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ABSTRACT 

Most transportation research related to motor carrier rates has focused on the cost 
determinants of long-term carrier contracts for specific lanes. However, with the 
emergence of third-party logistics (3PL) providers in the U.S. following deregulation in 
the 1980s, a significant amount of capacity for shipments is secured via spot market 
transactions. Carrier rates for shipments with even the same origin and destination can 
vary widely between transactions in this scenario. This research investigates the factors 
behind this occurrence and identifies the major determinants of carrier costs in spot 
market transactions at both the individual shipment and the more aggregate lane level. 
Additionally, it also explores a tactical planning scenario in which a 3PL provider 
addresses chronic fiscal underperformance on certain lanes. The research has found that 
factors such as distance, characteristics of the shipping lane and the required truck type 
are among the most important determinants of motor carrier rates at both the shipment 
and lane level. Also, seasonality and overall market conditions play a major role in 
determining rates for truckload shipments. The study then goes on to show that the results 
of the cost determinant analysis may be used to set better baseline prices on 
underperforming lanes. 
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INTRODUCTION 

Since the deregulation of the U.S. freight and logistics industry in the 1980s, the 
freight market has experienced the entry of third parties into the logistics process. The 
Council of Supply Chain Management defines third-party logistics (3PL) providers as “a 
firm which provides multiple logistics services for use by customers…These firms 
facilitate the movement of parts and materials from suppliers to manufacturers, and 
finished products from manufacturers to distributors and retailers (Council of Supply 
Chain Management, 2012).” Deregulation and the subsequent emergence of 3PL 
providers allowed the freight and logistics industry to realize the efficiencies gained 
through specialization and outsourcing that were not previously possible in the regulated 
environment. By outsourcing the management of the supply chain companies could 
concentrate on their core business activities. However, deregulation also gave rise to an 
extremely competitive market in which shippers, carriers and third parties all try to 
leverage information and technology to their advantage.  

Primarily, 3PL providers manage portions, or the entirety of the supply chain on 
behalf of a shipper; in addition, they may supply capacity over the long-term or in spot 
markets. 3PL providers supply these services using either their own physical assets or 
those of others which leads to a distinction among 3PL providers. Besides the breadth of 
offered services and areas of specialization, 3PL providers are often further distinguished 
by their ownership, or lack thereof, of transportation and logistics assets (Sheffi, 1990). 
Asset-based 3PL providers are those that own or control rolling stock, warehouse space, 
or any other physical assets critical to the movement of goods. Non asset-based 3PL 
providers are those that do not own any freight assets. Instead, these companies treat their 
industry knowledge and specialized skills as the primary assets available to shippers. 
Because non asset-based 3PL providers rely solely on knowledge and skill for survival, 
the use of information and decision-making tools is especially important in such a 
competitive and economically significant industry. According to Armstrong and 
Associates, Inc. (2012), in 2010 the 3PL industry accounted for over a $127 billion in 
revenue. Of that, non asset-based providers generated the second largest share at $36.8 
billion. 

This research demonstrates a potential use of historical shipment data by a non 
asset-based 3PL provider. The first objective of the study is to empirically investigate the 
determinants of carrier linehaul costs in shipping lanes over time, and also in 
transactional spot markets. The spatial nature of freight movement gives us a cross-
sectional unit, lanes, over which to examine carrier costs over time. We seek to determine 
which factors most affect these costs. 

A common task of 3PL brokers is to source capacity for recently attained loads. 
These loads are not part of a pre-determined shipping schedule in which a contract is 
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negotiated. Instead, they are the result of a “cold call” from a shipper to the 3PL provider 
in which the 3PL provider agrees to find capacity for a negotiated fee: a spot market.  
Knowing how characteristics of a shipment affect the expected carrier costs would prove 
useful to the 3PL broker. 

The second objective of this study is to demonstrate how this information may be 
used in a tactical planning situation, specifically the avoidance of habitual non-profitable 
transactions. The assumption is that while some non-profitable transactions are the result 
of market conditions or human fallacy, others share common characteristics, namely a 
shippping lane, which indicates the 3PL provider is habitually “missing” some critical 
aspect of carrier costs. If identified and addressed, the result would be fewer non-
profitable transactions. 

