Supplementary Material for "Regularization for Unsupervised Deep Neural Nets"

Baiyang Wang, Diego Klabjan

Supplement for Section 5.2

Unlike a deep belief network (DBN) which trains a directed model, a deep Boltzmann machine (DBM) trains an undirected graphical model. The major difference is that in the training procedure for a DBM, both the visible and hidden nodes in the deepest hidden layer are doubled. The weights for the doubled nodes are tied to the original weights. Also, $E(h^L|v)$ may be added to the original features.

For a replicated softmax model (RSM), the energy function is

$$\begin{cases} E(v,h) = -b^T v - C \cdot c^T h - h^T W v, \\ 1^T v = C, \ v \in \mathbb{N}^J, \ h \in \{0,1\}^I. \end{cases}$$

For a Gaussian RBM, the energy function is

$$\begin{cases} E(v,h) = \sum_{j=1}^{J} \frac{(v_j - a_j)^2}{2\sigma_j^2} - c^T h - h^T W(v/\sigma), \\ v \in \mathbb{R}^J, \ h \in \{0,1\}^I. \end{cases}$$

where v/σ is element-wise.

RSMs and Gaussian RBMs are simple extensions of an RBM to count outcomes and real-valued outcomes.

Supplement for Sections 4 - 5.1

Theorem 1. (adapted from Theorem 5.7 in [6])

Let θ be a vector. Let $M^{(N)}(\vartheta)$ be a random variable parametrized by ϑ and let M be a fixed function of ϑ such that for every $\epsilon > 0$,

$$\sup_{\vartheta \in \Theta} |M^{(N)}(\vartheta) - M(\vartheta)| \xrightarrow{P} 0, \quad \sup_{\vartheta : \|\vartheta - \theta\| \ge \epsilon} M(\vartheta) < M(\theta).$$
(1)

Then for any sequence of random variables $\{\hat{\theta}^{(N)}\}_{N=1}^{\infty}$ such that $M^{(N)}(\hat{\theta}^{(N)}) \ge M^{(N)}(\theta) - o_P(1)$ a.s., we have $\hat{\theta}^{(N)} \xrightarrow{P} \theta$.

Lemma 1. (adapted from page 46 in [6])

For $M^{(N)}(\vartheta) = \frac{1}{N} \sum_{n=1}^{N} m(v^{(n)}|\vartheta)$, where $v^{(n)}$ is defined in Section 4, and $m(v^{(n)}|\vartheta)$ is a function of both $v^{(n)}$ and ϑ , if $\vartheta \in \Theta$ which is compact, the functions $\{m(v|\vartheta) : \vartheta \in \Theta\}$ are continuous for every v, and they are dominated by an integrable function, then for $M(\vartheta)$ such that $M^{(N)}(\vartheta) \xrightarrow{P} M(\vartheta)$ for each $\vartheta \in \Theta$, we have $\sup_{\vartheta \in \Theta} |M^{(N)}(\vartheta) - M(\vartheta)| \xrightarrow{P} 0$.

Theorem 2. (adapted from page 1361 in [4]; see [2, 7] also)

Let u be another parametrization of ϑ such that $\vartheta(u) = \theta + u/\sqrt{N}$, and $u(\vartheta) = \sqrt{N}(\vartheta - \theta)$. If $V^{(N)}(u) \xrightarrow{d} V(u) = -2u^T W + u^T C u + \infty \cdot \sum_{d>D_0}^D \mathbb{1}_{u_d \neq 0}$ for each $u \in \mathbb{R}^D$ such that $\vartheta(u) \in \Theta$, where $V^{(N)}(u)$ is a random variable parametrized by u, W is a random variable and C is a constant matrix, then for $\hat{\theta}^{(N)} = \arg \min_{\vartheta} V^{(N)}(u(\vartheta)), \sqrt{N}(\hat{\theta}^{(N)} - \theta) \xrightarrow{d} \arg \min_{u} V(u)$.

Proof of Proposition 1.

