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Abstract

This chapter demonstrates a model and solution methodology for designing opera-

tional planning for interplanetary exploration missions. A primary question for space

exploration mission design is how to best design the logistics required to sustain the

exploration initiative. To answer this question, an architectural decision method has

been created. The model presented in this chapter is capable of analyzing a variety of

mission scenarios over an extended period of time with the goal of defining beneficial

mission architectures that enable space logistics. This model can be utilized to evalu-
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ate different logistics trades, such as a possible establishment of a push-pull boundary,

which can aid in supply pre-positioning. Based on the model, a state-of-the-art solu-

tion methodology has been designed and implemented. The model is demonstrated

on an Apollo-style mission to both provide an example and validate the methodology.

1 Introduction

On January 14th, 2004, President Bush set forth a new exploration initiative to achieve

a sustained human presence in space. Included in this directive is the return of humans to

the Moon by 2020 and the human exploration of Mars thereafter, President George W. Bush

(2004). The President has tasked NASA with the development of a sustainable space

transportation system that will enable continual exploration of the Moon, Mars and “be-

yond”.

Inherent to the problem of transporting people to the Moon, Mars, and “beyond” is sus-

taining the people and the operations while in transit and at the respective destinations.

Especially for long-term missions, the amount of consumables required becomes a sig-

nificant issue in terms of mass in Low Earth Orbit (LEO), which translates to mission

cost. In order to develop a sustainable space transportation architecture it is critical that

interplanetary supply chain logistics be considered.

The goal of the interplanetary supply chain logistics problem is to adequately account

for and optimize the transfer of supplies from Earth to locations in space. Although the

supply items, herein called commodities, themselves may be of low value on Earth, the

consideration of these commodities is of high importance and can directly impact the mis-
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sion success. As such, it is desirable to find low cost yet reliable methods of transporting

these supplies to their destinations.

The space exploration missions will evolve over time, which will generate an increased

demand at in-space locations. In order to develop a sustainable architecture it is nec-

essary to recognize the interdependencies among missions and how this coupling could

affect the logistics planning. By viewing the set of missions together, as a space network,

and optimizing the operations of the transportation system that provides the logistics for

the exploration missions, a reduction in cost can be achieved, which promotes a more

sustainable system architecture.

There exists a great deal of literature on the design of transportation networks on Earth,

for example, see Ball et al. (1995), Desrosiers et al. (1995). Many of the tools and meth-

ods of terrestrial logistics can be extended to space networks. Specifically, time expanded

networks represent a method for modeling transportation systems that are operated over

time, see for example Ahuja et al. (1993). Using this modeling technique, the physical

network is expanded and time is incorporated directly into the network definition.

In order to effectively communicate the model, an extensive terminology is developed in

Section II. Specifically, the network definition is presented as well as the description of the

time expanded network. Furthermore, the commodities or supplies and the elements or

physical containment and propulsion units used to transport the commodities are detailed.

Section III describes the components of the interplanetary logistics problems. Section IV

presents the in-space network optimization model and the optimization methodology used

to solve this problem. Section V details the manifesting problem and solution methodol-
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ogy. Section VI presents the launching problem and solution methodology. In Section

VII, the solution methodology is applied to an example of an Apollo-style mission to both

explain the implementation and validate the presented methodology. Section VIII reviews

the contributions of this methodology and describes continuing work in this area.

2 Problem Definition

The goal of interplanetary logistics is to determine feasible mission architectures to satisfy

the demand generated by the needs of exploration. The key concept of the interplanetary

logistics problem is that the demand of crew, consumables, equipment, and other ex-

ploration requirements at in-space locations drives the mission requirements. Therefore,

the first required input for the interplanetary logistics problem is the definition of these

supplies. For example, if the exploration mission is a sortie style mission to investigate a

particular location, the demand might consist of a few crew members at a specific location

and the supplies necessary to both support the crew and enable the exploration activities.

Given the demand of the mission, it is necessary to determine how and when the sup-

plies on Earth will be transported to the in-space locations. As missions become more

complex and evolve over a period of time, a solution may become less obvious. The goal

is to minimize the cost of all missions, and therefore, it is necessary to define all path-

ways and structures used for transport and allow the optimizer to analyze the different

architectures to select the best one.

Given this information, the interplanetary logistics problem is to determine low cost mis-
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sion architectures, including the underlying logistics network, that satisfy the exploration

demand. The generated solution details the scheduling and assignment of supplies to

vehicles for in-space transport and launch scheduling requirements. More importantly,

however, the output can be used to determine a push-pull boundary for the supplies, the

potential of a specific location, either on a surface or in-space, for storing supplies, bene-

fits of in-situ resource utilization over multiple missions, or even the sensitivity of mission

architectures to changes in vehicle parameters.

The first step in developing a model for interplanetary logistics is defining a nomencla-

ture that describes the components of the problem. The problem fundamentally consists

of three main components: the commodities or supplies that must be shipped to satisfy

a mission demand, the elements or physical structures used to both hold and move the

commodities, and the network or pathways the elements and commodities travel on. The

following sub-sections define the parameters that describe each of these components.

2.1 Networks

In order to transfer the commodities and elements from the origin node to the destination

node, the trajectories must be defined. The purpose of the interplanetary logistics model

developed is to analyze the multiple choices available for routing all of the commodities

and elements to determine the best logistics architecture. To model the different available

trajectories, a space network model is created to represent the possibilities available for

transferring commodities to their respective destination. The following subsections detail

the development of the space network utilized to form the presented model.
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2.1.1 Static Network

The physical network, or static network, represents the set of physical locations, or nodes,

and the connections, or arcs, between them. The physical nodes, or static nodes, rep-

resent the different physical destinations in space, including the origin and destination of

all the commodities, as well as the possible locations for transshipment. Three types of

nodes have been identified: Body nodes, Orbit nodes, and Lagrange point nodes. This

classification distinguishes the type of information required to define a node of each type.

The physical arcs, or static arcs, represent the physical connections between two nodes,

that is, an element can physically traverse between these two nodes. We define an arc

(si, sj) to be a static arc that represents a feasible transfer from static node si to static

node sj.

The mathematical description of the static network is given next.

• Define the static network as a graph GS, where GS = (NS,AS).

• Define the set of nodes, NS = {s1, . . . , sn}, in the static network corresponding to

the aforementioned physical locations.

• Define the set of arcs, AS ⊆ NS × NS, in the static network as the possible trans-

portation links between the static nodes .

An example of an Earth-Moon static network is provided in Figure 1. In this figure, we

can see the connection of the Earth surface nodes to the Earth orbit node, representing

launches and returns. Similarly, the lunar surface nodes are connected to the lunar orbit
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Figure 1: Depiction of an Earth-Moon Static Network

node, representing descent and ascent trajectories. In addition, the orbit nodes, as well

as the first Earth-Moon Lagrangian point are connected by in-space trajectories.

