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Abstract

E-commerce is growing rapidly and sales of digital goods represent a substantial

portion of all online sales. Several goods such as music and books are now available in

a physical and digital format. In a single-period case we compare pricing of digital vs.

physical goods and derive an optimal pricing strategy for digital goods in both a general

setting without a capacity constraint and a capacity constrained setting. We show that

the optimal price for digital goods is usually lower in comparison with physical goods.

We also investigate the optimal pricing problem for digital goods under externality in a

multi-period case. We demonstrate that the optimal prices are decreasing over time. A

relationship between optimal prices in the single- and multi-period cases is established.
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1 Introduction

Firms have traditionally provided standard products in a physical format, but are now ac-

tively pursuing digital options. We are in the midst of an atoms-to-bits shift. The market

shift from physical to digital goods is described by a causal pattern of the progress in opera-

tions management in Geoffrion (2002). The advance of technology is the initial momentum,

business practice follows and academic research is required. We are now in the stage of

flourishing market practices. An increasing number of customers began shopping online for

digital goods. For several goods there exist two different formats, e.g., music, magazines

and photography. As an example, music can be released and sold to consumers in the form

of either physical albums or digital downloads. In our context, we always refer to physical

and digital goods of the same product. Digital goods are differentiated from physical goods

in several dimensions. They are expensive to produce but cheap to reproduce, since the

unit cost of reproduction is negligible and virtually zero. Digital goods can be consumed

simultaneously by more than one user.

In the context of digital music, it is costly for artists and record labels to produce new

tracks. However, it is very cheap to distribute to mass customers after the production of

the first copy. The sales of physical CDs were still in general the main channel of sales in

year 2010. Music CD retailers have gone online to sell music CDs via internet. They have

aligned pricing and operations strategies to optimize their markups. They can improve sales

by optimizing service quality and product attributes, Rabinovich et al. (2008). However,

the advent of music downloads has increased the competition among internet CD retailers

and the total sales of physical CDs have decreased. The introduction of iTunes provided a

spurt of online music sales. Contrary to the rapid decline of sales of physical CDs, digital

downloads enjoyed a continuous increase during past years, Sisario (2011). Digital music

revenue was 4.6 billion in 2010, up 6 percent from the year before. In 2009, it grew 12

percent from the year before, and in 2008 it was up 25 percent. According to a Nielsen

and Billboard report, digital music purchases accounted for 50.3% of music sales in 2011,
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Segall (2012). For the first time in history, digital music sales topped the physical sales of

music. The British Phonographic Industry (BPI) reveals that digital music accounted for

55.5% of total music sales in the first quarter of 2012, Sweney (2012). The fast growing

digital music market caught a lot of attention from both providers and consumers and led to

different pricing models. Recently, Spotify started offering a subscription based service for

digital music. When iTunes first launched, the pricing strategy mimicked the physical goods

fixed pricing strategy except that it was by song. Now that the digital market has matured

and there are multiple compelling offerings, more pricing flexibility is available (iTunes has

a multi-tier pricing strategy).

Many magazine publishers have joined the digital world after the introduction of the

iPad by providing digital content. A recent app Next Issue started offering digital magazine

subscription on the all-you-can-eat basis. A March 2010 study by the Boston Consulting

Group (2010) lists that consumers in the United States are willing to pay $2 to $4 for a single

issue of an online magazine that costs $5 in print. Customers perceive that the selling price

of an issue of a digital magazine should be further lowered because of the cheaper supply

cost and easy replication. It is now the time to consider how customers value digital goods

and how to price digital goods accordingly.

The main goal of this work is comparing the optimal price between physical and digital

distributions of the same goods from the seller’s perspective in various settings. In a general

single-period setting without any capacity constraints there exists an optimal price for digital

goods that is lower than an optimal price for physical goods. Under mild conditions the same

property also holds when considering a maximum order quantity for the physical goods. We

further extend the result to the multi-period setting by showing that the optimal prices are

ordered in each period. For digital goods that can be easily shared by many consumers, we

consider externality as part of the pricing strategy. Externality is the effect influenced by

other consumers who own the same goods. For example, in digital photography, the more

copies of a photography are in circulation the less valuable each copy is. Another paramount
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result is an optimal pricing strategy for digital goods under externality. We use pure linear

externality and incorporate it into the cumulative distribution function of the customer’s

reserve price.

We focus on the difference between pricing strategies of physical and digital goods. Pric-

ing of both physical and digital goods have already been studied, but most studies do not

compare pricing of the two formats of the same goods. We fill this gap by investigating the

pricing strategy for physical and digital goods at the same time. A major contribution of

this paper is the derivation of the pricing strategy by using distinct features of digital goods.

We are able to show that the optimal price for digital goods is generally lower. Another con-

tribution of this work is modeling externality in the context of optimal pricing. We show the

structure of optimal prices for digital goods under externality. In the multi-period setting of

pricing digital goods under externality, a novelty of our dynamic program (DP) is that the

customer’s reserve price changes in time, i.e., it depends on the number of customers who

previously bought the goods. A common theme in the pricing literature is the exploration of

the relationship between the demand and pricing decision. We do not assume any aggregated

demand and instead start from the perspective of an individual customer with a reserve price

distribution. In our setting, each consumer is treated individually from a finite population

set. We develop a general Bernoulli-based demand model, in which the aggregated demand

follows the binomial distribution.

The paper is structured as follows. In Section 2, we compare the optimal pricing strat-

egy for both digital and physical goods in different settings. In particular, we distinguish

two cases: purchase-to-order and purchase-to-stock. We explore the pricing strategy for

digital goods under externality in the multi-period setting in Section 3. We conclude the

introduction by a brief literature review and a review of the newsvendor model.
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1.1 Literature review

A building block of this work is the optimal pricing model in a single-period setting. The

standard inventory problem in a single-period setting is well studied and referred to as the

newsvendor model. Porteus (2002) provides an excellent review of the newsvendor model.

In general, a decision maker in the newsvendor setting faces a stochastic demand and needs

to determine an optimal order quantity while the price is exogenous and fixed. In retail and

manufacturing, it is necessary and essential to take production and distribution decisions

into account, Dana & Petruzzi (2001) and Cachon & Kok (2007). We combine pricing with

production and distribution decisions of physical goods and further provide a comparison

with the optimal pricing strategy of digital goods. With the advance of information tech-

nology, innovative pricing strategies, e.g., dynamic pricing, are employed by retailers and

manufactures to learn the customer demand and reduce demand variability, e.g., Mattioli

(2012). We apply the dynamic pricing technique to digital goods under externality in the

multi-period setting and exhibit the structure of optimal prices.

