
Optimal Expediting Policies for a Serial Inventory System with

Stochastic Lead Time and Visibility of Orders In Transit

Chiwon Kim Diego Klabjan David Simchi-Levi

Abstract

Recent supply chains face higher volatility due to increased length and complexity. Cost

pressure from severe competition drives industries to outsource its production to Asia, which

in turn makes the supply chains long and complex. As a result, it is increasingly critical to

manage supply chains actively to reduce uncertainty in delivery lead time and increase service

rates. Often operating multiple delivery modes such as standard freight shipping and air is an

effective way of addressing both delivery lead time uncertainty and service rates. We propose

a model on how to operate multiple delivery modes in an optimal way and discuss a necessary

order tracking system such as radio frequency identification as a prerequisite for expediting in a

stochastic delivery lead time environment. We consider a serial supply chain and an expediting

option from intermediate installations to the very downstream of the chain. The goods move

stochastically among the installations and the system faces a stochastic demand. We identify

systems that yield simple and tractable optimal policies, in which both regular ordering and

expediting follow a variant of the base stock policy. We show that optimal expediting results

in a significant reduction in the total logistics cost and the reduction increases as variability

in delivery lead time increases. Furthermore, we show that expediting allows the system to be

operated in a leaner way due to the reduced regular order amount and provide various managerial

insights linking expediting, base stock levels, and expediting costs based on analytical and

numerical analyses.
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1 Introduction

One challenge of multi-stage global supply chains is to reduce the total logistics cost and increase

the service rate when facing variability of delivery lead times which is the total time from placing

an order until the final delivery and comprises of the transportation between stages and temporary

storage along the supply chain. Such variability is caused by multiple sources such as an unex-

pected plane or cargo vessel arrival change, congestion due to work-load imbalances, extra work

due to misshandling and incorrect stocking, and waisted time due to equipment failures. Since

variability yields high unexpected cost in either inventory or backlogging, companies often expedite

outstanding orders either from the supplier or from intermediate stages by using more expensive

transportation modes such as air to reduce the total logistics cost. Large volume, high value elec-

tronics such as flat panels displays, high variety supplies such as special color paints, and seasonal

products such as clothes are examples of industries where freight shipping is intense and air freight

is used for expediting the delivery to reduce variability.

In order to expedite outstanding orders, proper visibility of orders in transit needs to be in place

due to the stochastic nature of delivery lead times. There are a number of order tracking solutions

available to improve visibility: from traditional approaches such as manual processing with bar-

codes to more recent technologies such as automatic processing with RFID1. Each solution has a

different value proposition in terms of information accuracy, processing time, initial investment,

maintenance, and labor cost. Optimally deployed expediting of outstanding orders results in an

improvement of the total logistics cost. Supply chain managers face two problems. First, they need

to decide to what extend to have visibility in the supply chain, and second, they need to decide

when, how much, and from where to expedite based on given visibility. This paper addresses these

two problems by studying optimal policies of expediting outstanding orders, its characteristics, and

dynamics in multi-staged supply chains. The value of visibility can be estimated from the identified

optimal policy, and, in turn, set the limit for an appropriate level of investment on visibility.

In particular, we consider a periodic review, single item inventory problem of a manufacturer.

There is a single supplier where the manufacturer periodically places regular orders. The stochastic

1Radio Frequency IDentification
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demand is fulfilled by the manufacturer and excessive demand is backlogged. The entire chain

consists of multiple installations, and orders progress from one installation to another until delivered

to the manufacturer. The movements of outstanding orders among installations are stochastic,

hence the overall lead time is stochastic. Specifically, multiple movement patterns of outstanding

orders are captured in the model, and one of the patterns is chosen stochastically in each time

period. We assume that there exists an exogenous random variable with a known distribution

that governs the movement pattern that occurs at the current time period. The manufacturer

has the option to expedite orders from installations to the manufacturer at an extra per unit cost

according to the current demand situation. Because the lead time is stochastic, expediting an

order requires knowing its exact location. This location information can be provided, for example,

by an order tracking technology such as RFID. We reiterate that we consider the manufacturer’s

inventory problem, where all decisions, e.g., regular ordering and expediting decisions, are made

by the manufacturer and the corresponding logistics costs are also incurred by the manufacturer,

including investment and operations costs of the order tracking system. As a real-world example

of such a setting, consider a heavy equipment manufacturer with a plant near Shanghai which

procures high value electronic parts from a supplier near Seoul. The procured parts are delivered

by a 3rd party logistics provider through specified locations while the logistics cost is fully paid

by the manufacturer. The regular route can be from the supplier, the port of Incheon (a major

port of Korea), to Shanghai, while the expedited route can be either from a local airport near

the supplier to Shanghai, or from the supplier, Incheon airport, to Shanghai. Since the locations

are fixed, the manufacturer could install tracking mechanisms in all logistics locations to track the

inventory level. In order to asses the value of visibility, it is important to develop models capable of

exploiting data resulting from the tracking technology, and to find out optimal policies of expediting

and regular ordering in such models. In the absence of optimal policies, it is hard to assess the

value of visibility in the supply chain. As a result, we focus on deriving the optimal expediting and

regular ordering policies under certain conditions. Since the setting of our model is quite general

and the modeling scope is broad, finding the optimal policies in general is difficult. They generally

depend on state variables, hence they are nonintuitive and complex. However, analytical results
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can be obtained for a certain subset of serial systems. We characterize conditions for a system to

allow simple optimal policies, and call such systems sequential since orders do not cross in time

under the optimal control. The sequential delivery property plays the key role in analyzing the

optimal policies. We also provide sufficient and necessary conditions for identification of sequential

systems. Within the realm of sequential systems, the optimal regular ordering and expediting

policies are derived. The optimal regular ordering policy is the base stock policy with respect to

the inventory position, and the optimal expediting policy is a variant of the base stock policy with

respect to the echelon stock up to a certain installation. In addition, we find that as the expediting

cost of a certain installation increases, the underlying expediting base stock level associated with

the installation is non increasing, which is intuitive. Interestingly enough, we also derive that as

the expediting cost for an installation increases, the expediting base stock levels for installations

beyond the installation in question are nondecreasing.

The contributions of our work are several. First, to the best of our knowledge, the presented

work is the first one to derive an optimal expediting policy of a multi-stage stochastic lead time

inventory model, which is a clear distinction over the existing literature. Second, the proof technique

is novel and nontraditional even though we rely on induction. After characterizing the sequential

systems, we formulate the optimality equation suited for these systems using the sequential delivery

property, and this leads to simple optimal policies. Optimality of these policies is proved in an

induction loop by studying the difference in the cost-to-go for different states. Third, we find

interesting directional dependencies of expediting base stock levels on expediting costs. Fourth,

based on a numerical study, we provide various interesting insights on the dynamics of the optimal

policy as parameters vary. Finally, an important managerial insight that the value of visibility can

be elevated, if utilized actively with new processes such as expediting, is inferable from this work.

Firms should strive for creative business processes in order to extract more value from visibility.

In the next section, we formally state the underlying model. We delineate the class of systems

in which orders do not cross in time in Section 3, and discuss the scope of such sequential systems in

the same section. We derive the corresponding optimal policies for the sequential systems in Section

4. In Section 5, we discuss directional dependencies of expediting base stock levels on expediting
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costs, and in Section 6, we discuss dynamics of the optimal policies by means of a numerical

analysis. Section 7 summarizes the overall findings with a brief discussion on the selection criteria

of a proper tracking technology suitable to a supply chain. We conclude the introduction with a

literature review.

Literature Review

The most related models in the literature are divided in two groups: the stochastic lead time

models and the multi supply mode models. Among the early works on the stochastic lead time

models, Kaplan (1970), Nahmias (1979), and Ehrhardt (1984) consider stochastic lead time that is

determined by a realization of a random variable. In their models they consider the age of orders

to determine the stochastic movement, and if the age of an order exceeds the realized value of

the random variable, then this order is considered to arrive at the destination. Song and Zipkin

(1996) and Muharremoglu and Tsitsiklis (2008) are more recent publications on stochastic lead time

models. In their models, the supply system is Markov modulated describing the supply condition.

They also define an exogenous random variable, which determines the lead time of an order, but

their modeling of the stochastic lead time is more comprehensive than the earlier works since the

random variables determine the progress status of outstanding orders. Our model resembles the

stochastic lead time description of Song and Zipkin (1996) and Muharremoglu and Tsitsiklis (2008),

however, they do not consider expediting.

The multi supply mode models such as emergency ordering or expediting models with determin-

istic movement transitions include Barankin (1961), Neuts (1964), Daniel (1963), Fukuda (1964),

and Veinott (1966) as the early works. They consider inventory systems with two supply modes of

instantaneous and one period lead time. Models with emergency orders among others include Chi-

ang and Gutierrez (1998) and Huggins and Olsen (2010), but their modeling of emergency orders is

different from ours (emergency and expediting have different scopes). More related recent works are

Lawson and Porteus (2000) and Muharremoglu and Tsitsiklis (2003). Lawson and Porteus (2000)

extend the multi-echelon model by Clark and Scarf (1960) by allowing expediting between consec-

utive installations. Muharremoglu and Tsitsiklis (2003) generalize Lawson and Porteus (2000) by
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allowing supermodular expediting cost instead of a linear one.

Both Lawson and Porteus (2000) and Muharremoglu and Tsitsiklis (2003) allow expediting

between arbitrary two installations. However, our model does not allow this since in our case orders

can be expedited only to the manufacturer. As an example, consider the same heavy equipment

manufacturer near Shanghai. The manufacturer may not be able to expedite from the local airport

near the supplier to Incheon airport due to the lack of domestic flights between the two international

airports. The manufacturer may only expedite orders to its own facility based on the inventory

information (from order tracking system such as RFID) at each installation. It is important to

note that it is nontrivial to prevent expediting between intermediate installations using the models

of Lawson and Porteus (2000) and Muharremoglu and Tsitsiklis (2003). Therefore, our model

addresses a different situation from their models. Furthermore, the stochastic lead time modeling

considered herein is a fundamental leap from the deterministic cases in their models.

Kim et al. (2009) study a similar setting by allowing expediting from intermediate installations

to the manufacturer. The most important distinction from the present work is that they consider

a deterministic delivery lead time model, whereas the present work has stochastic delivery lead

times, which poses non-trivial analytical challenges. Deterministic lead time is a special case of

the stochastic lead time model, but the scope of sequential systems, in which analytical results on

the optimal policy exist, is broader in the present work and it is a non-intuitive extension of the

sequential systems of Kim et al. (2009) due to the introduction of movement patterns, as described

later in detail in Section 3. Also, different movement patterns in the present work can address very

wide variations in the stochastic behavior of order delivery, so the modeling power is significantly

expanded in the present work. Furthermore, the deterministic model does not provide a model

to measure the value of visibility, but the present work provides a practical model to determine

whether to use a tracking system and to estimate how much to invest in a given setting.

Pei and Klabjan (2010) study the serial supply chain under the slap-and-ship RFID strategy.

The entire chain is viewed from the perspective of the end supplier and thus the holding cost

is not taken into account in the intermediate locations. The most clear distinction of Pei and

Klabjan (2010) from the present work is that they only consider the regular flow of items with
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no expediting. In this paper, the supply chain is viewed from the point-of-sales location and it

is considering expediting. The latter property requires completely different models, policies, and

proof techniques.

Gaukler et al. (2008) consider emergency ordering under RFID in a supply chain with multiple

stages, where the lead time is stochastic. RFID is used in a similar context as ours, i.e., to gain

real-time location information. However, their model is simpler than ours since they allow at

most one outstanding order at any point in time. Furthermore, rather than dealing with optimal

policies, they confine their study to the set of base stock policies and study the best base stock

levels. Therefore, the optimality of the base stock policy in their model is not guaranteed, and

thus the nature of their work is distinct from ours. For a further literature review on RFID related

inventory models, we refer the reader to Lee and Özer (2007).

