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Abstract

Radio Frequency Identification (RFID) applications are
set to play an essential role in object tracking and supply
chain management systems. In the near future, it is expected
that every major retailer will use RFID systems to track the
movement of products from suppliers to warehouses, store
backrooms and eventually to points of sale. The volume of
information generated by such systems can be enormous as
each individual item (a pallet, a case, or an SKU) will leave
a trail of data as it moves through different locations. As a
departure from the traditional data cube, we propose a new
warehousing model that preserves object transitions while
providing significant compression and path-dependent ag-
gregates, based on the following observations: (1) items
usually move together in large groups through early stages
in the system (e.g., distribution centers) and only in later
stages (e.g., stores) do they move in smaller groups, and
(2) although RFID data is registered at the primitive level,
data analysis usually takes place at a higher abstraction
level. Techniques for summarizing and indexing data, and
methods for processing a variety of queries based on this
framework are developed in this study. Our experiments
demonstrate the utility and feasibility of our design, data
structure, and algorithms.

1 Introduction

Radio Frequency Identification (RFID) is a technology
that allows a sensor (RFID reader) to read, from a distance
and without line of sight, a unique identifier that is provided
(via a radio signal) by an “inexpensive” tag attached to an
item. RFID offers a possible alternative to bar code identifi-
cation systems and it facilitates applications like item track-
ing and inventory management in the supply chain. The
technology holds the promise to streamline supply chain
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management, facilitate routing and distribution of products,
and reduce costs by improving efficiency.

Large retailers like Walmart, Target, and Albertsons have
already begun implementing RFID systems in their ware-
houses and distribution centers, and are requiring their sup-
pliers to tag products at the pallet and case levels. Individual
tag prices are expected to fall from around 25 cents per unit
to 5 cents per unit by 2007. At that price level, we can ex-
pect tags to be placed at the individual item level for many
products. The main challenge then becomes how can com-
panies handle and interpret the enormous volume of data
that an RFID application will generate. Venture Develop-
ment Corporation [13], a research firm, predicts that when
tags are used at the item level, Walmart will generate around
7 terabytes of data every day. Database vendors like Oracle,
IBM, Teradata, and some startups are starting to provide
solutions to integrate RFID information into enterprise data
warehouses.

Example Suppose a retailer with 3,000 stores sells
10,000 items a day per store. Assume that we
record each item movement with a tuple of the form:
(EPC, location, time), where EPC is an Electronic Prod-
uct Code which uniquely identifies each item1. If each
item leaves only 10 traces before leaving the store by go-
ing through different locations, this application will gener-
ate at least 300 million tuples per day. A manager may ask
queries on the duration of paths like (Q1): “List the average
shelf life of dairy products in 2003 by manufacturer”, or on
the structure of the paths like (Q2): “What is the average
time that it took coffee-makers to move from the warehouse
to the shelf and finally to the checkout counter in January
of 2004?” New data structures and algorithms need to be
developed that may provide fast responses to such queries
even in the presence of terabyte-sized data.

Such enormous amount of low-level data and flexible
high-level queries pose great challenges to traditional rela-
tional and data warehouse technologies since the processing
may involve retrieval and reasoning over a large number of

1We will use the terms EPC and RFID tag interchangeably throughout
the paper
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inter-related tuples through different stages of object move-
ments. No matter how the objects are sorted and clustered,
it is difficult to support various kinds of high-level queries in
a uniform and efficient way. A nontrivial number of queries
may even require a full scan of the entire RFID database.

Model Proposal and Justification
In this paper we propose a new RFID data warehouse

model to compress and aggregate RFID data in an organized
way such that a wide range of queries can be answered effi-
ciently. Our design is based on the following key observa-
tions.

First, we need to eliminate the redundancy present
in RFID data. Each reader provides tuples of the
form (EPC, location, time) at fixed time intervals.
When an item stays at the same location, for a pe-
riod of time, multiple tuples will be generated. We
can group these tuples into a single one of the form
(EPC, location, time in, time out). For example, if a
supermarket has readers on each shelf that scan the items
every minute, and items stay on the shelf on average for 1
day, we get a 1,440 to 1 reduction in size without loss of
information.