In addition to its practicality, this research fills a gap in the freight and logistics 
literature. There appear to be no studies regarding the factors affecting motor carrier rates 
for shipments that occur in spot markets. This is extremely useful to 3PL providers who 
often operate in this type of environment. 

BACKGROUND AND LITERATURE REVIEW 

Spot Markets in the Procurement of Transportation Services 

 The Internet and information and communication technologies (ICT) together 
have played a major role in enabling the direct exchange between shippers and carriers in 
the procurement of transportation services. In these marketplaces, shippers receive quotes 
from carriers for the provision of transportation services ranging from one-time 
shipments to long-term contract services. Online marketplaces such as NTE 
(www.nte.com), BestTransport (www.BestTransport.com) and LeanLogistics 
(www.LeanLogistics.com) are examples. Lin et al. (2002) found many shippers to be aware 
of and willing to utilize the services provided by these marketplaces. Much of the 
scholarly work regarding the procurement of transportation services in spot markets 
assumed business models similar to the examples given. An exception is Huang et al. 
(2011) who used a spot market facilitated by a 3PL provider as done here. However, they 
examined profitability and broker efficiency as opposed to carrier rates as this work does.  

Largely, researchers have employed auctions as the methodological tool for 
examining the operation and improving the performance of transportation spot markets 
(Song and Regan, 2003; Sheffi, 2004; Figliozzi, 2004; Garrido, 2007). Though all of 
these studies center on transportation spot markets, the basic business model is different 
from the one used in this paper. In this study, the 3PL provider acts as a broker in the spot 
market and facilitates deals between shippers and carriers. Also, none of these research 
efforts investigated the determinants of motor carrier rates, the basic goal of this paper. 
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Motor Carrier Rates 

There has not been much research into the factors affecting carrier freight rates in 
spot markets. Much more attention has been devoted to the determinants of base motor 
carrier cost structures. The impetus for much of this research was the deregulation of the 
U.S. freight and logistics industry in the 1980s. Researchers were primarily concerned 
with identifying economies of scale, economies of specialization (e.g., truckload and less-
than-truckload operators versus general carriers), and gaining insights into the possible 
effects of deregulation on the trucking industry (Christensen et al., 1987; Grimm et al., 
1989; Ferguson and Glorfeld, 1981). Research in this vein of the literature largely 
confirmed that service-quality, the number of shipments, weight of shipments, and the 
distance shipped are the predominant factors determining carrier rates to shippers. 
Though these factors are obviously important, they describe rates given for long-term 
contracts over specific lanes, not spot market transactions. 

 Other works in the literature focus solely on less-than-truckload operations 
(Harmatuck, 1992; Thomas and Callan, 1992; Smith et al., 2007; Ozkaya et al., 2010; 
Baker, 1991). Smith et al. (2007) modeled net freight rates for less-than-truckload (LTL) 
shipments using data from a nationwide motor carrier. They were primarily interested in 
ascertaining the determinants of freight rates offered to shippers and also in assessing 
carrier policy for offering discounts to published freight rates, i.e. net freight rates. Their 
work confirmed that results of previously conducted work regarding the major 
determinants of freight rates. They then used insights from their model to describe how 
the model could be used to reassess rate discount policies for certain shippers or at 
particular terminals. 

 Using a regression-based methodology, Ozkaya et al. (2010) estimated LTL 
market rates using data from a nationwide carrier. Their approach was to combine 
quantitative data with qualitative market knowledge to improve the predictive ability of 
their models. Ozkaya et al. found that distance and weight are among the most important 
determinants of LTL rates. Also, the incorporation of qualitative information into the 
analysis proved to be useful. 