2 Model statement

We consider a single supplier with a single-item manufacturing facility facing random demand which

has a compact support with known distribution, and K̄−1 serial intermediate installations between

them. The supplier is denoted as installation K̄ and the manufacturing facility is installation 0. The

intermediate installations are numbered from 1 (next to the manufacturing facility) to K̄− 1 (next

to the supplier). The manufacturer periodically reviews the inventory on hand and places a regular

order at the supplier by paying per unit procurement cost c. Unsatisfied demand is backlogged and

excessive inventory at the manufacturing facility is penalized. The planning horizon consists of T

time periods. For simplicity, we assume that the system is stationary.

A movement pattern w describes the destination installation of outstanding orders for each

installation in the next time period. We define multiple movement patterns. For example, consider

a supply chain with K̄ = 5, which has three illustrative movement patterns: slow, normal, and fast.

In the normal pattern, orders at installation i move to installation i−1 for i = 1, · · · , 5. In the slow

pattern, orders at installations 1, 3, and 5 fail to progress, thus orders at these installations stay at

the current location one more time period while orders at the remaining installations move to the

next downstream installation. In the fast mode, orders in installations 2 and 3 move to installations
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0 and 1 respectively while orders in the other installations move to the next downstream installation.

Let us denote by W the set of all movement patterns, i.e., W = {w1, w2, w3, · · · }. There is an

exogenous random variable W with known distribution that selects a movement pattern in W. At

each time period, W realizes, and according to the realized movement pattern w, the outstanding

orders at installation i, 1 ≤ i ≤ K̄, move to installation j = M(i, w), 0 ≤ j ≤ i, where M(·) is a

function that takes the origin installation i and the realized movement pattern w as arguments.

Note that orders are not allowed to go backward to the upstream installations in this definition.

We define M(0, w) = 0, and before W is realized we denote the corresponding random variable

by M(i,W ). The lead time of a regular order is stochastic and determined by multiple realized

movement patterns until delivery.

Let vi be the amount of inventory at installation i for 0 ≤ i ≤ K̄ and (v0, v1, v2, · · · , vK̄)

be the state vector. Based on the current state of the system from the order tracking system,

the manufacturer expedites outstanding orders if need be by paying per unit delivery cost di for

expediting orders from installation i.

The sequence of events in a time period is as follows. At the beginning of the time period,

the state information is given. Next, the manufacturer places a regular order with the supplier

(installation K̄) and that order arrives to the supplier. Next, the manufacturer makes decisions

on expediting for each installation, and the expedited orders arrive at the manufacturing facility

instantaneously. After that, demand D realizes for the current time period. Inventory holding or

backlogging cost is accounted for at the manufacturing facility after demand realization. Finally,

W realizes and regular delivery occurs just before the end of the time period. Then the next time

period begins.

We need the following assumption stating that regular orders should not cross in time. This

assumption is standard in the stochastic lead time literature.

Assumption 1 (Orders not crossing in time). M(i, w) ≥M(i− 1, w) for all i and w ∈W.

Let us define a related movement function N(j, w) = max{i : M(i, w) ≤ j, 0 ≤ i ≤ K̄} for all j

and w ∈W, and let N(j,W ) be the corresponding random variable before W is realized. Under

Assumption 1, a one-to-one mapping between M and N exists as the following example illustrates.
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Example Consider an 8 installation system including the supplier and the manufacturer (K̄ = 7).

At time t, assume that realized w of W drives the following movement.

i 0 1 2 3 4 5 6 7

M(i, w) 0 0 0 1 1 1 4 5

An equivalent information of the above movement can be expressed by N(j, w) as follows (See

Figure 1).

j 0 1 2 3 4 5 6 7

N(j, w) 2 5 5 5 6 7 7 7

7        6        5        4         3        2        1        0

5),2( =wN

2),0( =wN

5),1( =wN

1),5( =wM

Figure 1: A regular movement driven by a realized w of W

Given installation j, we find N(j, w) by observing the farthest installation whose movement leads

to installation j or any downstream installation of j. �

Let us denote by Mn(i,W ) the n-period random movement function that represents the loca-

tion (an installation) after n regular movements of the outstanding orders at installation i, where

W is an n-dimensional random vector. We denote by w realizations of W which are also multi-

dimensional vectors. The dimension of W can always be inferred from the underlying usage. For-

mally, M1(i,W ) = M(i,W ) where W is a random variable, and Mn(i,W ) = M(Mn−1(i,W ′),W ′′)

where W = (W ′,W ′′) is a vector of length n, W ′ is a vector of length n−1, and W ′′ is a random vari-

able. For convenience, we define L(x) = E[r(x−D)], where r(·) is a convex holding/backlogging cost

function, and let Qi(W ) denote N(M(K̄,W ) − i,W ) for i ≤ M(K̄,W ). Random variable Qi(W )

represents the maximum indexed installation that delivers its orders to the i’th downstream instal-

lation of the installation to which supplier K̄ delivers its orders by a random movement. Random

9



variable Qi(W ) is necessary to simplify the general state transition equation since it describes reg-

ular movement from the last installation, i.e., the supplier. Note that Qi(W ) is only defined when

i ≤M(K̄,W ). For example, Qi(W ) has the following values based on Figure 1.

i 0 1 2 3 4 5 6 7

Qi(W ) 7 6 5 5 5 2 n/a n/a

Let the echelon stock xi be the sum of the inventory from installation 0 to installation i: xi =∑i
j=0 vj , and let 0̄i = (0, 0, · · · , 0) be a vector containing i zeros.

If there is no expediting, the state after a regular movement is a random vector (xN(0,W ) −

D,xN(1,W )−xN(0,W ), · · · , xQ1(W )−xQ2(W ), xQ
0(W )−xQ1(W )+u, 0̄K̄−M(K̄,W )), where u is the regular

ordering amount. Let ei denote the expediting amount from installation i. Including expediting,

the next state NS is

NS =(xN(0,W ) +
K̄∑

i=N(0,W )+1

ei −D,xN(1,W ) − xN(0,W ) −
N(1,W )∑

i=N(0,W )+1

ei, · · · ,

xN(i,W ) − xN(i−1,W ) −
N(i,W )∑

i=N(i−1,W )+1

ei, · · · ,

xQ
1(W ) − xQ2(W ) −

Q1(W )∑
i=Q2(W )+1

ei, x
Q0(W ) − xQ1(W ) + u−

Q0(W )∑
i=Q1(W )+1

ei, 0̄
K̄−M(K̄,W )).

Figure 2 illustrates the inventory at installation i after a regular movement xN(i,W ) − xN(i−1,W ) −∑N(i,W )
i=N(i−1,W )+1 ei. The complete optimality equation of the dynamic program reads

Jt(v0, v1, · · · , vK̄) = min
u,e1,··· ,eK̄

0≤eK̄≤u+vK̄
0≤ei≤vi

i=1,··· ,K̄−1

{
K̄∑
i=1

diei + L(x0 +

K̄∑
i=1

ei) + cu+ E[Jt+1(NS)]},
(1)

where Jt is the cost-to-go at the beginning of time period t. For simplicity, let the terminal cost

JT+1(v0, v1, · · · , vK̄) be a non-decreasing convex function in xK̄ . Solving this optimality equation

directly is difficult because of its high dimensionality and complex structure of constraints. In order

to analyze (1), we need to introduce further assumptions.
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… …

iN(i-1,w) 0i-1

N(i,w)

Expediting 

… … …

Figure 2: The next state transition

In the next section, we characterize a class of systems for which (1) has an alternative form

that leads to tractable policies.

3 Sequential Systems

The following assumption requires that orders almost surely reach installation 0.

Assumption 2 (Eventual delivery of regular orders). Prob[∪∞n=1{w : Mn(i, w) = 0}] = 1 for every

installation i.

In terms of the finite state Markov Chain theory, Assumption 2 requires that installation 0 is

the only recurrent installation, and all the other installations are transient installations. In order

to analyze the system, we need the following assumption.

Assumption 3 (Nondecreasing time value of delayed expediting). di − E[dM(i,W )] ≥ di−1 −

E[dM(i−1,W )] for all i, where d0 = 0.

Consider a unit at installation i. If we expedite it at the current time period, it costs di. If

we defer expediting by a time period, the expected cost of expediting is E[dM(i,W )]. Therefore,

di − E[dM(i,W )] is the time value of delayed expediting of a unit at installation i by a time period.

Assumption 3 implies that this time value of expediting does not decrease as installation number

i increases. Next, we define a class of systems, in which all three assumptions hold.
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Sequential systems A system is sequential if Assumptions 1, 2, and 3 hold.

The following lemma shows a characteristic of sequential systems, and its proof is in the ap-

pendix.

Lemma 1. In sequential systems, di − dj ≥ E[dMn(i,W ) − dMn(j,W )], for any i and j, i ≥ j, and

n ≥ 1.

The following theorem shows a crucial property of sequential systems.

Theorem 1. Under the optimal control of regular ordering and expediting, sequential systems

preserve the sequence of orders in time, i.e., the no cross-over property holds.

Assumption 1 guarantees that regular orders with no expediting do not cross in time. When

expediting is introduced, in general, orders might easily cross even under Assumption 1. Theorem

1 states that this is not the case for sequential systems.

Proof of Theorem 1. We prove by induction on time. First, we show that the theorem holds at time

T + 1. Since JT+1 is a non-decreasing convex function in xK̄ by definition, zero regular ordering

and expediting is optimal, and therefore the theorem holds.

Next, assume that the theorem holds for all time periods t′ ≥ t. Also let us assume that the

realization of exogenous random variable W is observable with a proper tracking method after the

expediting decision and demand realization at time t. Note that the expediting decision is made at

the beginning of a time period, while the random movement realization happens at the end of time

period t. Consider a decision maker at the manufacturing facility facing the following two options

at time period t.

• Option 1: Expediting a set of units R1 at time period t in a way that order crossing happens,

i.e., there remains an outstanding unit after expediting all units ordered at an earlier time

than the most recently ordered unit in R1, and then following the optimal expediting policy

from time period t+ 1 according to the induction hypothesis so that order crossing does not

happen.
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• Option 2: Expediting a set of units R2 at time period t with |R2| = |R1| so that no order

crossing happens, i.e., there are no outstanding units that are ordered earlier than the most

recently ordered unit in R2, and then replicating Option 1 from time period t + 1 onwards,

i.e., placing the same amount of regular ordering as in Option 1, and expediting outstanding

orders so that the manufacturing facility has the same level of inventory as in Option 1 at

any time period from t+ 1.

Note that Option 2 is possible since the decision maker can simulate Option 1 with the knowledge

from the random movement realization at each time period after the expediting decision at time

t. Next, we show that the expected cost of Option 2 is less than or equal to that of Option 1 to

prove the induction step. In other words, if the decision maker expedites so that order crossing

happens at time period t, then there always exists a policy, Option 2, that leads to a non-higher

cost, and therefore we conclude that the optimal expediting policy is to expedite in a way that no

order crossing happens at time period t.

Note that units in R1 are outstanding in Option 2, and similarly those in R2 are outstanding

in Option 1 at time period t. Consider a pair (u1, u2) such that u1 ∈ R1 and u2 ∈ R2, where u1 is

placed no earlier than u2 in time. Since |R1| = |R2| = R, we can find R such disjoint pairs of units,

that comprise R1 and R2. Let P be the set of such disjoint pairs. Formally, for any unit u1 ∈ R1,

there is one and only one u2 ∈ R2, such that (u1, u2) ∈ P. Consider the following algorithm for a

pair (u1, u2) ∈ P, where the respective installations of u1 and u2 are i and j in time period t, i ≥ j.

This algorithm enables Option 2 to replicate Option 1.

1. Set a new index k to be j before the random movement is realized at the current time period

t. Also set a new index τ = 0.

2. If the realized value of M(k,W ) is 0 at the end of time period t + τ , then expedite u1 at

time period t+ τ + 1 and terminate the algorithm.

3. Otherwise, if u2 is expedited under Option 1 at time period t + τ + 1, then expedite u1 at

time period t+ τ + 1 and terminate the algorithm.