Second, items tend to move and stay together through
different locations. For example, a pallet with 500
cases of CDs may arrive at the warehouse; from there
cases of 50 CDs may move to the shelf; and from
there packs of 5 CDs may move to the checkout
counter. We can register a singlestay tuple of the form
(EPC list, location, time in, time out) for the CDs that
arrive in the same pallet and stay together in the warehouse,
and thus generate a 80% space saving.

An alternative compression mechanism is to store a sin-
gle transitionrecord for the 50 CDs that move together from
the warehouse to the shelf, that is to group transitions and
not stays. The problem with transition compression is that
it makes it difficult to answer queries about items at a given
location or going through a series of locations. For ex-
ample, if we get the query “What is the average time that
CDs stay at the shelf?” we can directly get the informa-
tion from thestay records withlocation = shelf , but if
we havetransition records, we need to find all the tran-
sition records withorigin = shelf and the ones with
destination = shelf , join them on EPC, and compute
departure time− arrival time. Another method of com-
pression would be to look at the sequence of locations that
an item goes through as a string, and use a Trie data struc-
ture [6] to compress common path prefixes into a single
node. The problem with this approach is that we lose com-
pression power. In the CDs example, if the 50 items all stay
at the warehouse together but they come from different lo-
cations, a Trie would have to create distinct nodes for each,
thus gaining no compression.

Third, we can gain further compression by reducing the

size of the EPC lists in thestayrecords by grouping items
that move to the same locations. For example, let us say
we have astay record for the 50 CDs that stayed together
at the warehouse, and that the CDs moved in two groups to
shelf and truck locations. We can replace the list of 50 EPCs
in the stay record for just twogeneralized identifiers(gids)
which in turn point to the concrete EPCs. In this exam-
ple we will store a total of 50 EPCs, plus two gids, instead
of 100 EPCs (50 in the warehouse, 25 in the shelf, 25 in
the truck). In addition to the compression benefits, we can
gain query processing speedup by assigning path-dependent
names to the gids. In the CDs example we could name the
gid for the warehouse 1, and the gid for the shelf 1.1 and
truck 1.2. If we get the query “What is the average time to
go from the warehouse to the shelf for CDs?” instead of in-
tersecting the EPC lists for thestayrecords at each location
we can directly look at the gid name and determine if the
EPCs are linked. The path-dependent naming scheme gives
us the benefits of a tree structure representation of a Trie
without taking a significant compression penalty.

Fourth, most queries are likely to be at a high level of
abstraction, and will only be interested in the low-level in-
dividual items if they are associated with some interesting
patterns discovered at a high level. For example, query (Q1)
asks about dairy products by manufacturer. It is possible
after seeing the results, that the user may ask subsequent
queries and drill down to individual items. We can gain
significant compression by creating the stay records not at
the raw level but at a minimal level of abstraction shared
by most applications, while keeping pointers to the RFID
tags. This allows us to operate on a much smaller data set,
fetching the original data only when absolutely necessary.

The rest of the paper is organized as follows. Section
2 presents the structure of the input RFID data. Section 3
presents data compression and generalization methods im-
portant for the design of the RFID warehouse. Section 4
introduces algorithms for constructing the RFID warhouse.
Section 5 develops methods for efficient processing of a va-
riety of RFID queries. Section 6 reports the experimental
and performance results. We discuss the related issues in
Section 7 and conclude our study in Section 8.

2 RFID Data

Data generated from an RFID application can
be seen as a stream of RFID tuples of the form
(EPC, location, time), whereEPC is the unique identifier
read by an RFID reader,location is the place where the
RFID reader scanned the item, andtime is the time when
the reading took place. Tuples are usually stored according
to a time sequence. A single EPC may have multiple
readings at the same location, each reading is generated by
the RFID reader scanning for tags at fixed time intervals
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or on a continuous basis. Table 1 is an example of a raw
RFID database where a symbol starting withr represents
an RFID tag,l a location, andt a time. The total number of
records in this example is 188.