 Our research is unique because it examines motor carrier rates within a spot 
market setting as opposed to long-term contracts as done by all others. Because these 
rates are determined in spot markers, there is an added dimension to the prediction of and 
explication of the factors affecting TL rates. Also, this research treats the spatial 
distribution of shipments differently than other works. Instead of relying on pre-
determined carrier regions in ascertaining their effect on market rates, we allow the data 
to reveal these regions of influence. This research is useful to 3PL providers because it 
gives them greater insight into the factors affecting carrier rates beyond current market 
averages and rules of thumb. 
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DATA 

The data for this study comes from a U.S.-based 3PL provider operating in North 
America. Data is from the year 2011 and contains information denoting the date of the 
shipment, origin and destination, carrier, equipment type, cost and the number of stops 
among other information. Over 4,000 carriers, both large firms and owner-operators, are 
included in the data set. The representativeness among carriers in the data set makes it an 
excellent source of insight into the determinants of carrier costs. 

LANE-LEVEL ANALYSIS 

 Here, the aggregate effects over time of different variables on carrier prices at the 
lane level are explored. A panel data set is formed by aggregating individual shipment 
data at lane-level cross-sections (i) and months longitudinally (t). Observations are 
measured as their median values in a particular one-month span. With this treatment of 
the data, we are in a position to explore broad market dynamics.  

Data Mining 

In order to draw useful inferences from the data, we construct a data mining 
framework in which several tasks are done. The data mining process described here, and 
also the alternative process for shipment-level analyses in the following section of the 
paper, can serve as a framework for dealing with transactional shipment data. Since 3PL 
providers will likely continue to serve as excellent sources of data to researchers for years 
to come, this framework provides an excellent method for data treatment. The process, 
shown in Figure 1, starts with the clustering of data. 
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Figure 1: Lane-level data mining procedure. 

Those in the freight and logistics industry typically describe the spatial aspect of 
goods movement in terms of lanes: origin-destination pairs. In industry, lanes are usually 
defined at the level of cities, metropolitan areas, or states. This presents a problem when 
creating statistical models for spot market transactions. At even the state level, there are 
often too few observations to draw any statistically significant inference from the data. In 
addition to 3PL providers often having greater market share in some areas over others, a 
significant difference in activity between centers of goods movement (e.g., Los Angeles 
or Chicago) and secondary markets (e.g., St. Louis) can create severe imbalances in data 
representation at common geographic levels. Clustering is the solution to this problem. 

We cluster the data using the k-means algorithm (Hartigan and Wong, 1979). 
With k-means, each coordinate is first weighted proportionally to its frequency at both 
the origin and destination. Then, according to a predetermined number, clusters are 
formed by minimizing the weighted distance between coordinates. In Figure 2, the result 
of the k-means clustering is shown when twenty is chosen as the predetermined number 
of clusters. As seen, clustering creates origin-destination zones independent of the 
political boundaries that are often employed in this type of exercise (e.g., northern 
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California is distinguished from southern California and both include parts of Nevada). 
This is a strength of the methodology because it is completely data-driven. 

 

Figure 2: Clusters formed by the k-means algorithm. 

Once the data is clustered, lanes are created by forming all possible cluster pairs. 
In the framework, lanes are directional (i.e., shipments from cluster A to cluster B are 
distinct from shipments from cluster B to cluster A). Directionality is an important 
characteristic of shipping lanes as the issue of empty backhauls is widely recognized as 
important within the freight and logistics industry. Carriers adamantly avoid empty 
backhauls since it amounts to lower utilization of equipment and personnel and ultimately 
results in less profit. Flow imbalances are better captured when there is a directional 
component to lanes. 

Variable Creation and the Removal of Outliers 

Variables included in the analysis may be classified into three types: shipment-
specific variables, lane-specific variables, and market variables. Shipment-specific 
variables are those defined according to a particular aspect of the shipment. In the lane-
level analysis these include the median linehaul carrier price-per-mile (‘PPM’) (the 
dependent variable), the median distance of shipments (‘Miles’), and the median number 
of stops for shipments on that lane ('NumOfStops'). 
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Lane-specific variables are likewise defined. They include the type of equipment 
primarily used for transport on that lane (i.e.., Van, Flatbed, Refrigerated, Other, or 
None). The market variable, ‘Market Index,’ is the Cass Truckload Linehaul Index (Cass 
Information Systems, 2012). It is an indicator of the per-mile price fluctuations in the 
truckload market. It is all the more valuable since it is an exogenous source of 
information for our model. 

