
 1

1A New Pricing Scheme for Airline Crew Scheduling

 Alexandra Makri (makri@uiuc.edu)
 Diego Klabjan (klabjan@uiuc.edu)

Department of Mechanical and Industrial Engineering
University of Illinois at Urbana-Champaign

Urbana, IL
Abstract
Solving LP relaxations of airline crew scheduling models is computationally challenging
due to a large number of variables, complex feasibility rules to generate columns, and
nonlinear cost. We perform computational experiments with a nonlinear pricing strategy.
We develop a column generation scheme that uses several pruning rules to fathom
column enumeration. The pruning rules are categorized into approximate and exact,
where the approximate rules might prune columns that would yield an improved
objective value. The pruning rules use the fact that columns are paths in a network and
we use shortest path algorithms and their extensions to obtain bounds.

1 Introduction
The airline crew scheduling problem is the problem of finding crew itineraries or
pairings that minimize the crew cost. Traditionally the crew scheduling problem is
modeled as the set partitioning problem binary}, ,:min{ xAxcx 1= where each variable
corresponds to a pairing and each row to a leg, aij = 1 if leg i is in pairing j and 0
otherwise, and cj is the cost of pairing j. This model is computationally difficult due to
the large number of pairings, their complex structure and the nonlinear cost function.
Medium size U.S. domestic problems of major carriers with approximately 300 legs have
billions of variables. These facts make even solving LP relaxations }0 ,:min{ ≥= xAxcx 1
a strenuous task. In this paper we consider only the LP relaxation. (See Barnhart et. al.
(1999) for a survey on how to obtain a binary solution.)

Many algorithms for airline crew scheduling require solving the LP relaxation
many times, e.g. branch-and-price. Due to the large number of variables, i.e. pairings,
explicitly solving the LP relaxation is usually intractable. Instead column generation is
used, where in every iteration a restricted master problem, called also the subproblem, is
solved over a small number of pairings. The subproblem is the same problem as the
original problem except that it consists of only a subset of the columns. Pairings with low
reduced cost are then appended to the subproblem, the subproblem is reoptimized, and
the procedure is repeated. A formal description of the column generation algorithm
follows.

• Loop

o Solve the LP over a small subset S of the columns, i.e. solve the
subproblem over S.

o Find a set S of columns with low reduced cost. This step is called pricing.

1 Partially supported by a grant from the University of Illinois at Urbana-Champaign Campus Research
Board.

 2

o If there are no columns with negative reduced cost, exit. We have an
optimal solution.

o SSS ∪=
• End loop

Pairings are paths in a network, where flights correspond to nodes and arcs to

crew connections. A pairing is subject to various feasibility rules such as company, union
and regulatory restrictions and therefore a path in the network is not necessarily a pairing.
These rules constrain the paths that correspond to pairings. When solving the LP
relaxations by column generation, pricing has to be carried out in every iteration. One
approach to finding the lowest reduced cost pairing is by applying a constrained shortest
path algorithm, Desrochers and Soumis (1988), Desaulniers et al. (1998) and Desrosiers
et al. (1995). These algorithms are generalizations of shortest path algorithms. A
constrained shortest path algorithm keeps track of several labels that correspond to the
legality rules and the cost structure (called also resources) and they are updated upon
scanning an arc. On the other hand, pairing enumeration methods attempt to generate the
pairings in a depth-first search manner. Typically some ad-hoc rules are used to reduce
the computation time. Anderson et al. (1998) describe a commercial crew scheduling
software that uses enumeration. In the presence of many labels a constrained shortest path
algorithm is likely to enumerate all the pairings and therefore it behaves like an
enumeration algorithm. The main difference between the two approaches is that in a
constrained shortest path algorithm the nodes are scanned more in a breath-first search
order and therefore it has larger storage requirements. We chose to perform pricing based
on enumeration but the approach presented applies to a constrained shortest path pricing
as well (see Section 4).

Bixby et al. (1992) develop a new strategy to append columns to the subproblem.
Instead of adding columns with low reduced cost they propose to add columns with a low
ratio of cost over sum of the dual prices in the column. We call this ratio the score. They
use this strategy on problems, where all of the columns are explicitly given in advance
and they obtain a reduced number of pricing calls. We embed this rule in a column
generation algorithm, where in pricing columns are enumerated by depth-first search. We
design several pruning rules that fathom enumeration and reduce the generation time. The
approximate pruning rules are applied in initial iterations and they prune pairings that
might improve the objective value. After the approximate rules do not improve the
objective value anymore, we switch to exact pruning rules. These rules prune the
generation by providing an upper bound on the score. The main contributions of this
work are the embedding of a nonlinear pricing rule in column generation, the idea of
pruning too many pairings in early iterations to expedite the generation, and the
development of several pruning rules that speed up the generation procedure.

Next we list some relevant publications on airline crew scheduling; for an
extended list see e.g. Barnhart et al. (1999). Desrosiers et al. (1991) solve the crew
scheduling problem using column generation and a constrained shortest path algorithm
for pricing. This is the first work that uses constrained shortest path for airline crew
scheduling. Early work in airline crew scheduling is the so-called TRIP algorithm,
Gershkoff (1989), Anbil et al. (1991). TRIP is a local search heuristic that uses pairing
enumeration on a subset of flights. Anbil, Johnson and Tanga (1991) use column

 3

generation to solve large-scale airline crew scheduling problems. In pricing they
enumerate pairings. Bixby et al. (1992) propose a new pricing rule and they experiment
with different LP algorithms for solving the subproblem. Vance et al. (1997) and Anbil,
Forrest and Pulleyblank (1998) describe column generation, branching and search
strategies for a branch-and-price algorithm. The former publication uses a constrained
shortest path algorithm in pricing and the latter uses enumeration in pricing. Klabjan,
Johnson and Nemhauser (2001) use generation in pricing. Their generation is based on
randomness, i.e. they generate random pairings.

Section 2 presents the new pricing rule and all the pruning rules. In Section 3 we
report the computational experiments. We conclude the introduction with a detailed
description of airline crew scheduling and we describe the underlying network.

Airline Crew Scheduling
The input for an airline crew scheduling problem is a fleet together with the flight
schedule and the aircraft routes. A leg is a nonstop flight.

A duty is a working day of a crew and it consists of a sequence of legs. A
connection within a duty is called a sit connection. There is a lower and an upper limit on
the sit connection time. The minimum sit connection time can be violated only if the crew
stays on the same plane. Company, union and regulatory restrictions restrict a duty. The
cost of a duty, measured in minutes, is usually the maximum of three quantities: the
flying time, a fraction of the elapsed time, and the duty minimum guarantee pay. We
denote by dcd the cost of duty d.