Raw Stay Records
(r1, l1, t1) (r2, l1, t1) (r3, l1, t1) (r4, l1, t1) (r5, l1, t1)
(r6, l1, t1) (r7, l1, t1) . . . (r1, l1, t9) (r2, l1, t9) (r3, l1, t9)
(r4, l1, t9) . . . (r1, l1, t10) (r2, l1, t10) (r3, l1, t10) (r4, l1, t10)
(r7, l4, t10) . . . (r7, l4, t19) . . . (r1, l3, t21) (r2, l3, t21)
(r4, l3, t21) (r5, l3, t21) . . . (r6, l6, t35) . . . (r2, l5, t40)
(r3, l5, t40) (r6, l6, t40) . . . (r2, l5, t60) (r3, l5, t60)

Table 1. Raw RFID Records

In order to reduce the large amount of redundancy in the
raw data, data cleaning should be performed. The output
after data cleaning is a set of clean stay records of the form
(EPC, location, time in, time out) wheretime in is the
time when the object enters the location, andtime out is the
time when the object leaves the location.

Data cleaning of stay records can be accomplished by
sorting the raw data on EPC and time, and generating
time in andtime out for each location by merging consecu-
tive records for the same object staying at the same location.
Table 2 presents the RFID database of Table 1 after clean-
ing. It has been reduced from 188 records to just 17 records.

EPC Stay(EPC, location, time in, time out)

r1 (r1, l1, t1, t10)(r1, l3, t20, t30)
r2 (r2, l1, t1, t10)(r2, l3, t20, t30)(r2, l5, t40, t60)
r3 (r3, l1, t1, t10)(r3, l3, t20, t30)(r3, l5, t40, t60)
r4 (r4, 1, t1, t10)
r5 (r5, l2, t1, t8)(r5, l3, t20, t30)(r5, l5, t40, t60)
r6 (r6, l2, t1, t8)(r6, l3, t20, t30)(r6, l6, t35, t50)
r7 (r7, l2, t1, t8)(r7, l4, t10, t20)

Table 2. A Cleansed RFID Database

3 Architecture of the RFID Warehouse

Before we describe our proposed architecture for ware-
housing RFID data, it is important to describe why a tradi-
tional data cube model would fail on such data. Suppose we
view the cleansed RFID data as the fact table with dimen-
sions (EPC, location, time in, time out : measure).
The data cube will compute all possible group-bys on this
fact table by aggregating records that share the same values
(or any *) at all possible combinations of dimension. If we
use count as measure, we can get for example the number
of items that stayed at a given location for a given month.
The problem with this form of aggregation is that it does
not consider links between the records. For example, if we
want to get the number of items of type “dairy product” that

traveled from the distribution center in Chicago to stores in
Urbana, we cannot get this information. We have the count
of “dairy products” for each location but we do not know
how many of those items went from the first location to the
second. We need a more powerful model capable of aggre-
gating data while preserving its path-like structure.

We propose an RFID warehouse architecture that con-
tains a fact table,stay, composed of cleansed RFID records;
an information table,info, that stores path-independent in-
formation for each item, i.e., SKU information that is con-
stant regardless of the location of the item such as manu-
facturer, lot number, color, etc.; and amaptable that links
together different records in the fact table that form a path.
Figure 1 shows a logical view into the RFID warehouse
schema. We call thestay, info, andmaptables aggregated
at a given abstraction level anRFID-Cuboid.

The main difference between the RFID warehouse and a
traditional warehouse is the presence of the map table link-
ing records from the fact table (stay) in order to preserve the
original structure of the data.

The computation ofRFID-Cuboids is more complex
than that of regular cuboids as we will need to aggregate the
data while preserving the structure of the paths at different
abstraction levels.

