Open-Set Recognition with Gaussian Mixture Variational Autoencoders: Supplementary Material

Alexander Cao
Department of Industrial Engineering and Management Sciences
Northwestern University
Evanston, IL 60208
a-cao@u.northwestern.edu
Yuan Luo
Department of Preventive Medicine
Northwestern University
Chicago, IL 60611
yuan.luo@northwestern.edu
Diego Klabjan
Department of Industrial Engineering and Management Sciences
Northwestern University
Evanston, IL 60208
d-klabjan@northwestern.edu

1 Neural network assumptions

We call a neural network f_{τ} an n-headed neural network if

1. $f_{\tau}: \mathbb{R}^{m} \rightarrow \prod_{i=1}^{n} \mathbb{R}^{s}$, i.e. it maps b to $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with $a_{i} \in \mathbb{R}^{s}$,
2. for each $i, 1 \leq i \leq n$, we have $a_{i}=f_{\ell_{i}}^{i} \circ f_{\ell_{i}-1}^{i} \circ \ldots \circ f_{t+1}^{i} \circ f_{t} \circ f_{t-1} \circ \ldots \circ f_{1}(b)$ for an integer t not depending on $i, \ell_{i} \geq t+1$, and each f_{j}, f_{j}^{i} is a typical neural network single layer parameterized by a matrix and a bias vector, and it includes an activation function. Vector τ corresponds to all these parameters.

In GMVAE, neural networks corresponding to $q_{\phi_{z}}, q_{\phi_{w}}$ are 2-headed neural networks (mean and covariance) with ϕ_{z}, ϕ_{w} denoting all of the respective parameters. Probability p_{θ} is a 1 or 2-headed network with parameters θ, and p_{β} for $\beta=\left(\beta_{K_{1}}, \beta_{K_{2}}, \ldots, \beta_{K_{C}}\right)$ consists of a $\left(2 \sum_{c=1}^{C} K_{c}\right)$-headed neural network.

Assumption 1. In each network $q_{\phi_{z}}, q_{\phi_{w}}, p_{\theta}$, and p_{β}, the last layer in each head $f_{\ell_{i}}^{i}$ has an identity activation function.

Assumption 2. Neural network $p_{\beta^{\prime}}$ for $\beta^{\prime}=\left(\beta_{K_{1}}, \ldots, \beta_{K_{c}+1}, \ldots, \beta_{K_{C}}\right)$ consists of p_{β} with simply two additional heads, while all other network architectures are the same.
Lemma 1. Under Assumption 1 for an n-headed network, we have that given any $\bar{a}=\left(\bar{a}_{1}, \ldots, \bar{a}_{n}\right)$, there exists $\tau=\tau(\bar{a})$ such that $f_{\tau}(b)=\bar{a}$ for every b.

Proof. Let \bar{a} be given. We define τ to consist of 0 matrices and biases for each layer except $f_{\ell_{i}}^{i}$. In $f_{\ell_{i}}^{i}$, the matrix is 0 but the bias is \bar{a}_{i}. Since $f_{\ell_{i}}^{i}$ has the identity activation, it follows $f_{\tau}(b)=\bar{a}$ for every b.

2 Proof of Proposition 1

Proposition 1. Let us assume that $x \in \mathcal{X}$ is distributed as $x \sim p_{\text {data }}=\mathcal{B}\left(\mu_{x}\right), C=1$, and Assumption 1 holds. Then the optimal GMVAE loss is constant with respect to K. In fact, we have that $\min -\mathbb{E}_{\mathcal{X}}[\mathcal{L}(K)]=-\mathbb{E}_{\mathcal{X}}\left[\log p_{\text {data }}\right]$ for every $K \geq 1$ and a globally optimal solution reads

$$
\begin{array}{ll}
\mu\left(x ; \phi_{z}^{*}\right) & =\mu_{c=1, k}\left(w ; \beta^{*}\right)=\mu_{z} \\
\sigma^{2}\left(x ; \phi_{z}^{*}\right) & =\sigma_{c=1, k}^{2}\left(w ; \beta^{*}\right)=\sigma_{z}^{2} \tag{1}\\
\mu\left(x, y ; \phi_{w}^{*}\right) & =\overrightarrow{0} \\
\sigma^{2}\left(x, y ; \phi_{w}^{*}\right) & =\overrightarrow{1} \\
\mu\left(z ; \theta^{*}\right) & =\mu_{x}
\end{array}
$$

