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Abstract management, facilitate routing and distribution of products,
and reduce costs by improving efficiency.

Radio Frequency Identification (RFID) applications are Large retailers like Walmart, Target, and Albertsons have
set to play an essential role in object tracking and supply already begun implementing RFID systems in their ware-
chain management systems. In the near future, it is expectedhouses and distribution centers, and are requiring their sup-
that every major retailer will use RFID systems to track the pliers to tag products at the pallet and case levels. Individual
movement of products from suppliers to warehouses, storetag prices are expected to fall from around 25 cents per unit
backrooms and eventually to points of sale. The volume ofto 5 cents per unit by 2007. At that price level, we can ex-
information generated by such systems can be enormous apect tags to be placed at the individual item level for many
each individual item (a pallet, a case, or an SKU) will leave products. The main challenge then becomes how can com-
a trail of data as it moves through different locations. As a panies handle and interpret the enormous volume of data
departure from the traditional data cube, we propose a new that an RFID application will generate. Venture Develop-
warehousing model that preserves object transitions while ment Corporation [13], a research firm, predicts that when
providing significant compression and path-dependent ag-tags are used at the item level, Walmart will generate around
gregates, based on the following observations: (1) items 7 terabytes of data every day. Database vendors like Oracle,
usually move together in large groups through early stages IBM, Teradata, and some startups are starting to provide
in the systemd.g, distribution centers) and only in later  solutions to integrate RFID information into enterprise data
stages €.g, stores) do they move in smaller groups, and warehouses.

(2) although RFID data is registered at the primitive level,
data analysis usually takes place at a higher abstraction
level. Techniques for summarizing and indexing data, and
methods for processing a variety of queries based on this
framework are developed in this study. Our experiments
demonstrate the utility and feasibility of our design, data
structure, and algorithms.

Example Suppose a retailer with 3,000 stores sells
10,000 items a day per store. Assume that we
record each item movement with a tuple of the form:
(EPC,location, time), where EPC is an Electronic Prod-
uct Code which uniquely identifies each itemIf each
item leaves only 10 traces before leaving the store by go-
ing through different locations, this application will gener-
ate at least 300 million tuples per day. A manager may ask
) gueries on the duration of paths lik@{): “List the average
1 Introduction shelf life of dairy products in 2003 by manufactutesr on
the structure of the paths lik&¢): “What is the average

Radio Frequency ldentification (RFID) is a technology time that it took coffee-makers to move from the warehouse
that allows a sensor (RFID reader) to read, from a distanceto the shelf and finally to the checkout counter in January
and without line of sight, a unique identifier that is provided of 20047 New data structures and algorithms need to be
(via a radio signal) by an “inexpensive” tag attached to an developed that may provide fast responses to such queries
item. RFID offers a possible alternative to bar code identifi- even in the presence of terabyte-sized data. [
cation systems and it facilitates applications like item track-
ing and inventory management in the supply chain. The
technology holds the promise to streamline supply chain

Such enormous amount of low-level data and flexible
high-level queries pose great challenges to traditional rela-
tional and data warehouse technologies since the processing
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inter-related tuples through different stages of object move- size of the EPC lists in thetayrecords by grouping items
ments. No matter how the objects are sorted and clusteredthat move to the same locations. For example, let us say
it is difficult to support various kinds of high-level queriesin we have astayrecord for the 50 CDs that stayed together
a uniform and efficient way. A nontrivial number of queries at the warehouse, and that the CDs moved in two groups to
may even require a full scan of the entire RFID database. shelf and truck locations. We can replace the list of 50 EPCs
in the stay record for just twgeneralized identifierggids)
which in turn point to the concrete EPCs. In this exam-
le we will store a total of 50 EPCs, plus two gids, instead
f 100 EPCs (50 in the warehouse, 25 in the shelf, 25 in
the truck). In addition to the compression benefits, we can
gain query processing speedup by assigning path-dependent
names to the gids. In the CDs example we could name the
gid for the warehouse 1, and the gid for the shelf 1.1 and
truck 1.2. If we get the query “What is the average time to
go from the warehouse to the shelf for CDs?” instead of in-
" tersecting the EPC lists for tistayrecords at each location
we can directly look at the gid nhame and determine if the
EPCs are linked. The path-dependent naming scheme gives

(EPC, location, time.in, time-out). For example, if 8 us the benefits of a tree structure representation of a Trie
supermarket has readers on each shelf that scan the itemSihout taking a significant compression penalty.

(ejvery mmuie, alnAcrj4|(t)etmslstan/ Or:. the' Sh?'f on';]ver?iqe forfl Fourth, most queries are likely to be at a high level of
ay, we geta 4, 0 1 reduction in size without foss o abstraction, and will only be interested in the low-level in-

|nformat|0n.. dividual items if they are associated with some interesting

: Second, items tend to move and stay togethe.r throughpatterns discovered at a high level. For example, query (
different locations. F_or example, a pallet. with 500 asks about dairy products by manufacturer. It is possible
cases of CDs may arrive at the warehouse., from thereafter seeing the results, that the user may ask subsequent
cases of 50 CDs may move to the shelf, and from queries and drill down to individual items. We can gain
there packs of 5 (.:DS may move to the checkout significant compression by creating the stay records not at
counter. We can register a singiay tuple of the form the raw level but at a minimal level of abstraction shared

(EPC list, location, time-in, time-out) for the CDs that "4 o ications, while keeping pointers to the RFID
arrive in the same pallet and stay together in the Warehousetags_ This allows us to operate on a much smaller data set,

0 4
anithui gen?rate a 80% space sa\;]mg.. is 10 st . fetching the original data only when absolutely necessary.

