
A Parallel Primal-Dual Simplex Algorithm

Diego Klabjan ∗

Ellis L. Johnson
George L. Nemhauser

Email: diego,ellis.johnson,george.nemhauser@isye.gatech.edu

School of Industrial and Systems Engineering
Georgia Institute of Technology

Atlanta, GA 30332-0205

May 2, 2000

Abstract

Recently, the primal-dual simplex method has been used to solve linear programs
with a large number of columns. We present a parallel primal-dual simplex algo-
rithm that is capable of solving linear programs with at least an order of magnitude
more columns than the previous work. The algorithm repeatedly solves several
linear programs in parallel and combines the dual solutions to obtain a new dual
feasible solution. The primal part of the algorithm involves a new randomized pric-
ing strategy. We tested the algorithm on instances with thousands of rows and tens
of millions of columns. For example, an instance with 1700 rows and 45 million
columns was solved in about 2 hours on 12 processors.

Keywords: Programming/linear/algorithms,large scale systems.

1 Introduction

This paper presents a parallel primal-dual simplex algorithm that is capable of solving
linear programs with thousands of rows and millions of columns. For example, an instance
with 1700 rows and 45 million columns was solved in about 2 hours on 12 processors.
The largest instance we solved has 25,000 rows and 30 million columns. Such linear
programs arise, for example, in airline crew scheduling and several other applications as
relaxations of set partitioning problems, Barnhart et al. (1998).

∗Current address: Department of Mechanical and Industrial Engineering, University of Illinois at
Urbana-Champaign, Urbana, IL, 61801

1

Primal-dual algorithms appear to have originated with Dantzig, Ford and Fulkerson
(1956) and have been applied to many combinatorial problems such as network flows
Ahuja, Magnanti and Orlin (1993), and matching, Edmonds (1965). Recently, Hu (1996)
and Hu and Johnson (1999) have developed a primal-dual simplex algorithm that is
designed to solve LPs with a very large number of columns. The primal-dual simplex
iterates between solving primal subproblems over a restricted number of columns and
dual steps. In this paper, we parallelize the dual step of the Hu-Johnson algorithm
and obtain significant speedups. Since the number of dual steps is small, information is
passed infrequently, so it is efficient to partition the columns among several computers,
i.e. to use a distributed memory system.
Bixby and Martin (1995) present a dual simplex algorithm with parallel pricing.

However, their approach requires a shared memory system to achieve good speedups
since pricing is done over all columns after every simplex iteration. Bixby and Martin
cite other literature on parallel simplex algorithms, none of which is related to our work.
In Section 2, we review the primal-dual algorithm. Section 3 presents the parallel

primal-dual algorithm. Section 4 gives the computation results.

2 Primal-Dual Algorithm

We consider the LP

min{cx : Ax = b, x ≥ 0} , (P)

where A ∈ Qn×m, b ∈ Qm, x ∈ Qn and Qk is the set of k-dimensional rational numbers.
The dual is

max{bπ : πA ≤ c} . (D)

The primal-dual algorithm is efficient only if the number of columns is much larger
than the number of rows, so we assume that nÀ m.
A primal subproblem is a problem with only a subset of columns from the constraint

matrix A and corresponding objective coefficients. The reduced cost of column j with
respect to a dual vector π is rcπj = cj − πAj , where Aj is the jth column of A.
We start with a statement of the primal-dual algorithm 1 from Hu (1996).
The algorithm maintains a dual feasible solution π. At each iteration the algorithm

produces a dual vector ρ which is not necessarily dual feasible. The two dual vectors are
then combined into a new dual feasible vector that gives the largest improvement to the
dual objective. The dual vector is used to select columns for the next primal subproblem.
The procedure is then iterated.

3 Parallel Primal-Dual Algorithm

3.1 Algorithm

The key idea of parallelization is to form several primal subproblems that are solved in
parallel. The new dual feasible vector is a convex combination of optimal dual vectors

2

Algorithm 1 The Primal-Dual Algorithm

1: A dual feasible solution π and a primal feasible subproblem are given.
2: Solve the subproblem and let ρ be a dual optimal solution and x a primal optimal
solution.

3: If bπ = cx, then (x,π) are optimal solutions. If ρ is dual feasible, then (x, ρ) are
optimal solutions.

4: Find an α ∈ Q, 0 < α < 1 such that (1−α)π+αρ is dual feasible and α is maximum.
Set π = (1− α)π + αρ.