for any constant vectors μ_{z}, σ_{z}.
Proof. Note that $\left(\phi_{z}^{*}, \phi_{w}^{*}, \beta^{*}, \theta^{*}\right)$ exist due to Assumption 1 and Lemma 1. First, we show that $\left(\theta^{*}, \beta^{*}\right)$ given in (1) maximize the log likelihood $\mathbb{E}_{\mathcal{X}}\left[\log p_{\theta, \beta}(x \mid y=1)\right]$ and results in $p_{\theta^{*}, \beta^{*}}(x \mid y=$ $1)=p_{\text {data }}$. We have

$$
K L\left(p_{\text {data }}| | p_{\theta, \beta}(x \mid y=1)\right)=\mathbb{E}_{\mathcal{X}}\left[\log p_{\text {data }}\right]-\mathbb{E}_{\mathcal{X}}\left[\log p_{\theta, \beta}(x \mid y=1)\right]
$$

and thus maximizing $\mathbb{E}_{\mathcal{X}}\left[\log p_{\theta, \beta}(x \mid y=1)\right]$ is equivalent to minimizing $K L\left(p_{\text {data }}| | p_{\theta, \beta}(x \mid y=1)\right)$. The global minimum of $K L\left(p_{\text {data }}| | p_{\theta, \beta}(x \mid y=1)\right)$ is clearly when $p_{\text {data }}=p_{\theta, \beta}(x \mid y=1)$. This is indeed the case for $\left(\theta^{*}, \beta^{*}\right)$, since

$$
\begin{align*}
p_{\theta^{*}, \beta^{*}}(x \mid y=1) & =\int_{w, z, v} p_{\beta^{*}, \theta^{*}}(x, v, w, z \mid y=1) d w d z d v \\
& =\int_{w, z, v} p_{\theta^{*}}(x \mid z) p_{\beta^{*}}(z \mid w, y=1, v) p(v \mid y=1) p(w) d w d z d v \\
& =\int_{w, z, v} p_{\text {data }} p_{\beta^{*}}(z \mid w, y=1, v) p(v \mid y=1) p(w) d w d z d v \\
& =p_{\text {data }} \tag{2}
\end{align*}
$$

because of GMVAE's generative model factorization and (1). Now we have

$$
\begin{align*}
\mathbb{E}_{\mathcal{X}}\left[\log p_{\text {data }}\right] & =\mathbb{E}_{\mathcal{X}}\left[\log p_{\theta^{*}, \beta^{*}}(x \mid y=1)\right] \\
& =\mathbb{E}_{\mathcal{X}}\left[\mathbb{E}_{q_{\phi^{*}}(v, w, z \mid x, y=1)}\left[\log \frac{p_{\theta^{*}, \beta^{*}}(x, z, w, v \mid y=1)}{q_{\phi^{*}}(v, w, z \mid x, y=1)}\right]\right] \\
& +\mathbb{E}_{\mathcal{X}}\left[\mathbb{E}_{q_{\phi^{*}}(v, w, z \mid x, y=1)}\left[\log \frac{q_{\phi^{*}}(v, w, z \mid x, y=1)}{p_{\theta^{*}, \beta^{*}}(z, w, v \mid x, y=1)}\right]\right] \tag{3}\\
& =\mathbb{E}_{\mathcal{X}}\left[\mathcal{L}\left(K ; \phi_{z}^{*}, \phi_{w}^{*}, \beta^{*}, \theta^{*}\right)\right]+\mathbb{E}_{\mathcal{X}}\left[\operatorname{VG}\left(\phi_{z}^{*}, \phi_{w}^{*}, \beta^{*}, \theta^{*}\right)\right] \tag{4}
\end{align*}
$$

where $\operatorname{VG}\left(\phi_{z}^{*}, \phi_{w}^{*}, \beta^{*}, \theta^{*}\right)$ corresponds to (3). We next show that $\operatorname{VG}\left(\phi_{z}^{*}, \phi_{w}^{*}, \beta^{*}, \theta^{*}\right)=0$. This together with the facts that maximized $\mathbb{E}_{\mathcal{X}}\left[\mathcal{L}\left(K ; \phi_{z}, \phi_{w}, \beta, \theta\right)\right]$ corresponds with minimized $\mathbb{E}_{\mathcal{X}}\left[\operatorname{VG}\left(\phi_{z}, \phi_{w}, \beta, \theta\right)\right]$, and $\operatorname{VG}\left(\phi_{z}, \phi_{w}, \beta, \theta\right) \geq 0$ (it is a KL divergence), shows optimality.
From (1) we have that $p_{\theta^{*}}(x \mid z)=p_{\text {data }}(x)$ for all x and z and thus with (2) we have

