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Supplement for Section 5.2

Unlike a deep belief network (DBN) which trains a directed model, a deep Boltzmann machine (DBM) trains
an undirected graphical model. The major difference is that in the training procedure for a DBM, both the
visible and hidden nodes in the deepest hidden layer are doubled. The weights for the doubled nodes are tied
to the original weights. Also, E(hL|v) may be added to the original features.

For a replicated softmax model (RSM), the energy function is{
E(v, h) = −bT v − C · cTh− hTWv,

1T v = C, v ∈ NJ , h ∈ {0, 1}I .

For a Gaussian RBM, the energy function is{
E(v, h) =

∑J
j=1

(vj−aj)2

2σ2
j
− cTh− hTW (v/σ),

v ∈ RJ , h ∈ {0, 1}I .

where v/σ is element-wise.

RSMs and Gaussian RBMs are simple extensions of an RBM to count outcomes and real-valued outcomes.

Supplement for Sections 4 - 5.1

Theorem 1. (adapted from Theorem 5.7 in [6])

Let θ be a vector. Let M (N)(ϑ) be a random variable parametrized by ϑ and let M be a fixed function of ϑ
such that for every ε > 0,

sup
ϑ∈Θ
|M (N)(ϑ)−M(ϑ)| P→ 0, sup

ϑ:‖ϑ−θ‖≥ε
M(ϑ) < M(θ). (1)

Then for any sequence of random variables {θ̂(N)}∞N=1 such that M (N)(θ̂(N)) ≥M (N)(θ)− oP (1) a.s., we

have θ̂(N) P→ θ. �

Lemma 1. (adapted from page 46 in [6])

For M (N)(ϑ) = 1
N

∑N
n=1m(v(n)|ϑ), where v(n) is defined in Section 4, and m(v(n)|ϑ) is a function of both

v(n) and ϑ, if ϑ ∈ Θ which is compact, the functions {m(v|ϑ) : ϑ ∈ Θ} are continuous for every v, and they
are dominated by an integrable function, then for M(ϑ) such that M (N)(ϑ)

P→ M(ϑ) for each ϑ ∈ Θ, we
have supϑ∈Θ |M (N)(ϑ)−M(ϑ)| P→ 0. �

Theorem 2. (adapted from page 1361 in [4]; see [2, 7] also)

Let u be another parametrization of ϑ such that ϑ(u) = θ+ u/
√
N , and u(ϑ) =

√
N(ϑ− θ). If V (N)(u)

d→
V (u) = −2uTW + uTCu +∞ ·

∑D
d>D0

1ud 6=0 for each u ∈ RD such that ϑ(u) ∈ Θ, where V (N)(u) is
a random variable parametrized by u, W is a random variable and C is a constant matrix, then for θ̂(N) =

arg minϑ V
(N)(u(ϑ)),

√
N(θ̂(N) − θ) d→ arg minu V (u). �
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Proof of Proposition 1.

(a) By assumption we have

M (N)(ϑ) = − 1

N
l̃(N)(ϑ)

= − 1

N
l(N)(ϑ) +

D∑
d=1

µ
(N)
d

N
|ϑd|+

D∑
d=1

λ
(N)
d

N
ϑ2
d

P→ −E[l(v|θ)] = M(ϑ). (2)

Here, l(N)(ϑ) denotes the log-likelihood with parameter ϑ ∈ Θ and data examples v(1), . . . , v(N), and
l(v|θ) = logP (v|θ). Verifying the conditions for Theorem 1, indeed, − 1

N l̃
(N)(ϑ) is a random variable

parametrized by ϑ and −E[l(v|ϑ)] is a fixed function for ϑ ∈ Θ.

For the first condition in (1), the regularization terms in (2) converge to zero uniformly because Θ is compact,
so we only need the uniform convergence of− 1

N l
(N)(ϑ). This is established by Lemma 1. Indeed m(v|ϑ) =

−l(v|ϑ) is continuous for every v. Because Θ is compact and v ∈ {0, 1}J , −l(v|ϑ) is bounded and thus
dominated by an integrable function. Therefore, Lemma 1 holds due to (2) and the first condition in (1) is
satisfied.

For the second condition in (1), we note that −E[l(θ)] ≤ −E[l(ϑ)] from Jensen’s equality, and the equality
is reached only if P (v|θ) = P (v|ϑ). Because we have assumed that the model is identifiable, this implies
that ϑ = θ. Therefore, the second condition in (1) is satisfied.

