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Abstract

We propose two frameworks to deal with prob-
lem settings in which both structured and un-
structured data are available. Structured data
problems are best solved by traditional ma-
chine learning models such as boosting and tree-
based algorithms, whereas deep learning has
been widely applied to problems dealing with
images, text, audio, and other unstructured data
sources. However, for the setting in which both
structured and unstructured data are accessible,
it is not obvious what the best modeling ap-
proach is to enhance performance on both data
sources simultaneously. Our proposed frame-
works allow joint learning on both kinds of data
by integrating the paradigms of boosting mod-
els and deep neural networks. The first frame-
work, the boosted-feature-vector deep learning
network, learns features from the structured data
using gradient boosting and combines them with
embeddings from unstructured data via a two-
branch deep neural network. Secondly, the two-
weak-learner boosting framework extends the
boosting paradigm to the setting with two input
data sources. We present and compare first- and
second-order methods of this framework. Our
experimental results on both public and real-
world datasets show performance gains achieved
by the frameworks over selected baselines by
magnitudes of 0.1% - 4.7%.

1 INTRODUCTION

Data in modern machine learning problems can be repre-
sented by a variety of modalities or data sources. We con-
sider the setting in which structured data, aka tabular data,
and unstructured data are available simultaneously. A com-
mon application area of this setting is medical diagnosis, in
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which the decision making process is supported by unstruc-
tured data such as medical imaging and doctors’ notes, in
combination with patient historical data, lab analyses and
blood tests, in the form of structured data.

The settings where structured or unstructured data are
available individually have been extensively researched.
Deep neural networks (DNNs) have consistently proven
successful at solving problems with unstructured data, see
e.g. textbooks Balas et al. (2019) and Goodfellow et al.
(2016). On the other hand, traditional boosting methods
have shown significant advantages over DNNs in model-
ing structured data inputs (Caruana et al., 2008; Caruana
and Niculescu-Mizil, 2006). Examples of such benefits are
observed in terms of training time, interpretability, amount
of required training data, tuning efforts, and computational
expense. This is commonly observed in Kaggle compe-
titions, where better performance is achieved by boosted
methods when the available data is structured (Lloyd, 2014;
Mangal and Kumar, 2017; Taieb and Hyndman, 2013), and
by deep learning models when the available data is unstruc-
tured (Graham, 2015; Zou et al., 2017). In particular, Light-
GBM (Ke et al., 2017) and XGBoost (Chen and Guestrin,
2016), have become de-facto modeling standards for struc-
tured data.

Conversely, in the setting in which both structured and un-
structured data are accessible (US), it is not obvious what
the best modeling approach is to enhance performance on
both data sources simultaneously. In general, the simplest
method consists of training independent models for each
data modality and then combining the results by averaging
or voting over the individual predictions. A big caveat is
the missed opportunity of capturing any cross-data source
interactions or underlying complementary information that
might exist in the data. Training concurrently on both
modalities of data is deemed crucial if we attempt to learn
such relationships. A common approach to joint training
consists of using DNNs for representation learning on each
data source, concatenating the learned embeddings, and
having it as input to a third DNN. This approach serves as
a baseline for our experiments, and performs sub-optimally
given that boosting algorithms excel on structured data set-
tings.

In this paper, we propose two frameworks for the USsetting
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that address the above-mentioned considerations. Our
frameworks aim at better capturing the best and most infor-
mative features of each data source, while simultaneously
enhancing performance though a joint training scheme. To
achieve this, our novel approaches combine the proven
paradigms for structured and unstructured data respec-
tively: gradient boosting machines and DNNs.

The first framework is the boosted-feature-vector deep
learning network (BFV+DNN). BFV+DNN learns features
from the structured data using gradient boosting and com-
bines them with embeddings from unstructured data via
a two-branch deep neural network. It requires to train a
boosted model on the structured data as an initial step.
Then, each neural network branch learns embeddings spe-
cific to each data input, which are further fused into a
shared trainable model. The post-fusion shared architec-
ture allows the model to learn the complementary cross-
data source interactions. The key novelty is the feature
extraction process from boosting. Following standard ter-
minology, we refer to model inputs as ”features” and to
DNN-learned representations as ”embeddings.” In our pro-
posed framework, BFVs are used as inputs to BFV+DNN
and hence, are named features accordingly.