5: Remove all the columns from the subproblem except the basic ones. Add a set of
columns with the lowest reduced costs rcπj to form a new subproblem.

6: Go to step 2.

arising from the subproblems and the current dual feasible solution. This can be seen
as a natural way of parallelizing the primal-dual algorithm since each successive π is a
convex combination of the initial π and all previous ρs.
Suppose we have p processors and each column of A is assigned with equal probability

to a processor. A detailed description of the parallel primal-dual algorithm 2 follows.

Algorithm 2 The Parallel Primal-Dual Algorithm

1: A dual feasible solution π and p primal feasible subproblems Pi, i = 1, . . . , p are
given.

2: for i = 1 to p in parallel do
3: Solve the subproblem Pi and let ρi be a dual optimal solution and xi a primal

optimal solution.
4: If bπ = cxi, then (xi,π) are optimal solutions.
5: end for
6: Find α ∈ Qp+,

Pp
i=1 αi ≤ 1 such that

eπ = (1− pX
i=1

αi)π +

pX
i=1

αiρi (1)

is dual feasible and beπ is maximum. Set π = eπ.
7: If bπ = cxi for some i, then (xi,π) are optimal solutions.
8: for i = 1 to p in parallel do
9: Remove all the columns from the subproblem Pi except the basic columns. Using

π and controlled randomization append new columns to Pi.
10: end for
11: Go to step 3.

The details for steps 1,6 and 9 are given below.

3

Forming Initial Subproblems (Step 1)

Since it is expensive to compute the reduced costs of a large number of columns, unless
the initial dual solution π is thought to be ‘good’, we choose columns for the initial
subproblems randomly. We add artificial variables with big costs to each subproblem to
make them primal feasible. Once an artificial variable becomes nonbasic, we remove it
permanently from the subproblem (step 3, or step 9 if the internal functionalities of the
linear programming solver are not available).
On the other hand, if the initial π is thought to be ‘good’, then the controlled ran-

domization procedure (step 9) described below is applied.

Combining Dual Solutions (Step 6)

In step 6 we find a convex combination of vectors π, ρ1, . . . , ρp that yields a dual feasible
vector and gives the largest increase in the dual objective value. Let v = bπ and vi =
bρi, i = 1, . . . , p. Note that vi ≥ v for all i by weak duality. The dual feasibility
constraints

(1−
pX
i=1

αi)πA+

pX
i=1

αiρiA ≤ c

can be rewritten as
pX
i=1

αi(rc
π − rcρi) ≤ rcπ .

Hence α can be obtained by solving the LP

max

pX
i=1

αi(vi − v)
pX
i=1

αi(rc
π − rcρi) ≤ rcπ (2)

pX
i=1

αi ≤ 1

α ≥ 0 .

This is an LP with p variables and n+ 1 constraints, where p is very small and n is
very large. Its dual is

min z +

nX
j=1

rcπj yj

z +
nX
j=1

(rcπj − rcρij)yj ≥ vi − v, i = 1, . . . , p (3)

z ≥ 0, y1, . . . , yn ≥ 0 .

4

We solve (3) with a SPRINT approach due to Forrest, see Anbil, Johnson and Tanga
(1992) and Bixby et al. (1992). We start with a subproblem consisting of the z column
and some randomly chosen y columns. Then we iterate the following steps. Let α be
an optimal dual vector. Delete all the columns from the subproblem except the basic
columns and the z column. Add to the current subproblem a subset of columns of (3)
with the smallest reduced cost based on α, and then solve it. If all the columns have
nonnegative reduced cost, then the solution is optimal.
If we compute reduced costs for (3) directly from the constraints in (2), then for a

single column we would have to compute p reduced costs for a column in P, one for each
ρi, and then compute their sum weighted with the dual vector α of (3). Instead we can
compute the reduced cost rcj more efficiently by rewriting

rcj = rc
π
j −

pX
i=1

αi(rc
π
j − rcρij)

= cj −
mX
k=1

((1−
pX
i=1

αi)πk +

pX
i=1

αiρ
i
k)akj

= cj − eαAj = rcαj ,
where eα ∈ Qm with eαk = (1 −Pp

i=1 αi)πk +
Pp

i=1 αiρ
i
k, k = 1 . . . ,m. Hence at each

iteration of SPRINT, before forming the new subproblem, we first compute eα and then
the pricing for (3) is equivalent to the pricing for P with respect to eα.
We now show that the stopping criteria in step 7 is also implied by the dual feasibility

of the ρs. Note that the dual feasibility check could be also done after step 5 but that
would be very costly to perform because of the huge number of columns.