The analysis is limited to only those shipments within the contiguous U.S. This is 
because shipments that cross international borders have costs and challenges associated 
with them that are not common to domestic loads. Prior to estimation, we removed 
observations in the data set believed to be outliers. These include those with costs that 
seem unreasonable. Also, only those observations with no accessorial costs are included. 
Accessorial costs are those that are charged for activities beyond the basic shipping 
service (e.g., loading/ unloading, etc.).  

Twenty clusters are used resulting in 400 unique lanes in our analysis. Twenty 
clusters were chosen because of diminishing returns in accuracy with an increasing 
number of clusters. That is, the gains in terms of statistical fit did not continue to increase 
with the addition of more clusters. There are 38 months in the data set. However, because 
there is not an observation for every lane in every month, we are left with an unbalanced 
panel consisting of 10,980 observations.  

Model Estimation 

The model is estimated using fixed-effects regression. The fixed-effects technique 
was chosen over the corresponding random-effects method because the results of the 
Hausman test strongly suggested that the fixed-effects model was more appropriate 
(Hausman, 1978). The model specification is as follows: 

PPMit = β0 + β1*NumOfStopsit + β2* ln(Milesit)+ β3*IndexMonthChanget + β4*Primary 
Equipmentit + ε. 

 The number of stops in the lane-level analysis is determined by the most 
frequently occurring trip type on a lane in the month under consideration. Likewise, the 
primary equipment type is defined as the most frequently used truck type on a given lane 
in a given month. In the model, it is treated as a categorical variable indicating one of 
several equipment types. In this case, those include ‘Van’, ‘Refrigerated’, ‘Flatbed’, 
‘Other’, or ‘None’. In the event of a tie, the ‘None’ category is assigned as the primary 
equipment type. The monthly percent change in the market index (‘IndexMonthChange’) 
is indexed only by time t since it is the same for all lanes. The results of the analysis are 
in Table 1.  
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Table 1: Lane-level model estimation results 

Variable Estimate t-statistic
Intercept 6.441 34.39
NumOfStops 0.08538 5.070
ln(Miles) -0.7635 -27.39
IndexMonthChange 2.462 5.690
Primary Equip. – Flatbed 0.3441 24.06
Primary Equip. – Refrigerated 0.2553 6.810
Primary Equip. – Other 1.204 14.89
Primary Equip. – None 0.2000 10.88
Adj. R-Squared 0.3837 
 

From Table 1, shipment distance and its squared value are associated with 
negative and positive influences on carrier price per mile, respectively. Since the carrier 
cost is already normalized by distance, this result is intuitive because it implies that 
increased shipment distances still have effect on the general carrier rate. A higher market 
index value is associated with higher carrier prices. This simply implies that the general 
rates given to the 3PL provider are consistent with market conditions. 

SHIPMENT-LEVEL ANALYSIS 

In this portion of the analysis, we explore the disaggregate effects of different 
variables on carrier prices at the shipment level. By analyzing the data at the shipment 
level, we reveal the determinants of carrier costs in spot market transactions. 

Data Mining 

The data mining procedure for the shipment-level analysis follows the lane-level 
analysis. The procedures diverge upon completion of the clustering step. As opposed to 
aggregating data by lanes and by month in order to create variables, instead they are 
created on a rolling horizon basis. It is a rolling horizon in the sense that variables are 
measured according to market conditions at the time the transaction was made. We 
accomplish this by selecting a time period over which to observe the market, e.g., a 
certain number of days prior to the transaction in question, and measure the value of the 
variable for that shipment using data in the delineated period. This is done for each 
shipment in the data set until all are cycled through. By taking this approach, a truer 
picture is painted regarding carrier pricing behavior because it reflects conditions at the 
time the pricing decision occurred. 