| tn a _(ta'rna Ve cdofrnp{ﬁszlgr(l:ge:h atnlsm 'St 0 strc])refa S The rest of the paper is organized as follows. Section
gietransitionrecorad for the s thatmovetogetherirom 5 presents the structure of the input RFID data. Section 3

the warehouse to the shel_f, that IS to group transitions andpresents data compression and generalization methods im-
_not stays_. T_h(_e problem with tran_smon compression |s_that portant for the design of the RFID warehouse. Section 4
it ma_kes It d'ﬁ'.CU|t to answer quenes about |t§ms atagiven jnoduces algorithms for constructing the RFID warhouse.
Iocatlon. or going through "i SEMes of locations. _For €X" Section 5 develops methods for efficient processing of a va-
ample, if we get the query "What is the average time that riety of RFID queries. Section 6 reports the experimental

ol H 1 - . . .
SDsfstaytEt ﬂ,:e shelf .d We.tﬁ?n ciyrectlx g";t ltheblnzq;ma and performance results. We discuss the related issues in
lon from thestayrecords withiocation = shelf, but | Section 7 and conclude our study in Section 8.
we havetransition records, we need to find all the tran-

sition records withorigin = shelf and the ones with

destination = shelf, join them on EPC, and compute 2 RFID Data

departure time — arrival time. Another method of com-

pression would be to look at the sequence of locations that Data generated from an RFID application can

an item goes through as a string, and use a Trie data strucbe seen as a stream of RFID tuples of the form

ture [6] to compress common path prefixes into a single (EPC, location, time), whereEPCis the unique identifier

node. The problem with this approach is that we lose com-read by an RFID readefpcation is the place where the

pression power. In the CDs example, if the 50 items all stay RFID reader scanned the item, atiahe is the time when

at the warehouse together but they come from different lo- the reading took place. Tuples are usually stored according

cations, a Trie would have to create distinct nodes for each,to a time sequence. A single EPC may have multiple

thus gaining no compression. readings at the same location, each reading is generated by
Third, we can gain further compression by reducing the the RFID reader scanning for tags at fixed time intervals

Model Proposal and Justification

In this paper we propose a new RFID data warehouse
model to compress and aggregate RFID data in an organize
way such that a wide range of queries can be answered effi
ciently. Our design is based on the following key observa-
tions.

First, we need to eliminate the redundancy present
in RFID data. Each reader provides tuples of the
form (EPC,location,time) at fixed time intervals.
When an item stays at the same location, for a pe
riod of time, multiple tuples will be generated. We
can group these tuples into a single one of the form



or on a continuous basis. Table 1 is an example of a rawtraveled from the distribution center in Chicago to stores in
RFID database where a symbol starting withepresents  Urbana, we cannot get this information. We have the count
an RFID tag/ a location, and a time. The total number of  of “dairy products” for each location but we do not know

records in this example is 188. how many of those items went from the first location to the

second. We need a more powerful model capable of aggre-

Raw Stay Records gating data while preserving its path-like structure.

(P11, 81)  (r2,01,81)  (r3,11,61)  (r4,i1,¢1)  (rb,11,¢1)

(r6,11,¢1) (r7,11,t1) ... (rl,11,t9) (r2,11,¢9) (r3,11,t9) We propose an RFID warehouse architecture that con-

E:‘; gii’%) - (”1 éiﬁg) t(f;f)’ llf.t.lo)(r(ﬁ’;’lgll)o) E:;‘ gg?g tains a fact tablestay, composed of cleansed RFID records;

(r4,13,621) (r5,13,621) ... (r6,06,t35) ... (r2,15,40) an information tableinfo, that stores path-independent in-

(r3,15,t40) (16, 16,t40) ... (r2,15,t60) (13,15, t60) formation for each item, i.e., SKU information that is con-
stant regardless of the location of the item such as manu-

Table 1. Raw RFID Records facturer, lot number, color, etc.; andw@aptable that links

together different records in the fact table that form a path.

In order to reduce the large amount of redundancy in the Figure 1 shows a logical view into the RFID warehouse
raw data, data cleaning should be performed. The outputschema. We call thstay, info, andmaptables aggregated
after data cleaning is a set of clean stay records of the format a given abstraction level &FID-Cuboid
(EPC, location, time_in, time_out) wheretime.in is the
time when the object enters the location, éintk outis the
time when the object leaves the location.

Data cleaning of stay records can be accomplished by
sorting the raw data on EPC and time, and generating
time.in andtime_out for each location by merging consecu- The computation ofRFID-Cuboidsis more complex
tive records for the same object staying at the same locationthan that of regular cuboids as we will need to aggregate the
Table 2 presents the RFID database of Table 1 after cleandata while preserving the structure of the paths at different
ing. It has been reduced from 188 records to just 17 recordsabstraction levels.

The main difference between the RFID warehouse and a
traditional warehouse is the presence of the map table link-
ing records from the fact tablst@y) in order to preserve the
original structure of the data.

l EPC ‘ Stay(EPC, location, time_in, time_out) ‘

ri (r1,11, t1, £10)(r1, 13, 120, £30) Product
r2 (r2,11,t1,10)(r2, 13,120, t30)(r2, 15, t40, t60) — category
r3 (r3,11,t1,10)(r3,13,t20,t30)(r3, 15, t40, t60) lot number —
r4 (rd,1,t1,¢10)
r5 (r5,12,t1,t8)(r5, 13,120, t30) (15, 15, t40, t60) Info gid
r6 (r6,12,t1,t8)(r6, 13, t20, t30)(r6, 16, t35, t50) RFID tag gids [T stay
r7 (7“7, l2,t1,t8)(7"7, l4,t10,t20) L product Location gids
—1 manufacturer locati
Table 2. A Cleansed RFID Database color reader_loc ocation
) locale Time | .t'me—'n
price building second F1 time_out
. Manufacturer city minute measure
3 Architecture of the RFID Warehouse .
L— province hour
. ) country day
Before we describe our proposed architecture for ware- region month

housing RFID data, it is important to describe why a tradi-
tional data cube model would fail on such data. Suppose we
view the cleansed RFID data as the fact table with dimen-
sions (EPC,location, time_in, time_out : measure).

