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1 Neural network assumptions

We call a neural network fτ an n-headed neural network if

1. fτ : Rm →
∏n
i=1 Rs, i.e. it maps b to (a1, a2, ..., an) with ai ∈ Rs,

2. for each i, 1 ≤ i ≤ n, we have ai = f i`i ◦ f
i
`i−1 ◦ ... ◦ f

i
t+1 ◦ ft ◦ ft−1 ◦ ... ◦ f1(b) for an

integer t not depending on i, `i ≥ t+ 1, and each fj , f ij is a typical neural network single
layer parameterized by a matrix and a bias vector, and it includes an activation function.
Vector τ corresponds to all these parameters.

In GMVAE, neural networks corresponding to qφz , qφw are 2-headed neural networks (mean and
covariance) with φz, φw denoting all of the respective parameters. Probability pθ is a 1 or 2-headed
network with parameters θ, and pβ for β = (βK1

, βK2
, ..., βKC ) consists of a

(
2
∑C
c=1Kc

)
-headed

neural network.

Assumption 1. In each network qφz , qφw , pθ, and pβ , the last layer in each head f i`i has an identity
activation function.

Assumption 2. Neural network pβ′ for β′ = (βK1
, ..., βKc+1, ..., βKC ) consists of pβ with simply

two additional heads, while all other network architectures are the same.

Lemma 1. Under Assumption 1 for an n-headed network, we have that given any a = (a1, ...., an),
there exists τ = τ(a) such that fτ (b) = a for every b.

Proof. Let a be given. We define τ to consist of 0 matrices and biases for each layer except f i`i . In
f i`i , the matrix is 0 but the bias is ai. Since f i`i has the identity activation, it follows fτ (b) = a for
every b.
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2 Proof of Proposition 1

Proposition 1. Let us assume that x ∈ X is distributed as x ∼ pdata = B(µx), C = 1, and
Assumption 1 holds. Then the optimal GMVAE loss is constant with respect to K. In fact, we have
that min−EX [L(K)] = −EX [log pdata] for every K ≥ 1 and a globally optimal solution reads

µ(x;φ∗z) = µc=1,k(w;β
∗) = µz

σ2(x;φ∗z) = σ2
c=1,k(w;β

∗) = σ2
z

µ(x, y;φ∗w) = ~0

σ2(x, y;φ∗w) = ~1
µ(z; θ∗) = µx

 (1)

for any constant vectors µz, σz .

Proof. Note that (φ∗z, φ
∗
w, β

∗, θ∗) exist due to Assumption 1 and Lemma 1. First, we show that
(θ∗, β∗) given in (1) maximize the log likelihood EX [log pθ,β(x|y = 1)] and results in pθ∗,β∗(x|y =
1) = pdata. We have

KL(pdata||pθ,β(x|y = 1)) = EX [log pdata]− EX [log pθ,β(x|y = 1)]

and thus maximizing EX [log pθ,β(x|y = 1)] is equivalent to minimizing KL(pdata||pθ,β(x|y = 1)).
The global minimum of KL(pdata||pθ,β(x|y = 1)) is clearly when pdata = pθ,β(x|y = 1). This is
indeed the case for (θ∗, β∗), since

pθ∗,β∗(x|y = 1) =

∫
w,z,v

pβ∗,θ∗(x, v, w, z|y = 1)dwdzdv

=

∫
w,z,v

pθ∗(x|z)pβ∗(z|w, y = 1, v)p(v|y = 1)p(w)dwdzdv

=

∫
w,z,v

pdatapβ∗(z|w, y = 1, v)p(v|y = 1)p(w)dwdzdv

= pdata (2)

because of GMVAE’s generative model factorization and (1). Now we have

EX [log pdata] = EX [log pθ∗,β∗(x|y = 1)]

= EX
[
Eqφ∗ (v,w,z|x,y=1)

[
log

pθ∗,β∗(x, z, w, v|y = 1)

qφ∗(v, w, z|x, y = 1)

]]
+ EX

[
Eqφ∗ (v,w,z|x,y=1)

[
log

qφ∗(v, w, z|x, y = 1)

pθ∗,β∗(z, w, v|x, y = 1)

]]
(3)

= EX [L(K;φ∗z, φ
∗
w, β

∗, θ∗)] + EX [VG(φ∗z, φ
∗
w, β

∗, θ∗)] (4)

where VG(φ∗z, φ
∗
w, β

∗, θ∗) corresponds to (3). We next show that VG(φ∗z, φ
∗
w, β

∗, θ∗) = 0.
This together with the facts that maximized EX [L(K;φz, φw, β, θ)] corresponds with minimized
EX [VG(φz, φw, β, θ)], and VG(φz, φw, β, θ) ≥ 0 (it is a KL divergence), shows optimality.