Because we assume θ̃(N) minimizes M (N)(ϑ), applying Theorem 1, θ̃(N) P→ θ.

(b) We generally follow [7]. Let θ be defined as in the paper, u ∈ RD be a fixed constant, and let ϑ(u) =
θ+ u/

√
N . We have the following Lagrange form of Taylor’s expansion for some ϑ̇ lying between ϑ(u) and

θ,

V (N)(u) =
1

N
[l̃(N)(ϑ(u))− l(N)(θ)]

= − 1√
N

∂

∂ϑ
l(N)(θ)u− uT

2N

∂2

∂ϑ2
l(N)(ϑ̇)u+

D∑
d=1

µ
(N)
d

(∣∣∣∣θd +
ud√
N

∣∣∣∣− |θd|)

+

D∑
d=1

λ
(N)
d

ud√
N

(
2θd +

ud√
N

)
d→ N(0, I(θ))u+

1

2
uT I(θ)u+∞ ·

D∑
d=1

1ud 6=0, θd=0 = V (u). (3)

Equation (3) holds because 1√
N

∂
∂ϑ l

(N)(θ)
d→ N(0, I(θ)), 1

N
∂2

∂ϑ2 l
(N)(θ)

P→ I(θ), and the two regularization

terms converge accordingly. The only remaining result needed for (3) is then 1
N [ ∂

2

∂ϑ2 l
(N)(ϑ̇)− ∂2

∂ϑ2 l
(N)(θ)]

P→
0. This can be shown by taking another Taylor’s expansion, and from the fact that ∂3

∂ϑ3 l(v|ϑ) is bounded with
respect to v and ϑ. Therefore, asymptotic normality follows from Theorem 2 with equations (3). Moreover,
we also have

√
Nθ̃d

P→ 0 if θd = 0.

To prove the rest, we only need to show P (θ̃
(N)
d 6= 0) → 0 where θd = 0. We note that if θ̃(N)

d 6= 0, then
∂M(N)

∂ϑd
(θ̃(N)) exists and should be 0, otherwise we can get a lower M (N)(ϑ). Equivalently,

− 1√
N

∂l(N)

∂ϑd
(θ̃(N)) +

2λ
(N)
d√
N

θ̃
(N)
d ±

µ
(N)
d√
N

= 0. (4)
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By assumption, 2λ
(N)
d θ̃

(N)
d /
√
N → 0, µ(N)

d /
√
N →∞. We have

1√
N

∂l(N)

∂ϑd
(θ̃(N)) =

1√
N

∂l(N)

∂ϑd
(θ) +

D∑
d′=1

√
N(θ̃

(N)
d′ − θd′) ·

1

N

∂2l(N)

∂ϑdϑd′
(ϑ̈) = OP (1). (5)

Equation (5) holds because 1√
N
∂l(N)

∂ϑd
(θ) and

√
N(θ̃

(N)
d′ − θd′) converge to normal random variables, and

1
N

∂2l(N)

∂ϑdϑd′
(ϑ̈) is bounded by supϑ∈Θ,v∈{0,1}J

∣∣∣ ∂2l(v|ϑ)
∂ϑd∂ϑd′

∣∣∣. Therefore equation (4) hold with probability tending

to zero, and we have P (Â(N) = A)→ 1. �

Proof of Proposition 2.

Let m(N) represent the mask over each component of ϑ for N data examples. From any p(N), m(N) is a
random variate such that m(N) ∼ Bernoulli(p(N)) element-wise. Then because p(N) → 1 (1 is multi-
dimensional where appropriate), for any m 6= 1, P (m(N) = m) → 0 as N → ∞. This is true for both
original and partial Dropout/DropConnect. Then

− 1

N
l̃(N)(ϑ) = − 1

N

N∑
n=1

Em(N) l(v(n)|ϑ ∗m(N))

= − 1

N

N∑
n=1

{
l(v(n)|ϑ) +

[
Em(N) l(v(n)|ϑ ∗m(N))− l(v(n)|ϑ)

]}
= − 1

N
l(N)(ϑ)−

∑
m 6=1

P (m(N) = m) · 1

N

N∑
n=1

[
l(v(n)|ϑ ∗m(N))− l(v(n)|ϑ)

]
= −E[l(ϑ)] + oP (1) +

∑
m6=1

o(1) · (C + oP (1))
P→ −E[l(ϑ)]. (6)