4. Otherwise, update k ←M(k,W ) and τ ← τ + 1. Go to step 2.
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Let C1 and C2 be the cost under Option 1 and Option 2, respectively, to receive both u1 and u2 in

the manufacturing facility eventually. We have C1−C2 = di+E[dMτ+1(j,W )]−dj−E[dMτ+1(i,W )] ≥ 0,

due to Lemma 1. Since this is true for all elements in P, the total cost of Option 1 is no less than

that of Option 2. This completes the induction step.

Recall that we assume that the random movement W is observable after the expediting decision

at time t. For any realization of W , we could still operate Option 2 with the algorithm provided

and it proves the existence of a non-inferior decision than Option 1. Therefore, regardless of actual

observability of W we know that Option 1 is sub-optimal and the proof is completed.

For 1 ≤ i ≤ K̄, let J i
t (·) be the optimal cost-to-go that can be achieved by a restricted con-

trol space, in which expediting from installations i + 1, i + 2, · · · , K̄ in time period t is not al-

lowed. Note that the control space for J i
t is restricted only in time period t, but unrestricted after

time period t. Note also that JK̄
t (·) = Jt(·). We utilize J i

t (·) with respect to a fictitious state

(xi−1, 0̄i−1, vi, · · · , vK̄), where installation 0 has inventory xi−1, and installations 1, 2, · · · , i− 1 are

empty. The optimality equation for J i
t (x

i−1, 0̄i−1, vi, · · · , vK̄), 1 ≤ i ≤ K̄ − 1, is given by

J i
t (x

i−1, 0̄i−1, vi, · · · , vK̄) = min
xi−1≤yi≤xi,z≥xK̄

{diyi + L(yi)− dixi−1 − cxK̄ + cz

+ E[Jt+1(yi −D, 0̄M(i,W )−1, xN(M(i,W ),W ) − yi, xN(M(i,W )+1,W ) − xN(M(i,W ),W ),

· · · , xN(M(K̄,W )−1,W ) − xN(M(K̄,W )−2,W ), z − xN(M(K̄,W )−1,W ), 0̄K̄−M(K̄,w))]},

(2)

where yi and z are decision variables: yi − xi−1 is the expediting amount from installation i and

z−xK̄ is the regular ordering amount. For i = K̄, the constraints in (2) become xi−1 ≤ yi ≤ z, z ≥

xK̄ in order to allow expediting regular orders that have just been placed. Note that the equation

should be read appropriately, if M(i, w) = 0 for a realized value w of W .

By Theorem 1, in sequential systems expediting orders from installation i is never optimal

before expediting all the outstanding orders at the downstream installation of installation i. With
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this fact, an alternative optimality equation equivalent to (1) is given by

Jt(v0, v1, v2, · · · , vK̄) = min{J1
t (x0, v1, v2, · · · , vK̄),

d1v1 + J2
t (x1, 0, v2, · · · , vK̄),

d1v1 + d2v2 + J3
t (x2, 0, 0, v3, · · · , vK̄),

· · · ,
K̄−1∑
i=1

divi + JK̄
t (xK̄−1, 0̄K̄−1, vK̄),

K̄∑
i=1

divi + Jt(x
K̄ , 0̄K̄), }.

(3)

The first term J1
t (·) corresponds to expediting partially or fully from only installation 1, the second

term d1v1 + J2
t (·) captures expediting everything from installation 1, expediting partially or fully

from installation 2, and no expediting beyond, and so forth. The eventual optimal decisions for

regular ordering and expediting are determined by the minimum term in (3) since the system is

sequential. If the j-th term achieves the minimum in (3), the optimal decision for expediting is

to expedite all outstanding orders in installations 1, 2, · · · , j − 1 and to expedite yj − xj−1 from

installation j and nothing beyond installation j, where yj − xj−1 is derived from the j-th term.

The optimal regular ordering decision is to place a regular order in the amount z − xK̄ that is

determined in the j-th term.

Characterization of Sequential Systems

In this subsection, we discuss how to identify sequential systems. We derive first a necessary

condition and then a sufficient condition for a system to be sequential. The following lemma,

whose proof is given in the appendix, is used later.

Lemma 2. Under Assumption 2, the following holds:

(a) limn→∞ Prob[M
n(i,W ) = 0] = 1 for all i,

(b) limn→∞ Prob[M
n(i,W ) = k] = 0, k 6= 0 for all i.
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The expediting costs should be nondecreasing in order for a system to be sequential as the next

proposition states.

Proposition 1. Sequential systems satisfy di ≥ di−1, for all i.

Proof. Using j = i− 1 in Lemma 1 results in di − di−1 ≥ E[dMn(i,W ) − dMn(i−1,W )]. On the other

hand, E[dMn(i,W )] =
∑

k dkProb[M
n(i,W ) = k] =

∑
k 6=0 dkProb[M

n(i,W ) = k]+d0Prob[M
n(i,W ) =

0]. By taking limn→∞ and applying Lemma 2 we get limn→∞E[dMn(i,W )] = d0 = 0. Therefore,

di − di−1 ≥ 0 for all i.

Next we identify a sufficient condition.

Proposition 2. Suppose Assumptions 1 and 2 hold and the followings are true for all i and w ∈W:

• di − di−1 ≥ di−1 − di−2, and

• E[M(i,W )−M(i− 1,W )] ≤ 1.

Then, the system is sequential.

Proof. Because of Assumption 1, M(i, w) − M(i − 1, w) is a nonnegative integer. Recall that

orders do not go backward, i.e., M(i,W ) ≤ i. The first condition in the proposition implies

dM(i,w)−dM(i−1,w) ≤ (M(i, w)−M(i−1, w))(di−di−1). Therefore, by taking expectations on both

sides, we have E[dM(i,W )− dM(i−1,W )] ≤ E[(M(i,W )−M(i− 1,W ))(di− di−1)] ≤ di− di−1, which

is Assumption 3.

We call the first property in Proposition 2 convexity since it implies that the expediting cost

differences are convex. Proposition 2 gives only sufficient conditions. We provide an example of a

system that is sequential but nevertheless is not convex. In other words, sequential systems also

include systems with non-convex expediting costs.

Example Consider a 5 installation system including the manufacturer and the supplier with four

movement patterns: w1, w2, w3, and w4. More specifically,

• w1: normal mode with probability p1 such that M(i, w1) = i− 1 for i = 1, 2, 3, 4,
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• w2: with probability p2 such that M(i, w2) = i− 1 for i = 1, 3, 4, and M(2, w2) = 0,

• w3: with probability p3 such that M(i, w3) = i− 1 for i = 1, 2, 4, and M(3, w3) = 1, and

• w4: with probability p4 such that M(i, w4) = i− 1 for i = 1, 2, 3, and M(4, w4) = 2,

as shown in Figure 3. The associated probability distribution is p1 = 1
10 , p2 = 1

10 , p3 = 3
10 , and

4         3        2        1        0

1
wW =

4         3        2        1        0

4
wW =

4         3        2        1        0
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wW =

4         3        2        1        0

3
wW =

Figure 3: The movement patterns

p4 = 1
2 . The system is clearly non-convex if the expediting costs are d1 = 10, d2 = 19, d3 = 27, and

d4 = 34. To check that the system is sequential, let us compute di − E[dM(i,W )] for i = 1, 2, 3, and

4. We have d1−E[dM(1,W )] = d1− 0 = 10, d2−E[dM(2,W )] = d2− p1d1− p2d0− p3d1− p4d1 = 10,

d3−E[dM(3,W )] = d3− p1d2− p2d2− p3d1− p4d2 = 10.7, and d4−E[dM(4,W )] = d4− p1d3− p2d3−

p3d3− p4d2 = 11. Since di−E[dM(i,W )] ≥ di−1−E[dM(i−1,W )] for all i, the system is sequential. �

4 Optimal Policies for Sequential Systems

In this section, we focus on identifying optimal policies for sequential systems.

4.1 Preliminaries

We frequently use the following lemma from Lawson and Porteus (2000), which originates in Karush

(1959).

Lemma 3. Let f be convex and have a finite minimizer on R. Let y∗ = arg min f(x). Then,
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min
x1≤x≤x2

f(x) = a+ g(x1) + h(x2), where a = f(y∗), and penalty functions g(x1) and h(x2) are

g(x1) =

 0 x1 ≤ y∗

f(x1)− a x1 > y∗
and h(x2) =

 f(x2)− a x2 ≤ y∗

0 x2 > y∗
.

For a nondecreasing convex f , we define a = 0, g(x) = f(x), and h(x) = 0. On the other hand, for

a nonincreasing convex f , we define a = 0, g(x) = 0, and h(x) = f(x).

In Lemma 3, g is nondecreasing convex, while h is nonincreasing convex. The following lemma,

whose proof is given in the appendix, is an extension of Lemma 3.

Lemma 4. Let f1 be convex and b ∈ R. We have min
b≤x≤y

{f1(x) + f2(y)} = a1 + g1(b) + min
b≤y
{h1(y) +

f2(y)}, where a1, h1, and g1 are defined as in Lemma 3 with respect to f1.

The following functions are required later in the derivation of the optimal policy. For 1 ≤ i ≤ K̄

and t ≤ T , let us recursively define

fi,t(y) = diy + L(y) + E[S1
M(i,W ),t+1(y −D)], (4)

S0
i,t = ai,t + E[S0

M(i,W ),t+1],

S1
i,t(x) = gi,t(x)− dix, (5)

S2
i,t(x) = hi,t(x)− L(x) + E[S2

M(i,W ),t+1(x−D)],

where S0
0,t = S1

0,t(·) = S2
0,t(·) = 0 for all t, and S0

i,T+1 = S1
i,T+1(x) = S2

i,T+1(x) = 0 for all i. Here,

ai,t, gi,t, and hi,t are defined according to Lemma 3 with respect to fi,t. Starting from the last

time period T , functions fi,t and Sj
i,t can be obtained recursively. In particular, from (4) we can

compute fi,T , then from (5) we obtain S1
i,T for all i. Next we compute fi,T−1 from (4), and in turn,

S1
i,T−1 from (5) for all i. We repeat this procedure to define all fi,t and S1

i,t. For S0
i,t and S2

i,t we use

a similar procedure. It is easy to check for all i and t that fi,t(·) is convex for sequential systems,

and S0
i,t + S1

i,t(x) + S2
i,t(x) = 0.

Functions fi,t, S
0
i,t, S

1
i,t, and S2

i,t can be interpreted as follows. Fuction fi,t is the cost function

from expediting from installation i in current and future time periods. Function S0
i,t represents
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the optimal cost attainable from echelon stock up to installation i at time period t and future

time periods following random movements. Function S1
i,t can be interpreted as the increment

in inventory cost resulting from expediting, and S2
i,t can be interpreted as the cost gains from

expediting in current time period t and future time periods.

Let us denote by y∗i,t a minimizer of fi,t(x): y∗i,t ∈ arg min fi,t(x). The following theorem is an

important property of fi,t for sequential systems. The proof can be found in the appendix.

Theorem 2. For sequential systems there exists a y∗i,t for every y∗i+1,t such that y∗i,t ≥ y∗i+1,t for all

i and t.

The lemma shown below is used later in the derivation of the optimal policy. The proof is in

the appendix.

Lemma 5. For sequential systems, function gi,t(x) + S2
M(i,w),t(x) is convex for all i and t, and for

all w ∈W.

4.2 Optimal Policies

The optimal policy for sequential systems is highly structured and given in the following theorem.

Theorem 3. For sequential systems, the following policy is optimal.

a. Optimal expediting is determined by a set of base stock levels. Each base stock level corresponds

to y∗i,t for expediting from installation i at time t. The expediting policy compares xi−1 and y∗i,t

as follows.

• If xi−1 < y∗i,t, then we expedite min{xi − xi−1, y∗i,t − xi−1} from installation i.

• Otherwise, if xi−1 ≥ y∗i,t, we do not expedite anything from installation i.

b. The optimal regular ordering policy is the base stock policy with respect to inventory position

xK̄ . Therefore, we place a regular order in the amount of max(0, z∗t −xK̄) at time period t. The

optimal base stock level for regular ordering is given by the following statements.

