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Supplement for Section 5.2

Unlike a deep belief network (DBN) which trains a directed model, a deep Boltzmann machine (DBM) trains
an undirected graphical model. The major difference is that in the training procedure for a DBM, both the
visible and hidden nodes in the deepest hidden layer are doubled. The weights for the doubled nodes are tied
to the original weights. Also, F(h”|v) may be added to the original features.

For a replicated softmax model (RSM), the energy function is

E(v,h) = =bTv —C-cTh — KT W,
1Tv=C,ve N/ he{01}.

For a Gaussian RBM, the energy function is

7j=1 20]2
veR’, he {01}

{E(v, Ry =S Wisa) _ (Th_ pTW(v/0),
where v/o is element-wise.
RSMs and Gaussian RBMs are simple extensions of an RBM to count outcomes and real-valued outcomes.
Supplement for Sections 4 - 5.1
Theorem 1. (adapted from Theorem 5.7 in [6])

Let 0 be a vector. Let MN) (1) be a random variable parametrized by 1 and let M be a fixed function of
such that for every € > 0,

sup | MM (9) — M (9)| L0, sup M) < M(9). (1)
veO 9:]|[9—0]|>e
Then for any sequence of random variables {é(N)}?Vozl such that M) (6N)) > MN)(9) — 0p(1) ass., we
have V) 5 4. O

Lemma 1. (adapted from page 46 in [6])

For MM (9) = & 22;1 m(v(™]19), where v(™) is defined in Section 4, and m(v(™ |¢9) is a function of both
v(™ and ¥, if ¥ € © which is compact, the functions {m (v[) : ¥ € O} are continuous for every v, and they
are dominated by an integrable function, then for M (1)) such that M (V) (1)) Ky Vi (09) for each ¥ € O, we
have supyee |M ) (9) — M(9)| 5 0. O

Theorem 2. (adapted from page 1361 in [4]; see [2, 7] also)
Let u be another parametrization of 9 such that 9(u) = 6 4+ u/v/N, and u(9) = VN (9 — 8). If VIN) (u) A
V() = —2uTW + uTCu + 00 - 327 . Luyzo for each u € RP such that 9(u) € ©, where VM) (u) is

a random variable parametrized by u, W is a random variable and C is a constant matrix, then for O =
arg ming VO (u(®)), VN (D) — 0) 4 arg min,, V(u). O



Proof of Proposition 1.
(a) By assumption we have

MM (9) = _%[(N)(ig)

1 Du D (N)
——NNN) +Z |19d|+z Zd__y2

d=1
5 ~Bli(v]0)] = M(9). @
Here, (V) (¥9) denotes the log-likelihood with parameter ¥ € © and data examples vV, ..., v(™) and

l(v]@) = log P(v|@). Verifying the conditions for Theorem 1, indeed, f%i(N )(9) is a random variable
parametrized by ¢ and —E/[l(v|¥)] is a fixed function for ¢ € ©.

For the first condition in (1), the regularization terms in (2) converge to zero uniformly because © is compact,
so we only need the uniform convergence of — (") (19). This is established by Lemma 1. Indeed m(v|d)) =
—I(v|9) is continuous for every v. Because © is compact and v € {0,1}7, —I(v|9) is bounded and thus
dominated by an integrable function. Therefore, Lemma 1 holds due to (2) and the first condition in (1) is
satisfied.

For the second condition in (1), we note that —E[l(8)] < —E[I(+})] from Jensen’s equality, and the equality
is reached only if P(v|0) = P(v|?¥). Because we have assumed that the model is identifiable, this implies
that 19 = 6. Therefore, the second condition in (1) is satisfied.

Because we assume 6N) minimizes MW (1), applying Theorem 1, o B,

(b) We generally follow [7]. Let @ be defined as in the paper, u € R” be a fixed constant, and let J(u) =
6 +u/+/N. We have the following Lagrange form of Taylor’s expansion for some ¥ lying between 9)(u) and
99

VO () = @) ~ 1(0)

1 0 uT 32 U
= MOy — — M gy + —=| — |6
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N(0,1(6))u+ 5uTI(a)u +00- > Luyz0, 000 = V(w). 3)
d=1

Equation (3) holds because \F aﬂl( )(6) < N(0,1(9)), %aa—;l(m(@) 5 I(0), and the two regularization

terms converge accordingly. The only remaining result needed for (3) is then + | 0(292 1N () — 5 192 1) (0)] 5
0. This can be shown by taking another Taylor’s expansion, and from the fact that 88193 [(v]9) is bounded with
respect to v and 9). Therefore, asymptotic normality follows from Theorem 2 with equations (3). Moreover,
we also have VN6, Eoif 04 =0.

