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Abstract 
Solving LP relaxations of airline crew scheduling models is computationally challenging 
due to a large number of variables, complex feasibility rules to generate columns, and 
nonlinear cost. We perform computational experiments with a nonlinear pricing strategy. 
We develop a column generation scheme that uses several pruning rules to fathom 
column enumeration. The pruning rules are categorized into approximate and exact, 
where the approximate rules might prune columns that would yield an improved 
objective value. The pruning rules use the fact that columns are paths in a network and 
we use shortest path algorithms and their extensions to obtain bounds.     

1 Introduction 
The airline crew scheduling problem is the problem of finding crew itineraries or 
pairings that minimize the crew cost. Traditionally the crew scheduling problem is 
modeled as the set partitioning problem binary}, ,:min{ xAxcx 1=  where each variable 
corresponds to a pairing and each row to a leg, aij = 1 if leg i is in pairing j and 0 
otherwise, and cj is the cost of pairing j. This model is computationally difficult due to 
the large number of pairings, their complex structure and the nonlinear cost function. 
Medium size U.S. domestic problems of major carriers with approximately 300 legs have 
billions of variables. These facts make even solving LP relaxations }0 ,:min{ ≥= xAxcx 1  
a strenuous task. In this paper we consider only the LP relaxation. (See Barnhart et. al. 
(1999) for a survey on how to obtain a binary solution.) 

Many algorithms for airline crew scheduling require solving the LP relaxation 
many times, e.g. branch-and-price. Due to the large number of variables, i.e. pairings, 
explicitly solving the LP relaxation is usually intractable. Instead column generation is 
used, where in every iteration a restricted master problem, called also the subproblem, is 
solved over a small number of pairings. The subproblem is the same problem as the 
original problem except that it consists of only a subset of the columns. Pairings with low 
reduced cost are then appended to the subproblem, the subproblem is reoptimized, and 
the procedure is repeated. A formal description of the column generation algorithm 
follows.    

 
• Loop 

o Solve the LP over a small subset S of the columns, i.e. solve the 
subproblem over S. 

o Find a set S of columns with low reduced cost. This step is called pricing. 
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o If there are no columns with negative reduced cost, exit. We have an 
optimal solution. 

o SSS ∪=  
• End loop 

 
Pairings are paths in a network, where flights correspond to nodes and arcs to 

crew connections. A pairing is subject to various feasibility rules such as company, union 
and regulatory restrictions and therefore a path in the network is not necessarily a pairing. 
These rules constrain the paths that correspond to pairings. When solving the LP 
relaxations by column generation, pricing has to be carried out in every iteration. One 
approach to finding the lowest reduced cost pairing is by applying a constrained shortest 
path algorithm, Desrochers and Soumis (1988), Desaulniers et al. (1998) and Desrosiers 
et al. (1995). These algorithms are generalizations of shortest path algorithms. A 
constrained shortest path algorithm keeps track of several labels that correspond to the 
legality rules and the cost structure (called also resources) and they are updated upon 
scanning an arc. On the other hand, pairing enumeration methods attempt to generate the 
pairings in a depth-first search manner. Typically some ad-hoc rules are used to reduce 
the computation time. Anderson et al. (1998) describe a commercial crew scheduling 
software that uses enumeration. In the presence of many labels a constrained shortest path 
algorithm is likely to enumerate all the pairings and therefore it behaves like an 
enumeration algorithm. The main difference between the two approaches is that in a 
constrained shortest path algorithm the nodes are scanned more in a breath-first search 
order and therefore it has larger storage requirements. We chose to perform pricing based 
on enumeration but the approach presented applies to a constrained shortest path pricing 
as well (see Section 4).  

Bixby et al. (1992) develop a new strategy to append columns to the subproblem. 
Instead of adding columns with low reduced cost they propose to add columns with a low 
ratio of cost over sum of the dual prices in the column. We call this ratio the score. They 
use this strategy on problems, where all of the columns are explicitly given in advance 
and they obtain a reduced number of pricing calls. We embed this rule in a column 
generation algorithm, where in pricing columns are enumerated by depth-first search. We 
design several pruning rules that fathom enumeration and reduce the generation time. The 
approximate pruning rules are applied in initial iterations and they prune pairings that 
might improve the objective value. After the approximate rules do not improve the 
objective value anymore, we switch to exact pruning rules. These rules prune the 
generation by providing an upper bound on the score. The main contributions of this 
work are the embedding of a nonlinear pricing rule in column generation, the idea of 
pruning too many pairings in early iterations to expedite the generation, and the 
development of several pruning rules that speed up the generation procedure. 

Next we list some relevant publications on airline crew scheduling; for an 
extended list see e.g. Barnhart et al. (1999). Desrosiers et al. (1991) solve the crew 
scheduling problem using column generation and a constrained shortest path algorithm 
for pricing. This is the first work that uses constrained shortest path for airline crew 
scheduling. Early work in airline crew scheduling is the so-called TRIP algorithm, 
Gershkoff (1989), Anbil et al. (1991). TRIP is a local search heuristic that uses pairing 
enumeration on a subset of flights. Anbil, Johnson and Tanga (1991) use column 
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generation to solve large-scale airline crew scheduling problems. In pricing they 
enumerate pairings. Bixby et al. (1992) propose a new pricing rule and they experiment 
with different LP algorithms for solving the subproblem. Vance et al. (1997) and Anbil, 
Forrest and Pulleyblank (1998) describe column generation, branching and search 
strategies for a branch-and-price algorithm. The former publication uses a constrained 
shortest path algorithm in pricing and the latter uses enumeration in pricing. Klabjan, 
Johnson and Nemhauser (2001) use generation in pricing. Their generation is based on 
randomness, i.e. they generate random pairings.  

Section 2 presents the new pricing rule and all the pruning rules. In Section 3 we 
report the computational experiments. We conclude the introduction with a detailed 
description of airline crew scheduling and we describe the underlying network. 