Proposition 1. If
Pp
j=1 αj = 1 in an optimal solution to (2) , then there is an i such

that bπ = cxi. If ρi is dual feasible, then bπ = cxi.

Proof. Let v = bπ and vj = cxj . Assume that
Pp

j=1 αj = 1. Then by duality and (1)

v =
Pp

j=1 αjvj and hence
Pp

j=1 αj(vj − v) = 0. Since vj − v ≥ 0 by weak duality and
αj ≥ 0, it follows that αj(vj − v) = 0 for all j. Since there is an i such that αi > 0,
v = vi.
If ρi is dual feasible, then αi = 1 and αj = 0 for all j 6= i is feasible to (2) and optimal

by weak duality. Hence v = vi.

Choosing Columns for the Subproblems (Step 9)

In addition to needing columns with low reduced cost, it is important that subproblems
receive a representative sample of columns from the original problem. This is achieved
by a controlled randomization process based on the current dual solution.
The following parameters are used in assigning columns.

nSub: the expected number of columns given to a subproblem (this is determined em-
pirically);

nSubLow: the number of common low reduced cost columns given to each subproblem
in Case 1 below (to be discussed later in the section);

5

nSub0: the number of columns j with rcπj = 0;

minRC: if nSub0 < nSubLow, then minRC > 0 is a number such that the number of
columns with reduced cost less than minRC is nSubLow;

maxRC: if rcπj > maxRC, then column j is not considered as a candidate for a sub-
problem;

nSubHigh: the number of columns j with rcπj ≤ maxRC.
To compute maxRC, first note that we need p · nSub columns. Also we know that

there are nSubLow columns with reduced cost below minRC. Thus assuming at the
first iteration that the columns have been uniformly distributed among the processors,
we have

maxRC =
p ·minRC · nSub

nSubLow
.

We compute nSubHigh only at the first iteration. In subsequent iterations we retain the
value of nSubHigh and adjust maxRC accordingly.
We consider 3 cases.

Case 1) nSub0 < nSubLow

All columns j with rcπj < minRC are given to each subproblem. Every column j
with minRC ≤ rcπj ≤ maxRC is a candidate for a subproblem. We select columns using
the idea that the lower reduced cost columns should have a higher probability of being
selected.

Let pj be the probability that a column j from the initial constraint matrix A is
added to subproblem i. Since there is no reason to distinguish between subproblems,
the probability does not depend on the subproblem index i. Clearly pj should be a
nonincreasing function of the reduced cost rcπj and

nX
j=1

minRC≤rcπj≤maxRC

pj = nSub− nSubLow .

In order to emphasize the reduced cost we choose the rapidly decreasing function
exp(−τx2) . The value τ is determined by

f(τ) =

nX
j=1

minRC≤rcπj≤maxRC

exp(−τ (rcπj)2) = nSub− nSubLow . (4)

Because n is so large, it is too expensive to evaluate f(τ) or its derivative. Instead we
approximate the value of τ using a ‘bucket’ approach.

Let N be the number of buckets (we use N = 100¿ n). For j = 0, . . . , N − 1 define
the jth bucket to contain columns

Sj = {i : j · a ≤ rcπi −minRC ≤ (j + 1) · a} ,

6

where a = maxRC−minRC
N

. Let bj = |Sj | and Rj =
P

i∈Sj rc
π
i /bj , the average reduced

cost of the jth bucket. Let ef(τ) =PN−1
j=0 bj exp(−τR2j) and let τ∗ be the solution to the

equation ef(τ∗) = nSub − nSubLow. It is easy to derive bounds
ln(

N−1
j=0 bj

nSub−nSubLow)
minRC2

≤ τ∗ ≤ ln(
N−1
j=0 bj

nSub−nSubLow)
maxRC2

. (5)

The function ef is continuously differentiable and decreasing in the interval given by (5).
If we use Newton’s method with a starting point in the interval given by (5), the method

converges to the solution of the equation ef(τ∗) = nSub − nSubLow (see e.g. Bertsekas
(1995)). Newton’s method is fast for small values of N and the optimal value τ∗ is a
good approximation to the solution of (4).