• The base stock level for regular ordering is z∗t = arg min{hK̄,t(z) + cz + E[Ht+1(z −D) +

S2
M(K̄,W ),t+1

(z −D)]} for all i and t.
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• Function Ht(x) is convex and follows the recursive equation Ht(x) = min
z≥x
{hK̄,t(z) + cz +

E[Ht+1(z −D) + S2
M(K̄,W ),t+1

(z −D)]} − S2
K̄,t

(x)− cx, and HT+1(x) = JT+1(x, 0̄K̄).

To better understand the policy, we consider the following illustrative example consisting of

five installations. There are three movement patterns: w1, w2, and w3 with probabilities p1, p2, and

1− p1 − p2, respectively. More specifically,

• w1: M(i, w1) = i− 1 for i = 1, 2, 3, 4,

• w2: M(i, w2) = i− 1 for i = 1, 3, and M(2, w2) = 0 and M(4, w2) = 2, and

• w3: M(i, w3) = i− 1 for i = 2, 3, and M(1, w3) = 1 and M(4, w3) = 4

as shown in Figure 4. Suppose that the regular ordering base stock level is z∗ = 210 and the

4         3        2        1        0

1
wW =

4         3        2        1        0

3
wW =

4         3        2        1        0

2
wW =

Figure 4: The movement patterns

expediting base stock levels are y∗4 = 20, y∗3 = 50, y∗2= 85, and y∗1 = 110. In the following table,

we summarize the mechanics of the optimal policy for a certain time period.

Installation i 4 (Suppl.) 3 2 1 0 (Manuf.)

vi (xi) before decisions 60 (185) 45 (125) 50 (80) 40 (30) -10 (-10)

Regular Ordering max(z∗ − x4, 0) 25

Expediting max(min(y∗i − xi−1, vi), 0) 0 0 50 40

Realized demand D 65

vi (xi) after decisions and demand 85 (145) 45 (60) 0 (15) 0 (15) 15 (15)

vi if the movement pattern W = w1 0 85 45 0 15

vi if the movement pattern W = w2 0 0 130 0 15

vi if the movement pattern W = w3 85 0 45 0 15
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In order to prove Theorem 3, we need the following proposition, which is proved concurrently

with Theorem 3 within an induction loop in the subsequent proof. For convenience, we refer the

items in the following proposition as (c) and (d).

Proposition 3. For sequential systems, the following is true

c. For every i = 1, · · · , K̄, 0 ≤ e ≤ vi, and t ≥ t̃, we have

Jt(x
i−1, 0̄i−1, vi, vi+1, · · · , vK̄)− Jt(xi−1 + e, 0̄i−1, vi − e, vi+1, · · · , vK̄)

= S0
i,t + S1

i,t(x
i−1) + S2

i,t(x
i−1 + e).

d. Function S2
M(K̄,w),t

(x) +Ht(x) is convex for all t and w ∈W.

Because xi is nondecreasing in i and y∗i,t is nonincreasing in i, by Theorem 2, there exists at

most one i∗ ∈ {1, 2, · · · , K̄} such that xi
∗−1 ≤ y∗i∗,t and xi

∗ ≥ y∗i∗+1,t. Theorem 3 states that we

expedite everything up to installation i∗ − 1, min{xi∗ − xi∗−1, y∗i∗,t − xi
∗−1} from installation i∗,

and nothing beyond installation i∗. If such an i∗ does not exist, then we do not expedite at all, or

we expedite everything up to installation K̄.

Proof of Theorem 3 and Proposition 3. We use induction. In the base case t = T + 1, the optimal

expediting and regular ordering policies are null. We can safely set the base stock levels for

expediting and regular ordering at negative infinity. Also, part (c) and (d) trivially hold when

t = T + 1. In the proof, we also show that Ht(x) = Jt(x, 0̄
K̄) for all t.

Let us assume that on and after time t + 1 ≤ T + 1, all parts in the theorem and proposition

hold, and Ht+1(x) = Jt+1(x, 0̄K̄), and it is convex. Now we need to show the results for time period

t. As the first step, we study Jt(x, 0̄
K̄) in order to show Ht(x) = Jt(x, 0̄

K̄) and that it is convex. In

state (x, 0̄K̄), at the beginning of time period t we place a regular order of z−x units and expedite
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yK̄ − x units out of the just placed regular order. Therefore, we have

Jt(x, 0̄
K̄) = min

x≤yK̄≤z
{dK̄yK̄ + L(yK̄) + cz + E[Jt+1(yK̄ −D, 0̄M(K̄,W )−1, z − yK̄ , 0̄K̄−M(K̄,w))]}

− dK̄x− cx

= min
x≤yK̄≤z

{dK̄yK̄ + L(yK̄) + cz + E[Jt+1(z −D, 0̄K̄) + S0
M(K̄,W ),t+1

+ S1
M(K̄,W ),t+1(yK̄ −D) + S2

M(K̄,W ),t+1(z −D)]} − dK̄x− cx

= min
x≤yK̄≤z

{fK̄,t(yK̄) + cz + E[Jt+1(z −D, 0̄K̄) + S2
M(K̄,W ),t+1(z −D)]}

+ E[S0
M(K̄,W ),t+1]− dK̄x− cx.

Note that the induction hypothesis on part (c) at t + 1 is used in the above derivation. By using

Lemma 4, we have

Jt(x, 0̄
K̄) = min

z≥x
{hK̄,t(z) + cz + E[Jt+1(z −D, 0̄K̄) + S2

M(K̄,W ),t+1(z −D)]}

+ aK̄,t + E[S0
M(K̄,W ),t+1] + gK̄,t(x)− dK̄x− cx.

(6)

Note that S0
K̄,t

+ S1
K̄,t

(x) + S2
K̄,t

(x) = 0 and Ht+1(x) = Jt+1(x, 0̄K̄) from the induction hypothesis.

We have

Jt(x, 0̄
K̄) = min

z≥x
{hK̄,t(z) + cz + E[Ht+1(z −D) + S2

M(K̄,W ),t+1(z −D)]} − S2
K̄,t(x)− cx.

Since this coincides with the definition of Ht(x), we conclude that Ht(x) = Jt(x, 0̄
K̄). Furthermore,

from the induction hypothesis on part (d) the right-hand side of (6) is convex, hence Ht(x) is

convex.

Let us now prove part (d). By adding S2
M(K̄,w),t

(x) to both sides of (6), we get

S2
M(K̄,w),t(x) + Jt(x, 0̄

K̄) = min
z≥x
{hK̄,t(z) + cz + E[Jt+1(z −D, 0̄K̄) + S2

M(K̄,W ),t+1(z −D)]}

+ aK̄,t + E[S0
M(K̄,W ),t+1] + S2

M(K̄,w),t(x) + gK̄,t(x)− dK̄x− cx,
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which is convex because S2
M(K̄,w),t

(x) + gK̄,t(x) is convex by Lemma 5 and E[Jt+1(z − D, 0̄K̄) +

S2
M(K̄,W ),t+1

(z −D)] is convex by the induction hypothesis. This completes the proof of part (d).

To prove parts (a) and (b), we apply part (c) to

Jt+1(yi −D, 0̄M(i,w)−1, xN(M(i,w),w) − yi, xN(M(i,w)+1,w) − xN(M(i,w),w), · · · )

in (2) for i < K̄ with a realized value w of W on and after time period t+ 1 repeatedly to obtain

Jt+1(yi −D, 0̄M(i,w)−1, xN(M(i,w),w) − yi, xN(M(i,w)+1,w) − xN(M(i,w),w), · · · )

= S0
M(i,w),t+1 + S1

M(i,w),t+1(yi −D) + S2
M(i,w),t+1(xN(M(i,w),w) −D)

+ Jt+1(xN(M(i,w),w) −D, 0̄M(i,w), xN(M(i,w)+1,w) − xN(M(i,w),w), · · · )

= S0
M(i,w),t+1 + S1

M(i,w),t+1(yi −D) + S2
M(i,w),t+1(xN(M(i,w),w) −D)

+

M(K̄,w)−1∑
j=M(i,w)+1

{S0
j,t+1 + S1

j,t+1(xN(j−1,w) −D) + S2
j,t+1(xN(j,w) −D)}

+ Jt+1(xN(M(K̄,w)−1,w) −D, 0̄M(K̄,w)−1, z − xN(M(K̄,w)−1,w), 0̄K̄−M(K̄,w))

= S0
M(i,w),t+1 + S1

M(i,w),t+1(yi −D) + S2
M(i,w),t+1(xN(M(i,w),w) −D)

+

M(K̄,w)−1∑
j=M(i,w)+1

{S0
j,t+1 + S1

j,t+1(xN(j−1,w) −D) + S2
j,t+1(xN(j,w) −D)}

+ S0
M(K̄,w),t+1 + S1

M(K̄,w),t+1(xN(M(K̄,w)−1,w) −D) + S2
M(K̄,w),t+1(z −D)

+ Jt+1(z −D, 0̄K̄).

Let us gather in Q all of the terms in the above equation that only contain constants and state

variables not involving any decision variables. Then we can rewrite

Jt+1(yi −D, 0̄M(i,w)−1, xN(M(i,w),w) − yi, xN(M(i,w)+1,w) − xN(M(i,w),w), · · · )

= S1
M(i,w),t+1(yi −D) + S2

M(K̄,w),t+1(z −D) + Jt+1(z −D, 0̄K̄) +Q.
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Substituting this into (2) and w for W , we obtain

J i
t (x

i−1, 0̄i−1, vi, · · · , vK̄)

= min
xi−1≤yi≤xi,z≥xK̄

{diyi + L(yi)− dixi−1 − cxK̄ + cz

+ E[S1
M(i,W ),t+1(yi −D) + S2

M(K̄,W ),t+1(z −D) + Jt+1(z −D, 0̄K̄) +Q]}

= min
xi−1≤yi≤xi,z≥xK̄

{fi,t(yi) + cz + E[S2
M(K̄,W ),t+1(z −D) + Jt+1(z −D, 0̄K̄)]}

+ E[Q]− dixi−1 − cxK̄ ,

(7)

for i < K̄. When i = K̄, we have

JK̄
t (xK̄−1, 0̄K̄−1, vK̄) = min

xK̄−1≤yK̄≤z,z≥xK̄
{dK̄yK̄ + L(yK̄)− dK̄xK̄−1 − cxK̄ + cz

+ E[Jt+1(yK̄ −D, 0̄M(K̄,W )−1, z − yK̄ , 0̄K̄−M(K̄,w))]}

= min
xK̄−1≤yK̄≤z,z≥xK̄

{dK̄yK̄ + L(yK̄)− dK̄xK̄−1 − cxK̄ + cz

+ E[Jt+1(z −D, 0̄K̄) + S0
M(K̄,W ),t+1 + S1

M(K̄,W ),t+1(yK̄ −D)

+ S2
M(K̄,W ),t+1(z −D)]}

= min
xK̄−1≤yK̄≤z,z≥xK̄

{fK̄,t(yK̄) + cz + E[Jt+1(z −D, 0̄K̄)

+ S2
M(K̄,W ),t+1(z −D)]}+ E[S0

M(K̄,W ),t+1]− dK̄xK̄−1 − cxK̄ .

(8)

By applying Lemma 4, we have

JK̄
t (xK̄−1, 0̄K̄−1, vK̄) = min

z≥xK̄
{hK̄,t(z) + cz + E[Jt+1(z −D, 0̄K̄) + S2

M(K̄,W ),t+1(z −D)]}

+ aK̄,t + E[S0
M(K̄,W ),t+1] + gK̄,t(x

K̄−1)− dK̄xK̄−1 − cxK̄ .
(9)

We now consider part (a) of the statement. From (7) for i < K̄ the optimal expediting quantity

is determined by

min
xi−1≤yi≤xi

{fi,t(yi)},
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and for i = K̄ from (8) by

min
xK̄−1≤yK̄≤max{xK̄ ,z∗t }

{fK̄,t(yK̄)}.

Because fi,t(yi) is convex for all i, this states that the base stock policy is optimal for expediting

for every i. This completes the proof of part (a).