Airline Crew Scheduling  
The input for an airline crew scheduling problem is a fleet together with the flight 
schedule and the aircraft routes. A leg is a nonstop flight.  

A duty is a working day of a crew and it consists of a sequence of legs. A 
connection within a duty is called a sit connection. There is a lower and an upper limit on 
the sit connection time. The minimum sit connection time can be violated only if the crew 
stays on the same plane. Company, union and regulatory restrictions restrict a duty. The 
cost of a duty, measured in minutes, is usually the maximum of three quantities: the 
flying time, a fraction of the elapsed time, and the duty minimum guarantee pay. We 
denote by dcd the cost of duty d. 

Crew bases are designated stations where crews are based. A pairing is a 
sequence of duties, starting and ending at the same crew base. A connection within a 
pairing is called an overnight connection or layover. Like sit connections there is a lower 
and an upper limit on the layover time, denoted by minRest and maxRest respectively. A 
pairing is also subject to many feasibility rules, e.g. maximum elapsed time, maximum 
number of duties, service of particular legs from a given crew base. We denote by M the 
maximum number of duties in a pairing. Typical values of M are between 3 and 5. The 
cost of a pairing p, denoted by pcp and measured in minutes, is the maximum of three 
quantities: the sum of the duty costs in the pairing, a fraction f times the elapsed time, and 
a minimum guaranteed pay mg, which can be different from the duty minimum guarantee 
pay, times the number of duties. Formally, 

 ∑
∈

⋅⋅=
pd

dp dcpelfndmgpc },,max{ , (1) 

where nd is the number of duties in p and pel is the elapsed time, called also time-away-
from-base. A detailed discussion of the legality rules and the cost structure of pairings is 
given by Barnhart et al. (1999). 

The daily crew scheduling problem is the crew scheduling problem with the 
assumption that every leg is flown every day of the week. In the weekly crew scheduling 
problem a crew schedule is sought over a time horizon that is repeated, i.e. it is assumed 
that the flight schedule repeats. Pairings from the end of the horizon can wrap around to 
the beginning of the horizon. The dated crew scheduling problem is similar to the weekly 
problem except that the flight schedule is given over a fixed time horizon. In a dated 
problem pairings do not wrap around. For a discussion of the applications of these three 
problems see e.g. Barnhart et al. (1999). The methodologies developed in this paper are 
applied to all three problems. 
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The Mixed Segment/Duty Timeline Network 
The mixed segment/duty timeline network has two nodes for each leg, one 

corresponding to the arrival and the other one corresponding to the departure of the leg. 
We denote by arri, depi the arrival, departure node corresponding to leg i, respectively. 
The network has two types of arcs. For each duty d there is a duty arc that connects depi 
with arrj, where i is the first leg in d and j is the last leg in d. In addition, there is a 
connection arc (arri,depj) if the arrival station of leg i is the same as the departure station 
of leg j and the connection time is within ],[ maxRestminRest . The connection time is 
defined as the departure time of leg j minus the arrival time of leg i. Note that this 
network is acyclic and it has parallel duty arcs. Pairings are paths in the mixed 
segment/duty timeline network, but due to the feasibility rules a path does not necessarily 
correspond to a pairing. This network is a mixture between the traditional segment 
timeline network and the duty timeline network, see e.g. Barnhart et al. (1999) for a 
description of these two networks. It can be stored much more compactly than the duty 
timeline network since the nodes correspond to the nodes of the segment timeline 
network but on the other hand it does not capture as many feasibility rules as the duty 
timeline network.  
Example. Consider the mixed segment/duty timeline network shown in Figure 1.  

 
Figure 1. A mixed segment/duty timeline network 

We assume that the departure station of leg i1 is st3, the arrival station of leg j1 is 
st2, etc. The solid arcs correspond to the duty arcs and the dashed arcs correspond to the 
connection arcs. For example, there are 3 duties with leg i1 as the first leg in the duty and 
leg j1 as the last leg in the duty. The time between the departure of leg i2 and the arrival of 
leg j1 is greater or equal to minRest. Similarly, the time between the departure of leg i4 
and the arrival of leg j1 is less or equal to maxRest.  
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2 Pricing and pruning 
2.1 Fractional pricing 

In the column generation algorithm, in every iteration columns are added to the 
subproblem. Let y be an optimal dual vector to the subproblem, i.e. y is the optimal dual 
vector to 0} ,:min{ ≥= xxAxc 1 , where A  is a submatrix of A and c  the corresponding 
coordinates in c. In traditional pricing, pairings p with the smallest reduced cost 

∑
∈

−
pi

ip yc  are added to the subproblem since the reduced cost approximates the change 

in the objective value if the column is appended to the subproblem. Bixby et al. (1992) 
observed that the number of pricing calls decreases if columns p with low score 
sp= ∑

∈pi
ip yc are selected. The main objective of this work is to show how to find columns 

with low score within the column generation framework. Note that since the pairing cost 
is nonnegative, a pairing p has negative reduced cost if and only if 0>∑

∈pi
iy and sp < 1. 

Therefore in pricing the goal is to solve  

 








>∑
∈

0|min
pi

ipp
ys .                       (2) 

If this minimum is greater or equal to 1, then the current solution is optimal.  

Note that 1+









−= ∑∑∑

∈∈∈ pi
i

pi
ip

pi
ip yycyc . The intuition why score based 

pricing is more efficient is that the columns with low score have low reduced cost and in 
the presence of negative reduced cost they tend to have small ∑

∈pi
iy . By LP sensitivity 

analysis we clearly want the former property. Pairings obeying the latter property tend to 
have a smaller number of legs and therefore these ‘short’ pairings are likely to blend 
better with other pairings.  Therefore score pricing distinguishes among the pairings with 
the same negative reduced cost by giving preference to those with small ∑

∈pi
iy  and 

therefore smaller number of legs. Note that pairings with small ∑
∈pi

iy  tend to have a 

small number of legs. 