Case 2) nSub0 ≥ nSubLow,nSub0 ≤ k · nSub, where k < 1 is a parameter (we
use k = 1

3).

Replace nSubLow by nSub0 and apply the procedure of Case 1.

Case 3) nSub0 > max(nSubLow,k · nSub)
Since there are so many columns with rcπj = 0, we assign them randomly to the

subproblems. Empirically, we obtained good results if the expected number of columns
given to each subproblem is nSub

r where

r = max{1, nSubHigh
nSub0

,
nSub02

nSubLow · nSub} .

The remaining columns are assigned by controlled randomization as in Case 1.

Pricing Heuristic

It remains to be shown how to efficiently find a reduced cost value such that the number
of columns with the reduced cost smaller than that value is a given number k. This
is required in both step 9 and the SPRINT algorithm used to solve (3). Using sorting
terminology, we want to find a rank k element among reduced cost values. Since for our
applications we have only an estimate of k, we want to find a reduced cost value that
yields approximately k columns.
Other approaches are considered in Anbil, Johnson and Tanga (1992), Hu (1996) and

Bixby et al. (1992). Bader and JaJa (1996) describe an algorithm for finding a median
in parallel, but it is likely to be too slow for our needs since it is targeted to find exactly
the rank k element.
Our approach relies on distributing the columns randomly. Assume that Si is the set

of reduced cost values at processor i. For simplicity of notation let dj be the reduced

cost of column j (instead of rc
(.)
j), i.e. Si = {d1, . . . , dni}. Our goal is to find the kth

smallest element in ∪pi=1Si. For our applications k is always much smaller than ni.
The following intuitive observation plays a key role. Let dmi be an element with

rank r = bk
pc in the sequence Si and let d = mini=1,... ,p{dmi}. Let m be the number

7

of elements in ∪pi=1Si that are smaller than d. Since the numbers di are randomly
distributed, m should be approximately p · r ≈ k. It is clear that m ≤ p · r. Experiments
have shown the validity of the claim. Klabjan (1999) gives some theoretical support by
proving that r(p− 1) ≤ m as ni →∞ for all i and k →∞.
So the task reduces to finding an element with rank r in Si. Even here we do not

sort the array Si due to the possible large value of ni. Any exact sequential median
finding algorithm is likely to be too slow and too ‘exact’ since we are looking only for an
approximation of a rank r element. Since k is typically a small number, so is r.
For simplicity we write n, S instead of ni, Si. Let s and r̃, r̃ ≤ s, be two integers.

Suppose that we choose s elements uniformly at random from S and we denote them asbS. Let d̃ be the element with rank r̃ in bS. The following theorem forms the basis for our
heuristic.

Theorem 1 (Klabjan (1999)). If all elements in S are different, then

E = E(|{di : di ≤ d̃}|) = r̃(n+ 1)

s+ 1
.

Since we want the sample size s to be as small as possible, we choose r̃ = 1. Hence
s = dn/re. For our instances n ranged in millions and r was always bigger than 500. For
example, if r = 500 and n = 2 · 106, the sampling size is 40,000.
Note that in step 9 of the parallel primal-dual algorithm, we have to find elements of

rank nSubLow and nSubHigh. We need to obtain samples just once since we can use
them for both computations.

3.2 Finite Convergence

We prove the convergence of the algorithm under the assumption of primal nondegener-
acy.

Theorem 2. If problem P is primal nondegenerate and at each iteration all the 0 reduced
cost columns based on π are added to each subproblem, then the parallel primal-dual
algorithm terminates finitely.

Proof. Suppose the algorithm is in the kth major iteration after step 7. Denote by vki
the optimal value of subproblem i. Consider the LP (2) and its dual, and let (α; z, y)
be optimal solutions. Since the stopping criteria in steps 4 and 7 are not satisfied, by
Proposition 1,

Pp
i=1 αi < 1 and v = bπ < v

k
i for all i = 1, . . . , p.