The data cube will compute all possible group-bys on this
fact table by aggregating records that share the same values From the data storage and query processing point of view
(or any *) at all possible combinations of dimension. If we the RFID warehouse can be viewed as a multi-level data-
use count as measure, we can get for example the numbelbase. The raw RFID repository resides at the lowest level,
of items that stayed at a given location for a given month. on its top are the cleansed RFID database, the minimum
The problem with this form of aggregation is that it does abstraction leveRFID-Cuboidsand a sparse subset of the
not consider links between the records. For example, if we full cuboid lattice composed of frequently queried (popular)
want to get the number of items of type “dairy product” that RFID-Cuboids

Figure 1. RFID Warehouse - Logical Schema



3.1 Key ideas of RFID data compression 3.2 RFID-CUBOID

Even with the removal of data redundancy from RFID ~ With the data compression principles in mind, we pro-

raw data, the cleansed RFID database is usually still enor-PoSe, theRFID-Cuboid a data structure, for storing aggre-
mous. Here we explore several general ideas for construct9ated data in the RFID warehouse. Our design ensures that

ing a highly compact RFID data warehouse. the data are disk-resident, summarizing the contents of a
cleansed RFID database in a compact yet complete manner
Taking advantage of bu|ky object movements while aIIOWing efficient execution of both OLAP and tag-

Since a large number of items travel and stay togetherSPECific queries. _
through several stages, it is important to represent such The RFID-Cuboid consists of three tables: (1) Info,
a collective movement by a single record no matter how Which stores product information for each RFID tag, (2)

many items were originally collected. As an example, if Stay, whigh stores information.on items that st.ay toget.her

1,000 boxes of milk stayed in locatidac, between time &t @ location, gnd (3).Map, which stores path information

#1 (time_in) andt, (time_out), it would be advantageous if Necessary to link multiple stay records.

only one _re_cord is registered in the database rather than,¢ormation Table

1,000 individual RFID records. The record would have

the form: (gid, prod,loca,t1,t2,1000), where 1,000 is the The information table stores path-independent dimen-

count, prod is the product id, andid is a generalized id  sions such as product name, manufacturer, product price,

which will not point to the 1,000 original EPCs but instead product category, etc. Each dimension can have an asso-

point to the set of new gids which the current set of objects ciated concept hierarchy. All traditional OLAP operations

move to. For example, if this current set of objects were can be performed on these dimensions in conjunction with

split into 10 partitions, each moving to one distinct loca- various RFID-specific analysis. For example, one could

tion, gid will point to 10 distinct new gids, each represent- drill-down on the product category dimension from “cloth-

ing a record. The process iterates until the end of the objecting” to “shirts” and retrieve shipment information only on

movement where the concrete EPCs will be registered. Byshirts.

doing so, no information is lost but the number of records  The information tablei§fo) contains a set of attributes

to store such information is substantially reduced. that provide a path-independent extended description of

RFID tags. Each entry in Info is a record of the form:

Taking advantage of data generalization (EPCist),(dy,...,dm) : (my,...,m;)), where the
Since many users are only interested in data at a rela-code list contains a set of itemsg,, rfids) that share the

tively high abstraction level, data compression can be ex-same values for dimensions,...,d,,, andm4,...,m;

plored to group, merge, and compress data records. Foare measures of the given items, e.g., price. Table 3 presents

example, if the minimal granularity of time is hour, then and examplénfo table.

objects moving within the same hour can be seen as mov-

ing together and be merged into one movement. Similarly,| EPCList | Product | Manufacturer| Price | Weight
if the granularity of the location is shelf, objects moving to | (r2,r3,r7) | TV Sony $300 | 501b
the different layers of a shelf can be seen as moving to the (r1,r4) Computer| Sony $900 | 61b
sameshelf and be merged into one. Similar generalization

can be performed for products.§, merging different sized Table 3. Info Table

milk packages) and other data as well.

Taking advantage of the merge and/or collapse of path Stay Table

segments As mentioned in the introduction, items tend to move

In many analysis tasks, certain path segments can be igand stay together through different locations. Compress-
nored or merged for simplicity of analysis. For example, ing multiple items that stay together at a single location is
some non-essential object movemertg( from one shelf  vital in order to reduce the enormous size of the cleansed
to another in a store) can be completely ignored in certain RFID database. In real applications items tend to move in
data analysis. Some path segments can be merged withouarge groups. At a distribution center there may be tens of
affecting the analysis results. For store managers, mergingpallets staying together, and then they are broken into in-
all the movements before the object reaches the store couldlividual pallets at the warehouse level. Even if products
be desirable. Such merging and collapsing of path segmentsinally move at the individual item level from a shelf to the
may substantially reduce the total size of the data and speedeheckout counter, our stay compression will save space for
up the analysis process. all previous steps taken by the item.