2.2 Pruning 
To enumerate all of the pairings in every iteration of a column generation algorithm is too 
time consuming due to the large number of pairings and complex feasibility rules. A 
partial pairing is a sequence of duties that starts at a crew base and meets all the pairing 
feasibility rules except that it does not necessarily end at the same station. The pairings 
are generated using depth-first search on the mixed segment/duty timeline network. In the 
depth-first search procedure a partial pairing is extended with all possible duties and the 
procedure is recursively repeated. When a pairing is found, i.e. the partial pairing starts 
and ends at the same crew base, the pairing is stored and we backtrack by removing the 
last duty from the pairing. If we knew in advance that a partial pairing leads only to 
pairings with score greater or equal to 1, then we would stop depth-first search from the 
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current partial pairing and backtrack. Pruning is a procedure that fathoms depth-first 
search of a partial pairing before a pairing is actually obtained. For example, given a 
partial pairing, if we somehow know that all the pairings p resulting from this partial 
pairing will have ∑

∈pi
iy smaller or equal to 0, we can abort the generation of this partial 

pairing and backtrack. Cleary efficient pruning rules can substantially reduce the 
execution time of the generation procedure.  

 We develop two types of pruning rules, which we call approximate and exact. 
Approximate pruning rules prune partial pairings that can produce pairings with score 
greater or equal to 1. These rules prune many partial pairings and therefore produce fast 
generation. However, they might prune partial pairings that would yield pairings with 
score less than 1. If after using the approximate pruning rules we do not find pairings 
with score less than 1, we cannot state that the incumbent primal solution is optimal. On 
the other hand, exact pruning rules prune only partial pairings that would always result in 
pairings with score greater or equal to 1 (in the worst case scenario). We use first the 
approximate pruning rules and then we switch to the exact pruning rules, when we do not 
find a pairing with score less than 1 by using approximate pruning. 

The idea behind this distinction is that it really does not matter how we prune in 
all of the iterations but the last one. In the last iteration, where we actually prove 
optimality, we cannot prune partial pairings approximately. A typical implementation 
along these lines would have a constant K and it would prune all the partial pairings with 
current score greater or equal to K. It is hard to make such a strategy flexible for all 
possible instances, feasibility rules and cost structures, i.e. K should depend on these 
parameters. Our approximate rules are designed in such a way that they use the properties 
of the mixed segment/duty timeline network.  

2.2.1 Approximate pruning rules 
Let p be a partial pairing and let p  be the number of duties in the partial pairing. For a 

duty d we denote by ∑
∈

=
di

id ydy the sum of the dual prices of the legs in the duty and we 

call it the dual value of duty d. Note that p represents the set of all the duties in the 
pairing and likewise d stands for the set of all the legs in the duty. Based on the quality of 
the approximation we have two stages. In the approximate stage 1 we prune many 
pairings and in the approximate stage 2, which follows the approximate stage 1, we refine 
pruning. Next we list the approximate pruning rules.  

Approximate stage 1 
Let ndydy

d
d∑=  and ndcdc

d
d∑=  be the average of the duty dual values and the 

duty cost over all the duties, respectively. Here n is the number of the duties. The pruning 
rules in the approximate stage 1 use the average sum of the duty dual values and the 
average duty cost to prune partial pairings. Therefore the approximation is rather coarse. 

• Approximate pruning rule 1:  If for a partial pairing p we have 
∑

∈

≤−+
pd

d dypMdy 0)( , then we prune p.  
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Here we make the assumption that the duty dual value of every duty equals to the 
average dy . If this assumption holds and ∑

∈

≤−+
pd

d dypMdy 0)( , then for every pairing 

p  resulting from p we have 0≤∑
∈pi

iy  and p  would not be considered in (2). 

• Approximate pruning rule 2: If for a partial pairing p we have  

1)()( ≥








−+










−+ ∑∑

∈∈ pd
d

pd
d dypMdydcpMdc , 

then we prune p.  
The approximations here are first that the pairing cost is the sum of the duty costs 

in the pairing, second that the duty cost for every duty equals to the average duty cost, 
and third that the duty dual value of every duty equals to the average duty dual value. 
Under these assumptions the score of every pairing resulting from p would be greater or 
equal to 1. By applying this rule after the approximate pruning rule 1, the denominator is 
always greater than 0. 

Approximate stage 2 
We say that a path r is a path from leg i to crew base cb if r is a path in the mixed 
segment/duty timeline network from arri to a node in {arrk | the arrival station of leg k is 
at crew base cb}. For a leg i, crew base cb, and j, 11 −≤≤ Mj , let cb

jiR ,  be the set of all 

paths from i to crew base cb with exactly j duty arcs. Given a path cb
jiRr ,∈ , let cyr be the 

sum of the duty dual values of all the duty arcs in r. Similarly we define ccr with respect 
to the duty cost. For cb

jiRr ,∈ , let celr be the sum of the connection times of all the 
connection arcs in r and the duty elapsed times of all the duty arcs in r. By appropriately 
defining the arc cost in the mixed segment/duty timeline network, these values 
correspond to the cost of a path in the network.  
Example. (cont.) Let us define the cost on solid arcs as the duty dual values and the cost 
on the dashed connection arcs as 0. Then cyr is the cost of path r. Similarly we can treat 
ccr. For celr, we define the cost of solid duty arcs as the duty elapsed time and the cost of 
the dashed connection arcs as the connection time. Then celr is the cost of path r.  