Suppose that α = 0. Since v < vki , this is the only feasible solution to (2). Therefore
conv{π, ρ1, . . . , ρp} is the singleton π, implying that π = ρi for all i = 1, . . . , p. Since
ρ1 = π is dual feasible and by Proposition 1, the stopping criteria in step 7 is fulfilled,
there is a contradiction. Thus α 6= 0 and the optimal value to (3) is positive.
Since

Pp
i=1 αi < 1, by complementary slackness z = 0. The optimal value to (3)

is positive and hence
Pn

j=1 rc
π
j yj > 0. Since rcπj yj ≥ 0 for all j = 1, . . . , n, there is

an index j0, 1 ≤ j0 ≤ n such that yj0 > 0 and rcπj0 > 0. By complementary slacknessPp
i=1 αi(rc

π
j0
− rcρij0) = rcπj0 . Since

Pp
i=1 αi < 1 and rc

π
j0
> 0, it easily follows that there

is an index i0, 1 ≤ i0 ≤ p such that rcρi0j0 < 0.

8

Consider now the column j0 of P. Since in (2) the row j0 is at equality, it follows
that rcπj0 = 0. By assumption the column is appended to each subproblem, hence to the

subproblem i0. By the nondegeneracy assumption it follows that v
k+1
i0

< vki0 .

Consider ok =
Pp

i=1 v
k
i . Since v

k
i ≥ vk+1i for all i = 1, . . . , p and vki0 > v

k+1
i0

, it follows
that ok > ok+1 for all k. Since there are only finitely many subproblems, the number
of different values of vki for all i = 1, . . . , p and k is finite. The claim now follows due
to the finite number of different values in the o sequence and the monotonicity property
ok > ok+1.

Note that the dual objective value increases at each iteration regardless of degeneracy,
however the finiteness argument does not follow from the nondegeneracy assumption.

4 Computational Experiments

4.1 Computing Environment

All computational experiments were performed on a cluster of machines comprised of 48
300MHz Intel Dual Pentium IIs, resulting in 96 processors available for parallel program
execution. All machines are linked via 100 MB point-to-point Ethernet switched via a
Cisco 5500 network switch. Each node has 512MBytes of main memory.
The operating system used was Sun Solaris x86, version 2.5.1, which offers facilities

for parallel computing like remote shell (rsh commands), global file system support via
NFS, and parallel computing libraries like MPI or PVM. The cluster is representative
of typical machines of this type, in its relatively slow internode communications and its
good cost/performance ratio vs. specialized parallel machines like the CM-5, the Intel
Paragon, or the IBM SP-2 machines.
The parallel implementation uses the MPI message passing interface MPI, MPICH

implementation version 1.0, developed at Argonne National Labs. The MPI message
passing standard is widely used in the parallel computing community. It offers facilities
for creating parallel programs to run across cluster machines and for exchanging infor-
mation between processes using message passing procedures like broadcast, send, receive
and others.
The linear programming solver used was CPLEX, CPLEX Optimization (1997), ver-

sion 5.0.

4.2 Problem Instances

The instances are listed in Table 1. The set partitioning instances sp1, sp2, and sp3
are airline crew scheduling problems (see e.g. Klabjan (1999)). All of these instances
may contain some duplicate columns but, because of the method of generation, no more
than approximately 5% of the columns are duplicates. For this reason we do not remove
duplicate columns.
The remaining 2 instances also are from Klabjan (1999). The problems have a sub-

stantial set partitioning portion. They occured in a new approach to solving the airline
crew scheduling problem. The pr2 problem is particularly hard due to the high number
of rows and primal degeneracy.

9

Problem Name Number of Rows Number of Columns
pr1 10677 17,045,897
pr2 13048 9,234,109
sp1 449 42,134,546
sp2 1742 45,952,785
sp3 3143 46,546,240

Table 1: Problem statistics

All instances have on average 10 nonzeros per column.

4.3 Implementation and Parameters

Because some problems are highly primal degenerate, the primal LP solver struggles to
make progress. Therefore we globally perturb the right hand side and then we gradually
decrease the perturbation. Precisely, we perturb a row Aix = bi of P to a ranged row
bi − ²1 ≤ Aix ≤ bi + ²2, where ²1, ²2 are small random numbers. There is no reason to
find an optimal solution to the perturbed problem, so we apply the parallel primal-dual
method until

mini=1,... ,p{vi}− v
mini=1,... ,p{vi} > gap ,

where gap is a constant. The gap is checked at step 7 of the algorithm. If gap is below
gap, then the perturbation is reduced by a factor of 2, i.e. each ²1, ²2 becomes

61
2 ,

62
2 .