From (1) we have that pθ∗(x|z) = pdata(x) for all x and z and thus with (2) we have

pθ∗,β∗(z, w, v|x, y = 1) =
pθ∗(x|z, w, v, y = 1)pβ∗(z, w, v|y = 1)

pθ∗,β∗(x|y = 1)

=
pθ∗(x|z)pβ∗(z, w, v|y = 1)

pdata(x)

= pβ∗(z, w, v|y = 1). (5)

The reconstruction term pθ(x|z, w, v, y = 1) = pθ(x|z) for every θ because in GMVAE, data
reconstruction depends only on z and is independent of w and v (see §3.1 of the paper).

Also from Bayes’ and GMVAE’s generative model factorization, we have the following simplification

pβ∗(v|z, w, y = 1) =
pβ∗(z|w, y = 1, v)p(v|y = 1)p(w)

pβ∗(z, w|y = 1)
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=
pβ∗(z|w, y = 1, v)p(v|y = 1)p(w)

pβ∗(z|w, y = 1)p(w|y = 1)

=
pβ∗(z|w, y = 1, v)p(v|y = 1)∑
v′ pβ∗(z|w, y = 1, v′)p(v′|y = 1)

(6)

= p(v|y = 1) (7)

where (1) is only used in the last line. Substituting (5) into VG(φ∗z, φ
∗
w, β

∗, θ∗) we obtain

VG(φ∗z, φ
∗
w, β

∗, θ∗)

= Eqφ∗ (v,w,z|x,y=1)

[
log

qφ∗(v, w, z|x, y = 1)

pθ∗,β∗(z, w, v|x, y = 1)

]
= Eqφ∗ (v,w,z|x,y=1)

[
log

qφ∗(v, w, z|x, y = 1)

pβ∗(z, w, v|y = 1)

]
= Epβ∗ (v|z,w,y=1)qφ∗w (w|x,y=1)qφ∗z (z|x)

[
log

pβ∗(v|z, w, y = 1)qφ∗w(w|x, y = 1)qφ∗z (z|x)
pβ∗(z|w, y = 1, v)p(w)p(v|y = 1)

]

= Eqφ∗w (w|x,y=1)qφ∗z (z|x)

log qφ∗z (z|x)− K∑
j=1

pβ∗(v = j|z, w, y = 1) log pβ∗(z|w, y = 1, v = j)


+KL(qφ∗w(w|x, y = 1)||p(w))
+ Eqφ∗w (w|x,y=1)qφ∗z (z|x)

[KL(pβ∗(v|z, w, y = 1)||p(v|y = 1))]

= 0

due to (1) and (7). To complete the proof, simply note that negating (4) yields
−EX [L(K;φ∗z, φ

∗
w, β

∗, θ∗)] = −EX [log pdata].

3 Proof of Proposition 2

Lemma 2. For every δ > 0 and µ, there exists σ2 such that if f(z) is the pdf of a d-dimensional
Normal random vector with mean µ and diagonal covariance σ2 then

f(z) ≤ δ for every z.

Proof. Let u =
(
1
δ (2π)

−d/2)1/d and σ = (u, ..., u). We have

f(z) =
∏
i

1

σi
√
2π

exp

{
− 1

2σ2
i

(zi − µi)2
}
≤
∏
i

1

σi
√
2π

= δ.

Proposition 2. Let us assume C = 1, Assumptions 1 and 2 hold, and that p(v|y = 1) is uniform in
the appropriate dimension. We have

min {−EX [L(K;φz, φw, β, θ)]} −min {−EX [L(K + 1;φz, φw, β, θ)]} ≥ εK
where − log 2 ≤ log(K/(K + 1)) ≤ εK for all K.

Proof. We show that for every solution (φ′z, φ
′
w, β

′, θ′) to minEX [−L(K;φz, φw, β, θ)], there exists
a corresponding solution (φ∗z, φ

∗
w, β

∗, θ∗) such that

−EX [L(K;φ′z, φ
′
w, β

′, θ′)] = −EX [L(K + 1;φ∗z, φ
∗
w, β

∗, θ∗)] + εK .

