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Airline Crew Pairing
Generation in Parallel∗

Diego Klabjan�, Karsten Schwan�

1 Introduction
Airline crew scheduling is the problem of assigning crew itineraries or pairings to
ßights. The computational solution of crew scheduling involves solving a large set
partitioning problem, with each member of the set representing a ßight in a given
schedule and subsets correspond to pairings. The partitioned set deÞnes the crew
pairings being sought, where each pairing consists of a small sequence of working
days, called duties. Typical pairings are comprised of 2-4 duties, and the number
of pairings ranges from 2 million for small problems, to 20 million, to 50 million
and above for large problems. A pairing is subject to many FAA rules, including
a maximum allowed ßying time in a duty, a bound on the elapsed time of a duty,
a bound on the minimum overnight rest, etc. In addition, there are union rules,
concerning the maximum number of duties in a pairing, the minimum cost of a
pairing, the maximum time away from base, and others. Crew scheduling must
be performed monthly. Current solutions implemented on mainframe machines
typically require days of CPU time to compute acceptable schedules. Of this time,
hours are consumed by pairing generation. Therefore, speeding up the pairing
generation process is a necessary step toward reducing crew scheduling time.

Our approach to parallelizing pairing generation relies on dynamic domain
decomposition, where generated duties are distributed across multiple processes
running on a parallel machine. This permits the parallel application of the complex
rules on which pairing generation is based. However, an issue with dynamic domain
decomposition is the balance of workloads among processes. In our application,
imbalanced workloads occur because some processes may have completed comput-
ing the pairings from their duties whereas other processes� computations are still in
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progress. Such imbalances strongly affect program speedup, particularly for smaller
problems and during the Þnal stages of a larger problem�s solution when the number
of duties remaining to be considered is relatively small, termed tail effects in the
remainder of this paper. Toward this end, we develop and evaluate a novel mech-
anism for sharing duties and in general, computational tasks, among cooperating
processes. We term this mechanism an active interchange; its implementation relies
on the combined use of threads, messages, and processes in the cluster computing
environment in which our parallel implementations are performed. The detailed
discussion of active interchange is given in [2]. Furthermore, we also study the
impact of tail effects on the performance of parallel solutions to dynamic problems
and suggest some approaches to addressing them.

The parallel machine used in this research is a cluster computing engine, in
which standard PCs are networked via commercially available interconnects, thereby
offering factors of cost/performance an order of magnitude superior to that of cur-
rent parallel supercomputers or server engines. Two clusters are used, the Þrst con-
sisting of 16 200MHz Quad Pentium Pros and the second comprised of 48 300MHz
Dual Pentium IIs, resulting in 160 processors total available for parallel program ex-
ecution. All machines are linked via 100 MB point-to-point Fast Ethernet switched
via a Cisco 5500 network switch. The resulting heterogeneous nature of the comput-
ing engines (Pentium Pros and IIs) and of the underlying communication medium
(within each Pentium Pros or II node, vs. across two such nodes) is typical of mod-
ern parallel computing environment. This heterogeneity and its relatively �slow�
internode communications are the two principal factors contributing to the impor-
tance of the workload balancing and active interchange mechanisms developed in
this research.

The contributions of this paper are:

� a novel method of program parallelization utilizing both process- and threads-
based parallelism and thereby effectively exploiting the heterogeneous nature
of the underlying cluster compute engines;

� the development of an active interchange mechanism permitting the efficient
implementation of the workload balancing schemes developed in this paper;

� workload balancing schemes that utilize randomization to ensure a fair distri-
bution of work items across distributed machines;

� a demonstration of high program performance, resulting in our ability to solve
problems of sizes not easily solved on current mainframe machines; and

� a detailed study of tail effects due to workload imbalances in applications like
ours and the development of approaches that effectively address such effects.