MAP
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Figure 1. RFID Warehouse - Logical Schema

From the data storage and query processing point of view
the RFID warehouse can be viewed as a multi-level data-
base. The raw RFID repository resides at the lowest level,
on its top are the cleansed RFID database, the minimum
abstraction levelRFID-Cuboidsand a sparse subset of the
full cuboid lattice composed of frequently queried (popular)
RFID-Cuboids.
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3.1 Key ideas of RFID data compression

Even with the removal of data redundancy from RFID
raw data, the cleansed RFID database is usually still enor-
mous. Here we explore several general ideas for construct-
ing a highly compact RFID data warehouse.

Taking advantage of bulky object movements
Since a large number of items travel and stay together

through several stages, it is important to represent such
a collective movement by a single record no matter how
many items were originally collected. As an example, if
1,000 boxes of milk stayed in locationlocA between time
t1 (time in) andt2 (time out), it would be advantageous if
only one record is registered in the database rather than
1,000 individual RFID records. The record would have
the form:(gid, prod, locA, t1, t2, 1000), where 1,000 is the
count, prod is the product id, andgid is a generalized id
which will not point to the 1,000 original EPCs but instead
point to the set of new gids which the current set of objects
move to. For example, if this current set of objects were
split into 10 partitions, each moving to one distinct loca-
tion, gid will point to 10 distinct new gids, each represent-
ing a record. The process iterates until the end of the object
movement where the concrete EPCs will be registered. By
doing so, no information is lost but the number of records
to store such information is substantially reduced.

Taking advantage of data generalization
Since many users are only interested in data at a rela-

tively high abstraction level, data compression can be ex-
plored to group, merge, and compress data records. For
example, if the minimal granularity of time is hour, then
objects moving within the same hour can be seen as mov-
ing together and be merged into one movement. Similarly,
if the granularity of the location is shelf, objects moving to
the different layers of a shelf can be seen as moving to the
sameshelf and be merged into one. Similar generalization
can be performed for products (e.g., merging different sized
milk packages) and other data as well.

Taking advantage of the merge and/or collapse of path
segments

In many analysis tasks, certain path segments can be ig-
nored or merged for simplicity of analysis. For example,
some non-essential object movements (e.g., from one shelf
to another in a store) can be completely ignored in certain
data analysis. Some path segments can be merged without
affecting the analysis results. For store managers, merging
all the movements before the object reaches the store could
be desirable. Such merging and collapsing of path segments
may substantially reduce the total size of the data and speed-
up the analysis process.

3.2 RFID-CUBOID

With the data compression principles in mind, we pro-
pose, theRFID-Cuboid a data structure, for storing aggre-
gated data in the RFID warehouse. Our design ensures that
the data are disk-resident, summarizing the contents of a
cleansed RFID database in a compact yet complete manner
while allowing efficient execution of both OLAP and tag-
specific queries.

The RFID-Cuboid consists of three tables: (1) Info,
which stores product information for each RFID tag, (2)
Stay, which stores information on items that stay together
at a location, and (3) Map, which stores path information
necessary to link multiple stay records.

Information Table

The information table stores path-independent dimen-
sions such as product name, manufacturer, product price,
product category, etc. Each dimension can have an asso-
ciated concept hierarchy. All traditional OLAP operations
can be performed on these dimensions in conjunction with
various RFID-specific analysis. For example, one could
drill-down on the product category dimension from “cloth-
ing” to “shirts” and retrieve shipment information only on
shirts.

The information table (info) contains a set of attributes
that provide a path-independent extended description of
RFID tags. Each entry in Info is a record of the form:
〈(EPC list), (d1, . . . , dm) : (m1, . . . , mi)〉, where the
code list contains a set of items (i.e., rfids) that share the
same values for dimensionsd1, . . . , dm, and m1, . . . , mi

are measures of the given items, e.g., price. Table 3 presents
and exampleinfo table.