Crew bases are designated stations where crews are based. A pairing is a
sequence of duties, starting and ending at the same crew base. A connection within a
pairing is called an overnight connection or layover. Like sit connections there is a lower
and an upper limit on the layover time, denoted by minRest and maxRest respectively. A
pairing is also subject to many feasibility rules, e.g. maximum elapsed time, maximum
number of duties, service of particular legs from a given crew base. We denote by M the
maximum number of duties in a pairing. Typical values of M are between 3 and 5. The
cost of a pairing p, denoted by pcp and measured in minutes, is the maximum of three
quantities: the sum of the duty costs in the pairing, a fraction f times the elapsed time, and
a minimum guaranteed pay mg, which can be different from the duty minimum guarantee
pay, times the number of duties. Formally,

 ∑
∈

⋅⋅=
pd

dp dcpelfndmgpc },,max{ , (1)

where nd is the number of duties in p and pel is the elapsed time, called also time-away-
from-base. A detailed discussion of the legality rules and the cost structure of pairings is
given by Barnhart et al. (1999).

The daily crew scheduling problem is the crew scheduling problem with the
assumption that every leg is flown every day of the week. In the weekly crew scheduling
problem a crew schedule is sought over a time horizon that is repeated, i.e. it is assumed
that the flight schedule repeats. Pairings from the end of the horizon can wrap around to
the beginning of the horizon. The dated crew scheduling problem is similar to the weekly
problem except that the flight schedule is given over a fixed time horizon. In a dated
problem pairings do not wrap around. For a discussion of the applications of these three
problems see e.g. Barnhart et al. (1999). The methodologies developed in this paper are
applied to all three problems.

 4

The Mixed Segment/Duty Timeline Network
The mixed segment/duty timeline network has two nodes for each leg, one

corresponding to the arrival and the other one corresponding to the departure of the leg.
We denote by arri, depi the arrival, departure node corresponding to leg i, respectively.
The network has two types of arcs. For each duty d there is a duty arc that connects depi
with arrj, where i is the first leg in d and j is the last leg in d. In addition, there is a
connection arc (arri,depj) if the arrival station of leg i is the same as the departure station
of leg j and the connection time is within],[maxRestminRest . The connection time is
defined as the departure time of leg j minus the arrival time of leg i. Note that this
network is acyclic and it has parallel duty arcs. Pairings are paths in the mixed
segment/duty timeline network, but due to the feasibility rules a path does not necessarily
correspond to a pairing. This network is a mixture between the traditional segment
timeline network and the duty timeline network, see e.g. Barnhart et al. (1999) for a
description of these two networks. It can be stored much more compactly than the duty
timeline network since the nodes correspond to the nodes of the segment timeline
network but on the other hand it does not capture as many feasibility rules as the duty
timeline network.
Example. Consider the mixed segment/duty timeline network shown in Figure 1.

Figure 1. A mixed segment/duty timeline network

We assume that the departure station of leg i1 is st3, the arrival station of leg j1 is
st2, etc. The solid arcs correspond to the duty arcs and the dashed arcs correspond to the
connection arcs. For example, there are 3 duties with leg i1 as the first leg in the duty and
leg j1 as the last leg in the duty. The time between the departure of leg i2 and the arrival of
leg j1 is greater or equal to minRest. Similarly, the time between the departure of leg i4
and the arrival of leg j1 is less or equal to maxRest.

st 2

st 3

st 1

dep i 1

depi2 depi3 depi4

arr j 1

arrj2

arrj3

arrj4 arr j 5

time
duty arcs connection arcs

 5

2 Pricing and pruning
2.1 Fractional pricing

In the column generation algorithm, in every iteration columns are added to the
subproblem. Let y be an optimal dual vector to the subproblem, i.e. y is the optimal dual
vector to 0} ,:min{ ≥= xxAxc 1 , where A is a submatrix of A and c the corresponding
coordinates in c. In traditional pricing, pairings p with the smallest reduced cost

∑
∈

−
pi

ip yc are added to the subproblem since the reduced cost approximates the change

in the objective value if the column is appended to the subproblem. Bixby et al. (1992)
observed that the number of pricing calls decreases if columns p with low score
sp= ∑

∈pi
ip yc are selected. The main objective of this work is to show how to find columns

with low score within the column generation framework. Note that since the pairing cost
is nonnegative, a pairing p has negative reduced cost if and only if 0>∑

∈pi
iy and sp < 1.

Therefore in pricing the goal is to solve









>∑
∈

0|min
pi

ipp
ys . (2)

If this minimum is greater or equal to 1, then the current solution is optimal.

Note that 1+









−= ∑∑∑

∈∈∈ pi
i

pi
ip

pi
ip yycyc . The intuition why score based

pricing is more efficient is that the columns with low score have low reduced cost and in
the presence of negative reduced cost they tend to have small ∑

∈pi
iy . By LP sensitivity

analysis we clearly want the former property. Pairings obeying the latter property tend to
have a smaller number of legs and therefore these ‘short’ pairings are likely to blend
better with other pairings. Therefore score pricing distinguishes among the pairings with
the same negative reduced cost by giving preference to those with small ∑

∈pi
iy and

therefore smaller number of legs. Note that pairings with small ∑
∈pi

iy tend to have a

small number of legs.

2.2 Pruning
To enumerate all of the pairings in every iteration of a column generation algorithm is too
time consuming due to the large number of pairings and complex feasibility rules. A
partial pairing is a sequence of duties that starts at a crew base and meets all the pairing
feasibility rules except that it does not necessarily end at the same station. The pairings
are generated using depth-first search on the mixed segment/duty timeline network. In the
depth-first search procedure a partial pairing is extended with all possible duties and the
procedure is recursively repeated. When a pairing is found, i.e. the partial pairing starts
and ends at the same crew base, the pairing is stored and we backtrack by removing the
last duty from the pairing. If we knew in advance that a partial pairing leads only to
pairings with score greater or equal to 1, then we would stop depth-first search from the

 6

current partial pairing and backtrack. Pruning is a procedure that fathoms depth-first
search of a partial pairing before a pairing is actually obtained. For example, given a
partial pairing, if we somehow know that all the pairings p resulting from this partial
pairing will have ∑

∈pi
iy smaller or equal to 0, we can abort the generation of this partial

pairing and backtrack. Cleary efficient pruning rules can substantially reduce the
execution time of the generation procedure.

 We develop two types of pruning rules, which we call approximate and exact.
Approximate pruning rules prune partial pairings that can produce pairings with score
greater or equal to 1. These rules prune many partial pairings and therefore produce fast
generation. However, they might prune partial pairings that would yield pairings with
score less than 1. If after using the approximate pruning rules we do not find pairings
with score less than 1, we cannot state that the incumbent primal solution is optimal. On
the other hand, exact pruning rules prune only partial pairings that would always result in
pairings with score greater or equal to 1 (in the worst case scenario). We use first the
approximate pruning rules and then we switch to the exact pruning rules, when we do not
find a pairing with score less than 1 by using approximate pruning.