(a) By assumption we have

$$M^{(N)}(\vartheta) = -\frac{1}{N}\tilde{l}^{(N)}(\vartheta)$$

= $-\frac{1}{N}l^{(N)}(\vartheta) + \sum_{d=1}^{D}\frac{\mu_{d}^{(N)}}{N}|\vartheta_{d}| + \sum_{d=1}^{D}\frac{\lambda_{d}^{(N)}}{N}\vartheta_{d}^{2}$
 $\xrightarrow{P} -E[l(v|\theta)] = M(\vartheta).$ (2)

Here, $l^{(N)}(\vartheta)$ denotes the log-likelihood with parameter $\vartheta \in \Theta$ and data examples $v^{(1)}, \ldots, v^{(N)}$, and $l(v|\theta) = \log P(v|\theta)$. Verifying the conditions for Theorem 1, indeed, $-\frac{1}{N}\tilde{l}^{(N)}(\vartheta)$ is a random variable parametrized by ϑ and $-E[l(v|\vartheta)]$ is a fixed function for $\vartheta \in \Theta$.

For the first condition in (1), the regularization terms in (2) converge to zero uniformly because Θ is compact, so we only need the uniform convergence of $-\frac{1}{N}l^{(N)}(\vartheta)$. This is established by Lemma 1. Indeed $m(v|\vartheta) = -l(v|\vartheta)$ is continuous for every v. Because Θ is compact and $v \in \{0,1\}^J$, $-l(v|\vartheta)$ is bounded and thus dominated by an integrable function. Therefore, Lemma 1 holds due to (2) and the first condition in (1) is satisfied.

For the second condition in (1), we note that $-E[l(\theta)] \leq -E[l(\vartheta)]$ from Jensen's equality, and the equality is reached only if $P(v|\theta) = P(v|\vartheta)$. Because we have assumed that the model is identifiable, this implies that $\vartheta = \theta$. Therefore, the second condition in (1) is satisfied.

Because we assume $\tilde{\theta}^{(N)}$ minimizes $M^{(N)}(\vartheta)$, applying Theorem 1, $\tilde{\theta}^{(N)} \xrightarrow{P} \theta$.

(b) We generally follow [7]. Let θ be defined as in the paper, $u \in \mathbb{R}^D$ be a fixed constant, and let $\vartheta(u) = \theta + u/\sqrt{N}$. We have the following Lagrange form of Taylor's expansion for some $\dot{\vartheta}$ lying between $\vartheta(u)$ and θ ,

$$V^{(N)}(u) = \frac{1}{N} [\tilde{l}^{(N)}(\vartheta(u)) - l^{(N)}(\theta)]$$

$$= -\frac{1}{\sqrt{N}} \frac{\partial}{\partial \vartheta} l^{(N)}(\theta) u - \frac{u^T}{2N} \frac{\partial^2}{\partial \vartheta^2} l^{(N)}(\dot{\vartheta}) u + \sum_{d=1}^D \mu_d^{(N)} \left(\left| \theta_d + \frac{u_d}{\sqrt{N}} \right| - \left| \theta_d \right| \right)$$

$$+ \sum_{d=1}^D \lambda_d^{(N)} \frac{u_d}{\sqrt{N}} \left(2\theta_d + \frac{u_d}{\sqrt{N}} \right)$$

$$\stackrel{d}{\to} N(0, I(\theta)) u + \frac{1}{2} u^T I(\theta) u + \infty \cdot \sum_{d=1}^D \mathbf{1}_{u_d \neq 0, \ \theta_d = 0} = V(u). \tag{3}$$

Equation (3) holds because $\frac{1}{\sqrt{N}} \frac{\partial}{\partial \vartheta} l^{(N)}(\theta) \stackrel{d}{\rightarrow} N(0, I(\theta)), \frac{1}{N} \frac{\partial^2}{\partial \vartheta^2} l^{(N)}(\theta) \stackrel{P}{\rightarrow} I(\theta)$, and the two regularization terms converge accordingly. The only remaining result needed for (3) is then $\frac{1}{N} [\frac{\partial^2}{\partial \vartheta^2} l^{(N)}(\dot{\vartheta}) - \frac{\partial^2}{\partial \vartheta^2} l^{(N)}(\theta)] \stackrel{P}{\rightarrow} 0$. This can be shown by taking another Taylor's expansion, and from the fact that $\frac{\partial^3}{\partial \vartheta^3} l(v|\vartheta)$ is bounded with respect to v and ϑ . Therefore, asymptotic normality follows from Theorem 2 with equations (3). Moreover, we also have $\sqrt{N\tilde{\theta}_d} \stackrel{P}{\rightarrow} 0$ if $\theta_d = 0$.