Next, we show part (b) of the theorem using (3). Note that the optimal regular ordering is

determined by J i
t (·), 1 ≤ i ≤ K̄ or Jt(x

K̄ , 0̄K̄) which corresponds to the minimum term in (3). Now

we show that all of these lead to the same optimal decision. From (6) and (9), the optimal regular

ordering quantity for JK̄
t (xK̄−1, 0̄K̄−1, vK̄) and Jt(x

K̄ , 0̄K̄) is determined by

min
z≥xK̄

{hK̄,t(z) + cz + E[Jt+1(z −D, 0̄K̄) + S2
M(K̄,W ),t+1(z −D)]}. (10)

On the other hand, if the minimum term is attained at i < K̄, the optimal regular ordering

quantity is determined from (7) by

min
z≥xK̄

{cz + E[S2
M(K̄,W ),t+1(z −D) + Jt+1(z −D, 0̄K̄)]}. (11)

Note that hK̄,t(z) is nonincreasing convex, and hK̄,t(z) = 0 for z ≥ y∗
K̄,t

(∈ arg min{fK̄,t(y)}).

Therefore, if z∗t ≥ y∗
K̄,t

, then (10) and (11) lead to the same minimizer z∗t . If z∗t < y∗
K̄,t

, from

Theorem 2, we have z∗t < y∗i,t for all i, which results in expediting everything in the supply chain

including the fresh regular order at the current time period by part (a). In this case, (10) determines

the regular ordering quantity since we are expediting from the supplier. As a result, (10) always

determines the optimal regular ordering. Because Ht+1(z−D) = Jt+1(z−D, 0̄K̄) and Ht+1(z−D)+

S2
M(K̄,w),t+1

(z −D) is convex for any realization w of W by part (d), the unconstrained minimizer

z∗t of (10) is well defined, and (10) states that the optimal regular ordering policy, which is the base

stock policy with respect to xK̄ . Hence part (b) is proved.

Finally, let us prove part (c). At time period t, we know that parts (a), (b), and (d) hold. Also,

from the induction hypothesis, we assume (c) holds on and after time period t+ 1. We show in the

appendix that (c) holds at time period t using all these results. Once part (c) is proved at time t

with all the induction hypothesis, the induction step of the entire proof completes.
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5 Results on the Expediting Base Stock Levels of Sequential Sys-

tems

In this section, we provide an insightful result on the variation of the magnitude of the expediting

base stock levels as the expediting cost varies. As expediting cost varies, we expect the expediting

base stock levels to also vary. For example, as di increases, y∗i,t should be nonincreasing to compen-

sate for the higher cost of expediting. However, this increment in di might increase the need for

expediting from elsewhere. Indeed, we show that the expediting base stock levels are nondecreasing

for installations beyond installation i as di increases. On the other hand, the variation in di does

not effect the base stock levels of the downstream installations.

The results in this section are applicable only when derivatives and integrals in expectations

are interchangeable. If the holding and backlogging cost function has bounded derivatives, all

functions under consideration have this interchangeability property, since all functions considered

are Lipschitz. We assume in this section that this is the case. By Lemma 3.2 in Glasserman and

Tayur (1995), derivatives and integrals in expectations are interchangeable. The main result of this

section follows.

Theorem 4. For a sequential system we have

∂y∗i,t
∂di

≤ 0 and
∂y∗i,t
∂dj

≥ 0

for j < i.
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The following diagram illustrates this theorem.

as di ↑



...

y∗i−2 no change

y∗i−1 no change

y∗i ↓

y∗i+1 ↑

y∗i+2 ↑
...

Sequential systems have monotonic base stock levels as in Figure 5. As di increases, y∗i decreases

because higher di directly discourages expediting from installation i. However, the reduced y∗i

results in less safety stock in the manufacturing facility, which again calls for more expediting from

beyond installation i, and hence increased y∗j for j > i. The fact that y∗t for t ≤ i−1 do not change

follows from their definition since in order to derive them, di is not needed. We prove this in several
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BSLs for installations 
beyond i becomes flatter 

Figure 5: Directional sensitivity of base stock levels

steps using the following two lemmas.
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Lemma 6. In sequential systems, for i ≥ j ≥ 1,

−1 ≤ ∂

∂dj

∂S1
i,t(y)

∂y
≤ 0.

Proof. We use induction. Note that S1
i,T (y) = gi,T (y) − diy and fi,T (y) = diy + L(y). In the base

case we have −1 ≤ ∂
∂dj

∂S1
i,T (y)

∂y ≤ 0 since when y ≤ y∗T and j = i, ∂
∂dj

∂S1
i,T (y)

∂y = −1, and otherwise

∂
∂dj

∂S1
i,T (y)

∂y = 0.

Assume that −1 ≤ ∂
∂dj

∂S1
i,t+1(y)

∂y ≤ 0 for a given i and all j such that i ≥ j ≥ 1. We have

∂fi,t(y)

∂y
= di +

∂L(y)

∂y
+ E[

∂

∂y
S1
M(i,W ),t+1(y −D)].

When y ≤ y∗i,t, we have S1
i,t(y) = −diy since gi,t(y) = 0. Therefore ∂

∂dj

∂S1
i,t(y)

∂y = 0 for j < i, and

∂
∂di

∂S1
i,t(y)

∂y = −1 for j = i. On the other hand, when y > y∗i,t, we have S1
i,t(y) = fi,t(y)− diy − ai,t.

For j ≤ i, since M(i,W ) ≤ i by definition, it follows that

−1 ≤ ∂

∂dj

∂S1
i,t(y)

∂y
= E[

∂

∂dj

∂

∂y
S1
M(i,W ),t+1(y −D)] ≤ 0.

Note that we interchanged integrals and derivatives on several occasions.

Lemma 7. In sequential systems, for all i we have

∂

∂di

∂fi,t(y)

∂y
≥ 0,

and for i > j ≥ 1,

∂

∂dj

∂fi,t(y)

∂y
≤ 0.

Proof. From Lemma 6 for all j ≤ i we obtain

−1 ≤ E[
∂

∂dj

∂

∂y
S1
M(i,W ),t+1(y −D)] ≤ 0.
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If j = i, we have

∂

∂di

∂fi,t(y)

∂y
= 1 + E[

∂

∂di

∂

∂y
S1
M(i,W ),t+1(y −D)] ≥ 0,

and, otherwise if j < i, we have

∂

∂dj

∂fi,t(y)

∂y
= E[

∂

∂dj

∂

∂y
S1
M(i,W ),t+1(y −D)] ≤ 0.

This establishes the proof.

Proof of Theorem 4. First it is obvious that changes in di do not affect fj,t for j = 1, 2, ...i for all t

since M(k,W ) ≤ k for all k. From Lemma 7, we have ∂
∂di

∂fi,t(y)
∂y ≥ 0, and this implies

∂y∗i,t
∂di
≤ 0 for

all i. Similarly, ∂
∂dj

∂fi,t(y)
∂y ≤ 0 implies

∂y∗i,t
∂dj
≥ 0, for j < i by Lemma 8, which is in the appendix.

The proof is complete.

6 A Numerical Study of Sequential Systems

In this section we present a numerical study focusing on two aspects. In the first part, we present

numerical results when system parameters vary for a fixed W. Second, we present a numerical

analysis for different sets of movement patterns W. We consider a three installation system, which

includes a supplier, an intermediate installation, and a manufacturer with random movement pat-

terns and demand. For three installation systems, there is a total of 5 different movement patterns,

i.e., w1, w2, · · · , w5, as depicted in Figure 6. By combining all or some of these movement patterns

and by assigning probability distribution to each of these patterns, different sets of movement pat-

terns, i.e., W1, W2, · · · , W6 can be developed as shown in Figure 6. We first present the results

with W1 in the first part to study the dynamics of optimal policies as system parameters vary, and

then we present the results with all sets of movement patterns with fixed system parameters to

study the effect of different movement patterns. Practical meanings of different sets of movement

patterns are discussed later.
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Independent 
probability (W1)

Frequent error 
at int. ins. (W2)

Frequent error 
at supplier (W3)
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(1-p)p 40% 15%

Down at 

Both (w4)
(1-p)2 40% 15%

0 40% 15%

Different sets of movement patterns

Fast Delivery 
(w5)

Figure 6: Different sets of movement patterns

6.1 Variation of system parameters

In this section, we present a numerical analysis of nine carefully designed representative cases in

addition to the base case of the three installation system to study the dynamics of optimal policies

as system parameters vary.

Time of delivery is a geometric random variable with delivery probability p at each time period.

Formally, on order at an installation has probability p to be delivered to the next installation in

a single time period. Demand follows the symmetric triangular or uniform distribution in range

(0, D). In our numerical experiments D is fixed at 100 for simplicity. The per unit expediting cost

is d2 for expediting from the supplier and d1 for expediting from the intermediate installation. The

inventory and backlogging costs are c1, c2, respectively per unit. These parameters are stationary.

A single simulation run has 5,000 time periods, and 50 independent runs are tested in each case

to get less than 2% of the double side confidence interval length with respect to the total cost per

period. An optimal policy is computed by conducting such a simulation with every combination of

z in the multiple of 10 and y1 and y2 in the multiple of 5 from -1,000 to 1,000. It is based on the

assumption that the manager in practice will keep the base stock levels as simple numbers with

reasonable precisions.

As summarized in Figure 7, the nine cases have variations in the system parameters from the
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base case, namely Case 0. Case 1 has a higher variability in the delivery lead time due to lower

p; Case 2 has a lower variability in the delivery lead time due to higher p; Case 3 has a higher

variability in demand due to the uniform demand distribution instead of triangular; Case 4 has

higher inventory and backlogging costs; Case 5 has the reversed cost structure, where the inventory

cost is higher than the backlogging cost; Case 6 has higher expediting costs; Case 7 has higher

expediting costs from the supplier (d2) representing a stronger sequential system case; Case 8 has a

higher expediting cost from the intermediate installation (d1) representing a non-sequential system

case; Case 9 has equal expediting costs from both installations (d2 = d1) representing a stronger

non-sequential system case.

Case No. p demand dist. d2 d1 c1 c2

0. Base case 0.5 triangular 2 1 1 2

1. Higher variability in delivery 0.2 triangular 2 1 1 2

2. Lower variability in delivery 0.8 triangular 2 1 1 2

3. Higher variability in demand 0.5 uniform 2 1 1 2

4. Higher inventory and backlogging costs 0.5 triangular 2 1 2 4

5. Reversed cost structure (inv/backlogging) 0.5 triangular 2 1 2 1

6. Higher expediting costs 0.5 triangular 4 2 1 2

7. Stronger sequential system case 0.5 triangular 4 1 1 2

8. Non-sequential system case 0.5 triangular 2 1.5 1 2

9. Stronger non-sequential system case 0.5 triangular. 2 2 1 2

Figure 7: Nine representative cases for the numerical study

For each case, base stock policies are applied and optimal base stock levels are numerically

obtained for both of the situations with or without expediting. In particular, without expediting,

only the base stock level for regular order z is obtained along with the total logistics cost, which

is the sum of expediting, inventory, and backlogging costs. With expediting, base stock levels for

expediting, y2 and y1, are also obtained. Figure 8 summarizes the results of the numerical study,

where T.C. stands for the total cost per period and C.I. stands for the 95% confidence interval

length with respect to the total cost per period (both sides).