2.1.2 Time Expanded Network

In order to analyze sequences of missions that evolve over an extended period of time,

and to account for the time-varying properties that can arise in certain astrodynamic rela-

tionships, we introduce time expanded networks as a modeling tool. In the time expanded

network, the absolute time interval under consideration is discretized into T time periods

of length ∆t. A copy of each static node is made for each of the time points and the nodes

are connected by arcs according to the following rules:

• the arc must exist in the static network,
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• the arc must create a connection that moves forward in time, and

• the arc must represent a feasible transfer, with respect to the orbital dynamics.

The mathematical description of the time expanded network is given below.

• Define the time expanded network as a graph G, where G = (N ,A).

• Define the set of nodes in the time expanded network asN = {i = (si, t) | si ∈ NS,

t = 1, . . . , T}. For a given node i ∈ N , let s(i) and t(i) denote the physical node and

the time period corresponding to node i, i.e., if i = (si, t), then s(i) = si and t(i) = t.

• Define the set of arcs in the time expanded network as A ⊆ N × N . An arc a =

(i, j) = ((si, t), (sj, t + T t
si,sj)) exists if and only if (1) si 6= sj, there exists an arc

(si, sj) in the static network, and the transit time from static node si to static node sj

starting at time t is T t
si,sj, or (2) si = sj and T t

si,sj = 1. Arcs with si 6= sj are called

the transport arcs in the time expanded network and arcs with si = sj are called the

waiting arcs.

In the time expanded network, a path p is defined as a sequence of nodes. In particular,

let f(p) and l(p) denote the first node and the last node of path p, respectively.

Using the static network depicted in Figure 1, we can create the time expanded network

in Figure 2. Here, the time expanded network is notional as not all arcs are represented,

but how the trajectories evolve in time can be readily seen.

To account for the fact that on certain transfer arcs two burns occur, we slightly modify

this time expanded network. We first introduce a new fictitious static node labeled fic.
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Figure 2: Depiction of an Earth-Moon Time Expanded Network

Note that this node is not related to the actual static network. On every transfer arc

(i, j), s(i) 6= s(j) requiring two burns we add a new auxiliary node k = (fic, t) with two

arcs; one connects i to k and the other one k to j. The value of t is irrelevant. In this new

network, each arc (i, j) with s(i) 6= s(j) corresponds to a single burn. All such arcs are

called burn arcs and we denote the set of all burn arcs as AB.

The fuel mass fraction, which represents the ratio of the fuel mass to the initial mass,

for element m to execute the burn corresponding to arc a ∈ AB is defined as

φm
a = 1− exp

(−∆Va

Im
spg0

)
,

which is taken from the rocket equation Battin (1999). Here, g0 is Earth’s sea-level gravity,

Im
sp is the specific impulse of element m and ∆Va is the change in velocity (∆V ) on arc a.
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2.2 Commodities

The goal of the space logistics project is to determine how to meet the demand for the

exploration missions. As such, we are investigating how to optimally ship multiple types

of commodities. For the purpose of this logistics problem, a commodity is defined as a

high-level aggregate of a type of supply, such as crew provisions. Thus, we define a set

of k = 1, . . . , K commodities, each with the following parameters.

• Denote the demand of each commodity as dk.

• Denote the origin of each commodity as sok where sok ∈ NS.

• Define the destination of each commodity as sdk where sdk ∈ NS.

• Define the availability interval of each commodity as tok =
[
stok, etok

]
, where stok is

the starting time of the interval, etok is the ending time of the interval, and stok, etok ∈

{1, . . . , T}.

• Define the delivery interval of each commodity as tdk =
[
stdk, etdk

]
, where stdk is

the starting time of the interval, etdk is the ending time of the interval, and stdk, etdk ∈

{1, . . . , T}.

• Define the unit mass of each commodity as mk when it arrives at the destination.

• Define the unit volume of each commodity as vk when it arrives at the destination.

• Define the number of specified waiting sequences, that is, the number of locations

that the commodity must visit, as nwk.
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By defining a waiting sequence as part of the commodity input, a number of wait arcs

along the path can be specified, which allows on-route destinations to be designated. For

each waiting arc sequence l where 0 ≤ l ≤ nwk the following parameters must be defined.

• Define the static node of the wait sequence as swk
l .

• Define the required waiting time period as pwk
l .

• Define the wait interval for each wait sequence as twk
l =

[
stwk

l , etw
k
l

]
, where stwk

l

is the starting time of wait interval l of commodity k, etwk
l is the ending time of wait

interval l of commodity k, and etwk
l − stwk

l ≥ pwk
l .

For example, if we want to specify that a crew must stay on the moon for a period of

five days between June 10, 2015 and June 20, 2015, we would set swk
l to the static node

that corresponds to the specific lunar surface location of interest, pwk
l to five (assuming

each period corresponds to one day), stwk
l to the time point corresponding to June 10,

2015, and etwk
l to the time point corresponding to June 20, 2015. Here, we assume that

k corresponds to the crew in question and l = 1 if this is the only such requirement.

It is important to note that in this model a crew member is treated as a commodity. In

practice, crewed missions are treated differently during mission planning, however, for the

purposes of the architectural design tool created by this model, crew can be considered

a commodity with highly restrictive parameter values. By narrowing the availability and

delivery windows for a crew commodity, the feasible shipment pathways are limited and

reasonable architectures for crewed flights can be obtained.
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2.3 Elements

In order to ship the commodities from the origin to the destination locations, we re-

quire ’containers’ to both hold the commodities and provide propulsion to move the mass

through space. These components can be abstracted to a single definition of an ele-

ment. Elements are physical, indivisible functional units that transport the commodities

from origin to destination. An element is classified by the amount of commodity capacity

and propulsive capability it possesses. Elements can be divided into two classes: non-

propulsive elementsMN and propulsive elementsMP . The element parameters are (see

Figure 3) as follows.

• The maximum fuel mass of a propulsive element m, m ∈MP is denoted by mfm.

• The structural mass of element m is denoted by msm.

• The mass capacity of element m is denoted by CMm.

• The volume capacity of element m is denoted by CV m.

• The cost of element m is denoted by Costm.

If an arc is selected in the space network, then several elements can be transported on

it. The collection of elements on the arc form a vehicle, or stack. If the arc requires a burn

in order to traverse it, then for each burn there must be at least one element in the stack

that provides propulsion.
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Figure 3: Element Representation

3 Problem Decomposition

The execution of a space mission requires logistical decisions at every step. Logistical

decisions are required to accumulate all of the required commodities for space missions,

as well as procure and assemble all elements at the launch site. However, since at the

time of launch, all of the items required to perform a space mission are co-located at

the launch pad, the terrestrial logistics can be decoupled from the interplanetary logistics

model. Therefore, the interplanetary logistics model encompasses all of the logistical

decisions required between the launch pad and the in-space locations.

There are numerous decisions made during space missions. Although, from a system
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perspective, it would be desirable to make all of these decisions concurrently, due to

computational limitations, this is not a tractable approach. Instead, the interplanetary

logistics model is decomposed into three fundamental components: launch scheduling,

manifesting, and in-space network optimization.