An emerging topic in the pricing literature is the pricing of digital goods. The pricing

strategy for digital goods needs to be re-evaluated due to their unique cost structure based

on the large set-up cost and negligible marginal cost. For example, the traditional strategy

of pricing by the marginal cost is no longer applicable because of the negligible marginal

cost of digital goods. Digital goods are often priced by discrimination, e.g., versioning and

bundling. Varian (2000) shows different pricing strategies for digital goods and demonstrates

when a strategy is better than another. Sundararajan (2004) shows the power of the mixed

strategy of fixed-fee and usage-based pricing in digital goods. For selling a large variety of

digital goods, bundling is often a good strategy. Bakos & Brynjolfsson (1999) investigate

the profits of a bundling strategy applied to a large variety of digital goods. We focus on

the differences of pricing strategies between digital and physical goods. To the best of our

knowledge this is the first paper comparing the pricing strategies of digital vs. physical

goods.
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Externality becomes an important factor in pricing when sharing of digital goods is pos-

sible. Schmitz (2002) shows the optimal licensing strategy for sharable goods. It is clear that

licensing exhibits externalities. The classical newsvendor pricing model determines jointly

the price and order quantity. However, existence of externality complicates the demand-price

relationship. For example, in a two-sided market the value of the product on the one side is

correlated to the number of users on the other side, Chou et al. (2012). This is called indirect

network externality. Thus, we incorporate externality into the optimal pricing strategy in

our work.

Externality is similar to the snob effect in pricing. Snobbish consumers care about not

only the functional effect of the product but also the social effect. They prefer exclusiveness.

Leibenstein (1950) first introduces the snob effect and studies its impact on demand and

price in a single-period setting. We differ by addressing the multi-period pricing problem

under externality. Rodriguez & Locay (2002) model heterogeneity in consumer valuation.

In their context, consumers are homogeneous and their appreciation for the same product is

stationary, i.e., the reserve price does not change over time. A consumer’s utility depends

upon his appreciation of the product, and the number of consumers that have bought the

product at the moment of the purchase. Both papers assume that consumers’ valuations

remain the same over time periods. However, in our work we update the distribution of

the reserve price in each time period. Amaldoss & Jain (2005) analyze the impact of the

snobbish consumer behavior on purchasing decisions and establish an equilibrium price in a

one-period setting. They assume that the consumers are heterogeneous, i.e., there are two

segments of consumers consisting of snobs and conformists. We assume the consumers are

homogeneous and study the externality in pricing in both single- and multi-period settings.

1.2 Review of the newsvendor problem

In the newsvendor setting, the retail price is fixed and exogenous, and the firm has to choose

a quantity to produce or order. Let us assume that the physical good is sold at unit price
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p and unit cost wp in the newsvendor (i.e. purchase-to-stock) setting. The demand for the

good is normally distributed with mean µ and standard deviation σ. For simplicity, let us

assume that the salvage price is zero. We denote by φ and Φ the density and cumulative

distribution functions of the normal distribution, respectively. The optimal expected profit

is πP = (p − wp)µ − pφ(z∗)σ. It is well known that the optimal order quantity is given by

Q∗ = µ+ σz∗, where z∗ = Φ−1
(
p−wp
p

)
.

2 Pricing of digital vs. physical goods

We discussed the difference between digital and physical goods of the same product in

the introduction. We compare pricing of physical and digital goods in this section. The

physical good is assumed to be the good currently prevailing in the market and the fixed

cost associated with the physical good is a sunk cost. The digital counterpart is a new

entrant. There is a fixed cost of cd for preparing the digital good. For example, physical

music albums have been the main stream for quite some time. When digital downloads

were introduced to compete with CDs, there was the cost of preparing the digital format

(converting to digital, preparing iTunes, etc). To formalize this, we assume that the unit

replenishment cost of a digital good is wd where wd < wp. Recall that wp is the unit

replenishment cost of the physical good. The replenishment of Q > 0 units generates a total

cost of TCd(Q) = wd ·Q+cd for the digital good while the corresponding cost for the physical

good is TCP (Q) = wp ·Q.

Let us first assume that there is a finite population of N buyers. We consider two pricing

scenarios: physical and digital goods. The customers have random reserve prices R with a

known distribution F , which is either continuous or discrete. We denote F̄ (·) = 1−F (·). In

the discrete case, we assume P (R = ai) = fi, where 0 < a1 < a2 < · · · < an < ∞, fi > 0

and
∑n

i=1 fi = 1. We assume a positive density function f on a bounded domain [p, p̄] and

an increasing hazard rate for the reserve price distribution if F is a continuous distribution.
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A purchase takes place if the offered price p is lower than or equal to the reserve price of

the customer, i.e., with probability P (R ≥ p). In reality, the reserve price distributions

of digital and physical goods are distinct. For instance, a customer who likes a particular

song may prefer the digital format over the physical CD format because s/he could buy the

individual song in the digital format rather than the entire album in the CD format. We

however assume that the distributions of the reserve price for both the physical product and

the digital counterpart are the same in order to compare the optimal prices.

We model pricing of digital and physical products in two cases: purchase-to-order and

purchase-to-stock. In the case of purchase-to-order, the firm who owns the physical and

digital goods is a monopolist, and it has no capacity constraints. In other words, the firm is

completely flexible in satisfying customers given that their reserve prices are higher than the

selling price. We refer to this case which does not take the inventory decision into account

as the general pricing scenario. The objective of the firm is to maximize the expected profit

functions πd and πp from selling to N buyers. We consider both single- and two-period

problems. In the single-period setting, the profit functions are

πd(p1) = N(p1 − wd)P (R ≥ p1)− cd

for the digital good and

πp(p1) = N(p1 − wp)P (R ≥ p1)

for the physical good. In the two-period environment, they are

πd(p1, p2) = N [(p1 − wd)P (R ≥ p1) + (p2 − wd)P (p2 ≤ R < p1)]− cd

and

πp(p1, p2) = N [(p1 − wp)P (R ≥ p1) + (p2 − wp)P (p2 ≤ R < p1)],

respectively. We show that there always exist a pair of optimal prices in each period and
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each setting such that the optimal price for selling the physical goods is greater than or equal

to the optimal price for the digital good.

In the case of purchase-to-stock, the firm requires to decide both the order quantity Q

and the retail price p to optimize its profit. The individual demand is q = P (R > p) = F̄ (p).