The Stay Table qtay) contains an entry for each the records inD with those inB and S to get the paths.
group of items that stay together at a certain loca- By using the map, the EPC lists can be orders of magnitude
tion. Each entry instay is a record of the form: shorter and thus reduce 10 costs. Additionally, if we use

((gids, location, time_in, time_out) : (mi,...,mg)), path-dependent naming of the map entries, we can compute
wheregids is a set of generalized record ids each point- list intersection much faster.

ing to a list of RFID tags or lower levejids, location is The map table contains mappings from higher lexék

the location where the items stayed togethene_in is the to lower level ones or EPCs. Each entrynirapis a record
time when the items entered the location, ande_out the of the form: (gid, (gids, ..., gid,)), meaning thatgid is

time when they left. If the items did not leave the loca- composed of all the EPCs pointed to by, ..., gid,.

tion, time_out is NULL. m,...,m, are the measures The lowest levelids will point directly to individual items.
recorded for the stay, e.g., count, average timeattion, In order to facilitate query processing we will assign
and the maximal time dbcation. path-dependent labels to high leyédls. The label will con-

Table 4 presents the stay table for the cleansed data frontain one identifier per location traveled by the items in the
Table 2. We have now gone from 188 records in the raw gid. Figure 2 presents the gid map for the cleansed data in
data, to 17 in the cleansed data, and then to 7 in the com-Table 2. We see that the group of items wjtli 0.0 arrive

pressed data. at 11, and then subdivide into 0.0.0, and s0.0, the items in
_ s0.0 (we prefix the label withto denote that the items stay
gid loc | t1 | t2 | count| measure in the location) stay in location 11 while the items in 0.0.0
0.0 11t |10 |4 9 travel to 13, and subdivide further into 0.0.0.0 and s0.0.0, the
8'(1) 0 :g go Igo 2 ; items in s0.0.0 stay at location 13, while the ones in 0.0.0.0
0.10 3 | 20| 130 | 2 19 move to location I5.
0.1.1 14 | t10 | t20 | 1 19 Map - Tebular View Map - Graphical View
0.0.0.0,0.1.0.0| I5 t40 | t60 | 3 19
0.1.0.1 16 t35 | t50 | 1 14 ) 0.0,01
0.0 0.0.0.50.0 0,00, 50.0 Q 010011
0.0.0 0.0.0.0,50.0.0
Table 4. Stay Table 5000 2rs
s0.0 r4
s0.0.0 rl 0.0.0.0,50.0.0 e 0 0.11
Map Table 910 Tot000i0T
A . 0.1.0.0 5 0000
The maptable is an efficient structure that allows query 0.10.1 6
processing to link together stages that belong to the same —> . 0000

path in order to perform structure-aware analysis, which
could not be answered by a traditional data warehouse. Figure 2. GID Map - Tabular and Graphical
There are two main reasons for usingnaptable instead Views
of recording the complete EPC lists at each stage: (1) data
compression, and (2) query processing efficiency.
First, we do not want to record each RFID tag on the EPC
list for everystayrecord it participated in. For example, if
we assume that 10000 items move in the system in groups 03.3  Hierarchy of RFID-Cuboids
10000, 1000, 100, and 10 through 4 stages, instead of using

40,000 units of storage for the EPCs in 8iayrecords, we Each dimension in thetayandinfo tables has an associ-
use only 1,111 unit$ (1000 for the last stage, 100, 10, and 4teq concept hierarchy. A concept hierarchy is a partial or-
1 for the ones before). der of mappings from lower levels of abstraction to higher

The second and the more important reason for havingones. The lowest corresponds to the values in the raw RFID
such a map table is the efficiency in query processing. Sup-gata stream itself, and the associated per item information,
pose each map entry were given a path-dependent labelyhich could be at the Stock Keeping Unit (SKU) level. The
To compute, for example, the average duration for milk to pighest isx which represents any value of the dimension.
move from the distribution center)), to the store back- In order to provide fast response to queries specified at
room (B), and finally to the shelf{), we need to locate  yarigus levels of abstraction, it is important to pre-compute

the stay records for milk at each stage. To get three sets o5 e RFID-Cuboidsat different levels of the concept hi-
recordsD, B, andS, one has to intersect the EPC lists of g/5rchies for the dimensions of thefo and stay tables.

2This figure does not include the size of the map itself which should It iS Ob\_/iOU.SIY too expen§ive to co.m'put(.a a”' the possible
use 12,221 units of storage, still much smaller than the full EPC lists generalizations, and partial materialization is a preferred




choice. This problem is analogous to determining which set followed the same path throughout the system without do-

of cuboids in a data cube to materialize in order to answering an unmanageable number of item list intersections. For

OLAP queries efficiently given the limitations on storage this same reason we cannot easily construct the map table,
space and precomputation time. This issue has been studiedssign path-dependent labels to the gids, or determine if two
extensively in the data cube research [2, 8], and the princi-different records can be collapsed into one.

ples are generally applicable to the selective materialization Algorithm 1 summarizes the method for constructing an
of RFID-Cuboids RFID-Cuboidfrom the cleansed RFID database. It takes as
In our design, we suggest to compute a set of jnpytthe clearstayrecordsS, theinfo records! describing
RFID-Cuboidsat the minimal interesting level at which  each item, and the level of abstraction for each dimension
users will be interested in inquiring the database, and aThe output of the algorithm is aRFID-Cuboidrepresented

small set of higher level structures that are frequently re- by thestay info, andmaptables aggregated at the desired
quested and that can be used to quickly compute non-gpstraction level.

materializedRFID-Cuboids

An RFID-Cuboid residing at the minimal interesting ab
level will be computed directly from the cleansed RFID . .
database and will be the lowest cuboid that can be queriedregmar cubing algorithm.

unless one has to dig directly into the cleansed data in some S€cond, we call the BuildPathTree procedure (Al-
very special cases. gorithm 2) which constructs a tree for the paths trav-

eled by items in the cleansed database. The paths
. that have the same branch in the tree share the same
4 Construction of an RFID Warehouse path prefix. Each node in the tree is of the form