Once all of the epsilons drop below 10−6, the perturbation is removed entirely. For our
experiments we set gap = 0.03.
For set partitioning problems a starting dual feasible vector is π = 0 if all the cost

coefficients are nonnegative. However there are many columns with 0 cost resulting in
many columns with 0 reduced cost. Hence we perturb π by componentwise subtracting
a small random number. This decreases the initial dual objective but the new π is not
‘jammed’ in a corner. For instances pr1 and pr2 we use the same idea, however π needs
to be changed to accommodate the extra rows and variables (see Klabjan (1999)).
At the first iteration we do not usually have a warm start and we found that the

dual simplex is much faster than the primal simplex. However, a warm start is available
at each successive iteration since we keep the optimal basis from the previous iteration.
Hence the primal simplex is applied.
Next we discuss the parameters nSub and nSubLow. Empirically we found that

nSubLow = nSub
2.5 works best. We use this relationship in all of our experiments. Table

2 gives nSub for the parallel primal-dual algorithm and the number of columns used in
the sequential version of the code. In each case the parameters have been determined
empirically to be the subproblem sizes that have given the best result. They will be
discussed further in Section 4.4.
Finally, we observed empirically that for some instances (sp1 and sp2) and at certain

iterations the algorithm spends too much time solving subproblems. So we impose an
upper bound of 30 minutes on the execution time of subproblems. This improves the

10

Problem Subproblem Subproblem
Name Size (nSub) Size, Seq.
pr1 17,500 30,000
pr2 12,500 30,000
sp1 10,000 10,000
sp2 10,000 35,000
sp3 5,000 10,000

Table 2: Subproblem sizes

overall execution time. Note that quitting the optimization before reaching the optimality
of subproblems does not affect the correctness of the algorithm.
We start SPRINT for solving (3) with 40,000 random columns and in each successive

iteration we append 50,000 best reduced cost columns. Typically 3 iterations of SPRINT
are required, the third one just confirming optimality. The execution time never exceeded
1 minute.

4.4 Results

Due to the large number of columns and a main memory of 512MBytes, we were not able
to solve any problem on a single machine. We implemented a variant of the sequential
primal-dual algorithm in which the columns are distributed across the machines. Only
the pricing is carried out in parallel. We call it the primal-dual algorithm with parallel
pricing. In essence, a true sequential primal-dual algorithm would differ only in pricing
all the columns sequentially. Based on the assumption that pricing is a linear time task
(which is the case for our pricing procedure), we estimated the execution times of a true
sequential primal-dual implementation.
The gain of the parallelization of the primal-dual algorithm is twofold; one is the

parallel pricing strategy, and the second is having multiple subproblems. The first one is
addressed by the primal-dual algorithm with parallel pricing. We give the speedups in
Table 3. As we can see the parallel pricing heuristic has a big impact when the overall
execution time is small and the number of columns is big, i.e. the sp1 problem. For the
remaining problems the parallel pricing does not have a dominant effect.
Computational results using the parameters from Table 2 are presented in Table 4.

The parallelization gain of having multiple subproblems is significant for problems with
a large number of rows and relatively small number of columns, i.e. the pr1 and pr2
problems. The speedup is relatively high for a small number of processors, up to 8, and
vanishes at 20 processors.
So our main conclusion is that the speedups are significant when the number of

processors is between 4 and 12. The execution times can be improved even further
by using a pure shared memory machine. On average the communication time was
45 seconds per iteration. A shared memory computing model would definitely lead to
improvements for the sp1 problem. Additional improvement in the execution time of the
sp1 problem might result by allowing π to be ‘slightly’ infeasible. When solving LP (3),
we could perform just two SPRINT iterations and then quit without proving optimality.

11

Problem Number of Execution
Name Processors Time (secs.)

pr1 1 19,200
8 17,140

pr2 1 81,000
8 76,860

sp1 1 3,000
8 1,100

sp2 1 24,000
8 10,320

sp3 1 62,460
8 50,160

Table 3: Effect of parallel pricing

Problem Number of Execution Number of
Name Processors Speedup Time (secs.) Iterations

pr1 1 1.00 19,200 44
6 1.77 10,800 37
9 2.09 9,180 30
12 2.05 9,360 29

pr2 1 1.00 81,000 89
4 1.74 46,500 87
8 2.05 39,420 73
12 2.13 37,860 72
16 2.23 36,300 68
20 2.17 37,260 67

sp1 1 1.00 3,000 11
8 3.33 900 8
12 4.16 720 7
16 4.19 715 7

sp2 1 1.00 24,000 70
12 3.22 7,440 25
16 4.00 6,000 23
20 3.41 7,020 21

sp3 1 1.00 62,460 62
12 2.30 27,120 57
16 2.50 24,960 53
20 2.51 24,840 50

Table 4: Computational results

12

A breakdown of execution times is shown in Table 5. For the harder problems (pr1,
pr2 and sp3) more than 70% of the time is spent in solving the subproblems, however
for the sp1 problem only 17% of the time is spent on subproblem solving. A better
communication network would improve the times for step 9, but for the harder problems
it would not have a significant impact.