In each case, if expediting is optimally used, the total cost reduction is significant (at least 20%

in these cases) and the resultant base stock levels z are smaller than the ones without expediting

suggesting that the system becomes leaner with expediting and achieves higher service rates. In
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Case T.C.(w/o exp) C.I. z T.C.(w/ exp) C.I. z y1 y2 Cost saving

0 123 1.1% 270 67 0.6% 210 50 50 46%

1 365 1.9% 650 91 0.5% 290 55 55 75%

2 61 0.8% 190 48 0.7% 170 40 40 21%

3 134 1.1% 270 80 0.6% 210 50 50 41%

4 251 1.1% 290 98 0.5% 180 55 55 61%

5 101 0.9% 190 71 0.6% 170 30 30 30%

6 123 1.1% 270 92 0.8% 240 40 40 25%

7 123 1.1% 270 77 1.0% 220 45 30 37%

8 123 1.1% 270 75 0.6% 210 40 55 39%

9 123 1.1% 270 83 0.6% 220 35 55 33%

Figure 8: Results of the numerical analysis

Case 0 (the base case), optimal expediting could save 46% of total logistics costs. Due to the linear

cost structure of the base case (d2 = 2d1), it is expected to observe y2 = y1. In Case 1 (higher

variability in delivery), if there is no expediting, the total cost increases significantly (about three

times from 123 to 365) above the base case due to increased variability with much higher base stock

level z. However, through expediting, the system is much more effectively hedging the risk from

increased variability. The cost increase from the base case is only about 35% (from 67 to 91) and

the corresponding reduction in the total cost is 75%, much higher than 46% of the base case. It

is expected that the value of visibility through expediting should be higher with higher variability

in the delivery lead time, which is confirmed by this numerical case. Also, the expediting base

stock levels y1 and y2 are higher than in the base case, suggesting more expediting is necessary

with increased variability in the delivery lead time. In Case 2 (lower variability in delivery), the

total cost is reduced from 123 in the base case to 61 even without expediting due to the decreased

variability in delivery. Despite of this, the introduction of expediting saves 21% of the total cost,

although this is lower than 46% in the base case. Also, the base stock levels are all lower than in the

base case meaning that the system needs less safety stock due to decreased variability in delivery.

In Case 3 (higher variability in demand), increased variability in demand leads to higher total cost

and does not affect the base stock levels of optimal policies for both with and without expediting.

The cost saving is 41%, slightly less than the base case. In Case 4 (higher inventory and backlogging

costs), as expected twice higher inventory and backlogging costs than in the base case lead to about
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double the total cost without expediting. With expediting, however, the total cost increase above

the base case is only 46% (from 67 to 98), and the total cost saving is about 61% higher than

46% of the base case. More interestingly, the base stock level for regular ordering z is lower than

in the base case while expediting base stock levels y1 and y2 are higher, which suggests that it is

optimal to place leaner regular orders but to use more expediting when facing higher inventory

and backlogging costs. In Case 5 (reversed cost structure), because inventory cost is higher than

in the base case while backlogging cost is lower, the optimal policy is minimizing inventory pile

up at the manufacturer and hence less expediting is present than in the base case, therefore all of

the base stock levels are lower than in the base case for both with and without expediting. By the

same reasoning, the total cost reduction percentage is also lower than in the base case. In Case

6 (higher expediting costs), because the expediting cost is higher, the optimal policy places more

regular orders and reduces the amount of expediting. Therefore, the base stock level for regular

ordering z is higher than in the base case but expediting base stock levels y1 and y2 are lower.

Also, the total cost saving percentage is smaller due to more expensive expediting. In Case 7 (the

stronger sequential system case), higher expediting cost d2 makes the stronger sequential system,

and it results in higher y1 than y2 as predicted by theory, suggesting more expediting from closer

intermediate installation (y1) than the farther suppler (y2). Directional movements of the base

stock levels are due to the increase in d2 as discussed in Case 6. In Case 8 (the non-sequential

system case), the system is non sequential, so it is hard to guarantee that the base stock policy

is an optimal policy. Nevertheless, expediting with numerically chosen optimal base stock levels

results in 39% of the total cost saving, slightly less than 46% of the base case. An interesting

observation is that now y2 is higher than y1 suggesting more expediting from the supplier that is

relatively cheaper on the per unit cost of expediting. In Case 9 (the stronger non-sequential system

case), d1 further apart from d2, results in reduced y1 and increased z with respect to the base

case, suggesting more regular ordering and less expediting from the more expensive intermediate

installation. As the system becomes increasingly non-sequential, the gap between y1 and y2 also

increases.

Next in Figure 9, we provide the results of the sensitivity analysis on parameter p with respect
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to the base case, case 1, and case 2. As probability increases we find that the total cost saving also

reduces gradually. Also, a deviation of 0.05 in p from the base case, where p = 0.5, results in about

5% deviation in total cost saving.

p T.C.(w/o exp) C.I. z T.C.(w/ exp) C.I. z y1 y2 Cost saving

0.2 (Case 1) 365 1.9% 650 91 0.5% 290 55 55 75%

0.4 165 1.3% 330 74 0.5% 220 55 55 55%

0.45 142 1.3% 290 71 0.5% 210 55 55 50%

0.5 (Case 0) 123 1.1% 270 67 0.6% 210 50 50 46%

0.55 109 1.2% 250 63 0.5% 200 50 50 42%

0.6 96 1.1% 230 60 0.8% 190 45 45 38%

0.8 (Case 2) 61 0.8% 190 48 0.7% 170 40 40 21%

Figure 9: Results of the sensitivity analysis

6.2 Variation of movement patterns

In this section, we provide the numerical results with different sets of movement patterns based on

Figure 6. The simulation setting (e.g., number of runs, finding optimal base stocks) is identical to

the previous section. System parameters (i.e., demand dist., d1, d2, c1, c2) are identical with the

base case in the previous section. Different sets of movement patterns were carefully chosen to have

practical meanings. First, W1 captures where each delivery as an independent event with a similar

delivery probability. Set of movement pattern W2 is where the operations at the intermediate

installation is relatively unreliable causing frequent delays. The next set, W3 is where significant

production and operation variability exists at the supplier. Set W4 is the case of the supplier

and intermediate installations linked through a common system (e.g., IT, labor union) causing

simultaneous failures. Set W5 is where supplier uses frequently expedited transportation at no

additional charge due to extra space or as a value-added customer service. Lastly, W4 combines

situations from W2 to W4. Figure 10 summarizes the numerical results for each set.

Without expediting, W1 has the highest total cost since it has the highest variability in the

delivery lead time. Set W4 has the second highest total cost without expediting since it has

relatively higher variability. Since inventory cost is lower than the backlogging cost, set W5 has

the lowest total cost, in which unexpected fast delivery is possibly resulting in more inventory
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Set T.C.(w/o exp) C.I. z T.C.(w/ exp) C.I. z y1 y2 Cost saving

W1 123 1.1% 270 67 0.6% 210 50 50 46%

W2 72 1.1% 190 49 0.7% 170 40 40 32%

W3 72 1.0% 190 55 0.7% 180 35 35 24%

W4 98 1.3% 220 60 0.7% 200 45 45 38%

W5 46 0.4% 150 43 0.6% 140 35 35 7%

W6 79 0.8% 200 57 0.7% 170 45 45 28%

Figure 10: Results of the numerical analysis on different sets of movement patterns

stocking than backlogging.

Expediting saves the total costs for all sets of movement patterns. Except W5, where expediting

yields only a 7% increase due to the similar nature between expediting and the random movement,

expediting reduces more than 20% of the total cost. Expediting also reduces the regular ordering

base stock levels for all sets which results in a leaner system.

7 Conclusion

In this paper, we consider an optimal policy for expediting and regular ordering of a stochastic lead

time model with multiple intermediate installations. Since in general the model exhibits complex

and nonintuitive policies, we confine our interest to a class of systems defined by conditions on

expediting cost and movement patterns of regular orders. We call such systems sequential since

outstanding orders, including expediting, do not cross in time. For sequential systems, the optimal

policy for regular ordering is the base stock policy with respect to the inventory position, and

the optimal policy for expediting from an installation is the base stock policy with respect to the

echelon stock of the downstream installations.

The numerical study suggests that expediting optimally results in a significant reduction in the

total logistics cost, and the system is operated leaner due to the decreased optimal base stock level

for regular ordering while achieving a higher service level due to expediting. As variability in lead

time, inventory cost, and backlogging costs increase, the impact of expediting and the total cost

saving also increase.

Song and Zipkin (1996), who considered a non-expediting system, found that the optimal reg-
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ular ordering policy does not require any state variable information, and that the only relevant

information is the inventory position and the lead time distribution. Our results indicate that

the optimal regular ordering policy and expediting require the real time state information, since

expediting and regular ordering have to be considered concurrently. In other words, the stochas-

tic movement of regular orders in our model requires new information systems to capture state

information to enable optimal expediting decision making in real time.

There are multiple tracking systems that can be used for this purpose. 2D bar code, GPS, and

RFID are typical examples of such tracking technologies. In determining the most suitable type

of a tracking system, several criteria should be considered at the same time. First, the speed to

capture the state of the system should be fast enough relatively to the length of the time period.

Second, initial investments and operating costs should not exceed the total cost saving that can be

achieved through expediting. Third, the information accuracy should be high enough not to send

false signals to the decision maker.

RFID is a good candidate due to its relatively low deployment and maintenance costs. Tags

are currently below 10 cents and reader costs range in a few thousand U.S. dollars. With tags

attached on units of goods (e.g., pallets or cases) and readers installed at each installation, real-

time location information of outstanding orders is available to the manufacturer. Minimal labor is

an additional benefit and accuracy is getting improved everyday. However, the final decision of the

suitable tracking system should be made according to the business case based on a detailed cost

benefit analysis as suggested by the proposed model.

For expediting to be optimal, it is also important to estimate the distribution of the stochastic

lead time, which can be accomplished by observing movements of orders for multiple time periods

by leveraging the order tracking system. It may be possible to estimate the initial distribution

based on business insight and constantly updating it for some initial time horizon. However, if

a time period is a week or even longer, then it could take significant time to estimate a reliable

distribution, which may be sufficient to threat business profitability, for example, in the electronics

industry. Therefore, an important consideration is also how to estimate the distribution faster and

more accurately. The choice of the tracking system should reflect this consideration. One additional
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benefit of RFID is that it provides abundance of real-time information for better estimation of the

delivery lead time distribution and movement patterns since RFID tags can store extra information

such as the dwell time in each installation.

Without expediting, according to the result by Song and Zipkin (1996), adding visibility does

not bring additional value to inventory control. Therefore, we need to actively use new information

to unveil additional benefits, and this should be done through quantitative analysis as Lee and

Özer (2007) also assert.

Appendix

Proof of Lemma 1. The statement clearly holds when i = j. By Assumption 3, for i > j we have

di − di−1 ≥ E[dM(i,W ) − dM(i−1,W )]

di−1 − di−2 ≥ E[dM(i−1,W ) − dM(i−2,W )]

...

dj+1 − dj ≥ E[dM(j+1,W ) − dM(j,W )].

By summing the above inequalities we obtain di−dj ≥ E[dM(i,W )−dM(j,W )]. Assumption 1 ensures

M(i,W ) ≥ M(j,W ) for i ≥ j, thus setting i = M(i,W ) and j = M(j,W ) and taking expectation

results in

E[dM(i,W ) − dM(j,W )] ≥ E[dM(M(i,W ),W ′) − dM(M(j,W ),W ′)] = E[dM2(i,W ) − dM2(j,W )].

Therefore,

di − dj ≥ E[dM(i,W ) − dM(j,W )] ≥ E[dM2(i,W ) − dM2(j,W )].

Note that Mn(i,W ) ≥Mn(j,W ) for every n, which follows from Assumption 1 and the definition

of Mn. By applying the above relation repeatedly, we obtain

di − dj ≥ E[dMn(i,W ) − dMn(j,W )],
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which completes the proof.

Proof of Lemma 2. Part (a): We have {w : Mn(i, w) = 0} ⊆ {w : Mn+1(i, w) = 0} since an order

can stay at installation 0 for one time period. From Assumption 2 it follows

1 = Prob[∪∞n=1{w : Mn(i, w) = 0}] = lim
n→∞

Prob[Mn(i,W ) = 0].

Part (b): Clearly
∑

k Prob[M
n(i,W ) = k] = 1 and by taking the limit we get

∑
k

lim
n→∞

Prob[Mn(i,W ) = k] = 1,

or equivalently

1 =
∑
k 6=0

lim
n→∞

Prob[Mn(i,W ) = k] + lim
n→∞

Prob[Mn(i,W ) = 0].

Since limn→∞ Prob[M
n(i,W ) = 0] = 1 by part (a), we conclude

∑
k 6=0 limn→∞ Prob[M

n(i,W ) =

k] = 0.

Proof of Lemma 4. We first fix y and minimize over x as a function of y, then minimize over y.