In addition, we propose a two-weak-learner boosting
framework (2WL) that extends the boosting paradigm to
the USsetting. The framework is derived as a first-order
approximation to the gradient boosting risk function and
further expanded to a second-order approximation method
(2WL2O). It should be noted that this framework can be
used in the general multimodal setting and is not restricted
to the USuse case. Our experimental results show signifi-
cant performance gains over the aforementioned baseline.
Relative improvements on F1 metrics are observed by mag-
nitudes of 4.7%, 0.1%, and 0.34% on modified Census, Im-
agenet, and Covertype datasets, respectively. We also con-
sider a real-world dataset from an industry partner where
the improvement in accuracy is 0.41%.

The main contributions of this work are as follows.

1. We present a boosted-feature-vector DNN model that
combines structured data boosting features with deep
neural networks to address the setting in which both
structured and unstructured data sources are available.

2. We propose an alternative two-weak-learner-gradient-
boosting framework to address the setting in which
both structured and unstructured data sources are
available.

3. We extend the two-weak-learner-gradient-boosting to
a second-order approximation.

4. We show and compare the effectiveness of these ap-
proaches on public and real-world datasets.

The rest of this paper is organized as follows. In Section 2,
we discuss related work. In Section 3, we formally intro-
duce our proposed frameworks. Experimental results are
discussed in Section 4 and we conclude in Section 5.

2 Related work

2.1 Boosting Methods

Boosting methods combine base models (referred to as
weak learners) as a means to improve the performance
achieved by individual learners (Ridgeway, 1999). Ad-
aBoost (Freund and Schapire, 1997) is one of the first
concrete adaptive boosting algorithms, whereas Gradient
Boosting Machines (GBM) (Friedman, 2000) derive the
boosting algorithm from the perspective of optimizing a
loss function using gradient descent, see Mayr et al. (2014).
A formulation of gradient boosting for the multi-class
setting and two algorithmic approaches are proposed in
Saberian and Vasconcelos (2011). LightGBM (Ke et al.,
2017) incorporates techniques to improve GBM’s effi-
ciency and scalability. Traditionally, trees have been the
base learners of choice for boosting methods, but the per-
formance of neural networks as weak learners for Ad-
aBoost has also been investigated in Schwenk and Ben-
gio (2000). More recently, CNNs were explored as weak
learners for GBM in Moghimi et al. (2016), integrating the
benefits of boosting algorithms with the impressive results
that CNNs have obtained at learning representations on vi-
sual data (Jia et al., 2014; Krizhevsky et al., 2012; Red-
mon et al., 2016). Second-order information is employed
in boosting algorithms such as Logitboost (Friedman et al.,
2000), Taylorboost (Saberian et al., 2011), and XGBoost
(Chen and Guestrin, 2016). However, unlike our proposed
second-order model, all these algorithms consider a single
family of weak learners and individual data inputs, whereas
we handle two families of weak learners and both struc-
tured and unstructured data simultaneously.

Boosting approaches have also been applied to the setting
in which more than one data source is available as in-
put. For instance, a multiview boosting algorithm based
on PAC-Bayesian theory is presented in Goyal et al. (2018)
and a cost-based multimodal approach that introduces the
notion of weak and strong modalities in Koço et al. (2012).
In both cases, final classification is performed using major-
ity or weighted voting. Similarly, a model that assigns a
different contribution of each data input to the final classi-
fication is proposed in Peng et al. (2018), where a shared
weight distribution among modalities is used. None of
these algorithms make use of DNN approaches, as they em-
ploy traditional decision stumps as weak learners regard-
less of the data input sources. In contrast, the multimodal
reward-penalty-based voting boosting model proposed in
Lahiri et al. (2018) uses DNNs as weak learners, but over-
looks the benefits of tree-based approaches for structured
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data. Common to all methods reviewed in this paragraph,
is the notion of addressing the setting where multiple data
inputs are available. However, they do not take into account
the underlying properties of these different data sources,
nor do they consider specific algorithmic approaches that
better suit each one of them.