2 Parallel Algorithm for Pairing Generation

2.1 Algorithm Description

Crew bases are stations where crews are stationed. Every pairing must start and
end at a crew base. Let CB be the set of stations that are crew bases. The start
of a duty is the departure station of the Þrst leg in the duty. Let Dcb be the set
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of all duties that start at the station cb. We call a duty a starting duty if it starts
at a crew base. We can generate all of the pairings starting at a given duty by
performing a depth-Þrst search and perform pruning whenever a pairing violation
occurs. Assume that a procedure denoted by DFS(d) enumerates all of the pairings
that have as a starting duty a given duty d. The sequential algorithm, denoted by
SA, scans all the starting duties and for each starting duty d it performs DFS(d).

The sequential algorithm is parallelized by performing DFS in parallel. With
this approach, a load balancing problem arises from the fact that the computation
time of DFS(d) for a given duty d cannot be estimated statically. This prompts us to
use a simple, initial distribution of duties across processors, followed by a dynamic
load balancing strategy. The initial distribution used is one that uniformly and at
random distributes starting duties to processes.

Dynamic load balancing is necessary because all of the computational ex-
periments we have performed indicate a high variance in computation times for a
random set of duties. Load balancing is initiated by receivers of load. SpeciÞcally,
whenever a processor becomes idle, it queries all other processors about the numbers
of starting duties they have not yet processed. It then chooses the process i with the
highest such number. The process i then sends half of its remaining starting duties
to the idle process. This method of load balancing aims to create equal workloads
and therefore, equal execution times for all of the processes sharing loads.

The parallel algorithm is described in Algorithm 2.1 (assuming there are p
processes). A major iteration of the algorithm is comprised of Steps 8-14.

Algorithm 2.1 Parallel Algorithm (PA)

1: for all crew basis cb in CB do
2: for all duties d in Dcb do
3: Send the duty d to a randomly chosen process.
4: end for
5: end for
6: For i = 1, . . . , p let Di be the set of all starting duties at the process i.
7: for all i = 1, . . . , p in parallel do
8: while Di 6= ∅ do
9: while Di 6= ∅ do
10: Remove a duty d from Di.
11: DFS(d)
12: end while
13: Let the processor j = argmaxk=1,... ,p{|Dk|} send half of the starting duties

in Dj to the current process i. Append the received duties to Di.
14: end while
15: end for
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2.2 Discussion

Two issues exist with the algorithm presented above. First, the load balancing
method it employs will not scale to thousands of processors or to target distributed
machines that are not as well-connected as the cluster engines used in our work.
This fact is principally due to the request initiator�s broadcast for work to all other
processes and its subsequent desire to request work from the most loaded process.
Such global operations are inherently non-scalable, [1]. Second, as the parallel
algorithm nears the �end� of its execution, more and more processes will be asking
for work, therefore generating a large number of queries and unsuccessful query
responses. These actions constitute pure overhead as they do not advance the
solution to the problem of pairing generation. We term this problem a tail effect,
because its visible effect is a marked decrease in effective speedup toward the end
of the problem�s solution. The proposed algorithm enhancements described next
address these two issues.

2.3 Algorithm Enhancements

The scalability of load balancing is improved by altering the algorithm outlined
above as follows. Rather then querying all other processes for work as performed in
line 13 in (PA), additional work is requested from a subset of processes. This im-
plies that work will not always be equally distributed since the remote process with
maximum load may not be contained in the subset addressed by a query. Worse,
the subset may not contain any process possessing work to be returned. These
two problems are addressed by asking for additional work in several rounds. The
Þrst round queries a subset of processes. If successful, the parallel processing of
duties proceeds, else a signiÞcantly larger number of remote processes is queried.
Furthermore, to perform effective workload balancing toward the end of each pro-
gram run, we increase the initial number of processes queried with increasing major
iteration numbers. Stated precisely, let a1, a2, a3, . . . be any increasing sequence of
integers and let b1, b2, b3, . . . be a nondecreasing sequence of integers. The Þrst se-
quence determines the manner in which to increase the number of remote processes
queried in response to an unsuccessful query. The second sequence states the initial
number of remote processes to be queried, where the sequence iterator corresponds
to the number of major iterations performed on all processes by parallel pairing
generation. Suitable methods for choosing both sequences are described below.