The idea behind this distinction is that it really does not matter how we prune in
all of the iterations but the last one. In the last iteration, where we actually prove
optimality, we cannot prune partial pairings approximately. A typical implementation
along these lines would have a constant K and it would prune all the partial pairings with
current score greater or equal to K. It is hard to make such a strategy flexible for all
possible instances, feasibility rules and cost structures, i.e. K should depend on these
parameters. Our approximate rules are designed in such a way that they use the properties
of the mixed segment/duty timeline network.

2.2.1 Approximate pruning rules
Let p be a partial pairing and let p be the number of duties in the partial pairing. For a

duty d we denote by ∑
∈

=
di

id ydy the sum of the dual prices of the legs in the duty and we

call it the dual value of duty d. Note that p represents the set of all the duties in the
pairing and likewise d stands for the set of all the legs in the duty. Based on the quality of
the approximation we have two stages. In the approximate stage 1 we prune many
pairings and in the approximate stage 2, which follows the approximate stage 1, we refine
pruning. Next we list the approximate pruning rules.

Approximate stage 1
Let ndydy

d
d∑= and ndcdc

d
d∑= be the average of the duty dual values and the

duty cost over all the duties, respectively. Here n is the number of the duties. The pruning
rules in the approximate stage 1 use the average sum of the duty dual values and the
average duty cost to prune partial pairings. Therefore the approximation is rather coarse.

• Approximate pruning rule 1: If for a partial pairing p we have
∑

∈

≤−+
pd

d dypMdy 0)(, then we prune p.

 7

Here we make the assumption that the duty dual value of every duty equals to the
average dy . If this assumption holds and ∑

∈

≤−+
pd

d dypMdy 0)(, then for every pairing

p resulting from p we have 0≤∑
∈pi

iy and p would not be considered in (2).

• Approximate pruning rule 2: If for a partial pairing p we have

1)()(≥








−+










−+ ∑∑

∈∈ pd
d

pd
d dypMdydcpMdc ,

then we prune p.
The approximations here are first that the pairing cost is the sum of the duty costs

in the pairing, second that the duty cost for every duty equals to the average duty cost,
and third that the duty dual value of every duty equals to the average duty dual value.
Under these assumptions the score of every pairing resulting from p would be greater or
equal to 1. By applying this rule after the approximate pruning rule 1, the denominator is
always greater than 0.

Approximate stage 2
We say that a path r is a path from leg i to crew base cb if r is a path in the mixed
segment/duty timeline network from arri to a node in {arrk | the arrival station of leg k is
at crew base cb}. For a leg i, crew base cb, and j, 11 −≤≤ Mj , let cb

jiR , be the set of all

paths from i to crew base cb with exactly j duty arcs. Given a path cb
jiRr ,∈ , let cyr be the

sum of the duty dual values of all the duty arcs in r. Similarly we define ccr with respect
to the duty cost. For cb

jiRr ,∈ , let celr be the sum of the connection times of all the
connection arcs in r and the duty elapsed times of all the duty arcs in r. By appropriately
defining the arc cost in the mixed segment/duty timeline network, these values
correspond to the cost of a path in the network.
Example. (cont.) Let us define the cost on solid arcs as the duty dual values and the cost
on the dashed connection arcs as 0. Then cyr is the cost of path r. Similarly we can treat
ccr. For celr, we define the cost of solid duty arcs as the duty elapsed time and the cost of
the dashed connection arcs as the connection time. Then celr is the cost of path r.

For a leg i, crew base cb and for every 11, −≤≤ Mjj , we denote by
cb

jidy , ,
cb

jidc , ,

and
cb

jidel , the average of cyr, ccr and celr over all paths cb
jiRr ,∈ , respectively. In addition,

let
cb

jiay , be the average of cyr over all paths t
j

k

cb
kiRr

1
,

=

∈ , i.e. we restrict the paths to have at

most j duty arcs. We denote by pelp the elapsed time of a partial pairing p and let l(p) be
the last leg in the last duty of p. Pruning in the approximate stage 2 is less coarse than
pruning from the approximate phase 1, because these average values are better
approximations.

• Approximate pruning rule 3: If for a partial pairing p that starts at a crew base cb,
0||),(≤+ −

∈
∑

cb
pMpl

pd
d aydy , then we prune p.

 8

This rule is similar to the first approximate rule but the approximation is better
since we are using the average sum of the duty dual values among the paths that connect
the last leg in the last duty of the partial pairing to the crew base.

• Approximate pruning rule 4: Let p be a partial pairing and let









>+−≤≤= ∑
∈

0,1:),(
cb

jpl
pd

dp dydypMjjS ,

where p starts at a crew base cb. If

1
}),(),|(|max{

),(

),(),(

≥
+

++⋅+⋅

∑
∑

∑

∈

∈

∈
p

Sj
cb

jpl
pd

d

pd

cb
jpld

cb
jplp

S
dydy

dcdcdelpelfjpmg

p

,

then we prune p.
Given a fixed ||1, pMjj −≤≤ , the numerator in the summand estimates the cost

of pairings resulting from p by appending exactly j duties. Recall the pairing cost
structure given by (1). The first term in the maximum corresponds to the minimum
guarantee pay, the second term to the average elapsed time multiplied by f, and the third
term to the average sum of the duty costs. The denominator in the summand is the
average sum of the duty dual values if p is extended by exactly j duties. Therefore the
summand approximates the average score of parings that result from p by appending
exactly j duties. The overall approximation is then the average of all the approximations
to the average score.

Note that if p has not been pruned by the approximate pruning rule 3, then by
conditioning it is easy to see that ≠pS Ø.

2.2.2 Computing the averages

In this section we show how to compute
cb

jidy , ,
cb

jidc , and
cb

jidel , . Let D = (N,A) be an
acyclic network, which is already topologically sorted. To capture the mixed
segment/duty timeline network we allow parallel arcs. We assume that every node i has a
weight ui and every arc e has a weight ve. We show how to compute jia , for every

KjNi ...,,1, =∈ , where jia , is the average length of paths from node i to a given node t
among all the paths with precisely j arcs. K is a given constant. The length of a path is
defined as the sum of the node and the arc weights in the path.