Launch is a highly constrained transportation activity, where besides traditional assign-

ment and manifesting decisions, many additional constraints are necessary to model a

feasible launch. For this reason the launch problem is decoupled at low Earth orbit (LEO),

creating a boundary between launching and the in-space network optimization. This as-

sumption is reasonable since for many mission architectures there exists a delay at LEO

before proceeding to in-space destinations.

In-space network optimization, which is solved first, examines the entire mission design

space of routing from LEO to all locations in-space. Due to the size of the time expanded

network that is generated, this problem can become quite large, with hundreds of millions

of variables and tens of thousands of constraints. The decision space of the in-space

network optimization focuses concurrently on routing of both commodities and elements,

and the assignment of elements to burns. During this phase we only require that the total

mass and volume of commodities on an arc do not exceed the total available mass and

volume capacity of the elements assigned to the arc in question.

Element packing or manifesting is performed after all of the commodities and element

routes have been determined. Given the assignment of commodities and elements to

routes optimized in the in-space network optimization, individual commodity units are

assigned to the selected elements. Constraints focusing on feasible assignments are
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considered while minimizing transfers between elements on route.

Network optimization and manifesting are followed by launching. The output of the net-

work optimization consists of a set of elements and commodities required at LEO at par-

ticular points in time. Launching focuses on selecting the appropriate elements to perform

the launch (i.e., defining the launch stack that brings all the commodities and elements to

LEO). It captures the payload requirements for launch, and scheduling requirements for

consecutive launches.

The remainder of this chapter discusses all the components in the order that they are

applied in the overall algorithm.

4 Network Optimization

Having defined the scope of the problem and the key components of the problem, this

section presents the crucial assumptions in the model, the model formulation, and the

solution methodology for the network optimization component.

4.1 Assumptions

In order to define the mathematical model for the in-space network optimization, the mod-

eling assumptions are first presented. The following assumptions about the behavior of

elements are made, which are not prohibitive for practical purposes.

Consecutive Burns: When an element performs a burn, it is defined as an active ele-

ment. An active element burns only on consecutive burns. Once an element be-
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comes active, it stays active for a certain number of burns. As soon as it becomes

passive (which means that it does not burn on a transport arc), it can no longer be

active. Between two consecutive burns, an active element can be idle for an arbi-

trary length of time, by traveling on waiting arcs in the time expanded network. The

number of consecutive burns is not constrained. This assumption clearly does not

affect feasibility, but only additionally constrains the feasible set in a manner that is

consistent with practice.

Fuel Consumption: We assume that before every initial burn, the active element is filled

to capacity with fuel and after the burns are completed, the remaining fuel is ex-

pelled. This assumption does not compromise feasibility, but it might create subop-

timal solutions.

Docking/Undocking: We assume that any two elements can be docked and undocked.

In addition, if any cost is associated with these operations, it is not explicitly cap-

tured. If some elements cannot be docked together, then this must be imposed in a

separate post optimization analysis.

The first two assumptions eliminate the need to track the consumption of fuel by each

element allocated within the network. Enforcing the final assumption eliminates the re-

quirement of tracking the position of each element and the underlying commodities in the

stack, as the stack can continually reconfigure.
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4.2 Network Optimization Formulation

Having defined the network, commodities, and elements, the in-space network model is

presented next. The model is developed in three stages. First, the flow of commodities

is defined and the constraints governing the commodity flows are presented. Next, the

element flows are modeled with the corresponding constraints. Finally, the constraints

governing the capacity and capability, which represent the coupling constraints between

the commodities and elements, are developed.

4.2.1 Commodity Flows

Here, we specify the commodity flows, starting with feasibility requirements.

Commodity Path Feasibility For each commodity k it is possible to determine a set of

feasible paths Pk. For a given commodity k, path p ∈ Pk is feasible only if it originates

at node i = (sok, t) with t ∈ tok, terminates at node j = (sdk, t′) with t′ ∈ tdk, and

contains the nodes
(
swk

l , ts
k
l

)
,
(
swk

l , ts
k
l + 1

)
, . . . ,

(
swk

l , te
k
l

)
, where tsk

l ∈ twk
l , tek

l ∈ twk
l ,

and tek
l − tsk

l = pwk
l , for every l, 0 ≤ l ≤ nwk. Additional restrictions such as the total time

duration can be easily incorporated in Pk.

Commodity Flow Variables and Constraints We need to determine how many units

of commodity k are transported on path p, for any k and p ∈ Pk. Therefore, for every k

and p ∈ Pk we have a decision variable xk
p ≥ 0 which specifies the number of units of

commodity k on path p.
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In order to satisfy the demand dk of a given commodity xk
p, we have

∑

p∈Pk

xk
p = dk for every commodity k. (1)

4.2.2 Element Flows

The other entities in the network optimization model are elements, which we elaborate

upon next.

Element Flow Variables As defined in Section II, elements can be classified as non-

propulsive or propulsive elements, based on whether the element can carry fuel. This

distinction allows for two sets of element variables to be defined. For any non-propulsive

element m ∈MN , let us define the decision variable ym
p such that

ym
p =





1 if non-propulsive element m travels on path p,

0 otherwise,

for each feasible path p in the time expanded network. For any propulsive element m ∈

MP , let us define zm
p,q as the decision variable such that

zm
p,q =





1 if element m travels on path p and is active during sub-path q of path p,

0 otherwise,

where p is any feasible path in the time expanded network and q is a sub-path of p.

Note that
∑

q zm
p,q = 1 if and only if element m ∈ MP travels on path p. Clearly, every

element path p must start at LEO. The set of all element paths can be further constrained

if additional requirements, such as a return to LEO or locations on the Earth’s surface, are

required.
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For each path p, the element m can be active on at most one sub-path q. Note that

some arc a /∈ AB may be included in the active sub-path q, since an element can be

active on a burn arc and then traverse waiting arcs before being active on a consecutive

burn arc. Finally, it is possible for a propulsive element to be utilized as a non-propulsive

element. For this situation, q is empty.

Element Flow Constraints The element flow constraints govern the feasibility of el-

ement selections. The following constraints govern both propulsive and non-propulsive

elements as indicated.