For a leg i, crew base cb and for every 11, −≤≤ Mjj , we denote by 
cb

jidy , , 
cb

jidc , , 

and 
cb

jidel ,  the average of cyr, ccr and celr over all paths cb
jiRr ,∈ , respectively. In addition, 

let 
cb

jiay , be the average of cyr over all paths t
j

k

cb
kiRr

1
,

=

∈ , i.e. we restrict the paths to have at 

most j duty arcs. We denote by pelp the elapsed time of a partial pairing p and let l(p) be 
the last leg in the last duty of p. Pruning in the approximate stage 2 is less coarse than 
pruning from the approximate phase 1, because these average values are better 
approximations.  

• Approximate pruning rule 3:  If for a partial pairing p that starts at a crew base cb, 
0||),( ≤+ −

∈
∑

cb
pMpl

pd
d aydy , then we prune p.  
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This rule is similar to the first approximate rule but the approximation is better 
since we are using the average sum of the duty dual values among the paths that connect 
the last leg in the last duty of the partial pairing to the crew base. 

• Approximate pruning rule 4: Let p be a partial pairing and let  









>+−≤≤= ∑
∈

0,1: ),(
cb

jpl
pd

dp dydypMjjS , 

where p starts at a crew base cb. If  

1
}),(),|(|max{

),(

),(),(

≥
+

++⋅+⋅

∑
∑

∑

∈

∈

∈
p

Sj
cb

jpl
pd

d

pd

cb
jpld

cb
jplp

S
dydy

dcdcdelpelfjpmg

p

, 

then we prune p.  
Given a fixed ||1, pMjj −≤≤ , the numerator in the summand estimates the cost 

of pairings resulting from p by appending exactly j duties. Recall the pairing cost 
structure given by (1). The first term in the maximum corresponds to the minimum 
guarantee pay, the second term to the average elapsed time multiplied by f, and the third 
term to the average sum of the duty costs. The denominator in the summand is the 
average sum of the duty dual values if p is extended by exactly j duties. Therefore the 
summand approximates the average score of parings that result from p by appending 
exactly j duties. The overall approximation is then the average of all the approximations 
to the average score.  

Note that if p has not been pruned by the approximate pruning rule 3, then by 
conditioning it is easy to see that ≠pS Ø. 

2.2.2 Computing the averages 

In this section we show how to compute 
cb

jidy , , 
cb

jidc ,  and 
cb

jidel , . Let D = (N,A) be an 
acyclic network, which is already topologically sorted. To capture the mixed 
segment/duty timeline network we allow parallel arcs. We assume that every node i has a 
weight ui and every arc e has a weight ve. We show how to compute jia ,  for every 

KjNi ...,,1, =∈ , where jia ,  is the average length of paths from node i to a given node t 
among all the paths with precisely j arcs. K is a given constant. The length of a path is 
defined as the sum of the node and the arc weights in the path. 

Let Ri,j be the set of all paths from node i to node t with exactly j arcs and for 
simplicity of notation we denote jiji Rn ,, = . We define 00,0, == ii na  for every { }tNi \∈  

and 0,0,1 ,,0,0, ==== jtjttt naan  for j=1,…,K. Given Ni ∈ , the notation ∑
∈Ali ),(

represents 

the sum over all arcs originating at i. Note that due to the parallel arcs this summation 
might be different from the summation over all neighbors l. Then by definition of average 
for every { }tNi \∈  and for every j=1,…,K we have  
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Based on these formulas we develop the algorithm, which is given in Figure 2. 
Without loss of generality we assume that t is the last node in the topological order. Since 
D is topologically sorted, it is easy to verify the correctness of the algorithm. We 
compute 

cb
jidy , , 

cb
jidc ,  and 

cb
jidel ,  by running the algorithm several times on the mixed 

segment/duty timeline network and with different arc costs. We run it once for each crew 
base. For each run the input mixed segment/duty timeline network is slightly modified by 
removing all the connection arcs with the tail starting at the crew base cb.  In addition, we 
add an artificial node and we connect each node arri with the arrival station of leg i equal 
to cb to this artificial node. 

cb
jiay ,  is computed from 

cb
jidy ,  and cb

jln ,  by using the conditioning formula 

.
1

,
1

,,, ∑∑
==

=
K

k
ki

j

l
li

cb
li

cb
ji nndyay  

 
Input: D=(N,A) 
Output: jia ,  for all i∈N, j=1,…,K. 

1,0 0, === tnan  
for i=|N|,…,1  do 
     for j=1,…,K do 

  for all (k,i)∈A do 
 1,,, −+= jijkjk nnn  
  end for 
end for 
f = 0 

     for j=1,…,K do 
for all (i,k)∈A do 

)( ),(1,1, kijkjk vanff ++= −−  
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end for 

ji
iji n

fua
,

, +=  

end for 
end for  
 

Figure 2: The algorithm for computing the averages 

2.2.3 Exact pruning rules 
Assume that in an iteration of the column generation algorithm we did not find a pairing 
with the score less than 1 by applying approximate pruning rules. Since these rules might 
have pruned too much, we cannot assert that the current solution is optimal. Therefore we 
need to develop pruning rules that provide upper bounds on the score.   

We denote the maximum allowed flying time in a duty by F and by dfld the flying 
time of a duty d. For a leg i, crew base cb, and 11, −≤≤ Mjj , let cb

jiu ,  be the length of 
the longest path, with respect to the sum of the duty dual values along the path, among all 

paths t
j

k

cb
kiRr

1
,

=

∈ . In addition, for a leg i, crew base cb, and 11, −≤≤ Mjj , we define 

,0, maxmax
1

,

)(~

)(~

,
































∈=
=

∈

∈

∑

∑
t

j

k

cb
ki

rdk
k

rdk
k

cb
ji Rr

dfl

dy
τ  

where )(~ rd  is the set of all the duty arcs in path r. Next we give the pruning rules. 
• Exact pruning rule 1: If for a partial pairing p that starts at a crew base cb we 

have 0),( ≤+ −
∈
∑

cb
pMpl

pd
d udy , then we can prune the partial pairing. 