Let Ri,j be the set of all paths from node i to node t with exactly j arcs and for
simplicity of notation we denote jiji Rn ,, = . We define 00,0, == ii na for every { }tNi \∈

and 0,0,1 ,,0,0, ==== jtjttt naan for j=1,…,K. Given Ni ∈ , the notation ∑
∈Ali),(

represents

the sum over all arcs originating at i. Note that due to the parallel arcs this summation
might be different from the summation over all neighbors l. Then by definition of average
for every { }tNi \∈ and for every j=1,…,K we have

 9

.
)(

)(1

)(1

)()(

,

),(
1,1,),(

,

),(),(
1,1,1,),(

,

),(),(
),(

,

),(),(
),(

,

),(
),(

,
,

1,1,

1,1,

1,,

ji

Ali
jljlli

i
ji

Ali Ali
jljljlli

i

ji

Ali Rr rg rk
kg

RrAli
li

i

ji

Ali Ali Rr rg rk
kgli

Rr
i

ji

Ali Rr rg rk
kglii

ji

Rr rk
k

rg
g

ji

n

nav
u

n

nanv
u

n

vuv
u

n

vuvu

n

vuvu

n

vu
a

jljl

jljl

jlji

∑∑ ∑

∑ ∑ ∑ ∑∑∑

∑ ∑ ∑ ∑ ∑∑

∑ ∑ ∑ ∑∑ ∑∑

∈
−−

∈ ∈
−−−

∈ ∈ ∈ ∈∈∈

∈ ∈ ∈ ∈ ∈∈

∈ ∈ ∈ ∈∈ ∈∈

+
+=

+
+=

++
+=

+++
=

+++
=

+
=

−−

−−

−

Clearly ∑∑ ∑
∈

−
∈ ∈

==
− Ali

jl
Ali Rr

ji nn
jl),(

1,
),(

,
1,

1 .

Based on these formulas we develop the algorithm, which is given in Figure 2.
Without loss of generality we assume that t is the last node in the topological order. Since
D is topologically sorted, it is easy to verify the correctness of the algorithm. We
compute

cb
jidy , ,

cb
jidc , and

cb
jidel , by running the algorithm several times on the mixed

segment/duty timeline network and with different arc costs. We run it once for each crew
base. For each run the input mixed segment/duty timeline network is slightly modified by
removing all the connection arcs with the tail starting at the crew base cb. In addition, we
add an artificial node and we connect each node arri with the arrival station of leg i equal
to cb to this artificial node.

cb
jiay , is computed from

cb
jidy , and cb

jln , by using the conditioning formula

.
1

,
1

,,, ∑∑
==

=
K

k
ki

j

l
li

cb
li

cb
ji nndyay

Input: D=(N,A)
Output: jia , for all i∈N, j=1,…,K.

1,0 0, === tnan
for i=|N|,…,1 do
 for j=1,…,K do

 for all (k,i)∈A do
 1,,, −+= jijkjk nnn
 end for
end for
f = 0

 for j=1,…,K do
for all (i,k)∈A do

)(),(1,1, kijkjk vanff ++= −−

 10

end for

ji
iji n

fua
,

, +=

end for
end for

Figure 2: The algorithm for computing the averages

2.2.3 Exact pruning rules
Assume that in an iteration of the column generation algorithm we did not find a pairing
with the score less than 1 by applying approximate pruning rules. Since these rules might
have pruned too much, we cannot assert that the current solution is optimal. Therefore we
need to develop pruning rules that provide upper bounds on the score.

We denote the maximum allowed flying time in a duty by F and by dfld the flying
time of a duty d. For a leg i, crew base cb, and 11, −≤≤ Mjj , let cb

jiu , be the length of
the longest path, with respect to the sum of the duty dual values along the path, among all

paths t
j

k

cb
kiRr

1
,

=

∈ . In addition, for a leg i, crew base cb, and 11, −≤≤ Mjj , we define

,0, maxmax
1

,

)(~

)(~

,
































∈=
=

∈

∈

∑

∑
t

j

k

cb
ki

rdk
k

rdk
k

cb
ji Rr

dfl

dy
τ

where)(~ rd is the set of all the duty arcs in path r. Next we give the pruning rules.
• Exact pruning rule 1: If for a partial pairing p that starts at a crew base cb we

have 0),(≤+ −
∈
∑

cb
pMpl

pd
d udy , then we can prune the partial pairing.

Recall that a pairing is a path in the mixed segment/duty timeline network. If p is
a pairing resulting from p, then by the definition of u we have

0),(
\

≤+≤+= −
∈∈∈∈
∑∑∑∑

cb
pMpl

pd
d

ppd
d

pd
d

pd
d udydydydy

and therefore p would not be considered in (2).
• Exact pruning rule 2: If for a partial pairing p that starts at a crew base cb we have

∑
∈

≥
pd

ddy 0 and

 1
|)|(

|)|(

||),(≥
















+
















−+

−+

−

∈

∈

∈

∈

∑

∑

∑

∑
cb

pMpl

pd
d

pd
d

pd
d

pd
d

dfl

dc

FpMdfl

FpMdc
τ ,

then we prune p.
In order to prove the validity of this pruning rule, we have to show that any

pairing resulting from p has a score greater or equal to 1. Let p be such a pairing. Then

 11

|)|(

|)|(

∑

∑

∑

∑

∑

∑

∑∑
∈

∈

∈

∈

∈

∈

∈∈

−+

−+
≥==

pd
d

pd
d

pd
d

pd
d

pd
d

pd
d

pd
d

p

pd
d

p
p dfl

dy

FpMdfl

FpMdc

dfl

dy

dfl
pc

dy
pc

s , (3)

where the inequality is proven in Klabjan, Johnson, and Nehmhauser (2001). Let
∑

∈

=
pd

ddyα , ∑
∈

=
ppd

ddy
\

β , ∑
∈

=
pd

ddflω and ∑
∈

=
ppd

ddfl
\

σ .

If 0<β , then

cb
pMpl

pd
d

pd
d

dfl

dy

||),(−

∈

∈ +≤
+
+=

∑

∑
τ

ω
α

σω
βα

since from 0<β , 0)(≥cb
,M-|p|plτ , and 0≥α it follows ⋅++≤≤ −−

cb
pMpl

cb
pMpl ||),(

2
||),(0 τωτασβω

.ωσ If 0≥β , then

cb
p,Mpl

pd
d

pd
d

dfl

dy

||)(−

∈

∈ +≤+≤
+
+=

∑

∑
τ

ω
α

σ
β

ω
α

σω
βα

,

where the first inequality follows from 0 ,0 ≥≥ βα and the second one from the
definition of τ and the fact that pp \ corresponds to a path in the mixed segment/duty
timeline network. Together we get that

 . ||),(
cb

pMpl

pd
d

pd
d

pd
d

pd
d

dfl

dy

dfl

dy

−

∈

∈

∈

∈ +≤
∑

∑

∑

∑
τ (4)

From (3) and (4) we obtain

.1
|)|(

|)|(

|)|(

|)|(

||),(≥
















+
















−+

−+
≥

−+

−+
≥ −

∈

∈

∈

∈

∈

∈

∈

∈

∑

∑

∑

∑

∑

∑

∑

∑
cb

pMpl

pd
d

pd
d

pd
d

pd
d

pd
d

pd
d

pd
d

pd
d

p dfl

dy

FpMdfl

FpMdc

dfl

dy

FpMdfl

FpMdc
s τ

Therefore the score of p is greater or equal to 1.
• Exact pruning rule 3: If for a partial pairing p that starts at crew base cb, we have

∑
∈

<
pd

ddy 0 and , 1
|)|(

|)|(
 ||),(≥

−+

−+

−

∈

∈

∑

∑
cb

pMpl

pd
d

pd
d

FpMdfl

FpMdc
τ then we prune p.