It implies that given retail price p and reserve price distribution F , the aggregated demand

D follows the binomial distribution with parameters N and q, i.e., D ∼ BIN(N, q). We

use G to represent the cumulative distribution function of D. In addition, we assume that

all customers are myopic. They immediately buy the product as long as the reserve price

is higher than the selling price. Note that if N is sufficiently large and p is small at the

same time, the binomial distribution can be approximated by the normal distribution. In

this case, the profit function πd for the digital good remains the same. However, the profit

function πp for the physical good differs and it reads

πp(p,Q)

= N · p · P (an item is available to the customer) · P (the customer makes a purchase)

− supply cost

= Np
p− wp
p

F̄ (p)− wpQ

= N(p− wp)F̄ (p)− wpQ.

2.1 Purchase-to-order mode

In this section we compare pricing of physical and digital goods in both single- and two-period

settings.

Proposition 1. In the single-period environment, there are optimal prices pd1 and pp1 asso-

ciated with digital goods and physical goods, respectively such that pd1 < pp1.

Proof. We distinguish two cases: discrete and continuous reserve price distributions. We

show the proof in the continuous case here and defer the proof in the discrete case to
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Appendix. Let R be continuous and thus by assumption the reserve price distribution F has

a strictly positive density function, f(·) > 0 for all [p, p̄]. Consider the two profit functions

πd and πp. Let us denote by pp1 and pd1 the maximizers of the corresponding profit functions.

Then, from the first order condition pp1 solves

p1 = wp +
F̄ (p1)

f(p1)
,

and pd1 solves

p1 = wd +
F̄ (p1)

f(p1)
.

A sufficient condition for monotonicity of the optimal prices pp1 > pd1 is that the reserve

price function F (p) is regular, i.e., p − F̄ (p)
f(p)

is strictly increasing in p. Our assumption of

the monotone hazard rate function of F in the continuous case implies regularity of F . If

w(p) = p− 1
h(p)

, then given wd < wP , it is straightforward to see that pd1 < pp1.

In order to guarantee that the first order condition is sufficient for determining the optimal

prices, unimodality of profit functions is needed, i.e., (p − wp)F̄ (p) and (p − wd)F̄ (p) are

strictly unimodal. A sufficient condition for unimodality in the continuous distribution case

is the monotone hazard function h(p), which implies that the two profit functions are concave.

Substituting the first order conditions into the profit functions, we obtain that digital

goods yield a higher profit in general if

F̄ (pd1)

h(pd1)
− F̄ (pp1)

h(pp1)
≥ cd
N
.

In particular, when the fixed cost of delivery of digital goods cd is zero and h(p) is increasing,

it is more profitable to sell the digital goods.

We argued earlier that the optimal prices in the single-period setting are ordered. Now,

we show the same property holds in the two-period setting.

Proposition 2. In the two-period dynamic pricing environment, there exist optimal prices
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(pd1, p
d
2) and (pp1, p

p
2) associated with digital and physical goods, respectively, such that pp1 ≥ pd1

and pp1 ≥ pd2.

Proof. We distinguish two cases: discrete and continuous distributions. We prove the case of

the continuous distribution here and defer the case of the discrete distribution to Appendix.

Let R be continuous. Consider the profit functions πd(p1, p2) and πp(p1, p2) in the two-period

setting. The first order conditions are

(I) :


pd2 = pd1 −

1−F (pd1)

f(pd1)

wd = pd2 −
F (pd1)−F (pd2)

f(pd2)
,

and

(II) :


pp2 = pp1 −

1−F (pp1)

f(pp1)

wp = pp2 −
F (pp1)−F (pp2)

f(pp2)
.

Optimal prices (pd1, p
d
2) satisfy the system of equations (I). We first show that pp2 ≥ pd2.

Inequality πd(p
d
1, p

d
2) ≥ πd(p1, p2) for all p1 and p2 ≤ pd2 implies that

pd1[1− F (pd1)] + pd2[F (pd1)− F (pd2)]− p1[1− F (p1)] + p2[F (p1)− F (p2)]

≥ wd[F (p2)− F (pd2)]

≥ wp[F (p2)− F (pd2)].

Hence, we have πp(p
d
1, p

d
2) ≥ πp(p1, p2) for all p1 and p2 ≤ pd2. In particular, we have

πp(p
d
1, p

d
2) ≥ πp(p

p
1, p2) for all p2 ≤ pd2. By optimality of (pp1, p

p
2), we have πp(p

p
1, p

p
2) ≥

πp(p
d
1, p

d
2) ≥ πp(p

p
1, p2) for all p2 ≤ pd2. Thus, we conclude that pp2 ≥ pd2.

From pp2 ≥ pd2, it is straightforward to show pp1 ≥ pd1 using the first order conditions (I),

(II) and the monotone hazard rate property.

We have shown the existence of ordered optimal prices (pp1, p
p
2) and (pd1, p

d
2) in the two-

period setting. The existence of ordered optimal prices between physical and digital goods
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is general. However, we do not claim that all optimal prices are ordered in such a manner.

Consider the following example. Suppose the discrete distribution R is

R =



1
2

with probability 1
2
,

1 with probability 1
4
,

3
2

with probability 1
4
.

We further suppose that wp = 1
4

and wd = 0. It can be easily verified that all optimal prices

(pd1, p
d
2) are (3

2
, 1

2
) or (1, 1

2
) for digital goods while all optimal prices (pp1, p

p
2) are (3

2
, 1), (3

2
, 1

2
)

or (1, 1
2
) for physical goods. The optimal prices (1, 1

2
) for physical goods are not larger than

the optimal prices (3
2
, 1

2
) for digital goods.

2.2 Purchase-to-stock mode

In this case, we consider pricing of physical and digital goods in the single-period setting.

The seller’s problem remains the same when selling digital goods, i.e., πd(p1) = N(p1 −

wd)P (R ≥ p1)− cd. However, the seller’s problem when selling physical goods is maximizing

πp(p,Q) = N(p−wp)F̄ (p)−wpQ, where both p and Q are decision variables. Note that the

optimal price p∗ is a function of Q, i.e., p∗ = p∗(Q). Comparing with the purchase-to-order

mode, Q is an additional variable for physical goods in this case. We show the order of the

optimal prices in the following theorem. In the purchase-to-stock case, a weaker assumption

of regularity of distribution function F is sufficient, comparing with the assumption of the

monotone hazard rate of F in the purchase-to-order case. Distribution function F is regular

if p− F̄ (p)
f(p)

is strictly increasing in p.

Theorem 1. Assume distribution function F of the reserve price R is regular. Let the

aggregated demand D be normal which holds if N goes to infinity. Let N be sufficiently

large, and let the reserve price R be continuous. There is an optimal price pd for digital

goods which is lower than an optimal price pp(Q∗) for physical goods, i.e., pd < pp(Q∗),
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where Q∗ is the optimal purchase quantity.