2.2 Structured & Unstructured Data Setting

Approaches that directly target the USsetting are scarce,
more so those that address the structured data character-
istics. In Chen et al. (2017), the authors deal with de-
mographics, living habits, and examination results from
patients in the form of structured data, and with doctor’s
records and patient’s medical history presented as unstruc-
tured text data. An intuitive DNN approach is used, with
the drawbacks that have already been discussed as no spe-
cial treatment is given to structured data.

Conversely, in Li et al. (2019) the USsetting is tackled by
combining the benefits of tree-based models and DNNs. To
do so, they use stacking and boosted stacking of indepen-
dently trained models. The core idea is similar to our pro-
posed boosted-feature-vector DNN in the sense that a first
model is trained and then used as an input for joint train-
ing. Their approaches differ from our BFV+DNN in two
main aspects. First, their models are heavily tailored for
the learning-to-rank use case and second, they use direct
outputs from the first model as input to the second model,
whereas we propose a novel way to extract boosted-feature
vectors from the first model, rather than using its direct out-
put.

3 Proposed models

In this section, we propose two models to tackle the
USsetting. The models address the inherent nature of each
source of data by exploiting the specific benefits of boosted
algorithms and neural networks as learners on each of
them.

3.1 Boosted-feature-vector Deep Learning Network
(BFV+DNN)

The boosted-feature-vector deep learning network aims at
using DNNs as the primary learning method, while incor-
porating boosted-feature vectors (BFV) from the structured
data source. As a means of comparison, the baseline DNN
approach to the USsetting is shown in Figure 1a and the
BFV+DNN architecture in Figure 1b. Both contain two
branches, a fusion stage and a joint learning architecture.
Each branch learns representations from one data source
(see DNN1 and DNN2 in Figure 1). Then, a fusion yields
a joint embedding that combines the data-source-specific
representations. Finally, the combined vector is used as

(a) Baseline architecture (b) BFV+DNN architecture

Figure 1: USdeep neural networks

input to a trainable DNN to model cross-data source inter-
actions (DNN3 in Figure 1).

As noted, the common baseline ignores the structured or
unstructured nature of the data source and directly learns
representations via DNNs, whereas BFV+DNN uses BFVs
as input to DNN2. To do so, we assume that a GBM model
is first trained on the structured data. For the multiclass
setting with M classes and N iterative GBM stages, M
CARTs (Breiman et al., 1984) are fitted per iteration. Let
Ri,j,k be the region defined by class i, tree j, and leaf k, and
wi,j,k the value representing the raw prediction of a sample
falling in the corresponding region (1 ≤ i ≤ M, 1 ≤ j ≤
N). Moreover, let each fitted tree j of class i have a number
of leaves li,j . We define the boosted-feature vector of the
structured portion of a sample x as BFV (x) ∈ RMxN ,
BFV (x) =

∑l1,1
k=1 w1,1,k1{x ∈ R1,1,k} , . . . ,

∑lM,1

k=1 wM,1,k1{x ∈ RM,1,k}∑l1,2
k=1 w1,2,k1{x ∈ R1,2,k} , . . . ,

∑lM,2

k=1 wM,2,k1{x ∈ RM,2,k}
...

...∑l1,N
k=1 w1,N,k1{x ∈ R1,N,k} , . . . ,

∑lM,N

k=1 wM,N,k1{x ∈ RM,N,k}

.

Note that for the binary case, a single tree is fitted in each
iteration and the boosted-feature vector of x is simplified to
BFV (x) ∈ RN , BFV (x) =[∑l1

k=1 w1,k1{x ∈ R1,k} , . . . ,
∑lN

k=1 wN,k1{x ∈ RN,k}
]

,

where wj,k is the raw prediction of a sample falling in re-
gion Rj,k of tree j and leaf k.