The second problem identiÞed above, termed �tail effect�, may be addressed by
suitable selection of the values for ai and bi. First, to address the decreasing prob-
ability of Þnding work with increasing major iteration numbers and when querying
only a Þxed size subset of remote processes, we choose some step function with a
Þxed step interval and step size of 1 for bi. Second, for ai, we use sequence values
of ai = 2i, which implies that a rapidly increasing number of remote processes is
queried upon an unsuccessful query, thereby reducing the total number of remote
queried issued.

An alternative solution to the use of Þxed sequences like ai = 2i in the se-
lection of values for ai and bi is one that performs selection in response to the
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actual execution times of major iterations. The idea is to choose sequence values
adaptively, in accordance with the actual load experienced during each iteration. A
small execution time implies a small amount of work available locally and received
last time a query was issued, whereas a large execution time implies that plenty of
work remains to be completed by the parallel program.

For the statically identiÞed sequences and the adaptive choice of sequence
values, the parallel program implementing both, called MPA, may be derived from
the algorithm PA, by replacing steps 7-15 with Algorithm 2.2.

Algorithm 2.2 ModiÞed Parallel Algorithm (MPA)

7: for all i = 1, . . . , p in parallel do
8: k = 1
9: while Di 6= ∅ do
10: while Di 6= ∅ do
11: Remove a duty d from Di.
12: DFS(d)
13: end while
14: k = k + 1 whenever the process i is involved in a query.
15: s = 1, l = 0, u = bk, S = {1, . . . , p}
16: while S 6= ∅ or l < 1 do
17: Randomly choose u processes from S and query them for the number of

remaining starting duties.
18: Let l be the maximum of all the numbers that were received back.
19: Let j be the index of the processor where the maximum was attained.
20: Remove from S all the indices of processors that were queried.
21: u = u · as, s = s+ 1
22: if l > 1 then
23: Let the processor j send half of the starting duties in Dj to the current

process i. Append the received duties to Di.
24: end if
25: end while
26: end while
27: end for

3 Computational Experiments

3.1 Implementation Issues

The parallel implementations use the MPI message passing interface, [3], MPICH
implementation Version 1.0, developed at Argonne National Labs, and a portable
threads standard is used, Pthreads (POSIX threads) 4, [4].

Our Þrst implementation was exclusively a message passing one. Results ob-
tained using only MPI were poor and are not reported in this paper. All the
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implementations use a minimum of two threads per process. One thread, the work-
ing thread, does the actual enumeration, i.e. the iterations 9-12 in PA. The other
thread, the controlling thread, takes care of all message passing calls. Whenever
there is a request for sending the number of remaining duties to an idle process,
the working thread is suspended and the controlling thread takes over. When it
Þnishes, the working thread resumes the DFS procedure. In order for such con-
text switching to be performed as described above, the controlling thread has to
have higher scheduling priority than the working thread. For this mechanism to
function properly, the thread scheduler must suspend the lower priority in favor of
the higher priority thread, then resume the lower priority thread when the higher
priority thread blocks on message calls.

There are two different hardware distances in our cluster computing environ-
ment. Our implementation utilizes this fact by using multiple worker threads within
each node, which directly communicate via shared memory. Namely, if a node has
i processors, then the process running on it creates i working threads and a single
controlling thread. The working threads share the set of starting duties Di.

Our processors have different CPU speeds, but each node�s processors are
homogeneous. Let pi be the number of processors at node i and let cpui be the
speed of processors at node i. We have evaluated cpus beforehand by running small
instances of the sequential algorithm SA. In our computing environment, there are
two different values for cpus. Let p be the number of nodes in the environment
and let X be a random variable with the domain 1, . . . , p and P [X = i] = cpui ·
pi/
Pp

j=1(cpuj · pj). Then we replace step 3 of PA with the following step.
3: Sample a random node based on the random variable X. Send the duty d to
the sampled node.

We also need to replace step 13 of PA to reßect the above observation. The modiÞed
step reads

13: Let the processor j = argmaxk=1,... ,p{ |Dk|
cpuk·pk } send half of the starting duties

in Dj to the current process i. Append the received duties to Di.