Proof. See Appendix for the proof.

We now investigate the same pricing problem in a small market, i.e., N is small. Let

N = 2, and we assume that R is continuous. The optimal price of digital goods remains the

same: under the regularity condition of distribution F the unique optimal price pd solves

p − 1−F (p)
f(p)

= wd. However, we can no longer approximate the aggregated demand by the

normal distribution. With N = 2, we have D ∼ BIN (2, q), where q = F̄ (p). The cumulative

distribution function of D is as follows.

G(0) = F 2(p)

G(1) = 2F (p)− F 2(p)

G(2) = 1

For a fixed price p the optimal order quantity Q∗(p) is the smallest integer in {0, 1, 2} such

that P (D ≤ Q∗(p)) = G(Q∗(p)) ≥ p−wp
p

.

Case 1: Q∗(pp) = 0 for an optimal price pp. By the discrete version of newsvendor, we

have G(0) ≥ p−wp
p

. It implies

p[1− F 2(p)] ≤ wp.

In this case, the profit πp(p,Q
∗(p)) = 0. If there is an optimal price pp such that pp[1 −

F 2(pp)] ≤ wp holds, then p̄ is an optimal price and the condition above also holds. Hence,

Theorem 1 holds when Q∗(pp) = 0.

Case 2: Q∗(pp) = 1 for an optimal price pp. The newsvendor argument for price p is

F 2(p) < p−wp
p
≤ 2F (p)− F 2(p). It implies

pF̄ 2(p) ≤ wp < p[1− F 2(p)].

In this case, the profit function is πp(p,Q
∗(p)) = πp(p, 1) = 2pF (p)F̄ (p) − wp. We further
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have

d

dp
πp(p,Q

∗(p)) = 2F̄ (p)[F (p) + pf(p)]− 2pf(p)F (p).

In summary, in order to have an optimal price pp corresponding to optimal order quantity

Q∗(pp) = 1, the following three conditions must hold:

• pp solves F̄ (p)[F (p) + pf(p)] = pf(p)F (p),

• pp satisfies F 2(p) < p−wp
p
≤ 2F (p)− F 2(p),

• πp(pp, 1) ≥ 0.

Case 3: Q∗(pp) = 2 for an optimal price pp. The newsvendor argument for price p in this

case is 2F (p)− F 2(p) < p−wp
p
≤ 1. It implies wp < pF̄ 2(p). In this case, the profit function

is πp(p,Q
∗(p)) = πp(p, 2) = 2pF (p)F̄ (p) + 2pF̄ 2(p)− 2wp. We further have

d

dp
πp(p,Q

∗(p)) = 2[F̄ (p)− pf(p)].

In summary, in order to have an optimal price pp corresponding to optimal order quantity

Q∗(pp) = 2, the following must hold:

• pp solves F̄ (p) = pf(p),

• pp satisfies wp < pF̄ 2(p),

• πp(pp, 2) ≥ 0.

The following example shows that Theorem 1 fails in the small market of N = 2. Let

F ∼ U [0.1, 1.1]. We obtain that f(p) = 1, F (p) = p − 0.1 and F̄ (p) = 1.1 − p for every

p ∈ [0.1, 1.1]. In addition, let 0.1 ≥ wp > wd > 0. We obtain that pp = 0.55 is the optimal

price and Q∗(pp) = 2. In other words,

• The unique price pp = 0.55 solves F̄ (p) = pf(p),

• The optimal price pp = 0.55 satisfies wp < pF̄ 2(p),
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• Inequality πp(0.55, 2) = 0.625− 2wp > 0 holds. In addition, we need to check the two

boundary points. If price p = 0.1, we obtain Q∗(p) = 2. We further have πp(0.1, 2) =

0.2− 2wp > 0 and πp(0.55, 2) > πp(0.1, 2). If price p = 1.1, we have Q∗(p) = 0, and we

obtain πp(1.1, 0) = 0. Hence, πp(0.55, 2) > πp(1.1, 0).

Thus, we have shown that the example above has a unique optimal price pp = 0.55. On the

other hand, the digital goods case has a unique optimal price pd = wd+1.1
2

> 0.55.

3 Pricing of digital goods under externality

For goods that can be shared or split, it is common for customers to experience externality

to some degree. For instance, a procurement contract split between two suppliers may

generate disutility to each supplier when they compete in an upstream market. As a second

example consider licensing an innovation. A losing firm which does not get any allocation

may experience negative externality due to the increased market power of the competitor.

Standard physical goods are usually not subject to externality because of the excludability

of the physical goods. For digital goods that could be easily replicated and shared among

customers, it is important to consider the incurred externality.

In this section, we extend the optimal pricing strategies to digital goods with externality.

We assume a pure negative externality due to not possessing the good. For digital goods

with externality, a customer values a good depending on the allocation outcome. In other

words, a customer places a strict value if s/he obtains the good, otherwise an externality

value is accumulated. There are a finite number N of customers to sell the goods to. We

denote by R, F the strict valuation and its cumulative distribution function, respectively.

Further, we assume that R is continuous and the density function f(p) > 0 for all p ∈ [0, p̄].

We use ce to represent externality and assume that the externality function is linear in the

strict valuation, i.e., ce(r) = ce · r, where −1 ≤ ce ≤ 0. Since in this section we focus only

on digital goods, we denote by w, π the unit replenishment cost and the profit function,
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respectively. We examine the single- and multi-period settings.

In the single-period setting, we model the pricing problem as follows. In the pricing of

digital goods without externality, the probability of making a purchase for a consumer is

1− F (p), where p is the posted price. Instead, in the case of digital goods with externality,

this probability becomes P (R > p) + P (R ≤ p, (1 − ce)R > p). Hence the expected profit

function with fixed cost cd can be expressed as

π(p) = N(p− w)[P (R > p) + P (R ≤ p, (1− ce)R > p)]− cd

= N(p− w)[1− F (
p

1− ce
)]− cd.

Assuming monotonicity of the hazard rate function of R, the expected profit π(p) is a

unimodal function since the monotone hazard rate implies that the first order derivative of

the profit with respect to the demand is monotone decreasing.

In the multi-period setting, we model the pricing of digital goods under externality by

a dynamic program. We drop the fixed cost cd because it does not depend on the number

of price adjustments within the horizon as long as at least one is made. We assume a

finite time horizon with T periods. We consider the customer’s strict valuation R as the

initial reserve price. We further assume that customers’ reserve prices Rt with distribution

functions Ft change over time. In other words, the reserve prices Rt depend on the number

of customers who already bought the goods in previous periods. We assume that customers

always make their purchase in the earliest period with the posted price being lower than

their reserve price. The customer pool is initially a sample from a random population. The

price decisions provide additional information about the sample distribution which implies

updates to the prior distribution.