$$
\begin{align*}
p_{\theta^{*}, \beta^{*}}(z, w, v \mid x, y=1) & =\frac{p_{\theta^{*}}(x \mid z, w, v, y=1) p_{\beta^{*}}(z, w, v \mid y=1)}{p_{\theta^{*}, \beta^{*}}(x \mid y=1)} \\
& =\frac{p_{\theta^{*}}(x \mid z) p_{\beta^{*}}(z, w, v \mid y=1)}{p_{\text {data }}(x)} \\
& =p_{\beta^{*}}(z, w, v \mid y=1) . \tag{5}
\end{align*}
$$

The reconstruction term $p_{\theta}(x \mid z, w, v, y=1)=p_{\theta}(x \mid z)$ for every θ because in GMVAE, data reconstruction depends only on z and is independent of w and v (see $\S 3.1$ of the paper).
Also from Bayes' and GMVAE's generative model factorization, we have the following simplification

$$
p_{\beta^{*}}(v \mid z, w, y=1)=\frac{p_{\beta^{*}}(z \mid w, y=1, v) p(v \mid y=1) p(w)}{p_{\beta^{*}}(z, w \mid y=1)}
$$

$$
\begin{align*}
& =\frac{p_{\beta^{*}}(z \mid w, y=1, v) p(v \mid y=1) p(w)}{p_{\beta^{*}}(z \mid w, y=1) p(w \mid y=1)} \\
& =\frac{p_{\beta^{*}}(z \mid w, y=1, v) p(v \mid y=1)}{\sum_{v^{\prime}} p_{\beta^{*}}\left(z \mid w, y=1, v^{\prime}\right) p\left(v^{\prime} \mid y=1\right)} \tag{6}\\
& =p(v \mid y=1) \tag{7}
\end{align*}
$$

where (1) is only used in the last line. Substituting (5) into $\operatorname{VG}\left(\phi_{z}^{*}, \phi_{w}^{*}, \beta^{*}, \theta^{*}\right)$ we obtain

$$
\begin{aligned}
& \operatorname{VG}\left(\phi_{z}^{*}, \phi_{w}^{*}, \beta^{*}, \theta^{*}\right) \\
& =\mathbb{E}_{q_{\phi^{*}}(v, w, z \mid x, y=1)}\left[\log \frac{q_{\phi^{*}}(v, w, z \mid x, y=1)}{p_{\theta^{*}, \beta^{*}}(z, w, v \mid x, y=1)}\right] \\
& =\mathbb{E}_{q_{\phi^{*}}(v, w, z \mid x, y=1)}\left[\log \frac{q_{\phi^{*}}(v, w, z \mid x, y=1)}{p_{\beta^{*}}(z, w, v \mid y=1)}\right] \\
& =\mathbb{E}_{p_{\beta^{*}}(v \mid z, w, y=1) q_{\phi_{w}^{*}}(w \mid x, y=1) q_{\phi_{z}^{*}}(z \mid x)}\left[\log \frac{p_{\beta^{*}}(v \mid z, w, y=1) q_{\phi_{w}^{*}}(w \mid x, y=1) q_{\phi_{z}^{*}}(z \mid x)}{p_{\beta^{*}}(z \mid w, y=1, v) p(w) p(v \mid y=1)}\right] \\
& =\mathbb{E}_{q_{\phi_{w}^{*}}(w \mid x, y=1) q_{\phi_{z}^{*}}(z \mid x)}\left[\log q_{\phi_{z}^{*}}(z \mid x)-\sum_{j=1}^{K} p_{\beta^{*}}(v=j \mid z, w, y=1) \log p_{\beta^{*}}(z \mid w, y=1, v=j)\right] \\
& +K L\left(q_{\phi_{w}^{*}}(w \mid x, y=1) \| p(w)\right) \\
& +\mathbb{E}_{q_{\phi_{w}^{*}}(w \mid x, y=1) q_{\phi_{z}^{*}}(z \mid x)}\left[K L\left(p_{\beta^{*}}(v \mid z, w, y=1)| | p(v \mid y=1)\right)\right] \\
& =0
\end{aligned}
$$

due to (1) and (7). To complete the proof, simply note that negating (4) yields $-\mathbb{E}_{\mathcal{X}}\left[\mathcal{L}\left(K ; \phi_{z}^{*}, \phi_{w}^{*}, \beta^{*}, \theta^{*}\right)\right]=-\mathbb{E}_{\mathcal{X}}\left[\log p_{\text {data }}\right]$.