• A non-propulsive element can only travel on a single path,

∑
p

ym
p ≤ 1 m ∈MN . (2)

• For active elements, we constrain at most one element to be active on any burn arc,

∑
m∈MP

∑
p

∑
q:a∈q

zm
p,q ≤ 1 a ∈ AB. (3)

• A non-propulsive element m ∈ MN can travel on an arc a only if there is an active

element on that arc,

∑
p:a∈p

ym
p ≤

∑

m′∈MP

∑
p

∑
q:a∈q

zm′
p,q a ∈ AB,m ∈MN . (4)

• A propulsive element m ∈ MP can travel on an arc a only if there is an active

element on that arc,

∑
p:a∈p

∑
q

zm
p,q ≤

∑

m′∈MP

∑
p

∑
q:a∈q

zm′
p,q a ∈ AB,m ∈MP . (5)
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4.2.3 Capacity

For space travel, it is necessary that all commodities be transferred by elements. As such,

we must relate the amount of commodities (both mass and volume) present on an arc to

the total capacity available on the arc, which is given by the assigned elements. The total

mass capacity of an arc is defined as the sum over all elements on the arc multiplied

by their respective mass capacities. Since propulsive and non-propulsive elements are

defined differently, it is necessary to account for elements of each type separately. The

total commodity mass on an arc is simply the sum over all commodities on the arc multi-

plied by the commodity mass. Similar constraints are required to ensure that the volume

capacity is satisfied as well. Constraints (6) and (7) define the mass and volume capacity

requirements, respectively.

∑

k

∑
p:a∈p

mkxk
p ≤

∑
m∈MP

∑
p:a∈p

∑
q

CMmzm
p,q +

∑
m∈MN

∑
p:a∈p

CMmym
p a ∈ A (6)

∑

k

∑
p:a∈p

vkxk
p ≤

∑
m∈MP

∑
p:a∈p

∑
q

CV mzm
p,q +

∑
m∈MN

∑
p:a∈p

CV mym
p a ∈ A (7)

4.2.4 Capability

The capability constraints determine if a given element has enough fuel to perform a burn,

given the total mass on a burn arc. The constraints require that the total fuel of the active

element performing the burn on a sub-path q must be enough to carry the total cumulative

mass along every arc in q. Let q be an arbitrary sequence of possible consecutive burns

and let al = (il, jl) be the lth burn arc in q for l = 1, . . . , |q|. Here |q| denotes the number

20



of arcs in q. Let r(p, q) denote the sub-path along path p from the first node of p to the first

node of q, if q is not empty.

The resulting constraint family reads

mfm
∑

p

zm
p,q + M

(
1−

∑
p

zm
p,q

)
≥

|q|∑

l=1

Φm
q,l ×


 ∑

m′∈MP

∑

p:al∈p

∑

q′
msm′

zm′
p,q′+

∑

m′∈MN

∑

p:al∈p

msm′
ym′

p +

mfm +
∑

m′∈MP
m′ 6=m

∑
p

∑

q′:al∈r(p,q′)

mfm′
zm′

p,q′+

∑

k

∑

p:al∈p

mkxk
p


 m ∈MP , path q,

(8)

where

Φm
q,l = φm

al

|q|∏

l′=l+1

(1− φm
al′ ),

and M is a big number. The derivation of these constraints is very technical and cumber-

some and is therefore omitted.

4.2.5 The Complete Model

Since the cost to route commodities is negligible, we include only the cost associated with

elements. The objective function reads

min
∑

m∈Mp

∑
p

f(p)=s

∑
q

Costmzm
p,g +

∑
m∈Mn

∑
p

Costmym
p .

The model includes constraints (1) through (8). In addition, all x variables are nonnegative

and all z and y variables are binary.
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The constraints defined for the complete model do not represent an exhaustive list, but

only the necessary constraints required to produce feasible solutions within the network

model. Additional constraints governing the set of feasible arcs that can be traversed by

a given element can be included to limit which elements travel on particular arcs (i.e., for-

bidding any element without a heat shield to return the Earth’s atmosphere). Restrictions

on commodity placement into elements can also be included for cases where feasibility is

required, such as only housing crew in crew compatible elements.

4.3 Solution Methodology

The model just presented is complex and requires the implementation of a sophisticated

algorithm in order to obtain good solutions. Due to the high number of variables and

constraints, and the complexity of the model, a heuristic optimization method is employed.

Although heuristics are not guaranteed to return optimal solutions, they often return good

solutions quickly.

By understanding the structure of the problem and the potential solutions, the heuristic

optimization algorithms can be tailored to the specific problem to enhance computational

efficiency and quality of solutions. For the in-space network optimization, a series of

heuristic optimization algorithms are employed to determine a complete solution to the

routing and allocation problem. In this section, an overview of the heuristic optimization

approach is presented, followed by a more detailed description of each component.
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Figure 4: Flow Diagram of Heuristic Optimization

4.3.1 Heuristic Optimization Overview

The optimization of the in-space network design problem has three components: com-

modity routing, element routing, and burn-arc assignment. The commodity routing is per-

formed first, since the entire architecture is driven by the commodity demand. Next, given

the commodity paths through the network, elements are assigned to paths, such that all

capacity constraints are satisfied. Finally, since at this point the mass of the elements and

commodities are known for each arc in the network, the propulsive element assignment

can be performed. At several points within the algorithm, randomization is utilized to gen-

erate different outcomes and therefore this procedure is iterated many times to evaluate

the different outcomes. Figure 4 shows the flow of the optimization algorithm.

At each iteration, the heuristic determines a feasible set of commodity paths, element
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paths and burn-arc assignments, sequentially. If a feasible architecture is found, the cost

of the architecture is computed. This cost is evaluated against the cost of the best archi-

tecture obtained thus far in the optimization process. If a better architecture is obtained on

the current iteration, it replaces the previous best architecture, otherwise, it is discarded.

This process is performed until the maximum number of iterations is reached. The re-

mainder of this section provides a detailed explanation of the three components of the

heuristic optimization performed in each iteration.

Commodity Routing Commodity routing is performed by implementing a shortest path

algorithm that proceeds as follows. A commodity is selected at random and an auxil-

iary network is constructed for each commodity. The auxiliary network connects a single

source node to the nodes where a feasible path can begin and a sink node is connected

to the nodes where a feasible path can terminate. For commodities that do not have a

specified waiting segment, a single auxiliary network is defined where a source node con-

nects the nodes defined by the availability interval and a sink node connects the nodes

defined by the delivery interval.

Given a commodity with nw specified waiting segments, nw + 1 auxiliary networks are

formed. The first auxiliary network created connects a sink node (sknw) to the delivery

interval. The source node (scnw) is connected to the nodes in the nw’th waiting segment

defined by (swnw, t), where etwnw − pwnw ≤ t ≤ etwnw. This definition ensures that the

defined path segment will be feasible with respect to the required waiting time period of

the specified waiting segment. For each subsequent auxiliary network, the sink node
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Figure 5: Auxiliary Network for a Commodity with a Single Waiting Segment

connects to the first node in the previously defined path segment and the source node is

defined as above with respect to the currently considered waiting interval. In the final aux-

iliary network, the source node (sc1) is connected to all nodes in the availability interval.

Figure 5 depicts a simple example to clarify this construction.

For each defined auxiliary network, a cost is assigned to every arc. For the first selected

commodity, the arc costs represent the ∆V of the arcs. Since decreased ∆V correlates

to decreased fuel requirements, a shortest path algorithm is implemented to connect

the source node to the sink node at lowest cost, or lowest accumulated ∆V . For the

remaining commodities, the arc costs are defined as ∆V (1− df)aN where df is a specified

parameter between zero and one and aN is the number of times the particular arc has

been chosen as an arc in another already assigned commodity path. The reduction in
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cost for previously selected arcs reflects the desire to reuse previously selected arc.