A purchase occurs in period t if pt < Rt <
pt−1

1−ce or Rt ≤ pt and (1 − ce)Rt > pt, where

pt is the posted price in period t. With probability F̄t(pt) a customer makes a purchase

in period t. Let us denote by St(xt, pt, Ft()) the total sales in period t which depends on
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the remaining number of customers xt, the price pt and the reserve price distribution Ft.

Quantity St(xt, pt, Ft()) has a binomial distribution with parameter xt and F̄t(pt). The

probability of total sales of y units in period t is expressed as

P (St(xt, pt, Ft()) = y) =

 xt

y

 (F̄t(pt))
y(1− F̄t(pt))xt−y for y = 0, ..., xt.

Note that the expected sales are given by E[St(xt, pt, Ft())] = xtF̄t(pt). We formulate the

problem as a dynamic program. In the DP model, the state includes the remaining number

of customers xt at time t and the running minimal posted price rt by time t. Let vt(xt, rt)

be the maximum expected profit-to-go starting in period t and with xt remaining customers.

The DP formulation reads

vt(xt, rt) = max
pt≥0
{(pt − w)xt[1− Ft(pt)] + E[vt+1(xt − St(xt, pt, Ft(pt)), rt+1)]} ,

where vt(0, rt) = 0 for any t and rt, and the boundary condition is vT+1(·, ·) = 0. The state

transitions of the running minimal price follow

rt+1 =


rt if pt ≥ rt,

pt
1−ce if pt < rt.

There are a couple of challenges in this formulation. We need to know how the reserve

price distribution is updated as a function of pt and xt. In other words, we need to understand

how Ft+1 is related to Ft. Starting from a reserve price distribution F , we need to obtain

Ft as a function of the prices pτ , τ ≤ t. Under the assumption that all customers whose

reserve prices exceed the posted price immediately make a purchase (i.e., customers are not

time-strategic), all of the information that is needed is minτ≤t pτ . In fact, we know that the

reserve prices of all remaining customers in period t are lower than minτ≤t
pτ

1−ce . In general,

updating the distribution based on observed realizations is non-trivial. We assume that
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the updated distribution corresponds to the conditioned version of the initial distribution

truncated to the interval (0,minτ≤t
pτ

1−ce ). As a result, we have

Ft(p) =


F ( p

1−ce
)

F (rt)
if p < rt,

1 if p ≥ rt.

Consequently, the optimality equation becomes

vt(xt, rt) = max
pt≥0

{
(pt − w)xt

[
1−

F ( pt
1−ce )

F (rt)

]
+ E[vt+1(xt − St(xt, pt, Ft(pt)), rt+1)]

}
. (1)

As an example, if we start with a uniform distribution between 0 and 1 in period 1 and

post a price of p1, F2 is a uniform distribution between 0 and p1
1−ce . Moreover, if we post a

price of p2 in period 2 with p2 < p1, then F3 is a uniform distribution between 0 and p2
1−ce .

3.1 Single-period pricing

We show that the optimal price for digital goods with externality is at least as large as the

optimal price in the case without externality. Recall that the optimal price p1 in the scenario

without externality solves p = w + 1−F (p)
f(p)

. The optimal price p2 under externality solves

p− w
1− ce

=
1− F ( p

1−ce )

f( p
1−ce )

.
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We then have

w

1− ce
=

p2

1− ce
−

1− F ( p2

1−ce )

f( p2

1−ce )

=
p1

1− ce
− 1

1− ce
1− F (p1)

f(p1)

≥ p1

1− ce
− 1− F (p1)

f(p1)

≥ p1

1− ce
−

1− F ( p1

1−ce )

f( p1

1−ce )
,

which implies that p1 ≤ p2 since f(·)
1−F (·) is strictly increasing.

Next we further investigate the optimal prices for different distributions subject to the

hazard rate order. The monotone hazard rate order is related to the following stochastic

order. Continuous random variable X is said to be smaller than continuous random variable

Y with respect to the hazard rate order, X ≤hr Y , if the function F̄Y (t)

F̄X(t)
is increasing in t. It

has been shown in Muller & Stoyan (2002).

We denote by pF1 an optimal price in the one-period problem with respect to distribution

F1 and pF2 with respect to F2. Define ψ(·) = 1 − 1−F (·)
f(·) . The next proposition shows that

these two optimal prices are ordered, i.e., pF1 ≤ pF2 .

Proposition 3. For two hazard rate ordered distributions F1 and F2, i.e., F̄2(·)
F̄1(·) is increasing,

there exist optimal prices pF1 and pF2 , respectively, such that pF1 ≤ pF2 .

Proof. By the assumption of the hazard rate order, we observe ψ1( p
1−ce ) ≥ ψ2( p

1−ce ) for all

p. In addition, they are also continuous because the density function f is continuous and

f( p
1−ce ) > 0 for all p ∈ [0, p̄]. The Brouwer’s Fixed Point Theorem establishes that there

must exist unique fixed points pF1 and pF2 for ψ1( p
1−ce ) and ψ2( p

1−ce ), respectively. By the

optimality condition, we have

w

1− ce
= ψ1(

pF1
1− ce

) = ψ2(
pF2

1− ce
).
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Since ψi is monotone for all i = 1, 2, we have

ψ1(
pF2

1− ce
) ≥ ψ1(

pF1
1− ce

),

ψ2(
pF2

1− ce
) ≥ ψ2(

pF1
1− ce

).

This implies that pF1 ≤ pF2 .

Proposition 3 shows that a higher optimal selling price can be extracted from a reserve

price distribution with the heavier tail. In other words, if the reserve price is distributed

more toward the higher end, then a higher selling price can be reached.

3.2 Dynamic pricing

We modeled the pricing of digital goods under externality in the multi-period setting as a dy-

namic program. Next we investigate the structure of the optimal prices and the relationship

of the optimal prices between the single- and multi-period settings.

3.2.1 The structure of optimal prices

We study the optimal pricing strategy pdt for t = 1, · · · , T of the DP model, where pdt is

the optimal price of period t in the multi-period setting. We first claim that there exists a

decreasing optimal price pattern over time.

Theorem 2. There exist optimal prices pdt such that rt > pdt > w. Furthermore, we have

pdt > pdt+1 for every t.

Proof. The proof is deferred to Appendix.