To prove the rest, we only need to show P( ;é 0) — 0 where §; = 0. We note that if 9( ) # 0, then

(N)
21 (GOV)

p exists and should be 0, otherwise we can get a lower M (V) (). Equivalently,

™) o (V) )
_LL(Q(N)) Ag géN) 4 Ha 4)
VN 094 VN VN



By assumption, QAEiN)éC(lN)/\/N — 0, ,uElN)/\/N — 0o. We have

1 o) 1 ol D - 1 921V .
_ Ny = E vV N N) _ 9.y — = Op(1).
VN 094 (%) VN 094 (®) +d,:1 (O Our) N 09494 () r(1) )

Equation (5) holds because \} 361:9 )( 6) and vV N (52{\7) — 64/) converge to normal random variables, and

2N Gy 2*l(v
+ gﬂfiﬁd’ (9) is bounded by supyce e (0,137 679d(679d/
to zero, and we have P(A(N) = A) — 1. O

Proof of Proposition 2.

Let m) represent the mask over each component of ¥ for N data examples. From any p™), m(™N) is a
random variate such that m(™) ~ Bernoulli(p™)) element-wise. Then because p¥) — 1 (1 is multi-
dimensional where appropriate), for any m # 1, P(m™) = m) — 0as N — oco. This is true for both
original and partial Dropout/DropConnect. Then

Em(N)l(v(")h? * m(N))
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- f%l(m(ﬂ) - 7; Pm™ =m) . % ; [l(v(”)h? «m™)y — 1(u<n>|19)]

= —E[@)] +op(1) + > o(1) - (C + 0p(1)) 5 ~E(9)]. (©)
m#1

For uniform convergence, we only need to show that supyce & 25:1 (L™ |9 xm) —1(v™]9)] = Op(1),
which is equivalent to supyee & Zf:[:l I(v™ ]9 * m) = Op(1). To do this, we apply the conditions for
Lemma 1 again, noting that

z

sug Z (™9 % m) — E[l(v|0 * m)]| = 0 (7
€

and E[l(v]|¥ = m)] is bounded for ) because of continuity and compactness of ©. Therefore, uniform conver-
gence holds, and furthermore, the conclusion holds, same as in Proposition 1(a). O

Theorem 3. (adapted from Theorem 1 in [5])
Let 0Y) be as in Section 4.
If A1) there exists a compactification O of ©, and
A2) for each ¥ € ©, there exists t = (1)) > 0 such that Ey[supy, ce P(v|01)/P(v|9)]" < oo, and
A3)if 9,91 € © and ¥ # ¥4, then [ Lp(v|9)#£P(v]9,)dv > 0 (here dv is the counting measure),
then there exists 0 < R < 1, such that
P([0™) — 0 > e|p) < RN ®)

for 6 € ©, € > 0, and all sufficiently large V. O



Proof of Proposition 3.

Following the same reasoning as in Proposition 1(a), o) B,

The compactness of O satisfies Al according to [5], the finiteness of |{0, 1}7| satisfies A2, so that ¢ can be
any positive real number, and the identifiability of P(v|d}) satisfies A3. We let § := min{|04] : 04 # 0}.
From Theorem 3, for sufficiently large IV,

P(|6™N) — 6| >65/2) <RV, 0< R< 1. ©)
Let p = —log R > 0, this becomes
P(|6WN) — 9| < 6/2) > 1 —e PN, (10)

We note that if ||y — 6] < &/2, the order of coefficients w;; are preserved for elimination. Specifically, if
9d =0, ad’ 75 0, then |é£1N)‘ < 5/2, |9AEIZ,V)| > |9d/| — ‘éy\/) — 9d/| > (5/2 Thus |éé{\7)‘ > ‘éc(lN)| Given
p > po, we immediately have A € AXN) given ||y — 6| < 6/2.

For (a), let A € F := {1,...,D}, and 04 = arg maxy -, ,=0 IV)(19) denote the maximum likelihood
estimate of € with components limited to set .A. For any A such that A € A C F and € > 0, we have
Nlim P(HG&N) — 0]] > €) = 0 as in Proposition 1(a) . Because |{.A}| is finite,

— 00

lim sup P(|6%) — 6] > € =0, (11)
N—oo Ac A

and hence,

lim P(|6N) =9 >¢) < lim P(Ag¢ AM)+ lim sup P(I0Y) =6 >e)=0. (12
N—oo N —o00 N—oco Ac A

O

Proof of Corollary 1.