Let us assume that (φ′z, φ
′
w, β

′, θ′) minimizes −EX [L(K;φz, φw, β, θ)]. Then we can choose

φ∗z = φ′z
φ∗w = φ′w
θ∗ = θ′

(8)

which is a valid choice by Assumption 2, and have β∗ such that

pβ∗(z|w, y = 1, v) = pβ′(z|w, y = 1, v) for all v ≤ K (9)
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pβ∗(z|w, y = 1, v = K + 1) ≤ δ for every z, w (10)

for any fixed 0 < δ < 1/e. Conditions (9) and (10) are always possible due to Assumptions 1
and 2 and Lemmas 1 and 2. In essence, we choose β∗ such that the first K subcluster generative
distributions are the same as the case β′ but we take the (K + 1)-th subcluster generative distribution
to map all points w to the same Normal distribution with large enough covariance.

Inserting (9) and (10) into (6) and combined with uniform priors, we get that

pβ∗(v = K + 1|z, w, y = 1) =
pβ∗(z|w, y = 1, v = K + 1)∑K

j=1 pβ′(z|w, y = 1, v = j) + pβ∗(z|w, y = 1, v = K + 1)
(11)

and

pβ∗(v = k|z, w, y = 1) =
pβ′(z|w, y = 1, v = k)∑K

j=1 pβ′(z|w, y = 1, v = j) + pβ∗(z|w, y = 1, v = K + 1)

≤ pβ′(z|w, y = 1, v = k)∑K
j=1 pβ′(z|w, y = 1, v = j)

= pβ′(v = k|z, w, y = 1) (12)

for all k ≤ K. The absolute difference between the two posteriors for k ≤ K in (12) is bounded by a
factor of δ as follows:∣∣∣∣pβ∗(v = k|z, w, y = 1)− pβ′(v = k|z, w, y = 1)

∣∣∣∣
=

∣∣∣∣ pβ′(z|w, y = 1, v = k)∑K
j=1 pβ′(z|w, y = 1, v = j) + pβ∗(z|w, y = 1, v = K + 1)

− pβ′(z|w, y = 1, v = k)∑K
j=1 pβ′(z|w, y = 1, v = j)

∣∣∣∣
=

pβ∗(z|w, y = 1, v = K + 1)pβ′(z|w, y = 1, v = k)(∑K
j=1 pβ′(z|w, y = 1, v = j) + pβ∗(z|w, y = 1, v = K + 1)

)
× 1∑K

j=1 pβ′(z|w, y = 1, v = j)

≤ δ pβ′(z|w, y = 1, v = k)(∑K
j=1 pβ′(z|w, y = 1, v = j)

)2
= δA(z, w, v = k) . (13)

Now we calculate εK given by

EX [−L(K;φ′z, φ
′
w, β

′, θ′)]− EX [−L(K + 1;φ∗z, φ
∗
w, β

∗, θ∗)] = εK

Because of (8), εK simplifies to

εK =

− EX

Eqφ∗w (w|x,y=1)qφ∗z (z|x)

 K∑
j=1

pβ′(v = j|z, w, y = 1) log pβ′(z|w, y = 1, v = j)


+ EX

Eqφ∗w (w|x,y=1)qφ∗z (z|x)

K+1∑
j=1

pβ∗(v = j|z, w, y = 1) log pβ∗(z|w, y = 1, v = j)


+ EX [Eqφ∗w (w|x,y=1)qφ∗z (z|x)

[KL(pβ′(v|z, w, y = 1)||pK(v|y = 1))]]

− EX [Eqφ∗w (w|x,y=1)qφ∗z (z|x)
[KL(pβ∗(v|z, w, y = 1)||pK+1(v|y = 1))]]

= ε
(1)
K + ε

(2)
K
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where pK(v|y = 1) indicates that v is K-dimensional, and ε(1)K are the first two terms while ε(2)K are
the the last two terms.

We first analyze ε(1)K . For brevity, we combine the expectations and simply write E[·]. Together with
(9), (11), and (13), we get∣∣∣∣ε(1)K ∣∣∣∣ = ∣∣∣∣− E

 K∑
j=1

pβ′(v = j|z, w, y = 1) log pβ′(z|w, y = 1, v = j)


+ E

 K∑
j=1

pβ∗(v = j|z, w, y = 1) log pβ′(z|w, y = 1, v = j)


+ E [pβ∗(v = K + 1|z, w, y = 1) log pβ∗(z|w, y = 1, v = K + 1)]

∣∣∣∣
=

∣∣∣∣E
 K∑
j=1

log pβ′(z|w, y = 1, v = j) (pβ∗(v = j|z, w, y = 1)− pβ′(v = j|z, w, y = 1))