It is not surprising that we have the decreasing optimal price pattern in the case under

externality due to the dynamics of the model. One of the state variables, the running minimal

posted prices, supports the decreasing optimal prices. Next, we compare the optimal prices

between the single- and multi-period problems.
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Proposition 4. We have pd1 ≥ pd ≥ pdT .

Proof. See Appendix for the proof.

The inequality of optimal prices between single- and multi-period settings demonstrates a

high-low optimal pricing strategy, which is the advantage of the dynamic pricing model. The

seller can manipulate the prices and extract additional buyer’s payoffs in multiple periods.

Let us consider a specific case to illustrate how the updating and pricing decisions interact.

We assume N = 2, T = 2, ce = −0.1 and w = 0. The prior reserve price distribution F is

uniform in (0,1). Let us assume we start with an aggressive pricing policy with p1 = 0.9. At

this price, the sale probabilities are as follows.

P (S1(2, 0.9, F ) = 0) = 0.92

P (S1(2, 0.9, F ) = 1) = 2 · 0.9 · 0.1

P (S1(2, 0.9, F ) = 2) = 0.12

Moving on to period 2, we update the reserve price distribution with the information that

any customer who did not purchase in the first period must have a reserve price less than

0.9 (otherwise they would have purchased in the first period). Our prior distribution was

uniform in (0,1), but clearly our remaining customers are uniformly distributed in (0,0.9).

Therefore, the updated reserve price distribution F2 is uniform in (0,0.9/1.1) after taking

externality into account. We can now find the optimal selling price in period 2. Of course,

if the remaining number of customers is zero, we have v2(0, 0.9/1.1) = 0. In addition, given

that F2(p2) = p2/0.9 for p2 ≤ 0.9/1.1, we obtain

v2(1, 0.9/1.1) = max
0.9/1.1>p2>0

{p2F̄2(p2)} = max
0.9/1.1>p2>0

{p2(1− p2

0.9
)}.

We conclude that given the initial price 0.9 and 1 remaining customer in period 2, the optimal
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selling price in period 2 is p2 = 0.45. Similarly,

v2(2, 0.9/1.1) = max
0.9/1.1>p2>0

{2p2F̄2(p2)} = max
0.9/1.1>p2>0

{2p2(1− p2

0.9
)}

which yields the optimal selling price p2 = 0.45 with 2 reaming customers in period 2.

Note that if we had not updated the reserve price distribution, we would have assumed

that the customers in period 2 have reserve prices in (0,1/1.1), leading to a different price

of p2 = 0.5. The profit corresponding to the pricing policy of p1 = 0.9, p2 = 0.45 is 0.73.

The optimal price strategy of our model turns out to be pd1 = 0.76 and pd2 = 0.38. The

corresponding optimal profit is v1(2, 1) = 0.76, which is greater than 0.73.

4 Summary and concluding remarks

Easy replication of digital goods makes the pricing problem simple in the sense that there

is no inventory capacity constraint. However, a consequence of the negligible marginal

production cost is externality. In other words, a customer’s valuation of digital goods depends

on the final allocation of products.

We first examine the differences between pricing of the standard physical goods and

digital goods. We show that the optimal price of digital goods is usually lower than the

optimal price of physical goods. Without taking the capacity into account, the optimal price

pp with regard to physical goods is at least as large as the optimal price pd of digital goods.

Pricing of digital goods under capacity constraint exhibits the challenge of combining price

and production/order decisions. We show for physical goods that optimal prices pp ≥ pp(Q),

where pp(Q) is an optimal price for physical goods with capacity constraint Q. However,

inequality pp(Q) ≥ pd only holds in a large market when the customer base N is sufficiently

large.

We analyze pricing of digital goods with externality in various scenarios. In the single-

period setting, we show there is an optimal price which is no less than an optimal price in
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the setting without externality. The optimal prices with respect to the hazard rate order

distributions are also ordered. A dynamic model for a multi-period pricing is also introduced.

We show the decreasing pattern of optimal prices and investigate the relationship between

optimal prices of the single- and multi-period problems.
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Appendix

Proof of Proposition 1. Let now R be discrete. Suppose pd1 is an optimal price in the digital

goods setting, i.e.,

pd1 = arg max
ai
{(ai − wd)(1− f1 − · · · − fi−1)}.

We next show that there is an optimal price pp1 ≥ pd1 in the physical goods setting. Since

πd(p
d
1) ≥ πd(p1) for all p1 ≤ pd1 by optimality of pd1, i.e., (pd1−wd)P (R ≥ pd1) ≥ (p1−wd)P (R ≥
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p1), we have

pd1P (R ≥ pd1)− p1P (R ≥ p1) ≥ −wdP (p1 ≤ R ≤ pd1)

≥ −wpP (p1 ≤ R ≤ pd1).

It implies that πp(p
d
1) ≥ πp(p1) for all p1 ≤ pd1. Hence, we must have an optimal price pp1 in

the physical goods scenario that is greater than or equal to pd1, i.e., pp1 ≥ pd1.

Proof of Proposition 2. In the discrete case, we argue separately that pp1 ≥ pd1 and pp2 ≥ pd2,

where (pp1, p
p
2) and (pd1, p

d
2) are optimal prices for the physical and digital goods, respectively.

Inequality πd(p
d
1, p

d
2) ≥ πd(p1, p2) for all (p1, p2) with p2 ≤ pd2 implies that

pd1P (R ≥ pd1) + pd2P (pd2 ≤ R < pd1)− p1P (R ≥ p1)− p2P (p2 ≤ R < p1)

≥ wd[P (R ≥ pd2)− P (R ≥ p2)]

≥ wp[P (R ≥ pd2)− P (R ≥ p2)].

The first inequality follows by optimality of (pd1, p
d
2) for digital goods and the second inequality

holds by wp > wd. Thus, we have πp(p
d
1, p

d
2) ≥ πp(p1, p2) for all (p1, p2) with p2 ≤ pd2. In

particular, πp(p
d
1, p

d
2) ≥ πp(p

p
1, p2) for all p2 ≤ pd2. Thus, we obtain that πp(p

p
1, p

p
2) ≥ πp(p

p
1, p2)

for all p2 ≤ pd2, and therefore there exist optimal prices pp2 and pd2 such that pp2 ≥ pd2.

We next show that the optimal prices are also ordered in the first period, i.e., pp1 ≥

pd1. Suppose not, i.e., we have pp1 < pd1. We compare πp(p
d
1, p

d
2) and πp(p

p
1, p

d
2). Inequality

πd(p
d
1, p

d
2) ≥ πd(p

p
1, p

d
2) implies that

pd1P (R ≥ pd1) + pd2P (pd2 ≤ R < pd1)− pp1P (R ≥ pp1)− pd2P (pd2 ≤ R < pp1) ≥ 0.