The same modiÞcations need to be done for MPA algorithm.
Further details on the implementations are given in [2].

3.2 Results

Due to the random distribution of starting duties, for each reported run we executed
our code 3 times and took the average of the 3 execution times.

Shared vs. Distributed Memory

We start by showing the difference between an implementation having one process
per processor (pure MPI) and one that has one process per node (mixed MPI/threads).
This experiment is carried out on a medium size instance and on the cluster of 14
200 MHz Quad Pentiums. As we can see from Figure 1, the mixed MPI/threads
implementation substantially outperforms the non-threaded pure MPI code. These
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results are due to the fact that the use of threads reduces communication overhead.
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Figure 1. The comparison of
pure MPI implementation and mixed
MPI/threads implementation

Performance differences are particu-
larly pronounced for small numbers of
processors. This is because the commu-
nication burden is relatively larger for
these cases. Furthermore, the pure MPI
code exhibits a clear �tail effect�, which
is evident in Figure 1 from the lack of
speedup experienced by this implemen-
tation for large numbers of processors.
Measurements not shown in this Þgure
determine this speedup degradation to
be due to drop offs in speedup toward
the end of MPI program runs, where
too many idle processors are requesting
new work.

Speedup

The results depicted in Figure 2 demonstrate the good performance attained with
the mixed MPI/threads implementation, when using the PA algorithm. These runs
are performed with three data sets, using 5 crew bases and 97, 150, and 203 legs,
respectively. One interesting insight from these measurements concerns the hetero-
geneous nature of modern cluster machines. SpeciÞcally, given that our environ-
ment consists of two types of nodes (200 and 300 MHz, respectively) conÞgured as
quad vs. dual shared memory multiprocessors each, it is actually not clear whether
to employ more strongly connected, slower (i.e., quad Pentium Pro) nodes or more
weakly connected, faster (i.e., dual Pentium II) nodes for program runs. The results
depicted on the left in Figure 2 show speedup when employing a mixed environ-
ment comprised of an equal number of 300 and 200 MHz nodes. The other Þgure
depicts speedup when maximizing the number of 300 MHz nodes. It is apparent
from these measurements that this application�s computation vs. communication
ratio is such that faster processors should be employed whenever possible, as both
speedup curves are close to linear, with diminishing returns for larger numbers of
processors due to the limited problem sizes used in these experiments. At the same
time, these measurements conÞrm our intuition that a �better connected� machine
results in improved speedup, as evident from the slightly better speedup in the left
Þgure vs. the right Þgure. However, while speedup is better with the well-connected
machine, actual execution times are superior with the faster processors.

Another interesting observation from these results is that for smaller data
sets, the ratio of communication to computation changes signiÞcantly, due to the
decrease in the total amount of computation performed prior to the communications
executed for purposes of workload balancing. As a result, for the smaller input data,
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Figure 2. Left Þgure: Half 300 MHz nodes, half 200 MHz nodes. Right
Þgure: As many 300 MHz nodes as possible.

actual execution times do not differ much when using 200 vs. 300 MHz nodes, with
actual execution times being identical for both cases when using 128 processors.
It is clear that for smaller problem sizes, the time for DFS is short and hence
the communication in applying the load balancing scheme has more weight. This
implies that the choice of execution sites strongly depends on both the nature of the
parallel program as well as the problem sizes it executes. We know of no automatic
mapping methods that can deal with this problem prior to a program�s execution.

The Þnal insight from these experiments concerns limitations to total program
speedup due to the aforementioned �tail effect�. Essentially, toward the end of each
program run, a limited number of problems remain to be solved, by a relatively large
number of processors that are �looking for work� in order to solve these problems.
The controlling threads cannot be shut down until the generation is done on all
nodes and hence there is communication congestion toward the end. We present
one solution to this problem in Section 3.2 below.