(location, time_in, time_out, measure_list, children_list),

In this section, we study the construction of the RFID where time_in is the time at which the items en-
warehouse from the cleansed RFID database. tered location, time_out the time at which they left,

In order to construct th&FID-Cuboid as described in  measure_list contains the stay measures (from the par-
the paper, we need a compact data structure that allows ugnt's location to this node’s location) for every item that
to do the following efficiently: (1) assign path-dependent stayed at the node, anthildren_list is a list of nodes
labels to the gids, (2) minimize the number of outptay where the items in the node moved next. All processing
records while computing aggregates that preserve the pathfrom this point on in the algorithm will be done using the
like nature of the data, and (3) identify path segments thattree which we will callpath_tree.

can be collapsed. We argue that using a tree-like structure to  Tird. we merge consecutive nodes in the tree that cor-
represent the different paths in the database is an ideal 5°|”fespond to the same location. This happens because it is
tion, where each node in the tree will represent a path Stage'possible for two distinct locations to be aggregated to the

all common path prefixes in the database will share the samesame higher level location. This step achieves compression
branch in the tree. Using the tree we can traverse the nodesBy collapsing paths at the given abstraction level.

in the breath-first fashion while assigning path-dependent . . :
labels. We can quickly determine the minimum number Fourth, we generate gids for the nodes in the tree. This

. is done in the breath-first order, where each node receives
of outputstay records by aggregating the measures of all a unique id that is appended to the gid of its parent node.

the items that share the same branch in the tree. And we__ " . ; .
can collapse path segments by simply merging parent/chiIgg:izgig;?eizﬁgzéfqﬁ;s L?jf::s?n%p the computation of

nodes that correspond to the same location. Additionally,

the tree can be constructed by doing a single scan of the Fifth, we take thencasure_list at each node and com-

cleansed RFID database, and it can be discarded after wdact it to one aggregate measure for each group of RFID

have materialized the outpitfo, stay, andmaptables. tags that share the same leaf (descendant from the node)
The most common implementation of the group-by op- andinfo record. Further compression is done when several

erator, which would sort the input records on location, leaves share the same measure.

time_in, and timeout, and generate a list of RFID tags that Finally, we traverse the tree, generating the stayta-

share the same values on those dimensions, would fail inble: each node generates as many records as the number

generating theRFID-Cuboidin an efficient manner. The of distinct measures it contains. It is possible for multi-

problem with this approach is that we lose the ability to ple nodes to share the saratyrecord if they share all

determine which of the items that share the same location,the attributes and measures. For example, if there are two

time.in, and timeout values can actually have their mea- nodes in the patlree that have the same locatioimec_in,

sures aggregated into a single measure. The reason is thaime_out, and measures, we generate a sirgg&y record

we cannot quickly determine which subset of all the items that has two gids, one for each node.

First, we aggregate the information table to the level of
straction specified by.. This can be done by using a



4.1 Construction of Higher Level RFID-Cuboids
from Lower Level Ones

Once we have constructed the minimum abstraction level
RFID-Cuboid it is possible to gain efficiency by construct-
ing higher levelRFID-Cuboidsstarting from the existing
RFID-Cuboidinstead of directly from the cleansed RFID
data. This can be accomplished by running Algorithm 1
with thestayandinfo tables of the lower levédRFID-Cuboid
as input, and using thmaptable of the inpuRFID-Cuboid
to expand each gid to the EPCs it points to. The benefit of
such approach is that the inpstty andinfo tables can be

significantly smaller than the cleansed tables, thus greatly

gaining in space and time efficiency.

Algorithm 1 BuildCuboid
Input: Stay recordsS, Information recordd, aggregation
level L
Output: RFID-Cuboid
Method:

1: I’ = aggregate | to L;

2: pathtree = BuildPathTree (S, L);

3: Merge consecutive nodes with the same location in the
pathtree;
Traverse pathiree in the breath-first order and assign
gid to each node (gid = parent.gid + ‘" + unique id),
where the parent/children gid relation in the p#ite
defines the output MAP;

group of items with the same information record and
in the same leaf;

CreateS’ by traversing pathree in the breath-first or-
der, and generating stay records for each node (Multiple
nodes can contribute to the same stay record);

Output MAP,S’, andI’

Observation. Given a cleansed stay and info input tables,
the RFID cuboid structure has the following properties:

1. (Construction cost) The RFID-Cuboid can be con-
structed by doing a single sequential scan on the
cleansed stay table.

. (Completeness)rhe RFID cuboid contains sufficient
information to reconstruct the original RFID database
aggregated at abstraction level

. (Compactness)The number of records in the output
stay and info tables is no larger than the number of
records in the inpustayandinfo tables respectively.

Rationale. The first property has been shown in the
RFID-Cuboidconstruction algorithm. The complete-
ness property can be proved by using theptable to

Compute aggregate measures for each node, one per

Algorithm 2 BuildPathTree
Input: StayS, aggregation level
Output: pathtree
Method:

1: root = new node;

2: for each record in S do

3: s’ =aggregate s to level L;
4:  parent = lookup node for'.rfid;
5. if parent == NULLthen
6: parent = root;
7 endif
8: node = lookups’.rfid in parent’s children;
9: if node == NULLthen
10: node = new node;
11: node.loc = s.loc;
12: node.tl = s.t1;
13: node.t2 = s.t2;
14: add node to parent’s children;
15:  endif
16: node.measurst += (s'.gid, s’.measure);
17: end for

18: return root

expand the gids for eacdtayrecord to get the origi-
nal data. The compactness property is proved noticing
that Algorithm 1 emits at most one output record per
distinct measure per node, and the number of distinct
measures in a node is limited by the number of input
stayrecords. The size of the outpitfo table, by def-
inition of the group-by operation is bound by the size
of the inputinfo table. [

5 Query Processing

In this section we discuss the implementation of the basic
OLAP operations, i.e., drill-down, roll-up, slice, and dice,
applied to the RFID data warehouse, and introduce a new
operation, Path Selection, relevant to the paths traveled by
items.