Suppose for sufficiently large N, P(A C AWN )7) > 1 —e~P", where r denote the 7-th elimination. Let AEL‘N)
denote the remaining components when they are already restricted to a set A. Because |[{.A}| is finite, there

exists N1 € Nand p’ > 0 such that for N > Ny, inf g4 4 P(A C A&N)) >1—e*" When N > Nj and is
sufficiently large,

P(Ac ANy > pA c AMT)P(A c AN A c AN
> P(Ac AMT) inf P(AC ANy > 1—e PN _ /N, (13)
C
Therefore for N large enough, P(A ¢ AN)+1) > 1 — ¢=#"N_ 5/ being any positive number smaller than

min{p, p’}. By induction from each r to r + 1, part (b) holds. Part (a) holds following the same reasoning as
in the proof of Proposition 3(a). (]

Proof of Proposition 4.

We consider a certain mask m for a Dropout/DropConnect RBM. For a Dropout RBM, the energy function
can be written as

E(w,hym) = —bT (my, xv) — T (my, * h) — (my, * B)TW* (m,, *v). (14)

Note that we also drop visible nodes in this scenario in order to keep symmetry, so m = (m,,, my). For a
DropConnect RBM,
E(w,hym) = =bTv — Th — b (m + W)w. (15)



Suppose we add a hidden node ~* to the RBM, and denote the mask applied to h* as m*. Then we have for
a Dropout RBM

= —bT (my *v) — T (my, % h) — m*h* — (my, * h)TW (my, xv) — (m*h*) - W*(m, * v),

and for a DropConnect RBM,
E(,hym,h*,m*) = —bTv — cTh — c¢*h* — W (m + W)v — h* - (m* * W*)w. (17)
Initializing with ¢* = 0, W™* = 0, we have for both models
E(v,hym, h*,m*) = E(v, h,m). (18)

The initial log-likelihood after adding the hidden node is

N
17(1];2)(’1}(1)7 - ,’U(N)|é, C*, W*) = Z Em,m* log Pnew(v(n)|é)
n=1
N —&(W™ h,m,h*,m*)
« €

= ZEW m* lOg Zh’h E(v,h,m,h* ,m*)

n=1 Zh h*,v e ’

v R ,m)
= Z Em m* log Zh M —S(U h,m)
Zh e € T
22 e—g(v Jh,m)

= ZE log St ——zrgy (W €{0,1})
=1 N)(v<1>,...,v<N>|é). (19)

With the CD-k algorithm, the likelihood does not decrease after adding a new hidden node. Specifically,
l%gl)u(v(l), oMYy > l%ﬁl(v(l), v ™NG e W) = 1IN (M o N)G), if 0% is the optimal
value after adding a new node.

For adding layers under Dropout and DropConnect, following [1, 3], we illustrate in details why
Eyp-[log Prpa, . (BF|m*)] = Enllog Popn, (h*|m))] (20)

holds, and how adding a symmetric layer can improve the likelihood. Below, we let m! denote the mask for
the [-th layer.

IOgPDBNL(hL‘m) = Z logPRBMl(v|h1,m1)~--PRBML(hL_1|hL,mL)PRBML(hL,mL)
v,h1,... ,hL—1
= Y log Prpn, (W"7 " |m")
hL—1
= Z IOg PRBML+1 (h’La hL+1|m*)
hL+1
= log Priwm, ., (KY|m*), (1)

if m’ and m* are symmetric. Because both of them are assumed to have constant dropping probabili-
ties, from symmetry and taking an expectation over (21), we know that (20) holds. Therefore DBNp
has the same log-likelihood bound as D BNy, and to improve the log-likelihood, we only need to improve
>nt Emm~[Ppen, (h*|v,m) - log Prpa, ., (R*|m*)] in equation (15) in the main paper. In training, we
make the following approximation

Y Emme [Popn, (h*[v,m) -log Prpar, ., (B |m")]
hL



= Epm-{log Prpary o [EmEpsn, (WX [v,m)m*]}, (22)

where E,, Eppn, (h|v,m) can be easily obtained from the greedy layer-wise training approach. Therefore
the likelihood is improved. It is also immediate that adding layers with size J < H' < H? < --- continually
improves the likelihood, since we add H” — H'—?2 hidden nodes to the L-th hidden layer after we add the
L-th hidden layer (L > 2, H = .J). O
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