The outputs of DNN1 and DNN2 are combined into a joint
representation using a fusion method. In our experiments
in Section 4, fusing steps are performed by concatenatation
or element-wise multiplication of the DNNs’ embeddings.
The best method per dataset is reported in Table 1.
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3.2 Two-Weak-Learner-Gradient-Boosting
Framework

Multi-class boosting aims at finding a classifier F (x) =
argmaxk⟨yk, f(x)⟩ where f is some predictor, yk is the
kth class unit vector identifier, and ⟨·,·⟩ is the standard
dot product. Following the GD-MCBoost (Saberian and
Vasconcelos, 2011) multi-class boosting approach, f is a
boosted predictor trained to minimize classification risk
R(f) = EX,Y [L(y, f(x))] ≈ 1

n

∑n
i=1 L(yi, f(xi)) where

n is the number of training samples and L(y, f(x)) =∑M
k=1 e

− 1
2 [<f(x),y−yk>] is the M -class loss function. At

each iteration t, the update of the predictor is given by
f t+1(x) = f t(x) + g(x) with g(x) a weak learner. Al-
though the most common choices for weak learners are
decision trees, we posit that weak learners must be cho-
sen according to the available data source, such that they
best capture their specific properties. In the USsetting, each
training sample is of the form ((xU , xS), y), and we have
two families of weak learners denoted by g = g(xU ) and
h = h(xS).

3.2.1 Two-Weak-Learner-First-Order-Gradient-
Boosting Framework (2WL)

The two-weak-learner-gradient-boosting framework inte-
grates the boosting paradigm to the USsetting by including
two families of weak learners that target each specific data
input.

In the two-weak-learner case, given f t we have weak learn-
ers g and h. We update the predictor at iteration t + 1 to
f t+1((xU , xS)) = f t((xU , xS)) + ϵg∗(xU ) + δh∗(xS).
The optimization step is taken via gradient descent along
directions g and h of largest decrease of R(f). We have
that (see Appendix A):

R(f t + ϵg + δh) ≈ R(f t) +
∂R

∂ϵ

∣∣∣
ϵ=0
δ=0

ϵ+
∂R

∂δ

∣∣∣
ϵ=0
δ=0

δ,

where

∂R

∂ϵ

∣∣∣
ϵ=0
δ=0

ϵ = −ϵ

n∑
i=1

< g(xU
i ), wi >,

∂R

∂δ

∣∣∣
ϵ=0
δ=0

δ = −δ

n∑
i=1

< h(xS
i ), wi >,

wi =
1

2
e−

1
2<ft(xU

i ,xS
i ),yi>

M∑
k=1

(yi − yk)e
1
2<ft(xU

i ,xS
i ),yk>,

(1)

which yields optimization problems:

g∗ ∈ argmin
g

||g − w||2 =

n∑
i=1

||g(xi)− wi|| (2)

h∗ ∈ argmin
h

||h− w||2 =

n∑
i=1

||h(xi)− wi|| (3)
(ϵ∗, δ∗) ∈ argmin

ϵ,δ
R(f + ϵg∗ + δh∗). (4)

These problems are solved iteratively using Algorithm 1.
At each iteration, weak learners g and h are fitted to mini-
mize the expressions shown in (2) and (3) for wi as in (1).
Risk function R(f), evaluated in the learned values, is opti-
mized with respect to ϵ and δ. Problems 2 and 3 are solved

Algorithm 1 Two-Weak-Learner-Gradient-Boosting
Input: Number of classes M , number of boosting itera-
tions N and training dataset D = {(x1, y1), ..., (xn, yn)},
where xi are training samples of the form xi = (x1

i , x
2
i ),

with x1
i corresponding to one modality, x2

i corresponding
to the second modality, and yi are the class labels. In our
use case, xi = (xU

i , x
S
i ).

Initialization: Set f0 = 0 ∈ RM

for t = 0 to N do
Compute wi as in (1).
Fit learners g∗ and h∗ as in (2) and (3).
Find ϵ∗ and δ∗ as in (4).
Update f t+1(x) = f t(x) + ϵ∗g∗(xi1) + δ∗h∗(xi2) .

end for
Output: F (x) = argmaxk⟨yk, fN (x)⟩

by using standard mean squared error algorithms. Opti-
mization 4 can be approximated in different ways such as
heuristics, grid search, randomized search, or Bayesian op-
timization. Our experimental study, detailed in Section 4,
uses heuristic values or Bayes optimization.