The shortest path algorithm is run for each auxiliary network in the specified order of a

given commodity until a feasible path is formed between nodes in the availability interval

and in the destination interval. This process is then repeated for every commodity until all

commodities have been assigned to paths.

Element to Path Assignment After the commodity paths are determined, the element

to path assignment is performed for commodity carrying elements. However, in order

to perform this assignment, some preliminary manipulations are necessary. Since the

network has arcs that only proceed forward in time, the nodes, and therefore arcs, can be

arranged based on this order. This order is known as the topological order, and the details

can be found in many network modeling books, for example see Ahuja et al. (1993). A

topological order of the nodes and arcs is necessary to ensure that all assignments on

downstream connected arcs are determined prior to the current arc assignment.

For each arc in the topological order, the following procedure is conducted to ensure that

the elements assigned to the arcs for carrying commodities satisfy the mass and volume

requirements on each arc. Given an arc in the topological ordering, the total mass and

volume of all commodities on that arc is readily computed. To select elements to contain

these commodities we first examine all already considered arcs, where these arcs are for-

ward in time based on the topological order, to determine if a previously assigned element

can be reused to contain commodities on the current arc. This process is repeated until

both the mass and volume capacity constraints are satisfied or until no existing elements
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can be utilized.

If additional capacity is required, a new element is selected by utilizing ideas from a gen-

eralized random adaptive search procedure (GRASP). This algorithm utilizes information

about the problem structure and intuition about the characteristics of ’good’ solutions to

aid the selection of commodity carrying elements. The algorithm proceeds as follows.

One of the six score functions shown in (9) is selected uniformly at random, and each

element is evaluated against the selected score function.

Sm
1 =

Costm

CMm
Sm

2 =
(Costm)2

CMm

Sm
3 = Costm S4 =

√
Costm

CMm

Sm
5 =

Costm

(CMm)2
Sm

6 =
Costm√
CMm

(9)

The probability of selecting a given element is defined as the negative exponent of a given

element’s score (i.e., e−Sm
i ) divided by the accumulated probability of all elements. This

probability distribution favors elements of low cost and high mass capacity. An element is

then selected according to this probability distribution. The process of element selection

is repeated until all the mass and volume requirements are satisfied for a given arc.

Figure 6 illustrates the element selection process using a simple example network. The

numbers associated with the arcs and nodes represent the topological order of the nodes

and the arrows represent the direction of movement through the network. Therefore,

beginning in backwards topological order, arc 5 is first assigned element A to carry com-

modities, and next arc 4 is assigned element B to carry commodities. Therefore when
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examining arc 3, first element A and then element B are selected to contain commodities

on arc 3. If the mass and volume capacity constraints have not yet been satisfied, then

a new element is selected using the GRASP algorithm, and allocated to the arc. In this

example, element C is assigned to arc 3 to provide sufficient capacity on arc 3.

1

2

3

4

5

B

A

B AC

Figure 6: Illustration of Element to Arc Assignment

The element assignment process continues by working in backwards topological order

until the mass and volume capacity constraints are satisfied on every arc. From this

information, paths for each of the elements can be constructed.

Element to Burn Arc Assignment The final stage of the heuristic optimization is to

assign elements to burn-arcs. An element can be assigned to perform a burn if the amount

of fuel available in an element is enough to satisfy the capability constraints, and can

therefore provide the required ∆V , given the total mass on the arc, as defined by the
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rocket equation, Battin (1999). Since both the commodity paths and commodity-carrying

element paths are known, the total mass on every arc is known.

Given an arc in the topological order, an element to burn arc assignment is performed as

follows. First, forward connecting arcs are examined to determine if a previously allocated

propulsive element that has already been utilized to perform a burn on a connecting burn

arc can perform an additional burn. If an assignment has not been made, then a check of

all elements on the current arc is performed to determine if a commodity carrying element

could perform the burn. This second situation is distinguished from the first one because

an element that has propulsive capabilities but is assigned to carry commodities is not

automatically assumed to be fueled. Thus, selecting a commodity-carrying element to

perform the burn requires additional mass be added to the current arc and all previous

arcs in the element’s path, to account for the fuel of this element.

If the assignment has not yet been made for the given arc, a new element must be

added to the architecture to perform the burn. A new element is selected by again em-

ploying GRASP, as described above, using the six score functions provided in (9) with

the replacement of fuel mass capacity (mf ) for commodity capacity (CM ).This situation

repeats until a selected element satisfies the capability constraint for the given burn-arc.

Since this element is new to the architecture, it is necessary to immediately define the

path of the propulsive element and update the payload mass on every arc in the path up

to this current burn-arc.

Figure 7 illustrates the element to burn-arc assignment process using the simple exam-

ple network shown in Figure 6. Here, we notice that the elements on both arcs 4 and 5

29



1

2

3

4

5

C B AD
B

A

Figure 7: Illustration of Element to Burn Assignment

have been shaded to represent that these elements perform the burn on their assigned

arcs and that this fuel must now be accounted for on arc 3. Following the procedure de-

scribed above, elements A and B are checked to determine if they posses enough fuel to

also perform the burn on arc 3. If neither of these elements have sufficient capability, ele-

ment C is examined to determine if the element were fueled, would it be able to perform

the burn. If an assignment is still required, the GRASP algorithm is employed to select a

new element that is capable of performing the burn on arc 3. In this example, element D

is assigned as a fueled element, as denoted by the shading.
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5 Manifesting

The output of network optimization only determines the elements and commodities trav-

eling on each arc in the time expanded network. The assignment of individual commodity

units to each individual element is not provided. The goal of the manifesting problem is to

process the output of network optimization and produce the final manifest. The problem

is to appropriately assign individual commodity units to elements on each arc so that the

capacity constraints of elements are not violated. There are additional requirements such

as not assigning particular pairs of commodities to the same element (e.g., crew together

with hazardous material) and considering element capabilities of carrying certain com-

modities (e.g., crew can only go into CEVs). The criterion is to keep a commodity unit in

the same element as long as possible. Thus we minimize the number of transfers. An

integer programming based mathematical model is obtained.

Note that the network optimization module does not assign a specific commodity unit

to a path (it assigns batches of commodity units to paths). Manifesting is a two stage

process. In the first stage, we assign each commodity unit to a path without performing

the actual manifests. In the second stage we apply the integer programming model to

minimize the number of transfers and carry out the manifests on each arc by following the

paths computed in the fist stage.

Consider the example in Figure 8 including a single trajectory arc. Network optimization

guarantees that the total commodity mass, in this example 550+150+200+20 kg, is less

than or equal to the payload mass of all the elements, i.e. 600+500+100 kg. Manifesting
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Figure 8: An Example of Manifesting

then assigns these commodity units (crew member, bags of food, etc.) to each individual

element. Possible assignments are shown by the vertical lines.