Tail Effect Study

Our experimentation with tail effects involves the MPA algorithm. Since the im-
provements promised by MPA concern scalability and communication speed, we use
the pure MPI implementation with 16 200 MHz Quad Pentium nodes, thereby creat-
ing noticeable communication overheads. The difficulty in using MPA is the choice
of sequences a and b. We observe that the loop 16 is rarely executed more than
once. Hence the choice of the sequence a has little impact on total performance.
We Þnd that ai = 2

i works well for the problems considered in our work.
The choice of sequence b has signiÞcant impact. bi is the expected number of

processes that are queried at iteration i. The larger the iteration index, the harder
it is to Þnd work and hence bi should be larger as well. If init is the initial value,
then we choose bi = init + i. init is the number of queries to be performed by
the Þrst idle process. init should be large if the number of starting duties is large,
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therefore depending on the size of the input data. Let n be the number of starting
duties and let t be the wall time from the start of the algorithm until the Þrst
process becomes idle. We use the formula init = F · n/t2, where F is a constant
that should depend on the target hardware. Note that this formula also indirectly
captures the number of processes, since t depends on this number.

The Þrst process that becomes idle records t and broadcast it to all other
processes. The index i in the implementation is not the index of the major iteration
because determining this number would require additional communication. Instead,
i is the number of queries in which the given process has been involved up to the
point of becoming idle.

F is chosen as follows. We use some Þxed input data and a Þxed, reasonably
large number of processes. We determine the optimal init value for this Þxed
conÞguration by performing several runs each with different parameter value. From
these runs, we determine the parameter resulting in the best execution time. We
then compare the computed value with the formula and derive the appropriate value
for F .

As the algorithm is approaching the end of its problem solution, it becomes
difficult to Þnd new work and hence, substantial time is spent in applying the load
balancing scheme. We have termed this problem the �tail effect� in dynamic load
balancing.

To address this tail effect, the load balancing procedure used in our work is
changed as follows. When the maximum number of duties on the queried processes
falls below some given number, called the tail number and denoted tail, then the
process stops applying the load balancing procedure. The default value used in
results presented so far is tail = 2, namely, we apply the load balancing steps until
the very end. As can be seen from Figure 3, the tail number should be small if the
number of processes in relation to problem size is small, since in these cases, the
ratio of total time spent in solving a problem vs. time spent in load balancing is
favorable.
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Figure 3. Tail effect

When this ratio is unfavorable, e.g.
smaller problem size and a larger num-
ber of processes, then a larger tail num-
ber is desirable for two reasons: (1) the
effect of stopping load balancing on to-
tal execution time is small and (2) the
processors that have become idle due to
their maximum loads falling below the
tail number may be used by other ap-
plication programs, thereby increasing
machine utilization.

The discussion in the previous paragraph suggests that there is no single Þxed
value for tail number that is suitable for all problem and machine sizes. To address
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this issue, rather then choosing a Þxed value of tail and shutting down all processes
receiving new loads below this value, we apply the following heuristic. First, if the
maximum number of duties on the queried processes falls below the tail number,
then these processes are shut down with probability tp. As a result, there will
only be few processes that survive this shutdown procedure and continue to receive
work from other survivors. Second, for determining suitable tail numbers, we use a
strategy for parameter tuning similar to the one employed for the init parameter.
Namely, let td be the average execution time of the DFS function. We choose
tail = F1/td. For the tail probability tp we use the formula tp = F2 · p/(F3 + td),
where F2 and F3 are constants and p is the number of processes. We compute the
constants in these formulas by computing several optimal probabilities based on
experimental computational runs and then using regression analysis to determine
the �best Þt� values.

We were using the following formulas: bi = i + F ·n
t2 , tail =

F1
td , tp =

F2·p
F3+td

.
The parameter values for our hardware are F = 3.5, F1 = 0.96, F2 = 0.02, and
F3 = 1.7.

PA MPA
p=64 570 497

482 480
535 500
540 490
1245 1145

p=50 570 500

Table 1. Compu-
tational comparison of PA
and MPA

The results are presented in Table 1. The second
column corresponds to the PA algorithm, whereas
the third column reports the execution times in
seconds for the MPA algorithm, with the choice
of parameters described above. The improvements
are not large, but we suspect that they would be
more signiÞcant for problems with worse computa-
tion/communication ratios than the ones used in our
work.
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