3 Proof of Proposition 2

Lemma 2. For every $\delta>0$ and μ, there exists σ^{2} such that if $f(z)$ is the pdf of a d-dimensional Normal random vector with mean μ and diagonal covariance σ^{2} then

$$
f(z) \leq \delta \quad \text { for every } z
$$

Proof. Let $u=\left(\frac{1}{\delta}(2 \pi)^{-d / 2}\right)^{1 / d}$ and $\sigma=(u, \ldots, u)$. We have

$$
f(z)=\prod_{i} \frac{1}{\sigma_{i} \sqrt{2 \pi}} \exp \left\{-\frac{1}{2 \sigma_{i}^{2}}\left(z_{i}-\mu_{i}\right)^{2}\right\} \leq \prod_{i} \frac{1}{\sigma_{i} \sqrt{2 \pi}}=\delta
$$

Proposition 2. Let us assume $C=1$, Assumptions 1 and 2 hold, and that $p(v \mid y=1)$ is uniform in the appropriate dimension. We have

$$
\min \left\{-\mathbb{E}_{\mathcal{X}}\left[\mathcal{L}\left(K ; \phi_{z}, \phi_{w}, \beta, \theta\right)\right]\right\}-\min \left\{-\mathbb{E}_{\mathcal{X}}\left[\mathcal{L}\left(K+1 ; \phi_{z}, \phi_{w}, \beta, \theta\right)\right]\right\} \geq \epsilon_{K}
$$

where $-\log 2 \leq \log (K /(K+1)) \leq \epsilon_{K}$ for all K.
Proof. We show that for every solution $\left(\phi_{z}^{\prime}, \phi_{w}^{\prime}, \beta^{\prime}, \theta^{\prime}\right)$ to $\min \mathbb{E}_{\mathcal{X}}\left[-\mathcal{L}\left(K ; \phi_{z}, \phi_{w}, \beta, \theta\right)\right]$, there exists a corresponding solution $\left(\phi_{z}^{*}, \phi_{w}^{*}, \beta^{*}, \theta^{*}\right)$ such that

$$
-\mathbb{E}_{\mathcal{X}}\left[\mathcal{L}\left(K ; \phi_{z}^{\prime}, \phi_{w}^{\prime}, \beta^{\prime}, \theta^{\prime}\right)\right]=-\mathbb{E}_{\mathcal{X}}\left[\mathcal{L}\left(K+1 ; \phi_{z}^{*}, \phi_{w}^{*}, \beta^{*}, \theta^{*}\right)\right]+\epsilon_{K}
$$

Let us assume that $\left(\phi_{z}^{\prime}, \phi_{w}^{\prime}, \beta^{\prime}, \theta^{\prime}\right)$ minimizes $-\mathbb{E}_{\mathcal{X}}\left[\mathcal{L}\left(K ; \phi_{z}, \phi_{w}, \beta, \theta\right)\right]$. Then we can choose

$$
\begin{align*}
\phi_{z}^{*} & =\phi_{z}^{\prime} \tag{8}\\
\phi_{w}^{*} & =\phi_{w}^{\prime} \\
\theta^{*} & =\theta^{\prime}
\end{align*}
$$

which is a valid choice by Assumption 2, and have β^{*} such that

$$
\begin{equation*}
p_{\beta^{*}}(z \mid w, y=1, v)=p_{\beta^{\prime}}(z \mid w, y=1, v) \quad \text { for all } v \leq K \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
p_{\beta^{*}}(z \mid w, y=1, v=K+1) \leq \delta \quad \text { for every } z, w \tag{10}
\end{equation*}
$$

for any fixed $0<\delta<1 / e$. Conditions (9) and (10) are always possible due to Assumptions 1 and 2 and Lemmas 1 and 2 . In essence, we choose β^{*} such that the first K subcluster generative distributions are the same as the case β^{\prime} but we take the $(K+1)$-th subcluster generative distribution to map all points w to the same Normal distribution with large enough covariance.
Inserting (9) and (10) into (6) and combined with uniform priors, we get that