The exact number of days selected for each rolling horizon period is determined 
by the number of observations (i.e., shipments) present in each possible horizon meeting 
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a specific criterion. The criterion is that there must be at least 30 observations present in 
that horizon for it to be valid. For example, the first rolling horizon period is the previous 
30 days. If there are not at least 30 observations in this period, then the data mining 
procedure examines the previous 45 days. If this period too does not have at least 30 
observations, then the next 60 days is examined and so on. 

Like in the lane-level analysis, we classify variables in the shipment-level analysis 
as either shipment-specific or lane-specific variables. In this analysis, shipment-specific 
variables identify the contents of the cargo being shipped and the amount of time a carrier 
has to pick up a shipment. An indicator variable signaling whether or not a shipment 
consists of hazardous materials (‘HazMat’) is included in the shipment-level analysis. 
Because these shipments must be transported under a stricter set of operating rules and 
only by carriers licensed to do so, it is likely that a price difference exists between these 
and non-hazardous shipments. Also an indicator variable specifying the lead time is 
included here. Lead time is the amount of time a carrier has to pick up a truckload to 
begin transport. If that time is very short, it could result in the carrier charging a higher 
price. In our model, the lead time indicator variable signals whether there is very much 
lead time (i.e., greater than 8 days) or very little. Eight days was chosen because of 
observed differences in the data relative to this value. 

The lane-specific variables in this analysis identify the level of relative shipment 
activity on a lane and the most likely pricing schedule for that shipment. Relative 
shipment activity on a lane is captured in the volume-to-capacity ratio (‘Volume-to-
Capacity’). It is measured by dividing the number of shipments in a lane in a month by 
the number of carriers active in the lane over the same period. In the model, it is 
categorized as either ‘low’ or ‘high’ according a threshold value of five. Five was chosen 
because of observed differences in the data relative to this value of volume-to-capacity. 

Next, we include an indicator signaling whether or not a shipment met the 
distance threshold for a rate pricing schedule (‘MinDist’). Often times, carriers do not 
price shipments according to per-mile rate schedules for relatively short distance trips. 
Instead, they charge a flat price. Because of this, price-per-mile figures for short distance 
trips could exhibit a large degree of variation and limit the statistical power of our 
models. We control for this with the minimum distance indicator variable which 
identifies short distance trips (defined as those that are less than 300 miles). This 
threshold was chosen upon conducting an analysis for determining breakpoints in data 
using regression models (Muggeo, V.M.R., 2003 and 2008). The procedure determined 
that a breakpoint occurs at approximately 292.4 miles. Figure 3 is a scatter plot of the 
carrier cost-per-mile and distance, along with the estimated breakpoint. 
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Figure 3: The estimated breakpoint for rate scheduling. 

The same outlier removal conditions as described in the Lane-level Analysis 
section are employed for the shipment-level analysis. Figure 4 outlines the entire 
procedure. 
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Figure 4: Shipment-level data mining procedure. 

 

Model Estimation 

 Again, linehaul cost-per-mile ('PPM') is the dependent variable in the analysis. 
After an exhaustive search through numerous possibilities, the following model 
specification was chosen: 

PPM = β0 + β1*NumOfStops + β2* MinDist : Ln(Miles)+ β3*HazMat + β4*Equipment + 
β5*Volume-to-Capacity + β6*Lead Time + β7*Lane + ε. 

The inclusion of the natural logarithm of shipment distance as a covariate detects any 
nonlinear effects it has on carrier cost. It is fully interacted with the ‘MinDist’ indicator 
variable in the model specification because those variables are expected to highly affect 
one another. Like the lane-level analysis, we use 20 clusters resulting in 400 unique lanes 
for this analysis. The model is estimated using ordinary least squares regression. Results 
of the analysis are in Table 2.  
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Table 2: Shipment-level model estimation results 