For uniform convergence, we only need to show that supϑ∈Θ
1
N

∑N
n=1[l(v(n)|ϑ ∗m)− l(v(n)|ϑ)] = OP (1),

which is equivalent to supϑ∈Θ
1
N

∑N
n=1 l(v

(n)|ϑ ∗ m) = OP (1). To do this, we apply the conditions for
Lemma 1 again, noting that

sup
ϑ∈Θ

∣∣∣∣∣ 1

N

N∑
n=1

l(v(n)|ϑ ∗m)− E[l(v|ϑ ∗m)]

∣∣∣∣∣→ 0 (7)

and E[l(v|ϑ ∗m)] is bounded for ϑ because of continuity and compactness of Θ. Therefore, uniform conver-
gence holds, and furthermore, the conclusion holds, same as in Proposition 1(a). �

Theorem 3. (adapted from Theorem 1 in [5])

Let θ̂(N) be as in Section 4.

If A1) there exists a compactification Θ̄ of Θ, and

A2) for each ϑ ∈ Θ, there exists t = t(ϑ) > 0 such that Eϑ[supϑ1∈Θ P (v|ϑ1)/P (v|ϑ)]t <∞, and

A3) if ϑ, ϑ1 ∈ Θ and ϑ 6= ϑ1, then
∫

1P (v|ϑ) 6=P (v|ϑ1)dv > 0 (here dv is the counting measure),

then there exists 0 < R < 1, such that

P (‖θ̂(N) − θ‖ ≥ ε|θ) ≤ RN (8)

for θ ∈ Θ, ε > 0, and all sufficiently large N . �
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Proof of Proposition 3.

Following the same reasoning as in Proposition 1(a), θ̂(N) P→ θ.

The compactness of Θ satisfies A1 according to [5], the finiteness of |{0, 1}J | satisfies A2, so that t can be
any positive real number, and the identifiability of P (v|ϑ) satisfies A3. We let δ := min{|θd| : θd 6= 0}.
From Theorem 3, for sufficiently large N ,

P (‖θ̂(N) − θ‖ ≥ δ/2) ≤ RN , 0 < R < 1. (9)

Let ρ = − logR > 0, this becomes

P (‖θ̂(N) − θ‖ < δ/2) ≥ 1− e−ρN . (10)

We note that if ‖θ̂N − θ‖ < δ/2, the order of coefficients wij are preserved for elimination. Specifically, if
θd = 0, θd′ 6= 0, then |θ̂(N)

d | < δ/2, |θ̂(N)
d′ | > |θd′ | − |θ̂

(N)
d′ − θd′ | > δ/2. Thus |θ̂(N)

d′ | > |θ̂
(N)
d |. Given

p ≥ p0, we immediately have A ⊂ Â(N) given ‖θ̂N − θ‖ < δ/2.

For (a), let A ⊂ F := {1, . . . , D}, and θ̂A = arg maxϑF\A=0 l
(N)(ϑ) denote the maximum likelihood

estimate of θ with components limited to set A. For any A such that A ⊂ A ⊂ F and ε > 0, we have
lim
N→∞

P (‖θ̂(N)
A − θ‖ ≥ ε) = 0 as in Proposition 1(a) . Because |{A}| is finite,

lim
N→∞

sup
A⊂A

P (‖θ̂(N)
A − θ‖ ≥ ε) = 0, (11)

and hence,

lim
N→∞

P (‖θ̃(N) − θ‖ ≥ ε) ≤ lim
N→∞

P (A 6⊂ Â(N)) + lim
N→∞

sup
A⊂A

P (‖θ̂(N)
A − θ‖ ≥ ε) = 0. (12)

�

Proof of Corollary 1.

Suppose for sufficiently largeN , P (A ⊂ Â(N),r) ≥ 1−e−ρn, where r denote the r-th elimination. Let Â(N)
A

denote the remaining components when they are already restricted to a set A. Because |{A}| is finite, there
exists N1 ∈ N and ρ′ > 0 such that for N ≥ N1, infA⊂A P (A ⊂ Â(N)

A ) ≥ 1− e−ρ′n. When N ≥ N1 and is
sufficiently large,

P (A ⊂ Â(N),r+1) ≥ P (A ⊂ Â(N),r)P (A ⊂ Â(N),r+1|A ⊂ Â(N),r)

≥ P (A ⊂ Â(N),r) inf
A⊂A

P (A ⊂ Â(N)
A ) > 1− e−ρN − eρ

′N . (13)

Therefore for N large enough, P (A ⊂ Â(N),r+1) ≥ 1− e−ρ′′N , ρ′′ being any positive number smaller than
min{ρ, ρ′}. By induction from each r to r+ 1, part (b) holds. Part (a) holds following the same reasoning as
in the proof of Proposition 3(a). �

Proof of Proposition 4.