$$
\begin{equation*}
p_{\beta^{*}}(v=K+1 \mid z, w, y=1)=\frac{p_{\beta^{*}}(z \mid w, y=1, v=K+1)}{\sum_{j=1}^{K} p_{\beta^{\prime}}(z \mid w, y=1, v=j)+p_{\beta^{*}}(z \mid w, y=1, v=K+1)} \tag{11}
\end{equation*}
$$

and

$$
\begin{align*}
p_{\beta^{*}}(v=k \mid z, w, y=1) & =\frac{p_{\beta^{\prime}}(z \mid w, y=1, v=k)}{\sum_{j=1}^{K} p_{\beta^{\prime}}(z \mid w, y=1, v=j)+p_{\beta^{*}}(z \mid w, y=1, v=K+1)} \\
& \leq \frac{p_{\beta^{\prime}}(z \mid w, y=1, v=k)}{\sum_{j=1}^{K} p_{\beta^{\prime}}(z \mid w, y=1, v=j)}=p_{\beta^{\prime}}(v=k \mid z, w, y=1) \tag{12}
\end{align*}
$$

for all $k \leq K$. The absolute difference between the two posteriors for $k \leq K$ in 12 is bounded by a factor of δ as follows:

$$
\begin{align*}
& \left|p_{\beta^{*}}(v=k \mid z, w, y=1)-p_{\beta^{\prime}}(v=k \mid z, w, y=1)\right| \\
& =\left\lvert\, \frac{p_{\beta^{\prime}}(z \mid w, y=1, v=k)}{\sum_{j=1}^{K} p_{\beta^{\prime}}(z \mid w, y=1, v=j)+p_{\beta^{*}}(z \mid w, y=1, v=K+1)}\right. \\
& \left.-\frac{p_{\beta^{\prime}}(z \mid w, y=1, v=k)}{\sum_{j=1}^{K} p_{\beta^{\prime}}(z \mid w, y=1, v=j)} \right\rvert\, \\
& =\frac{p_{\beta^{*}}(z \mid w, y=1, v=K+1) p_{\beta^{\prime}}(z \mid w, y=1, v=k)}{\left(\sum_{j=1}^{K} p_{\beta^{\prime}}(z \mid w, y=1, v=j)+p_{\beta^{*}}(z \mid w, y=1, v=K+1)\right)} \\
& \times \frac{1}{\sum_{j=1}^{K} p_{\beta^{\prime}}(z \mid w, y=1, v=j)} \\
& \leq \delta \frac{p_{\beta^{\prime}}(z \mid w, y=1, v=k)}{\left(\sum_{j=1}^{K} p_{\beta^{\prime}}(z \mid w, y=1, v=j)\right)^{2}} \\
& =\delta A(z, w, v=k) \text {. } \tag{13}
\end{align*}
$$

Now we calculate ϵ_{K} given by

$$
\mathbb{E}_{\mathcal{X}}\left[-\mathcal{L}\left(K ; \phi_{z}^{\prime}, \phi_{w}^{\prime}, \beta^{\prime}, \theta^{\prime}\right)\right]-\mathbb{E}_{\mathcal{X}}\left[-\mathcal{L}\left(K+1 ; \phi_{z}^{*}, \phi_{w}^{*}, \beta^{*}, \theta^{*}\right)\right]=\epsilon_{K}
$$

Because of (8), ϵ_{K} simplifies to

$$
\begin{aligned}
& \epsilon_{K}= \\
& -\mathbb{E}_{\mathcal{X}}\left[\mathbb{E}_{q_{\phi_{w}^{*}}(w \mid x, y=1) q_{\phi_{z}^{*}}(z \mid x)}\left[\sum_{j=1}^{K} p_{\beta^{\prime}}(v=j \mid z, w, y=1) \log p_{\beta^{\prime}}(z \mid w, y=1, v=j)\right]\right] \\
& +\mathbb{E}_{\mathcal{X}}\left[\mathbb{E}_{q_{\phi_{w}^{*}}(w \mid x, y=1) q_{\phi_{z}^{*}}(z \mid x)}\left[\sum_{j=1}^{K+1} p_{\beta^{*}}(v=j \mid z, w, y=1) \log p_{\beta^{*}}(z \mid w, y=1, v=j)\right]\right] \\
& +\mathbb{E}_{\mathcal{X}}\left[\mathbb{E}_{q_{\phi_{w}^{*}}(w \mid x, y=1) q_{\phi_{\tilde{z}}^{*}}(z \mid x)}\left[K L\left(p_{\beta^{\prime}}(v \mid z, w, y=1)| | p_{K}(v \mid y=1)\right)\right]\right] \\
& -\mathbb{E}_{\mathcal{X}}\left[\mathbb{E}_{q_{\phi_{w}^{*}}(w \mid x, y=1) q_{\phi_{\dot{z}}^{*}}(z \mid x)}\left[K L\left(p_{\beta^{*}}(v \mid z, w, y=1)| | p_{K+1}(v \mid y=1)\right)\right]\right] \\
& =\epsilon_{K}^{(1)}+\epsilon_{K}^{(2)}
\end{aligned}
$$