Let p be a partial pairing resulting from p with 0>∑
∈pd

ddy . Since ∑
∈

<
pd

ddy 0 it

follows that 0
\

>∑
∈ ppd

ddy . Therefore by the definition of τ we have

 cb
p,M-pl

ppd
d

ppd
d

ppd
d

pd
d

ppd
d

pd
d

pd
d

pd
d

dfl

dy

dfldfl

dydy

dfl

dy

||)(

\

\

\

\ τ≤≤
+

+
=

∑

∑

∑∑

∑∑

∑

∑

∈

∈

∈∈

∈∈

∈

∈ . (5)

 12

From (3) and (5) we obtain

.1
|)|(

|)|(

|)|(

|)|(

||),(≥
−+

−+
≥

−+

−+
≥= −

∈

∈

∈

∈

∈

∈

∈
∑

∑

∑

∑

∑

∑

∑
cb

pMpl

pd
d

pd
d

pd
d

pd
d

pd
d

pd
d

pd
d

p
p FpMdfl

FpMdc

dfl

dy

FpMdfl

FpMdc

dy
pc

s τ

Therefore the score of p would be greater or equal to 1, and p can be pruned.
If p has not been pruned by the exact pruning rule 1, then since ∑

∈

<
pd

ddy 0 it

follows that 0||),(>−
cb

pMplu and therefore by definition 0||),(>−
cb

pMplτ .

2.3 Pricing Methodology
Here we summarize how the pruning rules are carried out. We start by using the
approximate rules 1 and 2 in pricing. Given a partial pairing we first check the
approximate rule 1 and then the approximate rule 2. Every pairing with the score less
than 1 is stored in a pool. If at the end of a single pairing generation pass the pool is non
empty, we add a subset of columns with the score less than 1 to the subproblem (see
Section 3.1 how this subset is selected) and we keep using the same pruning rules in the
iteration that follows. If the pool is empty, i.e. we did not find a pairing with score less
than 1, then we switch to using the approximate rules 3 and 4. Given a partial pairing, we
first apply the approximate rule 3 and then the approximate rule 4. We store pairings with
score less than 1 in the pool. If the pool is non empty, then we add a subset of the pairings
with the score less than 1 to the subproblem and in the next iteration we keep using the
same two pruning rules. If the pool is empty, then we start using the exact pruning rules.
Given a partial pairing we first apply the exact pruning rule 1, followed by the exact
pruning rule 2 and at the end we apply the exact pruning rule 3. The exact pruning rules
are applied until an optimal solution is found. Note that in order to avoid divisions by 0,
we have to apply the pruning rules in this specific order.

3 Computational Experiments
3.1 Implementation
Our pairing generation is based on the mixed segment/duty timeline network. For daily
problems the network consists of several copies of duties, which are shifted by days. We
add enough copies that we are able to generate every pairing. Similarly, for weekly
problem, we add copies of duties at the end of the time horizon to enable the generation
of pairings that wrap around.

The τ values that are needed for the exact pruning rules are computed by using an
algorithm from Makri and Klabjan (2001). This reference contains three algorithms for
computing τ. For sparse problems, which reflect our mixed segment/duty timeline
network, the most efficient algorithm is the parametric longest path algorithm. In the
definition of τ the paths are restricted to at most a given number of arcs in the paths. The
algorithms in Makri and Klabjan (2001) do not handle path restrictions to a given number
of arcs and due to the nonlinearity in the objective function the traditional dynamic
programming approach cannot be applied. To circumvent this, we explicitly restrict the
number of duty arcs in the paths by applying the algorithm several times on a sufficiently
small subnetwork. We explain this concept with an example. Consider the weekly
problem with the horizon of one week, and suppose that pairings cannot exceed 5 days

 13

and M=5. In this case the mixed segment/duty timeline network spans the horizon of 12
days, 7 days for one week and 5 to account for pairings that wrap around. The nodes on
the last 5 days correspond to the legs from the first 5 days except that they are shifted in
time by one week. We first run the parametric longest path algorithm on the network that
consists of only the nodes starting on days 1,2,3,4 and 5. This restricts the paths to the
length of at most 4 duty arcs. The algorithm computes the values cb

i 4,τ for every leg i that

starts on day 1, the values cb
i 3,τ for every leg i that starts on day 2, the values cb

i 2,τ for

every leg i that starts on day 3, and the values cb
i 1,τ for every leg i that starts on day 4.

Next we form the network consisting of only the nodes on days 2,3,4,5 and 6 and we
again run the parametric longest path algorithm. Now we obtain the values cb

i 4,τ for every

leg i that starts on day 2, the values cb
i 3,τ for every leg i that starts on day 3, and so forth.

The procedure is then repeated until we obtain all cb
ji ,τ .

Whenever a pairing with score less than 1 is found, it is stored in the pool. The
pool has a maximum size of 100,000. When the pool reaches its maximum size, we select
20,000 pairings with the lowest score that remain in the pool and all other pairings are
discarded. When pricing is finished, we add to the subproblem 20,000 pairings from the
pool with the smallest score. If at the end the pool has less than 20,000 pairings, then we
add all the pairings from the pool. When the subproblem has more than 50,000 columns,
we remove from the subproblem all the nonbasic columns.

To obtain an initial feasible solution, we greedily select a given number of
pairings and solve the LP over these pairings. In all of the problems this heuristic yields a
fesible LP.

3.2 Computational Results
The computational experiments were conducted on a PC with a Pentium III 1 GHz
processor, 256 MB of main memory and the Windows 2000 operating system. The
algorithms were implemented in Visual C++ version 6.0 and we used the linear
programming solver CPLEX version 7.0.