To prove the rest, we only need to show $P(\tilde{\theta}_d^{(N)} \neq 0) \rightarrow 0$ where $\theta_d = 0$. We note that if $\tilde{\theta}_d^{(N)} \neq 0$, then $\frac{\partial M^{(N)}}{\partial \vartheta_d}(\tilde{\theta}^{(N)})$ exists and should be 0, otherwise we can get a lower $M^{(N)}(\vartheta)$. Equivalently,

$$-\frac{1}{\sqrt{N}}\frac{\partial l^{(N)}}{\partial \vartheta_d}(\tilde{\theta}^{(N)}) + \frac{2\lambda_d^{(N)}}{\sqrt{N}}\tilde{\theta}_d^{(N)} \pm \frac{\mu_d^{(N)}}{\sqrt{N}} = 0.$$
(4)

By assumption, $2\lambda_d^{(N)}\tilde{\theta}_d^{(N)}/\sqrt{N} \to 0, \, \mu_d^{(N)}/\sqrt{N} \to \infty.$ We have

$$\frac{1}{\sqrt{N}}\frac{\partial l^{(N)}}{\partial \vartheta_d}(\tilde{\theta}^{(N)}) = \frac{1}{\sqrt{N}}\frac{\partial l^{(N)}}{\partial \vartheta_d}(\theta) + \sum_{d'=1}^D \sqrt{N}(\tilde{\theta}_{d'}^{(N)} - \theta_{d'}) \cdot \frac{1}{N}\frac{\partial^2 l^{(N)}}{\partial \vartheta_d \vartheta_{d'}}(\ddot{\vartheta}) = O_P(1).$$
(5)

Equation (5) holds because $\frac{1}{\sqrt{N}} \frac{\partial l^{(N)}}{\partial \vartheta_d}(\theta)$ and $\sqrt{N}(\tilde{\theta}_{d'}^{(N)} - \theta_{d'})$ converge to normal random variables, and $\frac{1}{N} \frac{\partial^2 l^{(N)}}{\partial \vartheta_d \vartheta_{d'}}(\ddot{\vartheta})$ is bounded by $\sup_{\vartheta \in \Theta, v \in \{0,1\}^J} \left| \frac{\partial^2 l(v|\vartheta)}{\partial \vartheta_d \partial \vartheta_{d'}} \right|$. Therefore equation (4) hold with probability tending to zero, and we have $P(\hat{A}^{(N)} = A) \to 1$.

Proof of Proposition 2.

Let $m^{(N)}$ represent the mask over each component of ϑ for N data examples. From any $p^{(N)}$, $m^{(N)}$ is a random variate such that $m^{(N)} \sim Bernoulli(p^{(N)})$ element-wise. Then because $p^{(N)} \rightarrow 1$ (1 is multidimensional where appropriate), for any $m \neq 1$, $P(m^{(N)} = m) \rightarrow 0$ as $N \rightarrow \infty$. This is true for both original and partial Dropout/DropConnect. Then

$$-\frac{1}{N}\tilde{l}^{(N)}(\vartheta) = -\frac{1}{N}\sum_{n=1}^{N} E_{m^{(N)}}l(v^{(n)}|\vartheta * m^{(N)})$$

$$= -\frac{1}{N}\sum_{n=1}^{N} \left\{ l(v^{(n)}|\vartheta) + \left[E_{m^{(N)}}l(v^{(n)}|\vartheta * m^{(N)}) - l(v^{(n)}|\vartheta) \right] \right\}$$

$$= -\frac{1}{N}l^{(N)}(\vartheta) - \sum_{m\neq 1} P(m^{(N)} = m) \cdot \frac{1}{N}\sum_{n=1}^{N} \left[l(v^{(n)}|\vartheta * m^{(N)}) - l(v^{(n)}|\vartheta) \right]$$

$$= -E[l(\vartheta)] + o_P(1) + \sum_{m\neq 1} o(1) \cdot (C + o_P(1)) \xrightarrow{P} - E[l(\vartheta)]. \tag{6}$$