where $p_{K}(v \mid y=1)$ indicates that v is K-dimensional, and $\epsilon_{K}^{(1)}$ are the first two terms while $\epsilon_{K}^{(2)}$ are the the last two terms.
We first analyze $\epsilon_{K}^{(1)}$. For brevity, we combine the expectations and simply write $\mathbb{E}[\cdot]$. Together with (9), 11), and 13), we get

$$
\begin{align*}
\left|\epsilon_{K}^{(1)}\right| & =\mid-\mathbb{E}\left[\sum_{j=1}^{K} p_{\beta^{\prime}}(v=j \mid z, w, y=1) \log p_{\beta^{\prime}}(z \mid w, y=1, v=j)\right] \\
& +\mathbb{E}\left[\sum_{j=1}^{K} p_{\beta^{*}}(v=j \mid z, w, y=1) \log p_{\beta^{\prime}}(z \mid w, y=1, v=j)\right] \\
& +\mathbb{E}\left[p_{\beta^{*}}(v=K+1 \mid z, w, y=1) \log p_{\beta^{*}}(z \mid w, y=1, v=K+1)\right] \mid \\
& =\mid \mathbb{E}\left[\sum_{j=1}^{K} \log p_{\beta^{\prime}}(z \mid w, y=1, v=j)\left(p_{\beta^{*}}(v=j \mid z, w, y=1)-p_{\beta^{\prime}}(v=j \mid z, w, y=1)\right)\right] \\
& \left.+\mathbb{E}\left[\frac{p_{\beta^{*}}(z \mid w, y=1, v=K+1) \log p_{\beta^{*}}(z \mid w, y=1, v=K+1)}{\sum_{j=1}^{K} p_{\beta^{\prime}}(z \mid w, y=1, v=j)+p_{\beta^{*}}(z \mid w, y=1, v=K+1)}\right] \right\rvert\, \\
& \leq \delta \cdot \mathbb{E}\left[\sum_{j=1}^{K}\left|\log p_{\beta^{\prime}}(z \mid w, y=1, v=j)\right| A(z, w, v=j)\right] \\
& +|\delta(\log \delta)| \mathbb{E}\left[\frac{\sum_{2}}{\sum_{j=1}^{K} p_{\beta^{\prime}}(z \mid w, y=1, v=j)}\right]=o(1), \tag{14}
\end{align*}
$$

where the last inequality follows from $|x \log x|$ being increasing for $x \leq 1 / e$ and in $o(1)$ we consider $\delta \rightarrow 0$.
Next we study $\epsilon_{K}^{(2)}$. For shorthand, let us define

$$
\begin{aligned}
& \log \left((K+1) p_{\beta^{*}}(v=K+1 \mid z, w, y=1)\right) \\
& =\log \left(\frac{(K+1) p_{\beta^{*}}(z \mid w, y=1, v=K+1)}{\sum_{j=1}^{K} p_{\beta^{\prime}}(z \mid w, y=1, v=j)+p_{\beta^{*}}(z \mid w, y=1, v=K+1)}\right) \\
& =\log p_{\beta^{*}}(z \mid w, y=1, v=K+1)+B(z, w)
\end{aligned}
$$

and note that

$$
\begin{aligned}
& |B(z, w)|=\left|\log \left(\frac{(K+1)}{\sum_{j=1}^{K} p_{\beta^{\prime}}(z \mid w, y=1, v=j)+p_{\beta^{*}}(z \mid w, y=1, v=K+1)}\right)\right| \\
& \leq \max \left\{\left|\log \left(\frac{(K+1)}{\sum_{j=1}^{K} p_{\beta^{\prime}}(z \mid w, y=1, v=j)}\right)\right|\right. \\
& \left.\quad\left|\log \left(\frac{(K+1)}{\sum_{j=1}^{K} p_{\beta^{\prime}}(z \mid w, y=1, v=j)+1 / e}\right)\right|\right\} \\
& =C(z, w) .
\end{aligned}
$$