Given the very large size and high dimensionality of the
RFID warehouse we can only materialize a small fraction
of the total number oRFID-Cuboids We will compute the
RFID-Cuboidthat resides at the minimum abstraction layer
that is interesting to users, and thd3&ID-Cuboidsthat
are frequently requested. Initially, the warehouse designer
may decide to materialize a subsetRiFID-Cuboidsthat
are interesting to the users, and as the query log is built, we
can perform frequency counting to determine frequently re-
guestedrFID-Cuboidghat should be pre-computed. When
a roll-up or drill-down operation requires &¥ID-Cuboid
that has not yet been materialized, it would have to be com-
puted on the fly from an existingFID-Cuboidthat is close



to the required one but at a lower abstraction level. andcy — (location = “store”). \We can compute aggre-

The slice and dice operations can be implemented quitegate measures on the results of a path selection query, e.g.,
efficiently by using relational query execution and opti- for the example query the aggregate measure would be the
mization techniques. An example of the dice operation average time.
could be: “Give me the average time that milk stays at the  Algorithm 3 illustrates the process of selecting the gids
shelf in storeS in lllinois”. This query can be answered by matching a given query. We first select tlgéds for
the relational expression: the stay records that match the conditions for the ini-
Ostay.location="shel f',in fo.product="milk’ (5tay MXg;q in fo). tial and final stages of the query expression. For ex-
ample, gstare may look like (1.2,8.3.1,3.4) and genq
may look like (1.2.4.3,4.3,3.4.3). We then compute the

Path queries, which ask about information related to the pairs of gids fromg,.; that are a prefix of a gid in
structure of object traversal paths, are unique to the RFIDgena-  Continuing with the example we get the pairs
warehouse since the concept of object movements is not{(1.2,1.2.4.3), (3.4, 3.4.3)). For each pair we then retrieve
modeled in traditional data warehouses. It is essential to al-all the stay records. The pait.2,1.2.4.3) would require
low users to inquire about an aggregate measure computedS to retrieve stay records that include gids 1.2, 1.2.4,
based on a predefined sequence of locations (path). On@nd 1.2.4.3. Finally, we verify that each of these records
such example could be: “What is the average time for milk matches the selection conditions for eaghge; and for
to go from farms to stores in lllinois?”. in fo, and add those paths to the answer set.

Queries on the paths traveled by items are fundamental If we have statistics on query selectivity, it may be pos-
to many RFID applications and will be the building block sible to find a better optimization query execution plan than
on top of which more complex data mining operators can that presented in Algorithm 3. If we have a sequence of
be implemented. We will illustrate this point with two real stages(stagei, ..., stagey), we could retrieve the records
examples. First, the United States government is currentlyfor the most selective stages, in addition to retrieving the
in the process of requiring the containers arriving into the stayrecords forstage; andstage, in order to further prune
country by ship to carry an RFID tag. The information can the search space.
be used to determine if the path traveled by a given con- : i
tainer has deviated from its historic path. This application Algorithm 3 PathSelection
may need to first execute a path-selection query across difinput: ¢ < (o.info, (o., stages, ..., 0., stagey.)),, RFID
ferent time periods, and then use outlier detection and clus-warehouse.
tering to analyze the relevant paths. Second, plane manuOutput: the paths that match query conditions,
facturers are planning to tag airplane parts to better recordMethod:
maintenance operations on each part. Again using path se- 1: g,;,,+ = Select gids of stay records matching the condi-
lection queries you could easily associate a commonly de-  tion atstage;
fective part with a path that includes a certain set of suppli- 2: ¢.,,4 = select gids of stay records matching the condi-
ers that provide raw materials for its construction and are tion atstagey, and that forin fo;
likely the sources of the defect. This task may need fre- 3: for every pair of gid<s, €) in gstart, gena SUCh thats is
quent itemset counting and association mining on the rele-  a prefix ofe do
vant paths. These examples show that path selection can be4:  path = retrieve stay records for all gids frosto e;
crucial to successful RFID data analysis and mining, and it 5: if the stay records ipath match conditions foinfo
is important to design good data structures and algorithms and for the remaining stagésen

Path Selection

for efficient implementation. 6: answer = answer + path;
More formally, a path selection query is of the form: 7. endif
8: end for
9: returnanswer

q < {(o.info, (o, stagey, . .., 0., stager)),

whereo.info means the selection on tlefo table based  Analysis. Algorithm 3 can be executed efficiently if we
on conditionc, ando., stage; means the selection based on have a one-dimensional index for each dimension of the
condition¢; on thestaytable stage;. The result of a path  stay table; a one-dimensional index on the gid dimension
selection query is a set of paths whose stages match thef the map table; and a one-dimensional index on the EPC
stage conditions in the correct order (possibly with gaps), dimension of the info table. The computationgf,..; and

and whose items match the conditien The query ex-  ¢.,q4 Can be done by retrieving the records that match each
pression for the example path query presented above isondition atstage; andstages, and intersecting the results.