We obtain

min
b≤x≤y

{f1(x) + f2(y)} = min
b≤y
{{ min

b≤x≤y
f1(x)}+ f2(y)}

= min
b≤y
{a1 + g1(b) + h1(y) + f2(y)} (12)

= a1 + g1(b) + min
b≤y
{h1(y) + f2(y)},

where, in (12), we use Lemma 3.

Proof of Theorem 2. We first provide the following preliminary results. For a convex function

f : R→ R, let ∂f(x) be its subdifferential at x, which is a set. For two sets S1 and S2, we denote

S1 ≤ S2 if there exists s2 ∈ S2 such that s1 ≤ s2 for any s1 ∈ S1, and there exists s1 ∈ S1 such

that s1 ≤ s2 for any s2 ∈ S2. We provide useful lemmas below.
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Lemma 8. Let f1 and f2 be convex functions. If ∂f1(x) ≤ ∂f2(x) for all x ∈ R, then

arg min
x
f1(x) ≥ arg min

x
f2(x).

Proof. Let u ∈ arg minx f1(x). Then 0 ∈ ∂f1(u). It follows that 0 ≤ x for every x ∈ ∂f2(u). This

implies that the minimum of f2 is smaller than or equal to u, which completes the proof.

Lemma 9. Let f1 and f2 be convex functions, and let g1 and g2 be their penalty functions as in

Lemma 3. If ∂f1(x) ≤ ∂f2(x), then ∂g1(x) ≤ ∂g2(x).

Proof. We have ∂g1(x) = ∂f1(x) if x ≥ max arg min f1, and 0 otherwise. Similarly, we have

∂g2(x) = ∂f2(x) if x ≥ max arg min f2, and 0 otherwise. From Lemma 8, we have arg min f2 ≤

arg min f1. For x < arg min f2, we have ∂g1(x) = ∂g2(x) = {0}. On the other hand, for arg min f2 ≤

x < arg min f1, we have ∂g1(x) = {0} and ∂f2(x) = ∂g2(x) ≥ {0} since ∂f2(x) is non-decreasing,

therefore ∂g1(x) ≤ ∂g2(x). For x ≥ arg min f1, we have ∂g1(x) = ∂f1(x) ≤ ∂f2(x) = ∂g2(x) by

definition. This completes the proof.

Lemma 10. Let f1, f2, f̃1, and f̃2 be convex functions. If ∂f1(x) ≤ ∂f2(x) and ∂f̃1(x) ≤ ∂f̃2(x),

then ∂{f1 + f̃1}(x) ≤ ∂{f2 + f̃2}(x).

Proof. For any real number u ∈ ∂{f1 + f̃1}(x), there exist v ∈ ∂f1(x) and w ∈ ∂f̃1(x) such that

u = v +w. Likewise, for any u′ ∈ ∂{f2 + f̃2}(x), there exist v′ ∈ ∂f2(x) and w′ ∈ ∂f̃2(x) such that

u′ = v′ + w′. Since ∂f1(x) ≤ ∂f2(x), we have v ≤ v′ and from ∂f̃1(x) ≤ ∂f̃2 we obtain w ≤ w′. It

thus follows u = v + w ≤ v′ + w′ = u′. This completes the proof.

Lemma 11. Let f1 and f2 be convex functions, and let F1(x) = E[f1(x − D)] and F2(x) =

E[f2(x−D)]. If ∂f1(x) ≤ ∂f2(x) for every x, then ∂F1(x) ≤ ∂F2(x) for every x.

Proof. Let x be fixed and C be the compact support of demand D. The ‘convex’ mean value

theorem asserts that for every d ∈ C, and 1 ≥ h ≥ 0, there exists x− d < z < α < x− d+ h such

that

∂+fi(z) ≤
fi(x− d+ h)− fi(x− d)

h
≤ ∂−fi(α),
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where ∂−, ∂+ are the left, right derivatives, respectively. Due to convexity and the fact that

{γ|x − d ≤ γ ≤ x − d + 1, d ∈ C} is compact, it follows that there exists M(x) ≥ 0 such that

∂+fi(z) ≥M(x), δ−fi(α) ≤M(x) for every z, α. This implies that

|fi(x− d+ h)− fi(x− d)

h
| ≤M(x),

for each 0 < h ≤ 1 and d. We also have
∫
M(x)dD = M(x). This implies that we can use the

dominated convergence theorem which implies

lim
h→0,h≥0

∫
fi(x− d+ h)− fi(x− d)

h
dD(d) =

∫
lim

h→0,h≥0

fi(x− d+ h)− fi(x− d)

h
dD(d).

The statement now follows from the basic definitions, the assumption ∂f1(·) ≤ ∂f2(·), and by

applying similar arguments to [x− h, x]. This completes the proof.

We prove Theorem 2 by induction on t that ∂fi,t(y) ≤ ∂fi+1,t(y) for every y and i. For the

base case (t = T ), we have ∂fi,T (y) ≤ ∂fi+1,T (y) for all i because fi,T (y) = diy + L(y) and di is

nondecreasing in i by Proposition 1. In the induction step, for a fixed t + 1 ≤ T , we assume that

∂fi,t+1(y) ≤ ∂fi+1,t+1(y) for all i and y. We have

fi,t(y) = diy + L(y) + E[S1
M(i,W ),t+1(y −D)]

= diy + L(y) + E[gM(i,W ),t+1(y −D)− dM(i,W )(y −D)]

= (di − E[dM(i,W )])y + L(y) + E[gM(i,W ),t+1(y −D)] + E[dM(i,W )]E[D], and

fi+1,t(y) = (di+1 − E[dM(i+1,W )])y + L(y) + E[gM(i+1,W ),t+1(y −D)] + E[dM(i+1,W )]E[D].

Note that ∂[(di−E[dM(i,W )])y] ≤ ∂[(di+1−E[dM(i+1,W )])y] by Assumption 3, and ∂ E[gM(i,W ),t+1(y−

D)] ≤ ∂ E[gM(i+1,W ),t+1(y − D)] for all i since the induction assumption ∂fM(i,W ),t+1(y − D) ≤

∂fM(i+1,W ),t+1(y−D) is equivalent to ∂gM(i,W ),t+1(y−D) ≤ ∂gM(i+1,W ),t+1(y−D). Therefore we

get ∂fi,k(y) ≤ ∂fi+1,k(y) for all i. The proof is thus completed.

Proof of Lemma 5. The proof is by induction on t. In the base case t = T we have gi,T (x) +
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S2
M(i,w),T (x) = gi,T (x) + hM(i,w),T (x)− L(x). Consider the following two cases.

(Case 1) If x ≤ y∗M(i,w),T , then gM(i,w),T (x) = 0, thus gi,T (x) + hM(i,w),T (x) − L(x) = gi,T (x) +

fM(i,w),T (x)− aM(i,w),T − L(x) = gi,T (x) + dM(i,w)x− aM(i,w),T is convex.

(Case 2) If x ≥ y∗i,T , then hi,T (x) = 0, thus gi,T (x) + hM(i,w),T (x) − L(x) = fi,T (x) − ai,T +

hM(i,w),T (x)− L(x) = dix− ai,T + hM(i,w),T (x) is convex.

From Theorem 2 it follows y∗i,T ≤ y∗M(i,w),T since i ≥ M(i, w). If y∗i,T < y∗M(i,w),T , then gi,T (x) +

S2
M(i,w),T (x) is globally convex because it is convex on two partially overlapping intervals, which

are x ≤ y∗M(i,w),T and x ≥ y∗i,T . When y∗i,T = y∗M(i,w),T = y∗, then by Proposition 1, we have

∂{gi,T (y∗) + dM(i,w)y
∗ − aM(i,w),T } ≤ ∂{diy∗ − ai,T + hM(i,w),T (y∗)}.

Since gi,T (x) is nondecreasing and hM(i,w),T (x) is nonincreasing, we obtain ∂hM(i,w),T (x) ≤ ∂gi,T (x),

hence global convexity. This completes the base case.

Now let us assume that gi,t+1(x) + S2
M(i,w),t+1(x) is convex for all w ∈ W and all i, and for

some t + 1 ≤ T . We need to prove that gi,t(x) + S2
M(i,w),t(x) = gi,t(x) + hM(i,w),t(x) − L(x) +

E[S2
M2(i,w),t+1(x − D)] is convex for any w ∈ W and for all i. Again consider the following two

cases.

(Case 1) If x ≤ y∗M(i,w),t, then gM(i,w),t(x) = 0. Thus

gi,t(x) + hM(i,w),t(x)− L(x) + E[S2
M2(i,w),t+1(x−D)]

= gi,t(x) + fM(i,w),t(x)− aM(i,w),t − L(x) + E[S2
M2(i,w),t+1(x−D)]

= gi,t(x) + dM(i,w)x− aM(i,w),t + E[S1
M2(i,w),t+1(x−D)] + E[S2

M2(i,w),t+1(x−D)]

= gi,t(x) + dM(i,w)x− aM(i,w),t − S0
M2(i,w),t+1

is convex.
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(Case 2) If x ≥ y∗i,t, then hi,t(x) = 0. Thus

gi,t(x) + hM(i,w),t(x)− L(x) + E[S2
M2(i,w),t+1(x−D)]

= fi,t(x)− ai,t + hM(i,w),t(x)− L(x) + E[S2
M2(i,w),t+1(x−D)]

= dix− ai,t + hM(i,w),t(x) + E[S1
M(i,w),t+1(x−D)] + E[S2

M2(i,w),t+1(x−D)]

= dix− ai,t + hM(i,w),t(x) + E[gM(i,w),t+1(x−D)− dM(i,w)(x−D)

+ S2
M2(i,w),t+1(x−D)]

is convex since gM(i,w),t+1(x − D) + S2
M2(i,w),t+1(x − D) is convex by the induction hy-

pothesis.

Now we apply a similar logic as in the base case. From Theorem 2 we obtain y∗i,t ≤ y∗M(i,w),t since

i ≥ M(i, w). If y∗i,t < y∗M(i,w),t, then gi,t(x) + S2
M(i,w),t(x) is globally convex because it is convex

for two partially overlapping intervals, which are x ≤ y∗M(i,w),t and x ≥ y∗i,t. If y∗i,t = y∗M(i,w),t = y∗,

then

gi,t(x) + S2
M(i,w),t(x) =

 hM(i,w),t(x)− L(x) + E[S2
M2(i,w),t+1(x−D)] x ≤ y∗

gi,t(x)− L(x) + E[S2
M2(i,w),t+1(x−D)] x ≥ y∗.

Since gi,t(x) is nondecreasing and hM(i,w),t(x) is nonincreasing, we have ∂hM(i,w),t(x) ≤ ∂gi,t(x),

which means global convexity of gi,t(x) + S2
M(i,w),t(x) when y∗i,t = y∗M(i,w),t. This completes the

proof.

The remainder of the proof of Theorem 3 and Proposition 3. We show part (c) at time period t by

assuming parts (a), (b), and (d) hold on and after time period t and part (c) holds on and after

time period t + 1. We compare two states (xi−1, 0̄i−1, vi, vi+1, · · · , vK̄) and (xi−1 + e, 0̄i−1, vi −

e, vi+1, · · · , vK̄).

For convenience in the remainder of the proof, let A denote (xi−1, 0̄i−1, vi, vi+1, · · · , vK̄) and

let B denote (xi−1 + e, 0̄i−1, vi − e, vi+1, · · · , vK̄). Also, let A+ and B+ denote the next states of

A and B under the respective optimal control (they depend on the underlying realization but we
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do not show this dependency). Let w be the realized value of W at the current time period and

let j denote M(i, w). Finally, let A+
j and B+

j denote the next states of A and B under respective

optimal control given w at the beginning of the next time period. We consider three cases.