It further implies that πp(p
d
1, p

d
2) ≥ πp(p

p
1, p

d
2) for physical goods. Then, we obtain pd1P (R ≥

pd1)− pp1P (R ≥ pp1) ≥ −pd2P (pp2 ≤ R < pd1), which implies that pd1P (R ≥ pd1)− pp1P (R ≥ pp1) ≥
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−pp2P (pp2 ≤ R < pd1) since pp2 ≥ pd2. We conclude that πp(p
d
1, p

p
2) ≥ πp(p

p
1, p

p
2). Thus, pd1 is also

an optimal price for physical goods. We just found an optimal price pd1 for physical goods,

which is the same as the optimal price for digital goods. This contradicts the hypothesis

and thus there exist optimal prices pp1 and pd1 such that pp1 ≥ pd1.

Proof of Theorem 1. Given a fixed order quantity Q, we examine a randomly observed indi-

vidual customer with Bernoulli demand q = F̄ (p). The inverse demand curve p = F−1(1−q)

is non-increasing. We can directly derive the marginal revenue from the revenue function

π(q) = p · q = qF−1(1 − q) as follows. We denote MR(p) or MR(q) to be the marginal

revenue in the general pricing scenario where we do not consider the order quantity Q. If for

a given quantity Q the aggregated demand D ≤ Q, 1 then the marginal revenue is expressed

as

MR(q) =
∂π(q)

∂q

= F−1(1− q) + q · dF
−1(1− q)
q

= F−1(1− q)− q

f [F−1(1− q)]
.

Notice above that since F [F−1(1− q)] = 1− q, we obtain that

dF [F−1(1− q)]
dq

= f [F−1(1− q)] · dF
−1(1− q)
dq

,

which implies that

dF−1(1− q)
dq

=
1

f [F−1(1− q)]
· dF [F−1(1− q)]

dq

=
1

f [F−1(1− q)]
d(1− q)
dq

= − 1

f [F−1(1− q)]
.

1Note that this is the case in the general pricing scenario without taking the inventory decision into
account.
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Equivalently, in this case the marginal revenue is expressed in terms of p as

MR(p) = p− 1− F (p)

f(p)
.

We can find the optimal Q for any p by the standard newsvendor argument. In other

words, Q∗(p) = G−1(p−wp
p

). In particular, at optimal Q∗(p) for any p the expected profit

from a randomly observed customer is

πp(p,Q
∗(p)) = pP (an item is available to the customer)P (the customer makes a purchase)

− supply cost

= p
p− wp
p

F̄ (p)− wQ
∗(p)

N

= F̄ (p)(p− wp)− w
Q∗(p)

N
.

Notice that we approximate the discrete binomial demand by continuous normal demand as

stated in the assumption of the theorem. It follows that

P (an item is available to the customer) = P (D ≤ Q∗) =
p− wp
p

.

The expected profit without considering the order quantity Q is

πp(p) = F̄ (p)(p− wp).

We next compare the above two profit functions. Particularly, we consider the term

wpF̄ (p) as the individual supply cost and pF̄ (p) − wpQ∗(p)

N
and pF̄ (p) as individual revenue

terms, respectively. Then, we differentiate both the cost and revenue terms with respect to

q in order to obtain the marginal cost and revenue. The marginal cost is the constant wp

in both cases, while the marginal revenue terms vary. To be specific, the marginal revenue

MR(p) in the general pricing scenario remains the same. In the joint pricing and inventory
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scenario, the expected marginal revenue1 is

E[MR(p,Q∗(p))] = p− 1− F (p)

f(p)
− wp
N

∂

∂q
G−1(1− wp

p
),

where G−1 is the inverse demand function. We reapply the technique in deriving dF−1(1−q)
dq

and obtain that

∂

∂q
G−1(1− wp

p
) =

−1

f(p)

∂

∂p
G−1(1− wp

p
)

=
−1

f(p)

wp
p2

1

g[G−1(1− wp
p

)]

=
−1

f(p)

wp
p2

√
NF (p)F̄ (p)

φ[Φ−1(1− wp
p

)]
,

where g is the probability density function of the aggregated demand D. Functions φ, Φ and

Φ−1 are the probability density, cumulative distribution and inverse cumulative distribution

functions of the normal demand, respectively. It can be seen that the expected marginal

revenue curve E[MR(p,Q)] is above the curve of MR(p), Figure 1. Since the last term in

E[MR(p,Q∗(p))] is strictly positive, we conclude that the expected marginal revenue in the

joint pricing and inventory case is strictly greater than the marginal revenue in the other

case. It can be observed from Figure 1 that the optimal price depending on Q is less than

or equal to the optimal price without taking the decision Q into account, i.e., pp(Q∗) ≤ pp.

We now consider the marginal profit in the joint pricing scenario as

∂

∂q
π(p,Q∗(p)) = p− 1− F (p)

f(p)
+
w2
p

N

1

p2f(p)

√
NF (p)F̄ (p)

φ[Φ−1(1− wp
p

)]
− wp.

We decompose the marginal profit and regard

MC(p,Q∗(p)) = wp −
w2
p

N

1

p2f(p)

√
NF (p)F̄ (p)

φ[Φ−1(1− wp
p

)]

1Expected value is with regard to the aggregated demand.
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Figure 1: Construction of Optimal Prices

as the marginal cost while holding the marginal revenue term the same as in the general

pricing scenario. Since by assumption wp > wd and N is large, under the bounded domain

of distribution F as assumed in Section 2, we obtain MC(p,Q∗(p)) > wd. Thus by the

regularity condition we further have pp(Q∗) > pd.

We have shown that there exists an optimal price for physical goods that is at least as

large as an optimal price for the digital goods.

Proof of Theorem 2. We prove this theorem by induction. When t = T , it is clear that there

exists an optimal price pdT+1 = 0 since the terminal value is defined by vT+1(·, ·) = 0. Hence,

we apparently have pdT > pdT+1 = 0. We also have pdT < rT because

• if pT ≥ rT , the profit-to-go at time T is zero, and

• if w < pT < rT , we have positive profit. In other words,

(pT − w)xT

[
F (rT )− F ( pT

1−ce )

F (rT )

]
> 0 for all xT > 0.

Suppose now that the theorem holds for t + 1. For all xt+1 and rt+1 there exists an
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optimal price pdt+1 such that pdt+1 < rt+1 and

vt+2(xt+1, rt+1) ≤ (pdt+1 − w)xt+1

F (rt+1)− F (
pdt+1

1−ce )

F (rt+1)

+ E[vt+2(xt+1 − St+1,
pdt+1

1− ce
)].