Problem Total Step 3 Steps 6,7 Step 9
Name Time Time Time Time
pr1 9360 5183 2727 1150
pr2 37860 32689 3166 1005
sp1 720 127 190 251
sp2 7440 3823 689 1700
sp3 27120 19425 1887 3420

Table 5: The breakdown of execution times on 12 processors

Although we use the same subproblem size regardless of the number of processors in
our experiments reported in Table 4, the subproblem size should depend on the number
of processors. The smaller the number of processors, the bigger the subproblem size
should be. For a large number of processors, solving many small subproblems is better
than spending time on solving larger subproblems. For the pr1 problem the optimal
subproblem sizes are 30,000, 25,000, 17,500 for p = 6, 9, 12, respectively.
We would like to point out that there are no major synchronization requirements for

subproblem solutions. The execution times of subproblems differ by a small amount, the
average being 15 seconds. When the execution time for a subproblem reached the upper
time limit, all the subproblems achieved the time limit. This fact is not surprising since
the structure of the subproblems is the same.
The largest problem we have solved so far has 30 million columns and 25,000 rows,

Klabjan (1999). The execution time on 12 processors was 30 hours.
There are several open questions regarding an efficient implementation of a parallel

primal-dual simplex algorithm. Subproblem size is a key question and the development
of an adaptive strategy could lead to substantial improvements. To make subproblems
even more different, columns with negative reduced cost based on ρi can be added to the
subproblems. We made an initial attempt in this direction but more experimentation
needs to be done.

5 Acknowledgments

This work was supported by NSF grant DMI-9700285 and United Airlines, who also
provided data for the computational experiments. Intel Corporation funded the paral-
lel computing environment and ILOG provided the linear programming solver used in
computational experiments.

13

References

Ahuja, R., Magnanti, T. and Orlin, J. 1993. Network Flows. Prentice Hall.

Anbil, R., Johnson, E. and Tanga, R. 1992. A Global Approach to Crew Pairing
Optimization. IBM Systems Journal , 31, 71—78.

Bader, D. and JaJa, J. 1996. Practical Parallel Algorithms for Dynamic Data Re-
distribution, Median Finding, and Selection, 10th International Parallel Processing
Symposium.

Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M. and Vance, P.
1998. Branch-and-Price: Column Generation for Solving Huge Integer Programs.
Operations Research, 46, 316—329.

Bertsekas, D. 1995. Nonlinear Programming, Athena Scientific, 79—90.

Bixby, R., Gregory, J., Lustig, I., Marsten, R. and Shanno, D. 1992. Very
Large-scale Linear Programming: A Case Study in Combining Interior Point and
Simplex Methods. Operations Research, 40, 885—897.

Bixby, R. and Martin, A. 1995. Parallelizing the Dual Simplex Method, Technical
Report CRPC-TR95706, Rice University.

CPLEX Optimization 1997. Using the CPLEX Callable Library, 5.0 edn, ILOG Inc.

Dantzig, G., Ford, L. and Fulkerson, D. 1956. A Primal-dual Algorithm for Linear
Programs. In Linear Inequalities and Related Systems. H. Kuhn and A. Tucker
(editors). Princeton University Press, 171—181.

Edmonds, J. 1965. Maximum Matching and a Polyhedron with 0-1 Vertices. Journal
of Research of the National Bureau of Standards , 69B, 125—130.

Hu, J. 1996. Solving Linear Programs Using Primal-dual Subproblem Simplex Method
and Quasi-explicit Matrices. Ph.D. Dissertation, Georgia Institute of Technology.

Hu, J. and Johnson, E. 1999. Computational Results with a Primal-dual Subproblem
Simplex Method. Operations Research Letters , 25, 149—158.

Klabjan, D. 1999. Topics in Airline Crew Scheduling and Large Scale Optimization.
Ph.D. Dissertation, Georgia Institute of Technology.

14