3.2.2 Two-Weak-Learner-Second-Order Gradient
Boosting Framework (2WL2O)

The two-weak-learner-gradient-boosting framework is de-
rived from the first-order approximation to the multi-class
risk function R. In order to improve the estimation, we use
second-order Taylor approximation as follows (details are
provided in Appendix B):

RM (f t + ϵg + δh) ≈ R(f t) +
∂R

∂ϵ

∣∣∣
ϵ=0
δ=0

ϵ+
∂R

∂δ

∣∣∣
ϵ=0
δ=0

δ

+
1

2

∂2R

∂ϵ2

∣∣∣
ϵ=0
δ=0

ϵ2 +
1

2

∂2R

∂δ2

∣∣∣
ϵ=0
δ=0

δ2

+
∂2R

∂ϵ∂δ

∣∣∣
ϵ=0
δ=0

ϵδ
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where

∂2R

∂ϵ2

∣∣∣
ϵ=0
δ=0

ϵ2 =
ϵ2

4

[
n∑

i=1

(
< g(x1

i ), g(x
1
i ) >

+ 8 < g(x1
i ), w̃i > +ŵi

)]
,

∂2R

∂δ2

∣∣∣
ϵ=0
δ=0

δ2 =
δ2

4

[
n∑

i=1

(
< h(x2

i ), h(x
2
i ) >

+ 8 < h(x2
i ), w̃i > +ŵi

)]
,

∂2R

∂ϵ∂δ

∣∣∣
ϵ=0
δ=0

ϵδ =
ϵδ

2

n∑
i=1

(
< g(x1

i ), wi > + < h(x2
i ), wi >

)
,

w̃i =

M∑
k=1

[
(yi − yk)(e−

1
2<ft(xU

i ,xS
i ),yi−yk>)

1
2

]
, (5)

ŵi = e−
1
2<ft(xU

i ,xS
i ),yi>

M∑
k=1

||yi−yk||2e 1
2<ft(xU

i ,xS
i ),yk>,

and wi as in (1).

We now have that:

(ϵ∗, δ∗) ∈ argmin
ϵ,δ

R(f + ϵg∗(ϵ, δ) + δh∗(ϵ, δ))

s.t. g∗ ∈ argmin
g

∣∣∣∣∣∣g − (ϵw − ϵ2

4
w̃ − ϵδ

2
w)

∣∣∣∣∣∣2
h∗ ∈ argmin

h

∣∣∣∣∣∣h− (δw − δ2

4
w̃ − ϵδ

2
w)

∣∣∣∣∣∣2,

which we solve using Algorithm 2. At each iteration, wi

and w̃i are computed as in (1) and (5). An inner loop
jointly optimizes g, h, ϵ, and δ for these fixed w and w̃:
weak learners g and h are fitted to minimize the expres-
sions shown in (3.2.2) and (3.2.2) and R(f), evaluated in
the learned values, is optimized with respect to ϵ and δ.

Optimization problems 3.2.2, 3.2.2, and 3.2.2 are solved as
stated for Algorithm 1. In the experimental study in Sec-
tion 4, the initialization values for ϵ∗0 and δ∗0 are set to 0.1,
mimicking the default learning rate used in standard GBM
implementations.

4 Computational study

The computational study of the proposed models was con-
ducted on five datasets: two subsets of the structured
Census-Income (KDD) dataset (Dua and Graff, 2017),
modified versions of Imagenet (Deng et al., 2009) and UCI
Forest Covertype (Blackard, 1999), and a real-world pro-
prietary dataset.

4.1 Datasets

Census-Income Dataset (CI) The census-income
dataset contains 40 demographic and employment related
features and is used to predict income level, presented as

Algorithm 2 Two-Weak-Learner-Gradient-Boosting-
Second-Order
Input: Number of classes M , number of boosting itera-
tions N1, number of inner iterations N2 and training dataset
D = {(x1, y1), ..., (xn, yn)}, where xi are training sam-
ples of the form xi = (x1

i , x
2
i ), with x1

i corresponding to
one modality, x2

i corresponding to the second modality, and
yi are the class labels.