Recall that a pairing is a path in the mixed segment/duty timeline network. If p  is 
a pairing resulting from p, then by the definition of u we have 

0),(
\

≤+≤+= −
∈∈∈∈
∑∑∑∑

cb
pMpl

pd
d

ppd
d

pd
d

pd
d udydydydy  

and therefore p  would not be considered in (2). 
• Exact pruning rule 2: If for a partial pairing p that starts at a crew base cb we have 

∑
∈

≥
pd

ddy 0  and  

  1 
|)|(

|)|(

||),( ≥
















+
















−+

−+

−

∈

∈

∈

∈

∑

∑

∑

∑
cb

pMpl

pd
d

pd
d

pd
d

pd
d

dfl

dc

FpMdfl

FpMdc
τ ,  

then we prune p. 
In order to prove the validity of this pruning rule, we have to show that any 

pairing resulting from p has a score greater or equal to 1. Let p  be such a pairing. Then 
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where the inequality is proven in Klabjan, Johnson, and Nehmhauser (2001). Let 
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where the first inequality follows from 0  ,0 ≥≥ βα  and the second one from the 
definition of τ and the fact that pp \  corresponds to a path in the mixed segment/duty 
timeline network. Together we get that 
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Therefore the score of p is greater or equal to 1.   
• Exact pruning rule 3: If for a partial pairing p that starts at crew base cb, we have 
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From (3) and (5) we obtain 
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Therefore the score of p  would be greater or equal to 1, and p can be pruned. 
If p has not been pruned by the exact pruning rule 1, then since ∑

∈

<
pd

ddy 0  it 

follows that 0||),( >−
cb

pMplu  and therefore by definition 0||),( >−
cb

pMplτ . 

2.3 Pricing Methodology 
Here we summarize how the pruning rules are carried out. We start by using the 
approximate rules 1 and 2 in pricing. Given a partial pairing we first check the 
approximate rule 1 and then the approximate rule 2. Every pairing with the score less 
than 1 is stored in a pool. If at the end of a single pairing generation pass the pool is non 
empty, we add a subset of columns with the score less than 1 to the subproblem (see 
Section 3.1 how this subset is selected) and we keep using the same pruning rules in the 
iteration that follows. If the pool is empty, i.e. we did not find a pairing with score less 
than 1, then we switch to using the approximate rules 3 and 4. Given a partial pairing, we 
first apply the approximate rule 3 and then the approximate rule 4. We store pairings with 
score less than 1 in the pool. If the pool is non empty, then we add a subset of the pairings 
with the score less than 1 to the subproblem and in the next iteration we keep using the 
same two pruning rules. If the pool is empty, then we start using the exact pruning rules. 
Given a partial pairing we first apply the exact pruning rule 1, followed by the exact 
pruning rule 2 and at the end we apply the exact pruning rule 3. The exact pruning rules 
are applied until an optimal solution is found. Note that in order to avoid divisions by 0, 
we have to apply the pruning rules in this specific order. 

3 Computational Experiments 
3.1 Implementation 
Our pairing generation is based on the mixed segment/duty timeline network. For daily 
problems the network consists of several copies of duties, which are shifted by days. We 
add enough copies that we are able to generate every pairing. Similarly, for weekly 
problem, we add copies of duties at the end of the time horizon to enable the generation 
of pairings that wrap around.  

The τ values that are needed for the exact pruning rules are computed by using an 
algorithm from Makri and Klabjan (2001). This reference contains three algorithms for 
computing τ. For sparse problems, which reflect our mixed segment/duty timeline 
network, the most efficient algorithm is the parametric longest path algorithm. In the 
definition of τ the paths are restricted to at most a given number of arcs in the paths. The 
algorithms in Makri and Klabjan (2001) do not handle path restrictions to a given number 
of arcs and due to the nonlinearity in the objective function the traditional dynamic 
programming approach cannot be applied. To circumvent this, we explicitly restrict the 
number of duty arcs in the paths by applying the algorithm several times on a sufficiently 
small subnetwork. We explain this concept with an example. Consider the weekly 
problem with the horizon of one week, and suppose that pairings cannot exceed 5 days 
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and M=5. In this case the mixed segment/duty timeline network spans the horizon of 12 
days, 7 days for one week and 5 to account for pairings that wrap around. The nodes on 
the last 5 days correspond to the legs from the first 5 days except that they are shifted in 
time by one week. We first run the parametric longest path algorithm on the network that 
consists of only the nodes starting on days 1,2,3,4 and 5. This restricts the paths to the 
length of at most 4 duty arcs. The algorithm computes the values cb

i 4,τ  for every leg i that 

starts on day 1, the values cb
i 3,τ  for every leg i that starts on day 2, the values cb

i 2,τ  for 

every leg i that starts on day 3, and the values cb
i 1,τ  for every leg i that starts on day 4. 

Next we form the network consisting of only the nodes on days 2,3,4,5 and 6 and we 
again run the parametric longest path algorithm. Now we obtain the values cb

i 4,τ  for every 

leg i that starts on day 2, the values cb
i 3,τ  for every leg i that starts on day 3, and so forth. 

The procedure is then repeated until we obtain all cb
ji ,τ .       

Whenever a pairing with score less than 1 is found, it is stored in the pool. The 
pool has a maximum size of 100,000. When the pool reaches its maximum size, we select 
20,000 pairings with the lowest score that remain in the pool and all other pairings are 
discarded. When pricing is finished, we add to the subproblem 20,000 pairings from the 
pool with the smallest score. If at the end the pool has less than 20,000 pairings, then we 
add all the pairings from the pool. When the subproblem has more than 50,000 columns, 
we remove from the subproblem all the nonbasic columns.   

To obtain an initial feasible solution, we greedily select a given number of 
pairings and solve the LP over these pairings. In all of the problems this heuristic yields a 
fesible LP. 