For uniform convergence, we only need to show that $\sup_{\vartheta \in \Theta} \frac{1}{N} \sum_{n=1}^{N} [l(v^{(n)}|\vartheta * m) - l(v^{(n)}|\vartheta)] = O_P(1)$, which is equivalent to $\sup_{\vartheta \in \Theta} \frac{1}{N} \sum_{n=1}^{N} l(v^{(n)}|\vartheta * m) = O_P(1)$. To do this, we apply the conditions for Lemma 1 again, noting that

$$\sup_{\vartheta \in \Theta} \left| \frac{1}{N} \sum_{n=1}^{N} l(v^{(n)} | \vartheta * m) - E[l(v | \vartheta * m)] \right| \to 0$$
(7)

and $E[l(v|\vartheta * m)]$ is bounded for ϑ because of continuity and compactness of Θ . Therefore, uniform convergence holds, and furthermore, the conclusion holds, same as in Proposition 1(a).

Theorem 3. (adapted from Theorem 1 in [5])

Let $\hat{\theta}^{(N)}$ be as in Section 4.

If A1) there exists a compactification $\overline{\Theta}$ of Θ , and

A2) for each $\vartheta \in \Theta$, there exists $t = t(\vartheta) > 0$ such that $E_{\vartheta}[\sup_{\vartheta_1 \in \Theta} P(v|\vartheta_1)/P(v|\vartheta)]^t < \infty$, and

A3) if $\vartheta, \vartheta_1 \in \Theta$ and $\vartheta \neq \vartheta_1$, then $\int \mathbb{1}_{P(v|\vartheta)\neq P(v|\vartheta_1)} dv > 0$ (here dv is the counting measure),

then there exists 0 < R < 1, such that

$$P(\|\hat{\theta}^{(N)} - \theta\| \ge \epsilon |\theta) \le R^N \tag{8}$$

for $\theta \in \Theta$, $\epsilon > 0$, and all sufficiently large N.

Proof of Proposition 3.

Following the same reasoning as in Proposition 1(a), $\hat{\theta}^{(N)} \xrightarrow{P} \theta$.

The compactness of Θ satisfies A1 according to [5], the finiteness of $|\{0,1\}^J|$ satisfies A2, so that t can be any positive real number, and the identifiability of $P(v|\vartheta)$ satisfies A3. We let $\delta := \min\{|\theta_d| : \theta_d \neq 0\}$. From Theorem 3, for sufficiently large N,

$$P(\|\hat{\theta}^{(N)} - \theta\| \ge \delta/2) \le R^N, 0 < R < 1.$$
(9)

Let $\rho = -\log R > 0$, this becomes

$$P(\|\hat{\theta}^{(N)} - \theta\| < \delta/2) \ge 1 - e^{-\rho N}.$$
(10)

We note that if $\|\hat{\theta}_N - \theta\| < \delta/2$, the order of coefficients w_{ij} are preserved for elimination. Specifically, if $\theta_d = 0, \theta_{d'} \neq 0$, then $|\hat{\theta}_d^{(N)}| < \delta/2, |\hat{\theta}_{d'}^{(N)}| > |\theta_{d'}| - |\hat{\theta}_{d'}^{(N)} - \theta_{d'}| > \delta/2$. Thus $|\hat{\theta}_{d'}^{(N)}| > |\hat{\theta}_d^{(N)}|$. Given $p \ge p_0$, we immediately have $A \subset \hat{A}^{(N)}$ given $\|\hat{\theta}_N - \theta\| < \delta/2$.

For (a), let $\mathcal{A} \subset \mathcal{F} := \{1, \dots, D\}$, and $\hat{\theta}_{\mathcal{A}} = \arg \max_{\vartheta_{\mathcal{F} \setminus \mathcal{A}} = 0} l^{(N)}(\vartheta)$ denote the maximum likelihood estimate of θ with components limited to set \mathcal{A} . For any \mathcal{A} such that $A \subset \mathcal{A} \subset \mathcal{F}$ and $\epsilon > 0$, we have $\lim_{N \to \infty} P(\|\hat{\theta}_{\mathcal{A}}^{(N)} - \theta\| \ge \epsilon) = 0$ as in Proposition 1(a). Because $|\{\mathcal{A}\}|$ is finite,

$$\lim_{N \to \infty} \sup_{A \subset \mathcal{A}} P(\|\hat{\theta}_{\mathcal{A}}^{(N)} - \theta\| \ge \epsilon) = 0,$$
(11)

and hence,

$$\lim_{N \to \infty} P(\|\tilde{\theta}^{(N)} - \theta\| \ge \epsilon) \le \lim_{N \to \infty} P(A \not\subset \hat{A}^{(N)}) + \lim_{N \to \infty} \sup_{A \subset \mathcal{A}} P(\|\hat{\theta}^{(N)}_{\mathcal{A}} - \theta\| \ge \epsilon) = 0.$$
(12)

$$\square$$

Proof of Corollary 1.