We want to show that there exists an optimal price pdt > w such that pdt < rt and

vt+1(xt, rt) ≤ (pdt − w)xt

[
F (rt)− F (

pdt
1−ce )

F (rt)

]
+ E[vt+1(xt − St,

pdt
1− ce

)].

By the induction hypothesis, it can be seen that

E[vt+2(xt − St, rt+1)] ≤ E

(pdt+1 − w)(xt − St)

F (rt+1)− F (
pdt+1

1−ce )

F (rt+1)


+ E[vt+2(xt − St − St+1,

pdt+1

1− ce
)].

We further have

vt+1(xt, rt) = (pdt+1 − w)xt

[
F (rt)− F (

pdt
1−ce )

F (rt)

]
+ E[vt+2(xt − St+1,

pdt+1

1− ce
)].

In addition, suppose that there is an optimal price pdt in period t with pdt < rt. Then we have

(pdt − w)xt

[
F (rt)− F (

pdt
1−ce )

F (rt)

]
+ E[vt+1(xt − St,

pdt
1− ce

)]

= (pdt − w)xt

[
F (rt)− F (

pdt
1−ce )

F (rt)

]
+ E

(pdt+1 − w)(xt − St)

F (
pdt

1−ce )− F (
pdt+1

1−ce )

F (
pdt

1−ce )


+E[vt+2(xt − St − St+1,

pdt+1

1− ce
)].
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Let us denote

LPVt = (pdt − w)xt

[
F (rt)− F (

pdt
1−ce )

F (rt)

]
+ E[vt+1(xt − St,

pdt
1− ce

)].

Hence, we further have

LPVt = (pdt − w)xt

[
F (rt)− F (

pdt
1−ce )

F (rt)

]
+ E

(pdt+1 − w)(xt − St)

F (
pdt

1−ce )− F (
pdt+1

1−ce )

F (
pdt

1−ce )


+E[vt+2(xt − St − St+1,

pdt+1

1− ce
)]

≥ (pdt − w)xt

[
F (rt)− F (

pdt
1−ce )

F (rt)

]
+ E[vt+2(xt − St,

pdt
1− ce

)].

We next show that LPVt ≥ vt+1(xt, rt). The seller is only allowed to make one price

adjustment either at the beginning of t or t + 1. After choosing the decision, the seller has

to skip the other period and proceed directly to the beginning of t+ 2, see Figure 2.

t t+1 t+2

Pt

skip Pt+1

skip

Figure 2: Illustration of restricted price adjustment

We use subscript 2 in addition to the subscripts of t and t+ 1 to capture the two pricing

scenarios and obtain that for all xt and rt we have

v2,t(xt, rt) = (pdt − w)xt

[
F (rt)− F (

pdt
1−ce )

F (rt)

]
+ E[vt+2(xt − St,

pdt
1− ce

)]
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and

v2,t+1(xt, rt) = (pdt+1 − w)xt

F (rt)− F (
pdt+1

1−ce )

F (rt)

+ E[vt+2(xt − St+1,
pdt+1

1− ce
)].

It can be seen that in the case of a single price adjustment within the considered two periods,

v2,t(xt, rt) = v2,t+1(xt, rt). Thus, we obtain

LPVt ≥ v2,t(xt, rt) = v2,t+1(xt, rt) = vt+1(xt, rt).

Eventually, we conclude that pdt < rt and

vt(xt, rt) = (pdt − w)xt

[
F (rt)− F (

pdt
1−ce )

F (rt)

]
+ E[vt+1(xt − St,

pdt
1− ce

)] ≥ vt+1(xt, rt).

In summary, we have shown that there exists a decreasing optimal price pattern over

time in the DP model.

Proof of Proposition 4. Recall that based on (1), we have

vt(xt, rt) = max
0≤pt≤rt

{
(pt − w)xt

[
F (rt)− F ( pt

1−ce )

F (rt)

]
+ E[vt+1(xt − St, rt+1)]

}
.

We first show that pd ≥ pdT . For all xT > 0 we have

vT (xT , rT ) = max
0≤pT≤rT

{
(pT − w)xT

[
F (rT )− F ( pT

1−ce )

F (rT )

]+
}

= max
0≤pT≤rT

{
(pT − w)xT

[
F (rT )− F ( pT

1−ce )

F (rT )

]}
.

The first order condition implies that pdT satisfies

pT = w + (1− ce)
F (rT )− F ( pT

1−ce )

f( pT
1−ce )

.
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In the single-period setting, pd satisfies

p = w + (1− ce)
1− F ( p

1−ce )

f( p
1−ce )

.

Hence, pd ≥ pdT because

w = pd − (1− ce)
1− F ( pd

1−ce )

f( pd

1−ce )

= pdT − (1− ce)
F (rT )− F (

pdT
1−ce )

f(
pdT

1−ce )

≥ pdT − (1− ce)
1− F (

pdT
1−ce )

f(
pdT

1−ce )
.

Note that the last inequality follows from the assumption of monotonicity of the hazard rate

function.

Now we show pd1 ≥ pd. The optimal expected profit at time t = 1 reads

v1(N, p̄) = max
0≤p1≤p̄

{N(p1 − w)

[
F (p̄)− F ( p1

1−ce )

F (p̄)

]
+ E[v2(N − S1, r2)]}.

Let us denote the profit function

π(p1, p2, · · · , pT ) ≡ (p1 − w)F̄ (
p1

1− ce
) +

T∑
i=2

(pi − w)

[
F (

pi−1

1− ce
)− F (

pi
1− ce

)

]
.

The first order condition of optimality with respect to p1 reads

∂

∂p1

π(p1, p2, · · · , pT ) = F̄ (
p1

1− ce
)− p1 − p2

1− ce
f(

p1

1− ce
) = 0.

It implies that

pd2
1− ce

=
pd1

1− ce
−

1− F (
pd1

1−ce )

f(
pd1

1−ce )
.
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Recall that w
1−ce = pd

1−ce −
1−F ( pd

1−ce
)

f( pd

1−ce
)

. Since pd2 ≥ w, we further obtain that

pd1
1− ce

−
1− F (

pd1
1−ce )

f(
pd1

1−ce )
≥ pd

1− ce
−

1− F ( pd

1−ce )

f( pd

1−ce )
.

By regularity of the reserve price distribution F , we conclude that pd1 ≥ pd. In summary,

we showed that the seller adopts a high-low optimal price strategy where the single optimal

price in the newsvendor setting falls in between.
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