(v = jlz,w,y = 1)log (Kpg (v = jlz,w,y = 1))
j=1



K
—E > pp(v=jlzw,y = Dlog (K +1)(ps- (v = jlz,w,y = 1))

j=1
—Epg-(v=K+ 12,0,y =1)log (K + 1)pg- (v = K + 1]z, w,y = 1))]
K
=E | (log K)pg (v = jlz,w,y = 1) = (log(K + 1))pg- (v = j|z,w,y = 1)
j=1

K
+E| D pp (v =jlz,w,y = 1)logpg (v = jlz,w,y = 1)
j=1

—pp(v = jlz,w,y = 1)logpg« (v = jlz,w,y = 1)

—Epg-(v=K+1|z,w,y =1)log (K + )pg« (v = K + 1|z, w,y = 1))]
K
> log(K) — (log(K + 1))E | Y pp-(v = jlz,w,y = 1)

j=1

K
+E | (s (v =1jlz,w,y =1) = ps- (v = jlz,w,y = 1)) log(pp: (v = jlz,w,y = 1)) |(15)

j=1

pp(zlw,y =1,v =K + 1) log pg~(z|w,y = 1,v = K + 1) ‘
Zlepﬁ’(2|wvy:1ﬂv:j)+pﬁ*(z|w=y:17U:K+1)
( T pew)|

) b

S b (elw,y = Lo =) +ps-(zlw,y = Lo = K + 1
> log(K) — log(K + 1)

_‘E

‘E

K
— 0B | > Alz,w,v = j)|log(ppr (v = j|z,w,y = 1))‘ (16)
j=1
5 (log 6) E ! ] (17)
— 5 (log ‘
Y per(zlw,y = 1,0 =j)
1
—6-E| =% - C(z,w)]
> pp (2w, y =10 = j)
K
=1 1).
g y1 oW

In (T3) we use (12), in (T6) we rely on (13), and in (I7) we use (T4) again.
To summarize, we have ey > ,|€§)| + eg) > —o(1) + o(1) + log KL_H = log KL_H + o(1). Thus
ex > log KLH ]
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