Variable Estimate t-statistic
Intercept 7.405 140.6
NumOfStops 0.09631 21.49
MinDist – Long Dist. -3.809 -55.05
Ln(Miles) -1.021 -107.1
MinDist – Long Dist.*ln(Miles) 0.6592 53.80
HazMat – Hazardous 0.5189 12.56
Equip. – Flatbed 0.4044 110.4
Equip. – Other 0.4708 19.91
Equip. – Refrigerated 0.2278 21.56
Quarter 2 0.1173 35.80
Quarter 3 0.1062 27.59
Quarter 4 0.09742 26.50
Volume-to-Capacity – High -0.04396 -3.680
Lead Time – High -0.1677 -13.35
Lane -- --
Adj. R-Squared 0.6608 
 

 As shown in Table 2, all of the variables are significant at the 95% level. The 
number of stops and the transport of hazardous materials both have a positive effect on 
carrier prices. That is, additional stops and hazardous cargo trigger an increase in carrier 
price relative to two-stop, non-hazardous shipments. The volume-to-capacity ratio and 
the distance shipped, however, both negatively affect costs. Because the dependent 
variable is already normalized by distance, the results reveal that longer-distance trips 
command slightly lower prices on a per-mile basis. The parameter estimate of the 
volume-to-capacity ratio suggests that a greater amount of shipments relative to number 
of carriers on a lane results in lowers average prices.  

A number of categorical and indicator variables are included in the model. 
Relative to vans (the base scenario) the use of a flatbed, refrigerated or any other truck 
type increases carrier costs. Likewise, a shipment occurring in any other quarter besides 
the first exhibits a slightly higher rate. This reveals that there is a degree of seasonality in 
the data. Long distance trips exhibit lower prices than short distance trips as captured by 
the indicator variable ‘MinDist.’ The interaction between the ‘MinDist’ variable and the 
natural log of the distance shipped reveals that the ability of longer distance shipments to 
command lower prices attenuates with increasing values. Relative to shipments with a 
short lead time, those with longer lead times exhibit lower carrier costs, too. 
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Of the 399 lanes included as dummy variables in the analysis (a single lane is 
reserved as the base category), at the 95% significance level 284 lanes are statistically 
significantly different from the reference lane. This result suggests that there are powerful 
lane effects in the determinants of carrier prices. 

DISCUSSION AND COMPARISON OF THE RESULTS 

Largely, the shipment-level analysis reflects many of the insights gleaned from 
the lane-level analysis. The lane on which the shipment occurred and the characteristics 
of that lane are important determinants of carrier price. Shipment characteristics such as 
distance, the required equipment type, and whether or not the cargo consists of hazardous 
materials play major roles in carrier pricing. Also, seasonal effects reflected in the 
calendar quarter in which the shipment occurs and market conditions as reflected in the 
index affects carrier prices. 

The primary economic implications of the analyses include the role of shipment, 
lane, and market characteristics in determining carrier rates. A number of these, primarily 
shipment characteristics (such as equipment type, distance, cargo type, and number of 
stops), capture what are essentially operating costs to the carrier. These parameter 
estimates capture the bulk of carrier costs when their magnitude is taken into account. 
Meanwhile, others, primarily lane and market characteristics (such as lane volume-to-
capacity and the time of year), capture aspects of carrier rates not directly related to 
carrier costs. Considering the scale of these parameter estimates, though they are 
statistically significant, they contribute very little to overall carrier costs. These are likely 
the variables that largely determine carrier profit margins, the aspect of cost to 3PL 
providers that could be negotiable. 

In particular, distance-related variables have a huge effect on price-per-mile if all 
other variables are held constant. As captured by a comparison of the estimates for 
‘Intercept’ and ‘MinDist,’ long-distance trip costs are approximately on average half that 
of short distance trips. This is intuitive as short-distance trips will undoubtedly have a 
higher per-mile cost than longer trips. Consider the parameter estimate for ‘Miles,’ it 
suggests that a 1% increase in distance is associated with a $0.01 decrease in carrier 
price-per-mile. The amount may not be large, but realizing that a 1% increase in distance 
can easily be as small as 3 or 4 miles, the total change can quickly become significant, 
especially for short-distance trips. For example, a 240-mile trip would be $0.20 less 
expensive than a 200-mile trip. This effect is tempered when ‘Miles’ and the ‘MinDist’ 
indicator are interacted for long-distance trips. In that scenario a 1% increase in distance 
is associated with only about a $0.003 decrease in carrier price-per-mile. 
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TACTICAL PLANNING SCENARIO: UNDERPERFORMING LANES 