3.2 Computational Results 
The computational experiments were conducted on a PC with a Pentium III 1 GHz 
processor, 256 MB of main memory and the Windows 2000 operating system. The 
algorithms were implemented in Visual C++ version 6.0 and we used the linear 
programming solver CPLEX version 7.0.  

We present the computational results for solving the LP relaxation of airline crew 
scheduling instances. We have formed 14 instances and for each instance we created two 
different problems. In one problem we consider the computationally difficult 8-in-24 rule 
and the other problem does not assume this rule. The latter problems are denoted by 
primes, e.g. the problem P1 assumes the 8-in-24 rule whereas the problem P1’ is the 
identical problem except that it does not have this rule. The problems with 8-in-24 rule 
mimic a typical U.S. domestic crew scheduling problem. On the other hand, the 8-in-24 
rule is not present in long-haul problems and it does not necessarily apply in non U.S. 
countries and therefore the problems without the 8-in-24 rule reflect these scenarios. 
Table 1 shows the problem type, the size of the instances, and the total number of 
pairings. By the number of legs we refer to the number of different flights without taking 
into account their repetition in the time horizon. The column ‘# of rows’ shows the 
number of rows in the LP relaxation. Note that if we do not consider the 8-in-24 rule, 
then we get up to three times as many pairings. All of the instances were created from a 
weekly flight schedule of a major US airline. All the feasibility rules, cost structure and 
parameters are identical to those used by the airline.  The flight network has a hub-and-
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spoke structure, i.e. there are a few stations with heavy flight activity and all the 
remaining stations have flights mostly to these high activity stations, and every instance 
has 6 crew bases.  
 

 type # of legs # of rows # of pairings
with 8-in-24 

# of pairings 
without 8-in-24 

P1 daily 149 149 1,393,897 3,607,004 
P2 daily 175 175 2,256,809 5,596,648 
P3 weekly 62 441 7,827,689 12,930,660 
P4 weekly 123 861 6,201,276 13,070,302 
P5 weekly 137 959 7,493,572 16,263,593 
P6 weekly 135 945 21,431,998 43,683,246 
P7 dated 337 614 22,056,040 26,792,753 
P8 dated 71 449 14,707,867 20,523,678 
P9 dated 142 459 15,357,341 21,637,974 
P10 dated 353 630 23,448,011 28,399,866 
P11 daily 188 188 1,542,496 6,197,746 
P12 dated 78 479 4,456,333 8,345,789 
P13 daily 194 194 6,535,998 20,778,195 
P14 daily 174 174 3,451,078 11,162,473 

Table 1. Size and number of pairings 

From these 28 problems we have selected 10 diversified problems to carry out a 
detailed analysis of the pruning rules. Table 2 shows the impact of the approximate stage 
1. We compare the algorithm without any pruning, i.e. in each iteration we enumerate all 
of the pairings, with the algorithm where we use the approximate stage 1 followed by no 
pruning at all. All times are CPU times in minutes. For the runs with no pruning, we 
report the number of iterations, the total execution time and the time of the pairing 
enumeration function, which is given in the column ‘per iter’. For the approximate stage 
1 pruning, we first report the number of approximate iterations in the column ‘appr’ 
under ‘# iter’, i.e. the number of iterations before we switch to complete enumeration, 
and the total number of iterations.  Next we give the average time of pairing generation in 
the approximate stage 1 (column ‘appr’ under ‘time’) and the total execution time. The 
last two columns show the improvement as a percentage with respect to the running time 
and the objective value after the approximate stage 1. The objective value improvement is 
defined as )/()(100 LPII zzzz −− , where LPz  is the optimal LP value, z  is the objective 
value after the approximate stage 1, and Iz  is the initial LP value. We observe that for 
half of the problems the approximate pruning rules prune all the pairings with score less 
than 1 and therefore have no impact. For three problems the solution after the 
approximate stage 1 is really close to the optimal solution, which results also in a lower 
overall execution time. The average pairing generation time in the approximate stage 1 is 
up to 10 times lower than the time to enumerate all of the pairings. Therefore the 
approximate rules 1 and 2 achieve the goal of substantially reducing the enumeration 
time but however sometimes they tend to prune too much. Note that for problems P3’ and 
P4’ the objective value after the approximate stage 1 is close to the optimal value 
however many more iterations are required to reach optimality.     
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no pruning approximate stage 1 

time # iter time improvement (%)  # iter total per iter appr total appr total time obj 
P1’ 7 11 1.5 11 13 0.25 7.5 32 88 
P2 7 23 3.2 1 7 0 23 0 0 
P2’ 7 20 2.8 2 8 1 18 10 1 
P3’ 10 23 2 11 16 0.2 16 30 99 
P4 10 58 4.9 4 12 1 56 3.4 11 
P4’ 22 58 2 14 31 0.5 55 5 90 
P5 13 102 6.9 1 13 0 102 0 0 
P7 10 354 35 2 10 0 354 0 0 
P8 8 96 12 1 8 0 96 0 0 
P9 7 99 12.4 2 8 1 76 23 0 

Table 2. Computational results for approximate stage 1 

Next we consider the approximate stage 2. The computational results are given in 
Table 3. The table columns corresponding to the approximate stage 2 have identical 
meaning as the corresponding columns in Table 2. Here by running only the approximate 
stage 2 we mean that we apply the approximate stage 2 pruning rules and then we switch 
to a complete enumeration without pruning. Table 3 also gives results for the algorithm 
that uses both approximate stages 1 and 2. This algorithm performs first the approximate 
stage 1, then it switches to the approximate stage 2, and when the approximate pruning 
rules 3 and 4 prune all pairings with score less than 1, a complete enumeration is used. 
The improvements in time and in the objective value are with respect to the runs with no 
pruning reported in Table 2. Columns ‘appr 1’ and ‘appr 2’ under ‘# iter’ show the 
number of iterations of the approximate stages 1 and 2, respectively.  