In the reminder of this section we first present the overall algorithm and then we present

details on the integer programming formulation, which is a key component.

5.1 The Algorithm

The overall manifesting problem can be modeled as a large-scale integer program, how-

ever we opted to develop a simpler algorithm, which is much easier to implement and is

tractable. It uses integer programming but on a much smaller scale.

The algorithm is iterative and it combines randomization and integer programming.

Each iteration consists of two stages. In the first stage we select paths for individual

32



commodity units. Note that network optimization specifies commodity flow at the com-

modity level, but not at the individual commodity unit level. The second stage then as-

signs each commodity unit to elements for each arc in order to minimize the number of

transfers among elements. If arcs are traversed in a particular order, then transfers are

well defined. The procedure is iterated by generating different commodity unit paths.

Consider a single commodity k ∈ {1, · · · , K} and all of its used arcs. These are given

by network optimization. Let us denote the underlying acyclic subnetwork by Gk. Each

arc has capacity equal to the amount of flow of commodity k. To generate commodity unit

paths in Gk we proceed as follows. We start by generating a random path from the source

to the destination in Gk. Since the network is acyclic, this can easily be done by randomly

selecting an outgoing arc with positive capacity when building the path from the source to

the sink. A unique commodity unit identifier is assigned to the underlying commodity unit

and the path. After finding this first path, we adjust the capacities to reflect the fact that

one unit is used on the arcs covered by the path. Now we select the second path in the

similar fashion. We stop after routing the entire commodity demand.

This procedure is repeated for each commodity. After collecting all paths, in the next

step of an iteration, we assign each commodity unit to elements on a per arc basis. We

first sort the nodes in the topological order and we scan the nodes based on this order.

When processing node i, all of its incoming arcs have already been assigned, i.e., the

commodity units have already been assigned to elements on these arcs. Thus we can

select outgoing arcs of node i one by one and compute an assignment. Assignments on

incoming arcs allow us to capture the number of transfers for a given assignment on an
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outgoing arc. On an arc the assignment problem is an integer program, which is given

later, and it is relatively easy to solve. These steps are repeated until all arcs are scanned.

The overall algorithm iterates these steps. In each iteration different random paths are

selected, which then yields a different number of transfers at the end of the iteration. The

best solution after a desirable running time is selected and returned.

5.2 The Single Arc Integer Programming Formulation

In the reminder of this section we present the integer program for manifesting on each

individual arc. We assume that we are given a set of individual commodity units on an arc

and the underlying elements on this arc. In view of the previous discussion, all of these

are given from previous steps of the overall algorithm.

For a given arc (i, j) ∈ A we define the following quantities.

K(i,j), set of individual commodity units on arc (i, j): These are given from previ-

ous steps of the algorithm. We stress again that K(i,j) is the set of individual com-

modity units, hence for each individual commodity unit a unique identifier should be

assigned,

M (i,j), set of individual elements on arc (i, j): They are obtained based on the output

of network optimization. Unlike commodities, elements are given directly as single

entities from network optimization.

E(k), set of forbidden elements to contain commodity k: Some elements can not

carry specific commodities, e.g., crew can only travel within a CEV,

34



κ(k), set of forbidden commodities to accompany commodity k in any element:

This models the situation when two commodities with highly different hazard levels

should not travel together in the same element, e.g., it might not be desirable to

carry a crew member in the same element as a highly hazardous commodity.

Values E(k) and κ(k) are part of the input. Note that they are specified at the commodity

level. We define the following decision variables.

x(i,j)
u,m =





1 if commodity unit u ∈ K(i,j) is assigned to element m ∈ M (i,j) on arc (i, j),

0 otherwise.

The cost is then defined as c
(i,j)
u,m , and it corresponds to the cost of assigning commodity

unit u to element m on arc (i, j). This cost is 0 if commodity unit u is already in element

m at node i and 1 otherwise. This information is obtained based on the fact that the

preceding arcs to (i, j) in the topological sort have already been manifested.

A feasible solution to this problem must satisfy both mass and capacity constraints and

it should also exclude any forbidden assignment of commodities to elements or commodi-

ties together. The goal is to find a feasible solution with the minimum cost. i.e., to minimize

the number of transfers at node i. For a given unit u ∈ K(i,j) let b(u) ∈ {1, · · · , K} be the

corresponding commodity.

The model reads
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min
∑

u∈K(i,j),m∈M(i,j)

c(i,j)
u,mx(i,j)

u,m

s.t.
∑

m∈M(i,j)

x(i,j)
u,m = 1 u ∈ K(i,j) (10)

∑

u∈K(i,j)

mb(u)x(i,j)
u,m ≤ CMm m ∈ M (i,j) (11)

∑

u∈K(i,j)

vb(u)x(i,j)
u,m ≤ CV m m ∈ M (i,j) (12)

∑

m∈E(b(u))

x(i,j)
u,m = 0 u ∈ K(i,j) (13)

x(i,j)
u,m +

∑

l∈κ(b(u))

x
(i,j)
l,m ≤ 1 u ∈ K(i,j), m ∈ M (i,j) (14)

x(i,j)
u,m ∈ {0, 1} u ∈ K(i,j), m ∈ M (i,j).

Constraints (10) require that each commodity is assigned to an element. Inequalities

(11) and (12) impose that the mass and volume capacities are not violated. Constraints

(13) capture forbidden element-commodity configurations. Restrictions (14) impose the

hazard level requirements. This model can be relatively easily solved by integer program-

ming solvers. Once all solutions are gathered for all arcs, we obtain a complete manifest.

6 Launching

Network optimization and manifesting deal with operations beyond LEO. To complete the

puzzle we need to specify how to bring all required commodity units and elements to

LEO. After manifesting, we know the demand for each element and commodity unit and

the corresponding suggested time at LEO. Launching specifies launch vehicles or stacks
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and the corresponding launch times in order to bring the elements to LEO.

In the launch scheduling problem, we are given an a-priori set of demand points. Each

demand point is specified by the requested time period, the element and commodity units

inside it. All of these quantities are given as part of the output of the network optimization

module and manifesting.

A solution is a schedule of launch events, i.e., a series of launches over time, where in

each event only a single launch vehicle is launched, see Figure 9. Each event is charac-

terized by the launch time, the launch space port (e.g., Kennedy Space Center, Russian

launch ports), and the launch vehicle type. In addition, a full description of the launch ve-

hicle’s “cargo”, i.e., the elements within the launch vehicle, should be provided. A solution

has to satisfy all of the launch vehicle mass capacity, vehicle-element permissibility, and

launch pad preparation and cleanup time constraints. On the other hand, we must meet

all of the demand points or at least come as close as possible with respect to the sug-

gested time. Among all feasible solutions the problem is to find a solution that minimizes

the launch cost and penalty for deviating from demand point times. The formal description

of the objective function and constraints is provided in Section 6.1.