While most non-profitable transactions are sporadic, others are habitual and share 
common characteristics that suggest the 3PL provider repeatedly overlooks some critical 
aspect of carrier costs. Otherwise, a sufficient cost would have been charged to the carrier 
to ensure a profit. The obvious manner in which to investigate this occurrence is by lane. 
Lanes are the common denominator by which we can identify habitual non-profitable 
transactions and begin to address the problem. 

Identifying Underperforming Lanes 

In order to identify underperforming lanes, we examine what we have termed lane 
'profit-to-loss ratios.' The profit-to-loss ratio (PLR) is the number of profitable 
transactions on a lane divided by the number of unprofitable transactions on the same 
lane over the study time frame. 

Here, a profitable transaction is defined as one in which the difference between 
the linehaul cost charged to the shipper and the linehaul cost paid to the carrier is 
positive. Unprofitable transactions are those in which this difference is less than, or equal 
to, zero. Figure 5 shows the distribution of PLR values over the lanes included in the data 
set. The actual PLR value which would normally be reported on the vertical axis is 
omitted in order to respect the privacy of the 3PL provider. 

 

 

Figure 5: Distribution of profit-to-loss ratios. 
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 A relatively low PLR value for a lane indicates poor profit performance while 
higher PLR values imply good performance. By examining the distribution of PLR 
values and setting an appropriate base performance level for a lane (e.g., a PLR value less 
than or equal to 3, or perhaps the 25th percentile for instance), a 3PL provider can identify 
underperforming lanes. Once those lanes are singled out, the firm can analyze them and 
then devise strategies to improve their performance.  

As an example, using a PLR that is less than or equal to 3 as the criterion, three 
lanes in the data are identified as underperforming. There are 2,356 combined shipments 
on these lanes. Of the three lanes, one consists of shipments with origin-destination pairs 
primarily within the state of Texas and between Texas and Louisiana. It accounts for the 
vast majority of identified underperforming shipments, 2,271. The other two lanes consist 
of shipments with origin-destination pairs in sparsely populated states in the Midwestern 
and Mountain West regions of the U.S. (e.g., Utah to North Dakota, Idaho to Iowa, etc.). 
Two possible reasons for underperformance become readily apparent, the first is that 
intrastate shipments, especially in a state as large and diverse as Texas, are difficult to 
correctly price because of local market dynamics. The standard deviation reveals that 
carrier price-per-mile can vary by as much as $0.80 for these shipments. Likely, it makes 
a big difference whether or not a shipment has an origin-destination pair in one of the 
economic centers (e.g., Houston or Dallas) or a more rural area.  

The second possible reason for underperformance is that infrequent shipments to 
sparsely populated regions, as evidenced by the other two lanes, are difficult to price 
because of their unfamiliarity to brokers and unattractiveness to carriers. Lanes such as 
these are not likely to offer many backhaul opportunities. The standard deviation reveals 
that carrier price-per-mile can vary by as much as $0.34 for these shipments. Though not 
as much in the case of an intrastate lane, it is still significant. 

Thus, the data mining procedure combined with the PLR present a methodology 
by which 3PL provider performance can be assessed on a lane-by-lane basis. Based on an 
examination of the data, volatility in price (due to local dynamics on intrastate lanes, and 
unfamiliarity and unattractiveness on infrequent lanes) is the likely culprit. 