Initialization: Set f0 = 0 ∈ RM

for t = 0 to N1 do
Compute wi and w̃i as in (1), and (5).
Initialize ϵ∗0, δ∗0 .
for j = 0 to N2 do

Fit learners g∗j and h∗
j as in (3.2.2) and (3.2.2) by

using ϵ∗j , δ∗j .
Find ϵ∗j+1 and δ∗j+1 as in (3.2.2).
Compute risk function value Rj at point

(g∗j , h
∗
j , ϵ

∗
j+1, δ

∗
j+1).

end for
j∗ = argminj Rj

g∗ = gj∗, h
∗ = hj∗

ϵ∗ = ϵj∗ , δ∗ = δj∗

Update f t+1(x) = f t(x) + ϵ∗g∗(x) + δ∗h∗(x).
end for

Output: F (x) = argmaxk⟨yk, fN1(x)⟩

a binary classification problem. Approximately 196,000
samples were used for training and almost 50,000 for
validation. All of the features are presented in the form
of structured data. We adjust it to the USsetting in two
ways: CI-A) by randomly splitting the set of features
and assigning them to two sets S and U , representing
the structured and unstructured modalities, respectively;
CI-B) by using backward elimination to identify the most
informative features and assigning them to one of the sets
(S), while the rest of the features were assigned to the
other (U). The latter setting CI-B represents the case of
one modality being much stronger correlated to the labels
than the other.

Modified Imagenet Dataset (MI) We sample from
Imagenet (I) and construct U with two classes:
C0 = {xU |xU ∈ I and xU is a dog}, which ac-
counts for 47% of the total samples in the resulting
dataset and C1 = {xU |xU ∈ I and xU is a feline,
primate, reptile or bird}, which accounts for the remaining
53%. These classes were selected so that the dataset has a
reasonable size and it is balanced. Approximately 313,000
samples were used for training and 12,000 for validation.
We adjust it to the USsetting as follows: we generate S by
creating a structured sample xS ∈ R500 for each image
xU in U such that, for a fixed w ∈ R500 we have that
wTxS > 0 if xU ∈ C0 and wTxS < 0 otherwise. Since
there are many such xS , we select one at random. Finally,
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we randomly switch 9% of the labels in S ∪ U which
provides a balance between further introducing noise to
the data, while keeping more than 90% of the dataset’s
deterministic label assignment unchanged.

Forest Covertype Dataset (CT) We construct S with the
3 most represented classes in the highly imbalanced Forest
Covertype dataset, resulting in approximately 424,000 and
53,000 training and validation samples, respectively. Con-
versely, we adjust it to the USsetting by generating an im-
age xU ∈ R128×128 for each structured sample xS in S
as follows. Each xU consists of a white background and a
random number in {1, ..., 10} of randomly positioned:

• mixed type shapes if xs ∈ C0,

• triangles if xs ∈ C1,

• rectangles if xs ∈ C2.

The shapes were generated using scikit-image (van der
Walt et al., 2014) with maximum bounding box sizes of
128 pixels and minimums of 10, 20, and 15 pixels, respec-
tively. Again, we randomly switch 9% of the labels in S∪U
to introduce noise, while keeping more than 90% of the
dataset’s labels unchanged.

(a) Class C0 (b) Class C1 (c) Class C2

Figure 2: Examples of generated images

Real-World Multimodal Dataset (RW) For this experi-
ment, we use a proprietary dataset with both structured and
unstructured data inputs, which allows us to test our models
in a real-world USsetting. The dataset constitutes a binary
classification problem with two data sources: one is pre-
sented in the form of images U and the other as structured
data S where GBM works very well. Tens of thousands
of samples were curated for training and validation, with
each structured data sample containing approximately 100
features.

4.2 Implementation and hyperparameters

The experiments were implemented in Python and ran us-
ing GeForce RTX 2080 Ti GPU and Intel(R) Xeon(R) Sil-
ver 4214 CPU @ 2.20GHz for all datasets except RW, for
which Tesla V100 GPU and Intel Xeon CPU E5-2697 v4

@2.30Hz were used. For the BFV+DNN models, scikit-
learn’s GradientBoosterClassifiers (Pedregosa et al., 2011)
are trained and used to generate the BFVs. We employ
Bayesian Optimization (BO) (Snoek et al., 2012) with 10
random exploration points and 20 iterations to find ϵ∗ and
δ∗ in steps (4) of Algorithm 1 and (3.2.2) of Algorithm 2.
The tracked metric is F1 for all datasets, except for RW,
where accuracy is used.