Suppose for sufficiently large N, $P(A \subset \hat{A}^{(N),r}) \ge 1 - e^{-\rho n}$, where r denote the r-th elimination. Let $\hat{A}_{\mathcal{A}}^{(N)}$ denote the remaining components when they are already restricted to a set \mathcal{A} . Because $|\{\mathcal{A}\}|$ is finite, there exists $N_1 \in \mathbb{N}$ and $\rho' > 0$ such that for $N \ge N_1$, $\inf_{A \subset \mathcal{A}} P(A \subset \hat{A}_{\mathcal{A}}^{(N)}) \ge 1 - e^{-\rho' n}$. When $N \ge N_1$ and is sufficiently large,

$$P(A \subset \hat{A}^{(N),r+1}) \ge P(A \subset \hat{A}^{(N),r})P(A \subset \hat{A}^{(N),r+1}|A \subset \hat{A}^{(N),r}) \ge P(A \subset \hat{A}^{(N),r}) \inf_{A \subset \mathcal{A}} P(A \subset \hat{A}^{(N)}_{\mathcal{A}}) > 1 - e^{-\rho N} - e^{\rho' N}.$$
(13)

Therefore for N large enough, $P(A \subset \hat{A}^{(N),r+1}) \ge 1 - e^{-\rho''N}$, ρ'' being any positive number smaller than $\min\{\rho, \rho'\}$. By induction from each r to r + 1, part (b) holds. Part (a) holds following the same reasoning as in the proof of Proposition 3(a).

Proof of Proposition 4.

We consider a certain mask m for a Dropout/DropConnect RBM. For a Dropout RBM, the energy function can be written as

$$\mathcal{E}(v,h,m) = -b^{T}(m_{v} * v) - c^{T}(m_{h} * h) - (m_{h} * h)^{T}W^{*}(m_{v} * v).$$
(14)

Note that we also drop visible nodes in this scenario in order to keep symmetry, so $m = (m_v, m_h)$. For a DropConnect RBM,

$$\mathcal{E}(v,h,m) = -b^T v - c^T h - h^T (m*W)v.$$
⁽¹⁵⁾

Suppose we add a hidden node h^* to the RBM, and denote the mask applied to h^* as m^* . Then we have for a Dropout RBM

$$\mathcal{E}(v, h, m, h^*, m^*)$$

$$= -b^T(m_v * v) - c^T(m_h * h) - c^* m^* h^* - (m_h * h)^T W(m_v * v) - (m^* h^*) \cdot W^*(m_v * v),$$
(16)

and for a DropConnect RBM,

$$\mathcal{E}(v,h,m,h^{\star},m^{\star}) = -b^{T}v - c^{T}h - c^{\star}h^{\star} - h^{T}(m*W)v - h^{\star} \cdot (m^{\star}*W^{\star})v.$$
(17)

Initializing with $c^{\star} = 0$, $W^{\star} = 0$, we have for both models

$$\mathcal{E}(v,h,m,h^{\star},m^{\star}) = \mathcal{E}(v,h,m).$$
(18)

The initial log-likelihood after adding the hidden node is

$$l_{new}^{(N)}(v^{(1)}, \dots, v^{(N)} | \hat{\theta}, c^*, W^*) = \sum_{n=1}^{N} E_{m,m^*} \log P_{new}(v^{(n)} | \hat{\theta})$$

$$= \sum_{n=1}^{N} E_{m,m^*} \log \frac{\sum_{h,h^*} e^{-\mathcal{E}(v^{(n)},h,m,h^*,m^*)}}{\sum_{h,h^*,v} e^{-\mathcal{E}(v,h,m,h^*,m^*)}}$$

$$= \sum_{n=1}^{N} E_{m,m^*} \log \frac{\sum_{h,h^*} e^{-\mathcal{E}(v^{(n)},h,m)}}{\sum_{h,h^*,v} e^{-\mathcal{E}(v,h,m)}}$$