Case 1 If y∗i,t ≤ xi−1, then no expediting is necessary. If j > 0, then the two states in the next time

period t+ 1 are A+
j = (xi−1 −D, 0̄j−1, xN(j,w) − xN(j−1,w), xN(j+1,w) − xN(j,w), · · · , xN(M(K̄,w),w) −

xN(M(K̄,w)−1,w) + u, 0̄K̄−M(K̄,w)) and B+
j = (xi−1 + e−D, 0̄j−1, xN(j,w)− xN(j−1,w)− e, xN(j+1,w)−

xN(j,w), · · · , xN(M(K̄,w),w)−xN(M(K̄,w)−1,w) +u, 0̄K̄−M(K̄,w)), where u is the regular ordering quan-

tity, which is the same for both states. For j > 0, the induction hypothesis implies

Jt+1(A+
j )− Jt+1(B+

j ) = S0
j,t+1 + S1

j,t+1(xi−1 −D) + S2
j,t+1(xi−1 + e−D). (13)

On the other hand, if j = 0, then the two states at time period t+ 1 are the same and they are

A+
0 = B+

0 = (xN(0,w) −D,xN(1,w) − xN(0,w), · · · , xN(M(K̄,w)−1,w) − xN(M(K̄,w)−2,w), xN(M(K̄,w),w) −

xN(M(K̄,w)−1,w) + u, 0̄K̄−M(K̄,w)). Since S0
0,t+1 = S1

0,t+1(xi−1 − D) = S2
0,t+1(xi−1 + e − D) = 0 by

definition, (13) still holds. Using (13) we get

E[Jt+1(A+)− Jt+1(B+)]

= E[
∑
j

Prob[M(i,W ) = j]{Jt+1(A+)− Jt+1(B+)|M(i,W ) = j}]

= E[
∑
j

Prob[M(i,W ) = j]{Jt+1(A+
j )− Jt+1(B+

j )}]

= E[
∑
j

Prob[M(i,W ) = j]{S0
j,t+1 + S1

j,t+1(xi−1 −D) + S2
j,t+1(xi−1 + e−D)}]

= E[S0
M(i,W ),t+1 + S1

M(i,W ),t+1(xi−1 −D) + S2
M(i,W ),t+1(xi−1 + e−D)].

No expediting implies Jt(A) = L(xi−1) + min
z≥xK̄

{c(z − xK̄) + E[Jt+1(A+)]}, and Jt(B) = L(xi−1 +

e) + min
z≥xK̄

{c(z − xK̄) + E[Jt+1(B+)]}. Since the minimizations in the above equations have the

same optimal control with respect to regular ordering, Jt(A) − Jt(B) = L(xi−1) − L(xi−1 + e) +

E[S0
M(i,W ),t+1 + S1

M(i,W ),t+1(xi−1 −D) + S2
M(i,W ),t+1(xi−1 + e−D)].
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Because y∗i,t ≤ xi−1, we have hi,t(x
i−1) = 0 and hi,t(x

i−1 + e) = 0. Therefore,

L(xi−1)− L(xi−1 + e) + E[S0
M(i,W ),t+1 + S1

M(i,W ),t+1(xi−1 −D)

+ S2
M(i,W ),t+1(xi−1 + e−D)]

= dix
i−1 + L(xi−1) + E[S1

M(i,W ),t+1(xi−1 −D)]− dixi−1 − L(xi−1 + e)

+ E[S0
M(i,W ),t+1 + S2

M(i,W ),t+1(xi−1 + e−D)]

= fi,t(x
i−1)− dixi−1 − L(xi−1 + e) + E[S0

M(i,W ),t+1 + S2
M(i,W ),t+1(xi−1 + e−D)]

= ai,t + gi,t(x
i−1) + hi,t(x

i−1)− dixi−1 − L(xi−1 + e)

+ E[S0
M(i,W ),t+1 + S2

M(i,W ),t+1(xi−1 + e−D)]

= ai,t + gi,t(x
i−1) + hi,t(x

i−1 + e)− dixi−1 − L(xi−1 + e)

+ E[S0
M(i,W ),t+1 + S2

M(i,W ),t+1(xi−1 + e−D)].

Case 2 If xi−1 < y∗i,t ≤ xi−1 + e, then expediting y∗i,t−xi−1 from installation i is optimal in state

A and no expediting is optimal in state B. We have

A+
j = (y∗i,t −D, 0̄j−1, xN(j,w) − y∗i,t, xN(j+1,w) − xN(j,w), · · · ,

xN(M(K̄,w),w) − xN(M(K̄,w)−1,w) + u, 0̄K̄−M(K̄,w)),

B+
j = (xi−1 + e−D, 0̄j−1, xN(j,w) − xN(j−1,w) − e, xN(j+1,w) − xN(j,w), · · · ,

xN(M(K̄,w),w) − xN(M(K̄,w)−1,w) + u, 0̄K̄−M(K̄,w))

for j > 0, and

A+
0 = B+

0 = (xN(0,w) −D,xN(1,w) − xN(0,w), · · · , xN(M(K̄,w)−1,w) − xN(M(K̄,w)−2,w),

xN(M(K̄,w),w) − xN(M(K̄,w)−1,w) + u, 0̄K̄−M(K̄,w))
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for j = 0. From the induction hypothesis, Jt+1(A+
j ) − Jt+1(B+

j ) = S0
j,t+1 + S1

j,t+1(y∗i,t − D) +

S2
j,t+1(xi−1 + e−D) for j ≥ 0, and therefore

E[Jt+1(A+)− Jt+1(B+)]

= E[
∑
j

Prob[M(i,W ) = j]{Jt+1(A+)− Jt+1(B+)|M(i,W ) = j}]

= E[
∑
j

Prob[M(i,W ) = j]{Jt+1(A+
j )− Jt+1(B+

j )}]

= E[
∑
j

Prob[M(i,W ) = j]{S0
j,t+1 + S1

j,t+1(y∗i,t −D) + S2
j,t+1(xi−1 + e−D)}]

= E[S0
M(i,W ),t+1 + S1

M(i,W ),t+1(y∗i,t −D) + S2
M(i,W ),t+1(xi−1 + e−D)].

We have Jt(A) = diy
∗
i,t +L(y∗i,t)− dixi−1 + min

z≥xK̄
{c(z − xK̄) +E[Jt+1(A+)]}, and Jt(B) = L(xi−1 +

e) + min
z≥xK̄

{c(z−xK̄) +E[Jt+1(B+)]}. Therefore, Jt(A)−Jt(B) = diy
∗
i,t +L(y∗i,t)−dixi−1−L(xi−1 +

e)+E[S0
M(i,W ),t+1+S1

M(i,W ),t+1(y∗i,t−D)+S2
M(i,W ),t+1(xi−1+e−D)]. Because xi−1 < y∗i,t ≤ xi−1+e,

we have gi,t(x
i−1) = 0 and hi,t(x

i−1 + e) = 0, and

diy
∗
i,t + L(y∗i,t)− dixi−1 − L(xi−1 + e)

+ E[S0
M(i,W ),t+1 + S1

M(i,W ),t+1(y∗i,t −D) + S2
M(i,W ),t+1(xi−1 + e−D)].

= fi,t(y
∗
i,t)− dixi−1 − L(xi−1 + e) + E[S0

M(i,W ),t+1 + S2
M(i,W ),t+1(xi−1 + e−D)]

= ai,t − dixi−1 − L(xi−1 + e) + E[S0
M(i,W ),t+1 + S2

M(i,W ),t+1(xi−1 + e−D)]

= ai,t + gi,t(x
i−1) + hi,T (xi−1 + e)− dixi−1 − L(xi−1 + e)

+ E[S0
M(i,W ),t+1 + S2

M(i,W ),t+1(xi−1 + e−D)].

Case 3 If y∗i,t > xi−1 + e, then we expedite min(vi, y
∗
i,t − xi−1) from installation i in state A

and min(vi, y
∗
i,t − xi−1 − e) from installation i in state B. Therefore, in the next time period,

states A+ and B+ are the same and the only cost difference between Jt(A) and Jt(B) is die =

di(x
i−1 + e)− dixi−1. Thus, Jt(A)− Jt(B) = di(x

i−1 + e)− dixi−1.

Because y∗i,t > xi−1 + e, we have gi,t(x
i−1) = 0 and gi,t(x

i−1 + e) = 0. Note that S0
j,t+1 +
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S1
j,t+1(x) + S2

j,t+1(x) = 0, or S1
j,t+1(x) = −S0

j,t+1 − S2
j,t+1(x). We conclude that

di(x
i−1 + e)− dixi−1

= ai,t − ai,t + gi,t(x
i−1)− gi,t(xi−1 + e) + hi,t(x

i−1 + e)− hi,t(xi−1 + e)

+ di(x
i−1 + e)− dixi−1

= ai,t + gi,t(x
i−1) + hi,t(x

i−1 + e)− fi,t(xi−1 + e) + di(x
i−1 + e)− dixi−1

= ai,t + gi,t(x
i−1) + hi,t(x

i−1 + e)− di(xi−1 + e)− L(xi−1 + e)

− E[S1
M(i,W ),t+1(xi−1 + e−D)] + di(x

i−1 + e)− dixi−1

= ai,t + gi,t(x
i−1) + hi,t(x

i−1 + e)− dixi−1 − L(xi−1 + e)

− E[S1
M(i,W ),t+1(xi−1 + e−D)]

= ai,t + gi,t(x
i−1) + hi,t(x

i−1 + e)− dixi−1 − L(xi−1 + e)

+ E[S0
M(i,W ),t+1 + S2

M(i,W ),t+1(xi−1 + e−D)].

Finally, Cases 1, 2, and 3 can be summarized as

Jt(x
i−1, 0̄i−1, vi, vi+1, · · · , vK̄)− Jt(xi−1 + e, 0̄i−1, vi − e, vi+1, · · · , vK̄)

= ai,t + gi,t(x
i−1) + hi,t(x

i−1 + e)− dixi−1 − L(xi−1 + e)

+ E[S0
M(i,W ),t+1 + S2

M(i,W ),t+1(xi−1 + e−D)]

= S0
i,t + S1

i,t(x
i−1) + S2

i,t(x
i−1 + e).

Therefore, part (c) is proved, and this completes the induction step of the entire proof.

Glossary of notation

• | · |: the number of elements in a set

• A \B: set difference {x : x ∈ A and x 6∈ B}

• K̄: installation index number of the supplier; there are total K̄ + 1 installation in the system

including the supplier, intermediate installations, and the manufacturer
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• T : the planning horizon

• vi: the amount of inventory at installation i for 0 ≤ i ≤ K̄ and

• (v0, v1, v2, · · · , vK̄): the state vector. Based on the current state of the system from the

• di: per unit expediting cost di from installation i to the manufacturer

• L(x): E[r(x−D)], where r(·) is a convex holding/backlogging cost function,

• xi: echelon stock; the sum of the inventory from installation 0 to installation i: xi =
∑i

j=0 vj ,

• 0̄i: a vector containing i zeros, or (0, 0, · · · , 0)

• u: regular ordering amount

• ei: expediting amount from installation i

• w: a movement pattern or a vector of movement patterns with an appropriate length

• W: set of of all movement patterns, i.e., W = {w1, w2, w3, · · · }

• W : an exogenous random variable or a vector with an appropriate length with known distri-

bution that selects a movement pattern in W

• M(i, w): a function that represents the destination of regular movement originally at instal-

lation i based on the realized movement pattern w

• N(j, w): maximum indexed installation among the installations that delivers its orders to

installations indexed less than or equal to j depending on the realized movement pattern w;

N(j,W ) is corresponding random variable

• Qi(W ) denote N(M(K̄,W )− i,W ). Qi(W ) is a random variable representing the maximum

indexed installation among the installations that the regular movement will deliver its orders

to i-th downstream installation of the installation to where the supplier (K̄) will deliver its

orders by regular movement
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• Mn(i,W ): the n-period random movement function that represents the location (an in-

stallation) after n regular movements of the outstanding orders at installation i, where W

is an n-dimensional random vector; The dimension of W can always be inferred from the

underlying usage. Formally, M1(i,W ) = M(i,W ) where W is a random variable, and

Mn(i,W ) = M(Mn−1(i,W ′),W ′′) where W = (W ′,W ′′) is a vector of length n, W ′ is a

vector of length n− 1, and W ′′ is a random variable.

• NS: the next state

• Jt: the cost-to-go at the beginning of time period t

• J j
t (·): the optimal cost-to-go that can be achieved by a restricted control space, in which

expediting from installations j + 1, j + 2, · · · , K̄ in time period t is not allowed
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