The dataset-specific hyperparameters used for BFV+DNN
and two-weak-learner experiments can be found in Tables 1
and 2, respectively. These hyperparameters were selected
as follows. For DNNs, we used a fully connected layer
with k neurons (FCk) or two fully connected layers with
k1 and k2 layers (FCk1+k2), where the number of layers
and neurons were chosen based on the number of samples
and features of each dataset. Regarding image datasets,
VGG16(Simonyan and Zisserman, 2015) and Resnet50(He
et al., 2016) convolutional architectures were compared
and the best one was selected. For optimizers, we chose
the best performing between RMSPROP and stochastic
gradient descent with learning rate 10−j , j ∈ {3, 4, 5}
(SGD/LR). Matrix multiplication and embedding concate-
nation were compared in order to select the fusion method
for each dataset. The number of BFV trees is the best in
{1000, 1500, 2000, 3000}, while the maximum tree depth
is the best in {3, 4, 5, 6}. Values N , N1, and N2 vary ac-
cording to the number of iterations each dataset took until
convergence. Batch sizes were chosen based on the num-
ber of input features and pretraining was used for datasets
with image data.

4.3 Experimental Results

Model Comparison

In Table 3, we summarize the results of the conducted
experiments. For each dataset, we compare the perfor-
mance of the boosted-feature vector DNN (BFVS +DNNU
), the two-weak-learner-gradient-boosted model with BO
(2WL), and the two-weak-learner-second-order-gradient-
boosted model with BO (2WL2O). Additionally, we an-
alyze the impact of finding optimal steps ϵ∗ and δ∗ for
the two-weak-learner models and conduct the same ex-
periments with fixed ϵ∗ = δ∗ = 0.1 (2WL Fix and
2WL2O Fix). The value of 0.1 was chosen following the
same reasoning as before regarding default hyperparame-
ters used in GBM implementations. All results are given as
percentage of relative improvement over the chosen base-
line (see Figure 1 for reference). To account for random-
ization, we ran 5 identical experiments of each BFV+DNN
and report their average. Their coefficients of variation
were smaller than 0.005, 0.005, 0.0001, 0.0001, and 0.001
for CI-A, CI-B, CT, MI, and RW datasets, respectively.
Given the low variability shown by the DNN-based model
and the additional computational time needed to run two-
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Table 1: Boosted-feature-vector Deep Learning Network Hyperparameters

CI-A CI-B CT MI RW

DNN1 FC32 FC 100+50 VGG16+FC1024+200 Resnet50+FC1024+256 VGG16
DNN2 FC256+32 FC100+50 FC1024+200 FC256 FC512
DNN3 FC256+32 FC25 FC64 FC128 FC16
Fusion Product Concat Concat Concat Product

Optimizer SGD/0.001 RMSPROP SGD/0.00001 SGD/0.00001 SGD/0.001
Batch size 128 128 32 32 16
BFV Trees 2000 1500 3000 3000 2000

Table 2: Two-Weak-Learner-Gradient-Boosting Hyperparameters

CI-A CI-B CT MI RW

DNN FC100+50 FC100+50 VGG16+FC1024 Resnet50+FC64 VGG16
DT max depth 3 3 6 3 5

Optimizer RMSPROP RMSPROP SGD/0.01 SGD/0.0001 SGD/0.0001
Batch size 512 128 32 32 16
N , N1, N2 2000,2100,1 3500, 750,1 135,25,1 200,10,1 20,70,1

Table 3: Best relative performance per dataset

% of Relative Metric Improvement
Model CI-A CI-B CT MI RW

BFVS +DNNU 1.87 4.70 0.08 0.34 0.11
2WL 3.50 0.14 -0.37 -0.09 -0.60
2WL Fix 0.68 -2.10 -0.36 -3.45 -2.37
2WL2O 3.97 0.25 0.10 0.13 0.41
2WL2O Fix -7.87 -19.85 -0.23 -0.14 -5.37

weak-learner experiments, we report a single instance for
each boosting model.