We present the computational results for solving the LP relaxation of airline crew
scheduling instances. We have formed 14 instances and for each instance we created two
different problems. In one problem we consider the computationally difficult 8-in-24 rule
and the other problem does not assume this rule. The latter problems are denoted by
primes, e.g. the problem P1 assumes the 8-in-24 rule whereas the problem P1’ is the
identical problem except that it does not have this rule. The problems with 8-in-24 rule
mimic a typical U.S. domestic crew scheduling problem. On the other hand, the 8-in-24
rule is not present in long-haul problems and it does not necessarily apply in non U.S.
countries and therefore the problems without the 8-in-24 rule reflect these scenarios.
Table 1 shows the problem type, the size of the instances, and the total number of
pairings. By the number of legs we refer to the number of different flights without taking
into account their repetition in the time horizon. The column ‘# of rows’ shows the
number of rows in the LP relaxation. Note that if we do not consider the 8-in-24 rule,
then we get up to three times as many pairings. All of the instances were created from a
weekly flight schedule of a major US airline. All the feasibility rules, cost structure and
parameters are identical to those used by the airline. The flight network has a hub-and-

 14

spoke structure, i.e. there are a few stations with heavy flight activity and all the
remaining stations have flights mostly to these high activity stations, and every instance
has 6 crew bases.

 type # of legs # of rows # of pairings
with 8-in-24

of pairings
without 8-in-24

P1 daily 149 149 1,393,897 3,607,004
P2 daily 175 175 2,256,809 5,596,648
P3 weekly 62 441 7,827,689 12,930,660
P4 weekly 123 861 6,201,276 13,070,302
P5 weekly 137 959 7,493,572 16,263,593
P6 weekly 135 945 21,431,998 43,683,246
P7 dated 337 614 22,056,040 26,792,753
P8 dated 71 449 14,707,867 20,523,678
P9 dated 142 459 15,357,341 21,637,974
P10 dated 353 630 23,448,011 28,399,866
P11 daily 188 188 1,542,496 6,197,746
P12 dated 78 479 4,456,333 8,345,789
P13 daily 194 194 6,535,998 20,778,195
P14 daily 174 174 3,451,078 11,162,473

Table 1. Size and number of pairings

From these 28 problems we have selected 10 diversified problems to carry out a
detailed analysis of the pruning rules. Table 2 shows the impact of the approximate stage
1. We compare the algorithm without any pruning, i.e. in each iteration we enumerate all
of the pairings, with the algorithm where we use the approximate stage 1 followed by no
pruning at all. All times are CPU times in minutes. For the runs with no pruning, we
report the number of iterations, the total execution time and the time of the pairing
enumeration function, which is given in the column ‘per iter’. For the approximate stage
1 pruning, we first report the number of approximate iterations in the column ‘appr’
under ‘# iter’, i.e. the number of iterations before we switch to complete enumeration,
and the total number of iterations. Next we give the average time of pairing generation in
the approximate stage 1 (column ‘appr’ under ‘time’) and the total execution time. The
last two columns show the improvement as a percentage with respect to the running time
and the objective value after the approximate stage 1. The objective value improvement is
defined as)/()(100 LPII zzzz −− , where LPz is the optimal LP value, z is the objective
value after the approximate stage 1, and Iz is the initial LP value. We observe that for
half of the problems the approximate pruning rules prune all the pairings with score less
than 1 and therefore have no impact. For three problems the solution after the
approximate stage 1 is really close to the optimal solution, which results also in a lower
overall execution time. The average pairing generation time in the approximate stage 1 is
up to 10 times lower than the time to enumerate all of the pairings. Therefore the
approximate rules 1 and 2 achieve the goal of substantially reducing the enumeration
time but however sometimes they tend to prune too much. Note that for problems P3’ and
P4’ the objective value after the approximate stage 1 is close to the optimal value
however many more iterations are required to reach optimality.

 15

no pruning approximate stage 1

time # iter time improvement (%) # iter total per iter appr total appr total time obj
P1’ 7 11 1.5 11 13 0.25 7.5 32 88
P2 7 23 3.2 1 7 0 23 0 0
P2’ 7 20 2.8 2 8 1 18 10 1
P3’ 10 23 2 11 16 0.2 16 30 99
P4 10 58 4.9 4 12 1 56 3.4 11
P4’ 22 58 2 14 31 0.5 55 5 90
P5 13 102 6.9 1 13 0 102 0 0
P7 10 354 35 2 10 0 354 0 0
P8 8 96 12 1 8 0 96 0 0
P9 7 99 12.4 2 8 1 76 23 0

Table 2. Computational results for approximate stage 1

Next we consider the approximate stage 2. The computational results are given in
Table 3. The table columns corresponding to the approximate stage 2 have identical
meaning as the corresponding columns in Table 2. Here by running only the approximate
stage 2 we mean that we apply the approximate stage 2 pruning rules and then we switch
to a complete enumeration without pruning. Table 3 also gives results for the algorithm
that uses both approximate stages 1 and 2. This algorithm performs first the approximate
stage 1, then it switches to the approximate stage 2, and when the approximate pruning
rules 3 and 4 prune all pairings with score less than 1, a complete enumeration is used.
The improvements in time and in the objective value are with respect to the runs with no
pruning reported in Table 2. Columns ‘appr 1’ and ‘appr 2’ under ‘# iter’ show the
number of iterations of the approximate stages 1 and 2, respectively.

Table 3. The impact of the approximate stage 2

From Table 3 we conclude that the approximate stage 2 alone leads to the running
time improvements from 7 to 70 percent, except for the P4’ problem. The average

approximate stage 2 approximate stages 1 and 2
iter time improvement

(%) # iter improvement
(%)

appr total appr total time obj appr
1

appr
2 total

time
time obj

P1’ 6 10 0 5.5 50 76 11 5 18 8 27 96
P2 5 10 0 16.3 29 64 1 6 11 16.5 29 64
P2’ 7 10 0 7.8 61 85 2 7 14 17.3 13.5 71.6
P3’ 4 7 0 7 70 99 11 2 15 10.5 54 99
P4 16 24 0 48.5 16.4 92 4 11 22 50 14 84.5
P4’ 9 32 0 76 0 89 14 6 30 43 26 95
P5 8 14 0 48.5 16.4 85 1 8 15 50 16.4 85
P7 18 25 0.5 328 7 49 2 26 33 233 34 49
P8 6 9 0 36 63 99.5 1 6 10 36 63 99.5
P9 7 10 0 41.5 58 99.8 2 9 13 30 70 99.8

 16

running time improvement is 37%. Problem P4’ is interesting since using only the
approximate stage 1 we obtain a substantial improvement in the objective value however
the approximate stage 2 prunes all the pairings and therefore does not yield any
improvement. With the exception of P4’, the approximate pruning rules 3 and 4 yield
better results. The time per pairing generation is extremely low in the approximate stage
2, typically just a few seconds. By combining the two approximate stages we achieve a
reduction in total time for every problem. The achieved reductions are between 14 and 70
percent. The combined strategy is a clear winner for problems P4’, P7, and P9, and it is
outperformed by the approximate stage 2 alone in all other problems. In P4’, in the
algorithm that combines the two approximate stages, the initial dual vector for the
approximate stage 2 is different from the initial dual vector if the approximate stage 2
alone is used and therefore we have 6 approximate stage 2 iterations in the combined
algorithm. It is clear that the best strategy is instance dependant but the combined
strategy has the best performance over all the instances. The average improvement in the
running time is 35%. It is interesting to note that for some of the instances the objective
value after the approximate stages 1 and 2 is close to the optimal value however the
algorithm still needs a significant number of iteration to reach optimality. This has
already been observed in Table 2.