We consider a certain mask m for a Dropout/DropConnect RBM. For a Dropout RBM, the energy function
can be written as

E(v, h,m) = −bT (mv ∗ v)− cT (mh ∗ h)− (mh ∗ h)TW ?(mv ∗ v). (14)

Note that we also drop visible nodes in this scenario in order to keep symmetry, so m = (mv,mh). For a
DropConnect RBM,

E(v, h,m) = −bT v − cTh− hT (m ∗W )v. (15)
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Suppose we add a hidden node h? to the RBM, and denote the mask applied to h? as m?. Then we have for
a Dropout RBM

E(v, h,m, h?,m?) (16)

= −bT (mv ∗ v)− cT (mh ∗ h)− c?m?h? − (mh ∗ h)TW (mv ∗ v)− (m?h?) ·W ?(mv ∗ v),

and for a DropConnect RBM,

E(v, h,m, h?,m?) = −bT v − cTh− c?h? − hT (m ∗W )v − h? · (m? ∗W ?)v. (17)

Initializing with c? = 0, W ? = 0, we have for both models

E(v, h,m, h?,m?) = E(v, h,m). (18)

The initial log-likelihood after adding the hidden node is

l(N)
new(v(1), . . . , v(N)|θ̂, c∗,W ∗) =

N∑
n=1

Em,m? logPnew(v(n)|θ̂)

=

N∑
n=1

Em,m? log

∑
h,h? e−E(v(n),h,m,h?,m?)∑
h,h?,v e

−E(v,h,m,h?,m?)

=

N∑
n=1

Em,m? log

∑
h,h? e−E(v(n),h,m)∑
h,h?,v e

−E(v,h,m)

=

N∑
n=1

Em log
2
∑
h e
−E(v(n),h,m)

2
∑
h,v e

−E(v,h,m)
(h? ∈ {0, 1})

= l(N)(v(1), . . . , v(N)|θ̂). (19)

With the CD-k algorithm, the likelihood does not decrease after adding a new hidden node. Specifically,
l
(N)
new(v(1), . . . , v(N)|θ̂?) ≥ l

(N)
new(v(1), . . . , v(N)|θ̂, c∗,W ∗) = l(N)(v(1), . . . , v(N)|θ̂), if θ̂∗ is the optimal

value after adding a new node.

For adding layers under Dropout and DropConnect, following [1, 3], we illustrate in details why

Em∗ [logPRBML+1
(hL|m∗)] = Em[logPDBNL

(hL|m)] (20)

holds, and how adding a symmetric layer can improve the likelihood. Below, we let ml denote the mask for
the l-th layer.

logPDBNL
(hL|m) =

∑
v,h1,...,hL−1

logPRBM1
(v|h1,m1) · · ·PRBML

(hL−1|hL,mL)PRBML
(hL,mL)

=
∑
hL−1

logPRBML
(hL−1, hL|mL)

=
∑
hL+1

logPRBML+1
(hL, hL+1|m∗)

= logPRBML+1
(hL|m∗), (21)

if mL and m∗ are symmetric. Because both of them are assumed to have constant dropping probabili-
ties, from symmetry and taking an expectation over (21), we know that (20) holds. Therefore DBNL+1

has the same log-likelihood bound as DBNL, and to improve the log-likelihood, we only need to improve∑
hL Em,m∗ [PDBNL

(hL|v,m) · logPRBML+1
(hL|m∗)] in equation (15) in the main paper. In training, we

make the following approximation∑
hL

Em,m∗ [PDBNL
(hL|v,m) · logPRBML+1

(hL|m∗)]
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.
= Em∗{logPRBML+1

[EmEDBNL
(hL|v,m)|m∗]}, (22)

where EmEDBNL
(hL|v,m) can be easily obtained from the greedy layer-wise training approach. Therefore

the likelihood is improved. It is also immediate that adding layers with size J ≤ H1 ≤ H2 ≤ · · · continually
improves the likelihood, since we add HL − HL−2 hidden nodes to the L-th hidden layer after we add the
L-th hidden layer (L ≥ 2, H0 = J). �
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