$$= \sum_{n=1}^{N} E_m \log \frac{2\sum_h e^{-\mathcal{E}(v^{(n)},h,m)}}{2\sum_{h,v} e^{-\mathcal{E}(v,h,m)}} \quad (h^* \in \{0,1\})$$

$$= l^{(N)}(v^{(1)}, \dots, v^{(N)} | \hat{\theta}). \tag{19}$$

With the CD-k algorithm, the likelihood does not decrease after adding a new hidden node. Specifically, $l_{new}^{(N)}(v^{(1)},\ldots,v^{(N)}|\hat{\theta}^*) \geq l_{new}^{(N)}(v^{(1)},\ldots,v^{(N)}|\hat{\theta},c^*,W^*) = l^{(N)}(v^{(1)},\ldots,v^{(N)}|\hat{\theta})$, if $\hat{\theta}^*$ is the optimal value after adding a new node.

For adding layers under Dropout and DropConnect, following [1, 3], we illustrate in details why

$$E_{m^*}[\log P_{RBM_{L+1}}(h^L|m^*)] = E_m[\log P_{DBN_L}(h^L|m)]$$
(20)

holds, and how adding a symmetric layer can improve the likelihood. Below, we let m^l denote the mask for the *l*-th layer.

$$\log P_{DBN_{L}}(h^{L}|m) = \sum_{v,h^{1},\dots,h^{L-1}} \log P_{RBM_{1}}(v|h^{1},m^{1}) \cdots P_{RBM_{L}}(h^{L-1}|h^{L},m^{L}) P_{RBM_{L}}(h^{L},m^{L})$$
$$= \sum_{h^{L-1}} \log P_{RBM_{L}}(h^{L-1},h^{L}|m^{L})$$
$$= \sum_{h^{L+1}} \log P_{RBM_{L+1}}(h^{L},h^{L+1}|m^{*})$$
$$= \log P_{RBM_{L+1}}(h^{L}|m^{*}),$$
(21)

if m^L and m^* are symmetric. Because both of them are assumed to have constant dropping probabilities, from symmetry and taking an expectation over (21), we know that (20) holds. Therefore DBN_{L+1} has the same log-likelihood bound as DBN_L , and to improve the log-likelihood, we only need to improve $\sum_{h^L} E_{m,m^*}[P_{DBN_L}(h^L|v,m) \cdot \log P_{RBM_{L+1}}(h^L|m^*)]$ in equation (15) in the main paper. In training, we make the following approximation

$$\sum_{h^{L}} E_{m,m^{*}} [P_{DBN_{L}}(h^{L}|v,m) \cdot \log P_{RBM_{L+1}}(h^{L}|m^{*})]$$

$$\doteq E_{m^*} \{ \log P_{RBM_{L+1}} [E_m E_{DBN_L} (h^L | v, m) | m^*] \},$$
(22)

where $E_m E_{DBN_L}(h^L | v, m)$ can be easily obtained from the greedy layer-wise training approach. Therefore the likelihood is improved. It is also immediate that adding layers with size $J \le H^1 \le H^2 \le \cdots$ continually improves the likelihood, since we add $H^L - H^{L-2}$ hidden nodes to the *L*-th hidden layer after we add the *L*-th hidden layer $(L \ge 2, H^0 = J)$.

References.

[1] Bengio, Y. (2007) Learning deep architectures for AI. *Technical Report*, https://www.iro.umontreal.ca/ ~lisa/pointeurs/TR1312.pdf.

[2] Geyer, C. (1994) On the asymptotics of constrained M-estimation. *The Annals of Statistics* 22(4):1993-2010.

[3] Hinton, G., Osindero, S. & Teh, Y.-W. (2006) A fast learning algorithm for deep belief nets. *Neural Computation* **18**(7):1527-1554.

[4] Knight, K. & Fu, W. (2000) Asymptotics for Lasso-type estimators. *The Annals of Statistics* **28**(5):1356-1378.

[5] Shen, X. (2001) On Bahadur efficiency and maximum likelihood estimation. *Statistica Sinica* **11**(2):479-498.

[6] Van der Vaart, A. W. (1998) Asymptotic Statistics, Cambridge University Press, Cambridge, UK.

[7] Zou, H. (2006) The adaptive Lasso and its oracle properties. *Journal of the American Statistical Association* **101**: 1418-1429.