Application of the Shipment-Level Model Results to Underperforming Lanes 

 Once underperforming lanes have been identified according to the pre-defined 
baseline metric, the question that naturally follows is 'How can they be improved?' We 
address this issue by again estimating a regression model. However, the primary goal is 
now prediction instead of explication. In addition, this new model represents a departure 
from our previous strategies in that now instead of using price-per-mile as the dependent 
variable we now simply use price. This is done because the authors found the price 
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models to provide better predictive ability than the rate models. The model specification 
is as follows: 

Carrier linehaul cost = β0 + β1*NumOfStops + β2* MinDist : Ln(Miles)+ β3*HazMat + 
β4*Equipment + β5*Volume-to-Capacity + β6*Lead Time + β7*Lane + ε. 

 The model is estimated using the primary set of data and its predictive ability is 
gauged using a holdout sample (a portion of data over which the models were not 
calibrated). Results are in Table 3. The metric by which the model is assessed is the mean 
absolute error (MAE). Absolute error is the absolute difference between the predicted and 
true value; the MAE is the average value across all observations. 

Table 3: Predictive model estimation results 

Variable Estimate t-statistic
Intercept -752.8 -18.79
NumOfStops 139.7 41.31
MinDist – Long Dist. -3414 -65.39
Ln(Miles) 172.4 23.97
MinDist – Long Dist.*ln(Miles) 583.4 63.08
HazMat – Hazardous 395.9 12.69
Equip. – Flatbed 262.8 94.97
Equip. – Refrigerated 274.8 15.39
Equip. – Other 184.1 23.09
Quarter 2 81.33 32.88
Quarter 3 82.00 28.22
Quarter 4 71.18 25.66
Volume-to-Capacity -14.45 -10.51
Lead Time – High -52.03 -5.480
Lane -- --
Adj. R-Squared 0.8464 
 

With an adjusted R-squared value of 0.8464, much of the variance in carrier costs 
is explained. The model’s MAE was calculated to be 208.6. Dividing the absolute error 
by the true linehaul cost for each shipment and then taking the average yields a value 
equal to 0.2685. This value implies that, on average, the predicted values are within 
approximately 27% of the true value. 

 If underperforming lanes are singled out using the previously defined criterion, a 
PLR less than or equal to 3, it can be judge how well the model estimates carrier prices 
on those lanes. Using the lanes in the holdout data set that meet the criterion, the 
predicted values of the linehaul costs are within 21% of their true value. This shows that 
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the model does a good job of predicting what the actual linehaul costs for a shipment may 
be. A 3PL broker with this information beforehand could use it to set a baseline price for 
shipper negotiations. 

CONCLUSIONS 

This research has investigated the determinants of carrier linehaul costs in spot 
markets; it has defined a methodology by which historical shipment data may be 
processed and mined; and lastly it has demonstrated some of the potential uses of 
historical shipment data by non asset-based 3PL providers. Regarding the determinants of 
carrier costs, the distance a shipment is transported along with the type of equipment used 
are among the most important factors. 

Also, the study examined the transactional data as a panel data set by aggregating 
transactions at the lane level and in monthly intervals. In so doing, a broad view of the 
temporal and spatial dynamics of carrier pricing was taken yielding insights into overall 
market behavior. Many of the same characteristics identified in the shipment analysis 
proved to be consistent with the lane-level analysis. However, the direction of influence 
was sometimes opposite. 

Lastly, the research developed a methodology by which underperforming lanes 
are identified using historical shipment data. Lanes that exhibit below par PLRs can be 
singled out for improvement by the 3PL provider and efforts can be undertaken to 
improve performance. As part of those efforts, the regression model used for prediction 
can suggest to the 3PL broker baseline prices to begin negotiations with a potential 
shipper. 

There are few potential limitations to this work that could be addressed in future 
studies. In further work, measures other than median values could be tested in the lane-
level analysis.  The use of a single 3PL provider as the source of data is another potential 
limitation because, inevitably, there will be more data available in the geographic areas in 
which that provider is strongest. Pooling data across several 3PL providers would provide 
a more complete perspective of the market. Other possible limitations include the use of a 
clustering algorithm for distinguishing lanes. It is possible that political boundaries have 
a greater influence on carrier rates than assumed, which could potentially bias the results. 
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