¢ «— (product = “milk”), c; — (location = “farm”), Verification of the conditiomr.infois done by using the map



table to retrieve the base gids for each gidiiage;, that has 500 thousand to 10 million cleansed RFID records. The

as prefix a gid instage;. The info record for each baggd RFID-Cuboidis computed at the same level of abstraction
can be retrieve efficiently by using the EPC index on the of the cleansed RFID data, and thus the compression is loss-
info table. less. As it can be seen from Figure 3 tR&ID-Cuboid

that uses the map has a compression power of around 80%
6 Performance Study while the one that uses tag lists has a compression power of

around 65%. The benefit of the map comes from the fact

In this section, we perform a thorough analysis of our that it avoids registe_ring eac_h tag at each chation. In both
model and algorithms. All experiments were implemented €2S€S the compression provided by collapsing stay records

using C++ and were conducted on an Intel Xeon 2.5GHz 'S Significant.
(512KB L2 cache) system with 3GB of RAM. The system
ran Red Hat Linux with the 2.4.21 kernel agdc 3.2.3. _ 350000 ——raw
) 300,000 —&—nomap
6.1 Data Synthesis g 200000 =
< 150,000

=3

The RFID databases in our experiments were generatedﬁ 100,000
using a tree model for object movements. Each node in the® >
tree represents a set of items in a location, and an edge rep- 01 05 1 5 1‘0
resents a movement of objects between locations. We as- Input Stay Records (millions)
sumed that items at locations near the root of the tree move
in larger groups, while tags near the leaves move in smaller Figure 3. Compression vs. Cleansed Data
groups. The size of the groups at each level of the tree de- Size. P = 1000, B = (500, 150, 40,8,1), k = 5.
fine the bulkinessB = (s1,so,...,sk), wheres, is the
number of objects that stay and move together at leoél
the tree. By making; > s; for i > j we create the effect Figure 4 also shows the size of the cleansed RFID
of items moving in larger groups near the factory and dis- database (raw) compared with the map and nomap
tribution centers, and smaller groups at the store level. WeRFID-Cuboids In this case we vary the degree of bulkiness
generated the databases for the experiments by randomlyf the paths, e.g., the number of tags that stay and move
constructing a set of trees with a given level of Bulkiness, together through the system. We define 5 levels of bulki-
and generating the cleansed RFID records corresponding tlmessa = (500, 230, 125, 63,31), b = (500, 250, 83, 27,9),
the item movements indicated by the edges in the tree. c = (500,150,40,8,1), d = (200,40,8,1,1), ande =

As a notational convenience, we use the following sym- (100,10, 1,1,1). The bulkiness decreases from dataset

bols to denote certain dataset parameters. to e. As it can be seen in the figure, for more bulky data
B =(s1,...,s;) | Path Bulkiness the RFID-Cuboidthat uses the map clearly outperforms the
k Average path length nomap cuboid; as we move towards less bulky data the ben-
P Number of products efits of the map decrease as we get many entries in the map
N Number of cleansed RFID records that point to just one gid. For paths where a significant por-
tion of the stages are traveled by a single item the benefit
6.2 RFID-Cuboid compression of the map disappears and we are better off using tag lists.

A possible solution to this problem is to compress all map
The RFID-Cuboids form the basis for future query entries that have a single child into one.

processing and analysis. As mentioned previously, the ad- Figure 5 shows the compression obtained by climbing
vantage of these data structures is that they aggregate andlong the concept hierarchies of the dimensions in the stay
collapse many records in the cleansed RFID database. Hereand info tables. Level-0 cuboids have the same level in the
we examine the effects of this compression on different datahierarchy as the cleansed RFID data. The three higher level
sets. We will compare two different compression strategies, cuboids offer one, two, and three levels of aggregation re-
both use thetayandinfo tables, but one uses the map table spectively at all dimensions (location, time, product, man-
as described in the paper (map), whereas the other uses afacturer, color). As expected the size of the cuboids at

tag list to record the tags at each stay record (nomap). higher levels decreases. In general the cuboid using the map
Figure 3 shows the size of the cleansed RFID databasds smaller, but for the top most level of abstraction the size
(raw) compared with the map and nomBpEID-Cuboids is the same as for the nomap cuboid. At level 3 the size of

The datasets contains 1,000 distinct products, traveling inthe stay table is just 96 records, and most of the space is ac-
groups of 500, 150, 40, 8, and 1 through 5 path stages, andually used by recording the RFID tags themselves and thus
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Figure 4. Compression vs. Data Bulkiness. (500,150, 40,8, 1), k = 5
P = 1000, N = 1,000, 000, k = 5. o '

thestaytable but nanap it instead uses tag lists at each stay

it makes little difference if we use a map or not.
P record (nomap), and the third is tR&ID-Cuboiddescribed

12,000 in the paper usingtayandmaptables (map). We assume
2 10,000 4 —¢—map that for each of the scenarios we have a B+Tree on each of
§ 8,000 —=—nomap the dimensions. In the case of the map cuboid the index
é 6,000 4 points to a list of gids matching the index entry. In the case
@ 4,000 of the nomap cuboid and the cleansed database the index
& 2000 - points to the tuplé RFID tag,record id). This is neces-
0 ‘ ‘ ! sary as each RFID tag can be present in multiple records.
0 2 3 The query answering strategy used for the map cuboid is
the one presented in Algorithm 3. The strategy for the other
Figure 5. Compression vs. Abstraction Level. two cases is to retrieve thezF'ID tag, record id) pairs
P = 1000, B = (500,150,40,8,1), k = 5, N = matc_hmg each cqmponent of the query, intersecting them,
1,000, 000. and finally retrieving the relevant records.