 

Table 3.  The impact of the approximate stage 2 

From Table 3 we conclude that the approximate stage 2 alone leads to the running 
time improvements from 7 to 70 percent, except for the P4’ problem. The average 

approximate stage 2 approximate stages 1 and 2 
# iter time improvement  

(%) # iter improvement  
(%)  

appr total appr total time obj appr 
1 

appr 
2 total 

time 
time obj 

P1’ 6 10 0 5.5 50 76 11 5 18 8 27 96 
P2 5 10 0 16.3 29 64 1 6 11 16.5 29 64 
P2’ 7 10 0 7.8 61 85 2 7 14 17.3 13.5 71.6 
P3’ 4 7 0 7 70 99 11 2 15 10.5 54 99 
P4 16 24 0 48.5 16.4 92 4 11 22 50 14 84.5 
P4’ 9 32 0 76 0 89 14 6 30 43 26 95 
P5 8 14 0 48.5 16.4 85 1 8 15 50 16.4 85 
P7 18 25 0.5 328 7 49 2 26 33 233 34 49 
P8 6 9 0 36 63 99.5 1 6 10 36 63 99.5 
P9 7 10 0 41.5 58 99.8 2 9 13 30 70 99.8 
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running time improvement is 37%. Problem P4’ is interesting since using only the 
approximate stage 1 we obtain a substantial improvement in the objective value however 
the approximate stage 2 prunes all the pairings and therefore does not yield any 
improvement. With the exception of P4’, the approximate pruning rules 3 and 4 yield 
better results. The time per pairing generation is extremely low in the approximate stage 
2, typically just a few seconds. By combining the two approximate stages we achieve a 
reduction in total time for every problem. The achieved reductions are between 14 and 70 
percent. The combined strategy is a clear winner for problems P4’, P7, and P9, and it is 
outperformed by the approximate stage 2 alone in all other problems. In P4’, in the 
algorithm that combines the two approximate stages, the initial dual vector for the 
approximate stage 2 is different from the initial dual vector if the approximate stage 2 
alone is used and therefore we have 6 approximate stage 2 iterations in the combined 
algorithm. It is clear that the best strategy is instance dependant but the combined 
strategy has the best performance over all the instances. The average improvement in the 
running time is 35%. It is interesting to note that for some of the instances the objective 
value after the approximate stages 1 and 2 is close to the optimal value however the 
algorithm still needs a significant number of iteration to reach optimality. This has 
already been observed in Table 2. 

In Table 4 we compare the algorithm with the approximate stages 1 and 2 
followed by a complete enumeration with the algorithm that uses the approximate stages 
1 and 2 and then the exact pruning rules. Columns ‘per iter’ show the average pairing 
enumeration time in iterations that follow the approximate stages. This time is 
significantly lower when using exact pruning, which shows that the exact pruning rules 
are beneficial. We give in the column ‘comp τ ’ the average per iteration time of running 
the primal-dual algorithm for computing the values τ  used in the exact pruning rules 2 
and 3. These times are reasonably low and the gains from pruning are substantially larger. 
The time improvement values are with respect to the algorithm that uses only the two 
approximate stages followed by complete enumeration of pairings. Employing all the 
pruning rules improves the running time by 30 to 85 percent. The last 3 columns show 
the number of prunings by the 3 exact pruning rules. Note that the exact pruning rules 1 
and 2 prune substantially more pairings than the exact pruning rule 3. This is not 
surprising since the exact pruning rule 3 does not use the factor ∑∑

∈∈ pd
d

pd
d dfldc and 

therefore it seems to be weak. Due to different dual vectors that are generated by the 
algorithms in the exact stage, for some problems the number of iterations in the algorithm 
without exact pruning exceeds the number of iterations in the combined algorithm. We 
call the algorithm that uses both approximate stages and then the exact algorithm the 
approximate/exact algorithm.  

To study the impact of the approximate stages 1 and 2 we have performed 
computational experiments with a variant of the algorithm that uses only exact pruning in 
every iteration. The results are given in Table 5. The next to last column shows the 
improvement of the running time with respect to the algorithm without any pruning. The 
last column compares the execution time of the approximate/exact algorithm with the 
algorithm that uses only exact pruning. In all of the instances the former algorithm 
outperforms the latter algorithm, the average improvement being 47%. This shows that 
the approximate stages are beneficial.   
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appr stages 1 

and 2 approximate stages 1, 2 and exact 
time time # prunings  

# 
iter total per 

iter 

# 
iter total per 

iter 
comp 
τ 

improvement 
in time (%) Rule 1 rule 2 rule 3 

P1’ 18 8 1.5 12 3.9 0.5 0.2 51 119,397 397,572 537
P2 11 16.5 3.2 10 4.5 0.3 0.25 72 163,454 377,157 662
P2’ 14 17.3 2.8 15 5.9 0.7 0.25 65.9 185,980 688,071 12,744
P3’ 15 10.5 2 15 7 0.9 0.05 33.3 344,787 341,847 2,233
P4 22 50 4.9 24 25.3 1 0.25 49.4 272,716 232,907 3,809
P4’ 30 43 2 17 29.2 1 0.25 32 336,437 217,130 463
P5 15 50 6.9 15 20 1.5 0.3 60 413,186 307,794 4,345
P7 33 233 35 20 33.5 3.7 0.08 85.6 2,442,275 873,422 52,995
P8 10 36 12 10 7.2 2 0.03 80 776,123 439,280 77
P9 13 30 12.4 8 6 2.1 0.03 80 841,247 275,400 1,389

Table 4. Computational experiments with exact pruning 

only exact pruning 
Time 

 

# iter total per iter
vs. no  

pruning (%)
vs. approx.  
/exact (%) 