It is possible to show that the launching problem is NP-hard. Even more, it is very

unlikely that there exists a constant time approximation algorithm for a simplified version

of the launching problem (unless P = NP).

Due to the complexity of this problem, it is not possible to solve it to optimality. For this

reason a heuristic methodology has been developed to circumvent this difficulty. We as-
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Figure 9: Launch Scheduling

sign penalties for an element to reach LEO before or after its due date. There is a trade-off

in early arrivals. They might be desirable due to robustness or undesirable due to per-

ishability. This trade-off can be controlled by appropriately setting the penalty functions.

On the other hand, late arrivals should be heavily penalized.

6.1 Formulation

To clearly define the problem, we introduce the following quantities.

Elements (MN

⋃MP ): The set of requested propulsive (MP) and non-propulsive (MN )

elements at LEO. Each element may contain commodity units as its cargo. These

“filled” elements at LEO are part of the output of manifesting and network optimiza-

tion.

Vehicles (V): The set of all possible launch vehicles to be launched from earth to LEO.

They are disposable after arriving to LEO and cannot be reused.

Launch or space ports (LN ): Locations on Earth from which vehicles can be launched.
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Demand points correspond to MN

⋃MP . Each demand point m ∈MN

⋃MP is charac-

terized by:

1. mtm: total mass of element m filled with commodity units. i.e., mtm = msm +
∑

u mu

where the summation is taken over all commodity units u inside element m (given

by manifesting).

2. tdm - due time at LEO (given by network optimization).

In addition, for each m, we have the following parameters.

1. Vm ⊆ V - permissible (allowable) vehicles to carry element m, e.g., elements that

contain crew cannot be launched by certain vehicles.

2. wm - wait time penalty. If element m arrives at LEO before its due date tdm, a penalty

of wm per time unit is associated with it. This models loss of fuel of a propulsive ele-

ment due to evaporation, slow “sinking” of elements towards Earth due to gravitation,

and wait time penalties associated with perishable commodity units packed in the

element. It could also encourage early arrivals to enforce robustness.

3. w̃m - late arrival penalty. If an element arrives at LEO after its due date tdm, this

penalty per time unit is assigned. Typically it would be a very large number. If an

element is delivered after the due date, this clearly requires a recourse and adjust-

ments to the entire solution.

Launch vehicle v ∈ V is characterized by
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1. MCv - payload mass, i.e., the total mass of cargo that a vehicle can carry,

2. Costv - cost of using vehicle v.

A space port or node corresponds to a launch pad at a launch site. We define:

1. Vn ⊆ V: permissible (allowable) vehicles to be launched from node n,

2. wv
n: time needed to prepare the pad before launching vehicle v from node n,

3. w̄v
n: time needed to “clean-up” the pad after launch of a vehicle v from node n.

A solution is a schedule of launch events, i.e., a series of events over time, where in

each event only a single vehicle is launched. Each event is characterized by the launch

time, the launch node, the launch vehicle, and the set of elements the vehicle carries.

The decision variables are:

1. for every element m ∈MN

⋃MP an assignment into vehicle v(m) ∈ V,

2. for every vehicle v ∈ V the time t(v) of launch (under the convention that if t(v) = 0,

then this vehicle is not used),

3. for every vehicle v ∈ V an indicator I(v) whether it is used or not (i.e., I(v) = 1 if and

only if t(v) > 0),

4. for every vehicle v ∈ V the node n(v) from where it is launched.
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The problem reads

minimum
∑
v∈V

CostvI(v) +
∑

m∈MN
⋃MP

(tdm − t(v(m)))+wm

+
∑

m∈MN
⋃MP

(t(v(m))− tdm)+w̃m

subject to.

v(m) ∈ Vm m ∈MN

⋃
MP

∑

m:v(m)=v

mtm ≤ MCv v ∈ V (15)

n(v) ∈ Vn v ∈ V , n

t(v) > 0 → I(v) = 1 v ∈ V (16)

t(v) = 0 → I(v) = 0 v ∈ V (17)

t(v) + w̄v
n + wv′

n ≤ t(v′) n ∈ LN and v ∈ V , v′ ∈ V such that

n(v) = n(v′) = n and t(v) < t(v′)

(18)

t(v) ≥ 0 v ∈ V

Requirements (16) and (17) link indicator variables I(v) with t(v), i.e., they impose that

the cost is incurred as soon as we launch a vehicle (t(v) > 0). Constraint (18) impose

the preparation and cleanup times. The remaining constraints impose the basic feasibility

restrictions. The problem is a combination of machine scheduling ((18) can be viewed as

non-preemptive machine scheduling constraints) and bin packing (capacity constraints

(15) and the fact that we minimize the number of vehicles).
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6.2 The Heuristic

Due to the complex nature of the launching problem, we propose the following heuristic

in order to produce a launch schedule. A launch is determined by the launch vehicle,

elements to be launched, launch node, and the launch time. Instead of finding all these

decisions at once, the main idea is to obtain them sequentially. The key is to first select

the elements to be launched based on the due date. Next an appropriate low cost launch

vehicle is selected to minimize the penalty, and at the end the launch time is computed.

All these steps, which specify a single launch, are repeated until all demand points are

launched. The entire heuristic is shown in Algorithm 1.
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1: Keep up-to-date a list D[m, tdm] of the demand points which are not yet assigned to a
vehicle, sorted in ascending order of their due date.

2: Let Dk denote the set of the first k consecutive elements in D.
3: while D is not empty do
4: {In the following “for loop” we loop over the launch nodes}
5: for all i keep track of the time tni

after last cleanup of launch node ni ∈ LN and do
6: Let j := 0
7: { Make the following loop repeat until either V̄ i

j = ∅ or we reach the end of D}
8: loop
9: j := j + 1

10: Let V̄ i
j ⊆ ∩m∈Dj

Vm be the largest family of vehicles such that each v ∈ V̄ i
j in this

family satisfies the mass constraint:
∑

m∈Dj
mtm ≤ MCv.

11: end loop
12: If necessary, correct j to be j := j − 1 in order that V i

j is the last non-empty set.
13: for all k = 1, ..., j do
14: Let pi

k := minv∈V̄ i
k
Costv(w̄v

ni
+ wv

ni
) {best estimate of the cost contribution}

15: Let vi
k ∈ V̄ i

k be a vehicle realizing this cost contribution
16: end for
17: Let costi := mink=1,...,j pi

k
1∑

m∈Dk
mtm

18: Let ki be an index realizing costi

19: end for
20: Let cost∗ := mini cost

i and let i∗ be an index realizing this cost
21: Pack into vi∗

ki∗ the elements in Dki∗ . Delete from D these elements.
22: Let

t∗ = argmin
t≥tni∗+w

vi∗
ki∗

ni∗

∑
m∈D

ki∗

[
(tdm − t)+wm + (tdm − t)−w̃m

]
.