For the experiments we assumed that we have a page size
of 4096 bytes, and that RFID tags, record ids, and gids use
Figure 6 shows the time to build tHeFID-Cuboidsat 4 bytes each. We also assume that all the indices fit in mem-
the same four levels of abstraction used in Figure 5. In all ory except for the last level. For each of the experiments we
cases the cuboid was constructed starting from the cleansedenerated 100 random path queries. The query specifies a
database. We can see that cuboid construction time does ngtroduct, a varying number of locations (3 on average), and
significantly increase with the level of abstraction. This is a time range to enter the last stage (timg). Semantically
expected as the only portion of the algorithm that incurs ex- this is equivalent to asking “What is the average time for
tra cost for higher levels of abstraction is the aggregation of productX to go through locationg., ..., L; entering lo-
the info table, and in this case it contains only 1,000 entries.cation L, between times$; — ¢,? .
This is common as we expect the cleansed RFID stay table Figure 7 shows the effect of different cleansed database
to be orders of magnitude larger than the info table. The sizes on query processing. The map cuboid outperforms the
computation oRFID-Cuboidscan also be done from lower cleansed database by several orders of magnitude, and most
level cuboids instead of doing it from the cleansed databaseimportantly the query answer time is independent of data-
For the cuboids 1 to 3 of Figure 6 we can obtain savings of base size. The nomap cuboid is significantly faster than the
50% to 80% in computation time if we build cubaidrom cleansed data but it suffers from having to retrieve very long

cuboidi — 1. RFID lists for each stage. The map cuboid benefits for using
very short gid lists, and using the path-dependent gid nam-
6.3 Query Processing ing scheme that facilitates determining if two stay records

form a path without retrieving all intermediate stages.

A major contribution of the RFID data warehouse model  Figure 8 shows the effects of path bulkiness on query
is the ability to efficiently answer many types of queries at processing. For this experiment we set the number of stay
various levels of aggregation. In this section, we show this records constant at 1 million. The bulkiness levels are
efficiency in several settings. We compare query executingthe same as those used for the experiment in Figure 4.
under three scenarios: the first is a system that directly use#\s with the compression experiment since we have more
the cleansed RFID database (raw), the second one that usdaulky paths, the map cuboid is an order of magnitude faster
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10,000 7 ——map Global Network, which is composed of servers that collect
1,000 | —=—nomap data from readers and contact computers responsible for
—A—raw keeping detailed information on each tag through a direc-

100 tory service. The system answers queries on tags through an

XML language called PML [5]. [3] presents an overview of
RFID data management from a high-level perspective and it
introduces the idea of an online warehouse but without go-
ing into the detail at the level of data structure or algorithm.
An RFID data warehouse shares many common prin-
Figure 7. 1/0 Costvs. Cleansed Data Size. P = ciples with the traditional data cube [1, 2, 7]. They both
1000, B = (500, 150,40, 8, 1), k = 5. aggregate data at different levels of abstraction in multi-
dimensional space. Since each dimension has an associ-
ated concept hierarchy, both can be (at least partially) mod-
elled by aStar schema. The problem of deciding which
than the cleansed RFID database. As we get less bulkyrFID-Cuboidsto construct in order to provide efficient an-
paths, the benefits of compressing multiple stay records deswers to a variety of queries specified at different abstrac-
creases until the point at which it is no better than using tion levels is analogous to the problem of partial data cube
the cleansed database. The difference between the map ang\aterialization studied in [8, 12]. HoweveRFID-Cuboid
nomap cuboids is almost an order of magnitude for bulky differs from a traditional data cube in that it also modis
paths, but as in the previous case, for less bulky paths thgect transitionsn multi-dimensional space, which is crucial
advantage of using the map decreases. to answer queries related to object movements/transitions as
demonstrated in our analysis.
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£ 12222 e 7.2 Possible Extensions
% 100 Here we discuss methods for incremental update in the
é’ 10 RFID warehouse, construction of fading RFID model, and
o 1 ; ; ; its linkage with mining RFID data.
a b c d e
Path Bulkiness Incremental Update
Incremental update is crucial to RFID applications. A
Figure 8. I/O Cost vs. Path Bulkiness. P = warehouse will receive constant updates as new tags enter
1000, k = 5. the system and objects move to new locations. We can ap-
ply Algorithm 1 only to the new data to generate nstay
andmaptables (we need to initialize the gid naming as to
not generate duplicates with the existing map). The updated
7 Discussion cuboid will be the union of the oldtayandmaptables with

the new ones. The main reason that we can just run the al-

e gorithm in the new data without worrying about the old data
is that the updates are only for item movements with higher
timestamps than we already have so they will necessarily
form new nodes in the path tree.

In this section, we discuss the related work and explor
the possible extensions of the methods.

7.1 Related Work
Construction of a Fading RFID Warehouse Model
RFID technology has been researched from several per- In most situations, the more remote in time or distance
spectives: (1) thphysics of building tags and readd#s 9], the data is, the less interest a user would have to study it in
(2) the techniques required to guaranpeizacy and safety  detail. For example, one may not be interested in the de-
[11], and (3) thesoftware architecture required to collect, tailed tag movements among shelves if the data is years old,
filter, organize, and answer online queries on &<, 10]. or thousands of miles away, or not being in the same sector
The software architecture line of research is the closest(e.g, manufacturer vs. store manager). This will relieve our
to our work but differs in that it is mainly concerned with burden to store the enormous size of historical or remote or
online transaction processing (OLTP) but not OLAP-based unrelated RFID databases.
data warehousing. [10] presents a comprehensive frame- The RFID warehouse can be easily adapted tading
work for online management of RFID data, called the EPC modelwhere remote historical or distantly located data can
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be stored with low resolutioni.é., not retaining such data move together in bulky mode, especially at the early stage.
at a low abstraction level). This can be done incrementally This fits a good humber of RFID applications, such as sup-
by further summarizing data being faded at an abstractionply chain management. However, there are also other appli-
level higher than the recent and close-by data or by simply cations where RFID data may not have such characteristics.
tossing some low-level cuboid and raising the level of the We believe that further research is needed to construct effi-
corresponding minimum abstraction le®#1D-Cuboidfor cient models for such applications.

such data.
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