In Table 4 we compare the algorithm with the approximate stages 1 and 2
followed by a complete enumeration with the algorithm that uses the approximate stages
1 and 2 and then the exact pruning rules. Columns ‘per iter’ show the average pairing
enumeration time in iterations that follow the approximate stages. This time is
significantly lower when using exact pruning, which shows that the exact pruning rules
are beneficial. We give in the column ‘comp τ ’ the average per iteration time of running
the primal-dual algorithm for computing the values τ used in the exact pruning rules 2
and 3. These times are reasonably low and the gains from pruning are substantially larger.
The time improvement values are with respect to the algorithm that uses only the two
approximate stages followed by complete enumeration of pairings. Employing all the
pruning rules improves the running time by 30 to 85 percent. The last 3 columns show
the number of prunings by the 3 exact pruning rules. Note that the exact pruning rules 1
and 2 prune substantially more pairings than the exact pruning rule 3. This is not
surprising since the exact pruning rule 3 does not use the factor ∑∑

∈∈ pd
d

pd
d dfldc and

therefore it seems to be weak. Due to different dual vectors that are generated by the
algorithms in the exact stage, for some problems the number of iterations in the algorithm
without exact pruning exceeds the number of iterations in the combined algorithm. We
call the algorithm that uses both approximate stages and then the exact algorithm the
approximate/exact algorithm.

To study the impact of the approximate stages 1 and 2 we have performed
computational experiments with a variant of the algorithm that uses only exact pruning in
every iteration. The results are given in Table 5. The next to last column shows the
improvement of the running time with respect to the algorithm without any pruning. The
last column compares the execution time of the approximate/exact algorithm with the
algorithm that uses only exact pruning. In all of the instances the former algorithm
outperforms the latter algorithm, the average improvement being 47%. This shows that
the approximate stages are beneficial.

 17

appr stages 1

and 2 approximate stages 1, 2 and exact
time time # prunings

iter total per

iter

iter total per

iter
comp
τ

improvement
in time (%) Rule 1 rule 2 rule 3

P1’ 18 8 1.5 12 3.9 0.5 0.2 51 119,397 397,572 537
P2 11 16.5 3.2 10 4.5 0.3 0.25 72 163,454 377,157 662
P2’ 14 17.3 2.8 15 5.9 0.7 0.25 65.9 185,980 688,071 12,744
P3’ 15 10.5 2 15 7 0.9 0.05 33.3 344,787 341,847 2,233
P4 22 50 4.9 24 25.3 1 0.25 49.4 272,716 232,907 3,809
P4’ 30 43 2 17 29.2 1 0.25 32 336,437 217,130 463
P5 15 50 6.9 15 20 1.5 0.3 60 413,186 307,794 4,345
P7 33 233 35 20 33.5 3.7 0.08 85.6 2,442,275 873,422 52,995
P8 10 36 12 10 7.2 2 0.03 80 776,123 439,280 77
P9 13 30 12.4 8 6 2.1 0.03 80 841,247 275,400 1,389

Table 4. Computational experiments with exact pruning

only exact pruning
Time

iter total per iter
vs. no

pruning (%)
vs. approx.
/exact (%)

P1’ 10 6.4 1.6 42 -39
P2 11 7.3 1.5 68 -38
P2’ 11 13.5 0.8 33 -56
P3’ 10 12.3 0.8 47 -43
P4 9 35 0.3 40 -28
P4’ 20 38 0.5 34 -23
P5 13 58 0.2 43 -66
P7 13 54 0.2 85 -38
P8 10 22 0.5 77 -67
P9 13 25.5 0.5 74 -76

Table 5. The impact of the approximate stages 1 and 2

In Table 6 and Table 7 we present the computational results for all of the
problems. Table 6 shows the results for the problems with the 8-in-24 rule and Table 7
without this rule. Note that for approximately half of the problems the computational
times are larger for the problems with the 8-in-24 rule despite the lower number of
pairings, which shows that this rule is indeed computationally expensive. We compare
the execution time of the approximate/exact algorithm and the implementation that does
not use any pruning. The results show that by using the pruning rules we reduce the
overall running time by 56 to 94 percent for the problems with the 8-in-24 rule and the
average reduction is 82%. For the problems without the 8-in-24 rule the decrease in the
execution time ranges from 49 to 86 percent and the average reduction is 66%. The runs
with the pruning rules have more iterations due to the approximate stages but however
the time per iteration is significantly lower. The higher reduction for the problems with
the 8-in-24 rule is expected since pruning an operation that is computationally intense is
more effective.

 18

no pruning approximate/exact

Time Time

iter total per iter # iter total per iter
improvement
in time (%)

P1 7 11.5 1.6 11 2.5 0.2 78
P2 7 23 3.2 10 4.5 0.4 80.4
P3 6 42.7 6.8 10 4.5 0.4 89.4
P4 10 58 4.9 24 25.3 1 56.3
P5 13 102 6.9 15 20 1.3 80.4
P6 17 345 19.5 20 61 3 82.3
P7 10 354 35 20 33.5 1.7 90.5
P8 8 96 12 10 7.2 0.7 92.5
P9 7 99 12.4 8 6 0.7 94
P10 10 397 39 15 31 2 92.2
P11 9 66 7.3 15 23 1.5 77.3
P12 9 146 17 16 35 2.1 76
P13 11 107 9.7 18 33 1.8 69
P14 11 82.5 7.5 12 10.6 0.9 87.5

Table 6. Computational results for the problems with the 8-in-24 rule

No pruning approximate/exact
time Time

 # iter total per iter # iter total per iter

Improvement
in time (%)

P1’ 7 11 1.5 12 3.9 0.32 64.5
P2’ 7 20 2.8 15 5.9 0.4 70.5
P3’ 10 23 2 15 7 0.47 69.6
P4’ 22 58 2 17 29.2 1.7 49.6
P5’ 21 73.5 2.6 24 35 1.4 52.3
P6’ 20 158 6.8 24 68 2.8 57
P7’ 18 158.5 9 27 39 1.4 75.4
P8’ 9 40.8 4.2 14 14.5 1 64.5
P9’ 10 47.8 4.5 15 15.2 1 68.2
P10’ 17 173 10 28 37.5 1.3 78.3
P11’ 14 98 7 14 13.5 1 86.2
P12’ 11 57 5.1 16 21 1.3 63
P13’ 17 289 17 17 82 4.8 71.6
P14’ 14 92.5 6.6 17 40.5 2.4 56

Table 7. Computational results for the problems without the 8-in-24 rule

4 Concluding Remarks
Our pairing cost structure consists of a maximum of three linear terms. Some airlines add
to the cost structure an additional linear term, e.g. fixed cost per overnight connection arc
to reflect the crew cost of lodging and meals. Our pruning rules can be easily extended to
such a case.