In general, BFVS +DNNU and 2WL2O models exhibit
the best performance. The results in the different consid-
ered datasets help to differentiate the individual strengths
of each of our proposed models.

For datasets CI-A and CI-B, we observe that given the un-
derlying structured nature of the data, the BFVs used for
BFVS +DNNU are responsible for a large portion of the
predictive power, making this model perform significantly
better than the baseline. This behavior is notably exhib-
ited in CI-B, were the most informative features have been
grouped in S and used to generate the BFVs. On the other
hand, due to the random variable split in CI-A, not all of
the most informative features are used for generating the
BFV, which is reflected in the performance gap between
both datasets for this model and in the two-weak-learner
models outperforming BFV+DNNs for CI-A.

In datasets CT, MI and RW, which contain both structured
and unstructured data, we observe closer gaps between the
performances of BFVS +DNNU and 2WL2O, but quite
large improvements of these over 2WL in all cases. BFVS
+DNNU achieves the best performance for CI-B and MI.
On the other hand, 2WL2O outperforms all models for CI-
A, CT, and RW. The predictive power and complexity of
each data input vs the other appears to play an important
role both in the best model’s performance and in the use-
fulness of the second order approximation. We further ob-
serve this in Figures 3 and 4. In Figure 3, we compare the
first and second order weak learners performance. Given
that we have sufficient time for convergence, the second
order model outperforms the first order in all our experi-
ments. However, we observe that for some datasets such as
MI and RW, the performance of two-weak-learner models
may abruptly drop after reaching its maximum. To further
explore this, we compare 2WL and 2WL2O with their cor-
responding one weak learner models 1WL-DT, trained on
S, and 1WL-CNN, trained on U . Accordingly, this com-
parison is conducted on datasets that have both structured
and image data availables (MI, CT, and RW) and is shown
in Figure 4. As can be seen, the drop in performance ob-
served for the two-weak-learner models in datasets MI and
RW is consistently observed in their corresponding 1WL-
CNN models. The unstructured data weak learner seems to
be driving the two-weak-learner models for the aforemen-
tioned datasets. Interestingly, the deterioration is shown
only in one of the two-weak-learner models per dataset,
possibly as a result of conducting independent optimiza-
tions to find ϵ∗ and δ∗ in step (4) of Algorithm 1 and (3.2.2)
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Figure 3: Two-weak-learners performance vs runtime

Figure 4: One- and two-weak-learners performance vs run-
time

Figure 5: Fixed vs Optimized LR

of Algorithm 2. In Figure 5, we compare 2WL and 2WL2D
with their corresponding 2WL Fix and 2WL2 Fix runs. In
all of our experiments, fixing the values of ϵ∗ and δ∗ re-
sults in a significant drop in performance, further empha-
sizing the key role played by the Bayes optimization steps
and careful choice of learning rates ϵ and δ.

As a final remark, an important factor to consider when
evaluating and comparing the proposed models is computa-
tional time. In Algorithms 1 and 2 for the two-weak-learner
frameworks, we have that one DNN is trained per itera-
tion for the first order approximation, yielding a total of
N trained DNNs per run. For the second order approxi-
mation, N2 DNNs are trained per iteration, for a total of
N1N2 DNNs per run. On the other hand, we have that
the BFV+DNN model trains a single DNN (plus a previ-
ously trained GBM). Hence, BFV+DNN has a clear advan-
tage in terms of runtime, whereas the two-weak-learner-
boosted frameworks can be leveraged to improve perfor-
mance when time does not pose a hard constraint.

5 Conclusion

Traditionally, boosted models have shown stellar perfor-
mance when dealing with structured data, whereas DNNs
excel in unstructured data problems. However, in many
real-world applications both structured and unstructured
data are available. In this paper, we presented two frame-
works that address these scenario. The proposed models
are compared to a standard baseline model and demon-
strate strong results, outperforming the baseline approach
when data is presented as a combination of these two data
sources.
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