+ E

[
pβ∗(z|w, y = 1, v = K + 1) log pβ∗(z|w, y = 1, v = K + 1)∑K

j=1 pβ′(z|w, y = 1, v = j) + pβ∗(z|w, y = 1, v = K + 1)

] ∣∣∣∣
≤ δ · E

 K∑
j=1

∣∣∣∣ log pβ′(z|w, y = 1, v = j)

∣∣∣∣A(z, w, v = j)


+ |δ(log δ)|E

[
1∑K

j=1 pβ′(z|w, y = 1, v = j)

]
= o(1) , (14)

where the last inequality follows from |x log x| being increasing for x ≤ 1/e and in o(1) we consider
δ → 0.

Next we study ε(2)K . For shorthand, let us define

log ((K + 1)pβ∗(v = K + 1|z, w, y = 1))

= log

(
(K + 1)pβ∗(z|w, y = 1, v = K + 1)∑K

j=1 pβ′(z|w, y = 1, v = j) + pβ∗(z|w, y = 1, v = K + 1)

)
= log pβ∗(z|w, y = 1, v = K + 1) +B(z, w)

and note that

|B(z, w)| =
∣∣∣∣ log

(
(K + 1)∑K

j=1 pβ′(z|w, y = 1, v = j) + pβ∗(z|w, y = 1, v = K + 1)

)∣∣∣∣
≤ max

{∣∣∣∣ log
(

(K + 1)∑K
j=1 pβ′(z|w, y = 1, v = j)

)∣∣∣∣,∣∣∣∣ log
(

(K + 1)∑K
j=1 pβ′(z|w, y = 1, v = j) + 1/e

)∣∣∣∣
}

= C(z, w).

We have

ε
(2)
K

= E

 K∑
j=1

pβ′(v = j|z, w, y = 1) log (Kpβ′(v = j|z, w, y = 1))


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− E

 K∑
j=1

pβ∗(v = j|z, w, y = 1) log ((K + 1)(pβ∗(v = j|z, w, y = 1)))


− E [pβ∗(v = K + 1|z, w, y = 1) log ((K + 1)pβ∗(v = K + 1|z, w, y = 1))]

= E

 K∑
j=1

(logK)pβ′(v = j|z, w, y = 1)− (log(K + 1))pβ∗(v = j|z, w, y = 1)


+ E

[
K∑
j=1

pβ′(v = j|z, w, y = 1) log pβ′(v = j|z, w, y = 1)

− pβ∗(v = j|z, w, y = 1) log pβ∗(v = j|z, w, y = 1)

]
− E [pβ∗(v = K + 1|z, w, y = 1) log ((K + 1)pβ∗(v = K + 1|z, w, y = 1))]

≥ log(K)− (log(K + 1))E

 K∑
j=1

pβ∗(v = j|z, w, y = 1)


+ E

 K∑
j=1

(pβ′(v = j|z, w, y = 1)− pβ∗(v = j|z, w, y = 1)) log(pβ′(v = j|z, w, y = 1))

(15)

−
∣∣∣∣E
[
pβ∗(z|w, y = 1, v = K + 1) log pβ∗(z|w, y = 1, v = K + 1)∑K

j=1 pβ′(z|w, y = 1, v = j) + pβ∗(z|w, y = 1, v = K + 1)

] ∣∣∣∣
−
∣∣∣∣E
[(

pβ∗(z|w, y = 1, v = K + 1)∑K
j=1 pβ′(z|w, y = 1, v = j) + pβ∗(z|w, y = 1, v = K + 1)

)
B(z, w)

] ∣∣∣∣
≥ log(K)− log(K + 1)

− δ · E

 K∑
j=1

A(z, w, v = j)

∣∣∣∣ log(pβ′(v = j|z, w, y = 1))

∣∣∣∣
 (16)

− δ (log δ)E

[
1∑K

j=1 pβ′(z|w, y = 1, v = j)

]
(17)

− δ · E

[
1∑K

j=1 pβ′(z|w, y = 1, v = j)
C(z, w)

]

= log
K

K + 1
+ o(1) .

In (15) we use (12), in (16) we rely on (13), and in (17) we use (14) again.

To summarize, we have εK ≥ −|ε(1)K |+ ε
(2)
K ≥ −o(1) + o(1) + log K

K+1 = log K
K+1 + o(1). Thus

εK ≥ log K
K+1 .
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