The discussion of the pruning rules revolves around the pricing algorithm that is
based on enumeration. The presented framework is applicable to constrained shortest

 19

path algorithms as well. Suppose that during the execution of a constrained shortest path
algorithm we pick a label vector associated with duty d from the priority queue. The
algorithm next scans all the outgoing connection arcs from d and for each arc we
compute the new label vector r and we insert it in the priority queue. Due the nature of
the constrained shortest path algorithms, given r it is possible to reconstruct the path q
from the source to the duty corresponding to r. Note that to be able to use the pruning
rules, we need ∑

∈)(~ qdd
ddfl and ∑

∈)(~ qdd
ddy , which are easily computable. Given these two

quantities, we can check if one of the pruning conditions applies. If yes, then we do not
add the new resource vector r to the priority queue. Typically ∑

∈)(~ qdd
ddfl and ∑

∈)(~ qdd
ddy

correspond to two labels and therefore in this case there is no extra computation involved.
Our pruning rules and the rational behind constrained shortest path algorithms are
complimentary. We fathom a partial pairing if its ‘tail’ is bad, however, the latter
algorithms detect via dominance in the label vectors if the partial pairing is bad. Our
pruning rules look ahead while constrained shortest path algorithms look back if there
were already a better partial pairing with respect to the labels.

Another application of our pruning rules is in primal-dual algorithms, Hu and
Johnson (1999), and steepest edge algorithms, Gopalakrishnan et. al. (2001). In every
iteration both algorithms maintain a dual feasible solution π and a vector ρ, which is not
necessarily dual feasible. The former algorithm seeks a nonnegative scalar t such that

ρπ tt +−)1(is a dual feasible vector with the largest objective value. In the latter
algorithm a nonnegative scalar t is sought such that ρπ t+ is a dual feasible vector with
the largest optimal value. It is easy to see that t corresponds to

() () ,0|min,0|min












>









−













>−−









− ∑∑∑∑∑∑

∈∈∈∈∈∈ pi
i

pi
i

pi
ip

ppi
ii

pi
ii

pi
ipp

cc ρρππρπρπ

respectively. Since our score has the same structure, the pruning rules can easily be
adapted to this case as well. One change that needs to be done is to replace the cutoff
value of 1 in the rules with the best value of t found so far.

References
ANBIL, R., JOHNSON, L. and TANGA, R. A global optimization approach to crew

scheduling. IBM Systems Journal 31, 62-74 (1991).
ANBIL, R., FORREST, J. and PULLEYBLANK, W. Column Generation and the airline

crew pairing problem, Extra Volume Proceedings ICM. Available from
http://www.math.uiuc.edu/documenta/xvol-icm/17/17.html (1998).

ANBIL, R., GELMAN, E., PATTY, B., and TANGA, R. Recent advances in crew
pairing optimization at American Airlines. Interfaces 21, 62-74 (1991).

ANDERSON, E., HOUSOS, E., KOHL, N. and WEDELIN, D. Crew pairing
optimization. Operations Research in the Airline Industry, 228-258, Yu G.
(editor), Kluwer (1998).

BARNHART, C., JOHNSON, E., NEMHAUSER, G., SAVELSBERGH, M. and
VANCE, P. Branch-and-Price: Column generation for solving huge integer
programs. Operations Research 46, 316-329 (1998).

 20

BARNHART, C., JOHNSON, E., NEMHAUSER, G. and VANCE, P. Crew scheduling.
Handbook of Transportation Science, 493-521, Hall R. (editor), Kluwer (1999).

BIXBY, R., GREGORY, J., LUSTIG, I., MARSTEN, R. and SHANNO, D. Very large-
scale linear programming: a case study in combining interior point and simplex
methods. Operations Research 40, 885-897 (1992).

DESAULNIERS, G., DESROSIERS, J., IOACHIM, I., SOLOMON, M. and SOUMIS,
F. A unified framework for deterministic time constrained vehicle routing and
crew scheduling problems. Fleet Management and Logistics, 57-93, Crainic T.
and Laporte G. (editors), Kluwer (1998).

DESROCHERS, M. and SOUMIS, F. A generalized permanent labeling algorithm for the
shortest path problem with time windows. INFOR 26, 191-212 (1988).

DESROSIERS, J., DUMAS, Y., DESROCHERS, M., SOUMIS, F., SANSO, B. and
TRUDEAU, P. A breakthrough in airline crew scheduling. Technical Report G-
91-11, GERAD (1991).

DESROSIERS, J., DUMAS, Y., SOLOMON, M. and SOUMIS, F. Time constrained
routing and scheduling. Handbook in Operations Research/Management Science,
Network Routing 8, 35-139, Ball M., Magnanti T., Monma C. and Nehmhauser G.
(editors), Elsevier Science (1995).

GERSHKOFF, I. Optimizing flight crew schedules. Interfaces 19, 29-43 (1989).
GOPALAKRISHNAN, B., JOHNSON, E., LEE, E. and PRITCHETT, A. A subproblem

approach for solving the airline crew pairing problem. Presentation at INFORMS
Fall 2001, Miami Beach (2001).

HU, J. and JOHNSON, E. Computational results with a primal-dual subproblem simplex
method. Operations Research Letters 25, 149-158 (1999).

KLABJAN, D., JOHNSON, E. and NEMHAUSER, G. Solving large airline crew
scheduling problems: Random pairing generation and strong branching.
Computational Optimization and Applications 20, 73-91 (2001).

MAKRI, A. and KLABJAN, D. Algorithms for the source-to-all maximum cost to time
ratio problem on acyclic networks. Working Paper, University of Illinois at
Urbana-Champaign (2001). Available from
http://www.staff.uiuc.edu/~klabjan/professional.html.

VANCE, P., ATAMTURK, A., BARNHART, C., GELMAN, E., JOHNSON, E.,
KRISHNA, A., MAHIDHARA, D., NEMHAUSER, G. and REBELLO, R. A
heuristic branch-and-price approach for the airline crew pairing problem.
Technical Report LEC-97-06, Georgia Institute of Technology (1997).