We have

$$
\begin{aligned}
& \epsilon_{K}^{(2)} \\
& =\mathbb{E}\left[\sum_{j=1}^{K} p_{\beta^{\prime}}(v=j \mid z, w, y=1) \log \left(K p_{\beta^{\prime}}(v=j \mid z, w, y=1)\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& -\mathbb{E}\left[\sum_{j=1}^{K} p_{\beta^{*}}(v=j \mid z, w, y=1) \log \left((K+1)\left(p_{\beta^{*}}(v=j \mid z, w, y=1)\right)\right)\right] \\
& -\mathbb{E}\left[p_{\beta^{*}}(v=K+1 \mid z, w, y=1) \log \left((K+1) p_{\beta^{*}}(v=K+1 \mid z, w, y=1)\right)\right] \\
& =\mathbb{E}\left[\sum_{j=1}^{K}(\log K) p_{\beta^{\prime}}(v=j \mid z, w, y=1)-(\log (K+1)) p_{\beta^{*}}(v=j \mid z, w, y=1)\right] \\
& +\mathbb{E}\left[\sum_{j=1}^{K} p_{\beta^{\prime}}(v=j \mid z, w, y=1) \log p_{\beta^{\prime}}(v=j \mid z, w, y=1)\right. \\
& \left.-p_{\beta^{*}}(v=j \mid z, w, y=1) \log p_{\beta^{*}}(v=j \mid z, w, y=1)\right] \\
& -\mathbb{E}\left[p_{\beta^{*}}(v=K+1 \mid z, w, y=1) \log \left((K+1) p_{\beta^{*}}(v=K+1 \mid z, w, y=1)\right)\right] \\
& \geq \log (K)-(\log (K+1)) \mathbb{E}\left[\sum_{j=1}^{K} p_{\beta^{*}}(v=j \mid z, w, y=1)\right] \\
& +\mathbb{E}\left[\sum_{j=1}^{K}\left(p_{\beta^{\prime}}(v=j \mid z, w, y=1)-p_{\beta^{*}}(v=j \mid z, w, y=1)\right) \log \left(p_{\beta^{\prime}}(v=j \mid z, w, y=1)\right)\right] \text { (15) } \\
& -\left|\mathbb{E}\left[\frac{p_{\beta^{*}}(z \mid w, y=1, v=K+1) \log p_{\beta^{*}}(z \mid w, y=1, v=K+1)}{\sum_{j=1}^{K} p_{\beta^{\prime}}(z \mid w, y=1, v=j)+p_{\beta^{*}}(z \mid w, y=1, v=K+1)}\right]\right| \\
& -\left|\mathbb{E}\left[\left(\frac{p_{\beta^{*}}(z \mid w, y=1, v=K+1)}{\sum_{j=1}^{K} p_{\beta^{\prime}}(z \mid w, y=1, v=j)+p_{\beta^{*}}(z \mid w, y=1, v=K+1)}\right) B(z, w)\right]\right| \\
& \geq \log (K)-\log (K+1) \\
& -\delta \cdot \mathbb{E}\left[\sum_{j=1}^{K} A(z, w, v=j)\left|\log \left(p_{\beta^{\prime}}(v=j \mid z, w, y=1)\right)\right|\right] \\
& -\delta(\log \delta) \mathbb{E}\left[\frac{1}{\sum_{j=1}^{K} p_{\beta^{\prime}}(z \mid w, y=1, v=j)}\right] \\
& -\delta \cdot \mathbb{E}\left[\frac{1}{\sum_{j=1}^{K} p_{\beta^{\prime}}(z \mid w, y=1, v=j)} C(z, w)\right] \\
& =\log \frac{K}{K+1}+o(1) .
\end{aligned}
$$

In (15) we use (12), in (16) we rely on (13), and in (17) we use (14) again.
To summarize, we have $\epsilon_{K} \geq-\left|\epsilon_{K}^{(1)}\right|+\epsilon_{K}^{(2)} \geq-o(1)+o(1)+\log \frac{K}{K+1}=\log \frac{K}{K+1}+o(1)$. Thus $\epsilon_{K} \geq \log \frac{K}{K+1}$.