P1’ 10 6.4 1.6 42 -39 
P2 11 7.3 1.5 68 -38 
P2’ 11 13.5 0.8 33 -56 
P3’ 10 12.3 0.8 47 -43 
P4 9 35 0.3 40 -28 
P4’ 20 38 0.5 34 -23 
P5 13 58 0.2 43 -66 
P7 13 54 0.2 85 -38 
P8 10 22 0.5 77 -67 
P9 13 25.5 0.5 74 -76 

Table 5. The impact of the approximate stages 1 and 2 

In Table 6 and Table 7 we present the computational results for all of the 
problems. Table 6 shows the results for the problems with the 8-in-24 rule and Table 7 
without this rule. Note that for approximately half of the problems the computational 
times are larger for the problems with the 8-in-24 rule despite the lower number of 
pairings, which shows that this rule is indeed computationally expensive. We compare 
the execution time of the approximate/exact algorithm and the implementation that does 
not use any pruning. The results show that by using the pruning rules we reduce the 
overall running time by 56 to 94 percent for the problems with the 8-in-24 rule and the 
average reduction is 82%. For the problems without the 8-in-24 rule the decrease in the 
execution time ranges from 49 to 86 percent and the average reduction is 66%. The runs 
with the pruning rules have more iterations due to the approximate stages but however 
the time per iteration is significantly lower. The higher reduction for the problems with 
the 8-in-24 rule is expected since pruning an operation that is computationally intense is 
more effective.  
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no pruning approximate/exact 

Time Time 
 

# iter total per iter # iter total per iter
improvement 
in time (%) 

P1 7 11.5 1.6 11 2.5 0.2 78 
P2 7 23 3.2 10 4.5 0.4 80.4 
P3 6 42.7 6.8 10 4.5 0.4 89.4 
P4 10 58 4.9 24 25.3 1 56.3 
P5 13 102 6.9 15 20 1.3 80.4 
P6 17 345 19.5 20 61 3 82.3 
P7 10 354 35 20 33.5 1.7 90.5 
P8 8 96 12 10 7.2 0.7 92.5 
P9 7 99 12.4 8 6 0.7 94 
P10 10 397 39 15 31 2 92.2 
P11 9 66 7.3 15 23 1.5 77.3 
P12 9 146 17 16 35 2.1 76 
P13 11 107 9.7 18 33 1.8 69 
P14 11 82.5 7.5 12 10.6 0.9 87.5 

Table 6. Computational results for the problems with the 8-in-24 rule 

No pruning approximate/exact 
time Time 

 
 # iter total per iter # iter total per iter

Improvement 
in time (%) 

P1’ 7 11 1.5 12 3.9 0.32 64.5 
P2’ 7 20 2.8 15 5.9 0.4 70.5 
P3’ 10 23 2 15 7 0.47 69.6 
P4’ 22 58 2 17 29.2 1.7 49.6 
P5’ 21 73.5 2.6 24 35 1.4 52.3 
P6’ 20 158 6.8 24 68 2.8 57 
P7’ 18 158.5 9 27 39 1.4 75.4 
P8’ 9 40.8 4.2 14 14.5 1 64.5 
P9’ 10 47.8 4.5 15 15.2 1 68.2 
P10’ 17 173 10 28 37.5 1.3 78.3 
P11’ 14 98 7 14 13.5 1 86.2 
P12’ 11 57 5.1 16 21 1.3 63 
P13’ 17 289 17 17 82 4.8 71.6 
P14’ 14 92.5 6.6 17 40.5 2.4 56 

Table 7. Computational results for the problems without the 8-in-24 rule 

4 Concluding Remarks 
Our pairing cost structure consists of a maximum of three linear terms. Some airlines add 
to the cost structure an additional linear term, e.g. fixed cost per overnight connection arc 
to reflect the crew cost of lodging and meals. Our pruning rules can be easily extended to 
such a case.  

The discussion of the pruning rules revolves around the pricing algorithm that is 
based on enumeration. The presented framework is applicable to constrained shortest 
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path algorithms as well. Suppose that during the execution of a constrained shortest path 
algorithm we pick a label vector associated with duty d from the priority queue. The 
algorithm next scans all the outgoing connection arcs from d and for each arc we 
compute the new label vector r and we insert it in the priority queue. Due the nature of 
the constrained shortest path algorithms, given r it is possible to reconstruct the path q 
from the source to the duty corresponding to r. Note that to be able to use the pruning 
rules, we need ∑

∈ )(~ qdd
ddfl  and ∑

∈ )(~ qdd
ddy , which are easily computable. Given these two 

quantities, we can check if one of the pruning conditions applies. If yes, then we do not 
add the new resource vector r to the priority queue. Typically ∑

∈ )(~ qdd
ddfl  and ∑

∈ )(~ qdd
ddy  

correspond to two labels and therefore in this case there is no extra computation involved. 
Our pruning rules and the rational behind constrained shortest path algorithms are 
complimentary. We fathom a partial pairing if its ‘tail’ is bad, however, the latter 
algorithms detect via dominance in the label vectors if the partial pairing is bad. Our 
pruning rules look ahead while constrained shortest path algorithms look back if there 
were already a better partial pairing with respect to the labels.  

Another application of our pruning rules is in primal-dual algorithms, Hu and 
Johnson (1999), and steepest edge algorithms, Gopalakrishnan et. al. (2001). In every 
iteration both algorithms maintain a dual feasible solution π and a vector ρ, which is not 
necessarily dual feasible. The former algorithm seeks a nonnegative scalar t such that 

ρπ tt +− )1( is a dual feasible vector with the largest objective value. In the latter 
algorithm a nonnegative scalar t is sought such that ρπ t+ is a dual feasible vector with 
the largest optimal value. It is easy to see that t corresponds to  
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respectively. Since our score has the same structure, the pruning rules can easily be 
adapted to this case as well. One change that needs to be done is to replace the cutoff 
value of 1 in the rules with the best value of t found so far.    
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