Set launch time of vi∗
ki∗ to be t∗

23: Update tni∗ to be t∗ plus the necessary wait time after launching it, i.e., w̄
vi∗

ki∗
ni∗

24: end while

Algorithm 1: Launch Scheduling Heuristic

In step 1, filled elements are sorted so that those with closer due time are more desirable.

In the heuristic we always launch elements in this order, e.g., if the third element in D is

launched in a given solution, then also the first two elements in D have to be launched

at the same time. In the while loop, steps 3-24, we assign all of the elements in the list

to launch vehicles in the following manner. First, the set of all vehicles that can hold the
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first j elements Dj in D is obtained for each j. This set is denoted by V̄ i
j as it depends

on the space port i. This is indicated in the loop 8-11. Then for each j we identify a

vehicle in V̄ i
j with the lowest estimated cost contribution. The direct cost Costv is clear,

however it needs to be combined with the penalty contributions, see step 14. At this

stage for each k we have the most promising vehicle vi
k (loop in 13-16). It is intuitive that

launches carrying large masses are more desirable. To offset this effect we divide the

estimated cost contribution by the total mass that launch vehicle vi
k carries. Note that this

is readily available from the definition of Dk. Then we choose the best vehicle based on

this adjusted cost. This vehicle is selected among {vi
k}k (steps 17 and 18). At the end

of loop 5-19, for each space port i we have a single launch vehicle. Finally in step 20

we greedily select a single space port. This gives us a unique launch vehicle and the

corresponding elements to be launched. In step 21 we update the data. The launch time

then is selected in step 22.

7 Apollo 17 Example

For such a complex problem it is helpful for understanding the model to examine a well

defined problem. Using the Apollo 17 elements, a simple example has been constructed

to determine how the variables above would be defined. The example has three com-

modities that need to be sent to the Apollo 17 landing site. The commodity properties are

listed in Table 1 and 2. Exploration encompasses all equipment required to perform the

desired exploration. The “Pacific” ending node denotes the splash down node.

In addition to the commodity properties, the properties of the elements available to
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Table 1: List of Commodities and Properties for Apollo 17 Example

Class of Demand Starting Starting Time Ending Ending Time Mass Volume

Supply Node Interval Node Interval

Explor. 42 LEO 1, 17 Lunar site 11, 17 10 kg .5 m3

Crew 2 LEO 1, 17 Pacific 11, 17 100 kg 2 m3

Crew 1 LEO 1, 17 Pacific 11, 17 100 kg 2 m3

Table 2: List of Commodities and Properties for Apollo 17 Example (cont.)

Class of # Wait Wait Wait Wait

Supply Arcs Node Period Interval

Exploration 0

Crew 1 Lunar site 3 7,13

Crew 1 Lunar Orbit 5 7,13

both contain and transport the commodities must be defined. A list of these elements is

provided in Table 3.

Figure 10 depicts the solution for this example. As we can see, all three commodities

are shipped together from LEO. Upon arrival at lunar orbit, the commodity associated

with the two crew members travels directly to the surface, where it remains for three days.

The remaining two commodities wait in lunar orbit until the exploration equipment can be

delivered on day 11. The remaining crew member waits in lunar orbit to rejoin the other

two crew members before returning to Earth.

Notice that in Figure 10 the crew travels in a lunar module (LM) descent stage. This is a
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Table 3: List of Elements and Properties for Apollo 17 Example

Element Fuel Isp Structural Mass Volume Number Cost

Type Mass (sec) Mass Capacity Capacity Available (mil)

Saturn V 1st Stage 2,150,999 304 135,218 0 0 4 692

Saturn V 2nd Stage 451,730 421 39,048 0 0 4 307

Saturn V 3rd Stage 106,600 421 13,300 0 0 4 151

SLA 0 0 1,837 0 0 4 0.9

Command Module 0 0 5,806 100 1 4 148

Service Module 18,413 314 6,110 0 0 4 118

LM Descent Stage 8,156 311 1,984 500 5 4 57

LM Ascent Stage 2,358 311 2,189 100 1 4 79

1     2     3     4     5     6     7     8     9     10  11     12     13     14     15     16

Low 
Earth 
Orbit

Low 
Equatorial 
Lunar Orbit

Apollo 17 
Landing 
Site

Time 
(days)

LEGENDSaturn V 3rd

Stage: S1VB
LM Descent 
Stage (fueled)

Pacific 
Ocean

Equip. = 420 kg

Saturn V 2nd

Stage:  S II

SC 0 = 400 kg

SC 0 = 200 kg

Crew = 400 kg

Crew = 200 kg

Crew = 400 kg

Crew = 200 kg Equip. = 420 kg

LM Descent 
Stage (no-fuel)

Figure 10: Apollo 17 Example
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feasible solution since the LM has enough capacity to hold the two crew members. Con-

siderations, such as a feasible element assignment for a given commodity are not handled

within the in-space network optimization framework and are addressed in manifesting. In

practice, several additional constraints must be captured, such as restrictions of having

only selected elements on specified arcs and the fact that only particular elements can

hold some commodities. We have already discussed such requirements in Section IV.

This solution is not only feasible, but represents a good architecture, given the con-

straints on the commodity paths. If the delivery interval were expanded for the exploration

equipment, the optimizer could then choose to combine both the exploration equipment

and the two crew members for the surface descent. However, increasing the waiting in-

tervals for the two commodities corresponding to the crew would not effect the optimal

solution, since it is desirable for the two commodities to travel together on the return trip

to Earth.

The launching solution is not interesting since a single launch is required and it is not

shown here.

8 Conclusion

In order for space exploration to be sustainable, interplanetary logistics must be consid-

ered during mission planning. Research conducted in the terrestrial logistics and opera-

tions research communities provides a wealth of modeling tools and solution approaches

that can be extended to enable interplanetary logistics decisions. This work explores
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the requirements necessary to define the interplanetary logistics problem and extends a

modeling tool traditionally utilized in terrestrial logistics to incorporate the astrodynamic

relationships and other aspects of space travel.

Using the time expanded network as a framework, a complex mathematical model was

developed to incorporate the fundamental constraints of in-space transportation. Due to

modeling complexities and problem size, a heuristic optimization algorithm was devel-

oped to explore the design space and find good solutions to the complex problem. This

methodology was demonstrated for the example of an Apollo-style mission to both clarify

and validate the model.

Continuing work on this methodology includes incorporating more fidelity into the model

to more accurately capture the requirements of space travel. Specifically, the incorpora-

tion of gain and loss factors for commodities captures the dependance of the amount of

a commodity on the shipment path. Including gain and loss factors creates a trade-off

between pre-positioning of commodities and the extra commodity mass required to sat-

isfy the specified demand. Improvements in the solution approach can also be obtained

by utilizing the presented optimization methodology as an initial solution to a “global” and

more robust optimization approach, such as branch-and-price. Finally, the design space

can be expanded to include low-thrust propulsion elements, which in turn requires the

definition of corresponding pathways in the network.
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