EPCList Product Manufacturer Price Weight
(r2,r3,r7) TV Sony $300 50 lb
(r1,r4) Computer Sony $900 6 lb

Table 3. Info Table

Stay Table

As mentioned in the introduction, items tend to move
and stay together through different locations. Compress-
ing multiple items that stay together at a single location is
vital in order to reduce the enormous size of the cleansed
RFID database. In real applications items tend to move in
large groups. At a distribution center there may be tens of
pallets staying together, and then they are broken into in-
dividual pallets at the warehouse level. Even if products
finally move at the individual item level from a shelf to the
checkout counter, our stay compression will save space for
all previous steps taken by the item.
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The Stay Table (stay) contains an entry for each
group of items that stay together at a certain loca-
tion. Each entry instay is a record of the form:
〈(gids, location, time in, time out) : (m1, . . . , mk)〉,
wheregids is a set of generalized record ids each point-
ing to a list of RFID tags or lower levelgids, location is
the location where the items stayed together,time in is the
time when the items entered the location, andtime out the
time when they left. If the items did not leave the loca-
tion, time out is NULL. m1, . . . , mn are the measures
recorded for the stay, e.g., count, average time atlocation,
and the maximal time atlocation.

Table 4 presents the stay table for the cleansed data from
Table 2. We have now gone from 188 records in the raw
data, to 17 in the cleansed data, and then to 7 in the com-
pressed data.

gid loc t1 t2 count measure
0.0 l1 t1 t10 4 9
0.1 l2 t1 t8 3 7
0.0.0 l3 t20 t30 3 9
0.1.0 l3 t20 t30 2 19
0.1.1 l4 t10 t20 1 19
0.0.0.0,0.1.0.0 l5 t40 t60 3 19
0.1.0.1 l6 t35 t50 1 14

Table 4. Stay Table

Map Table

Themaptable is an efficient structure that allows query
processing to link together stages that belong to the same
path in order to perform structure-aware analysis, which
could not be answered by a traditional data warehouse.
There are two main reasons for using amap table instead
of recording the complete EPC lists at each stage: (1) data
compression, and (2) query processing efficiency.

First, we do not want to record each RFID tag on the EPC
list for everystayrecord it participated in. For example, if
we assume that 10000 items move in the system in groups of
10000, 1000, 100, and 10 through 4 stages, instead of using
40,000 units of storage for the EPCs in thestayrecords, we
use only 1,111 units2 (1000 for the last stage, 100, 10, and
1 for the ones before).

The second and the more important reason for having
such a map table is the efficiency in query processing. Sup-
pose each map entry were given a path-dependent label.
To compute, for example, the average duration for milk to
move from the distribution center (D), to the store back-
room (B), and finally to the shelf (S), we need to locate
the stay records for milk at each stage. To get three sets of
recordsD, B, andS, one has to intersect the EPC lists of

2This figure does not include the size of the map itself which should
use 12,221 units of storage, still much smaller than the full EPC lists

the records inD with those inB andS to get the paths.
By using the map, the EPC lists can be orders of magnitude
shorter and thus reduce IO costs. Additionally, if we use
path-dependent naming of the map entries, we can compute
list intersection much faster.

The map table contains mappings from higher levelgids
to lower level ones or EPCs. Each entry inmapis a record
of the form: 〈gid, (gid1, . . . , gidn)〉, meaning that,gid is
composed of all the EPCs pointed to bygid1, . . . , gidn.
The lowest levelgids will point directly to individual items.

In order to facilitate query processing we will assign
path-dependent labels to high levelgids. The label will con-
tain one identifier per location traveled by the items in the
gid. Figure 2 presents the gid map for the cleansed data in
Table 2. We see that the group of items withgid 0.0 arrive
at l1, and then subdivide into 0.0.0, and s0.0, the items in
s0.0 (we prefix the label withs to denote that the items stay
in the location) stay in location l1 while the items in 0.0.0
travel to l3, and subdivide further into 0.0.0.0 and s0.0.0, the
items in s0.0.0 stay at location l3, while the ones in 0.0.0.0
move to location l5.

l1

0.0

l2

l3

0.0.0, s0.0

0.0.0

0.1

0.1.0

l4

0.1.1

l5 l6

0.1.0,0.1.1

0.0.0.0

0.0.0.0
0.1.0.0

0.1.0.1

0.0.0.0,s0.0.0
0.1.0.0,0.1.0.1

0 0.0, 0.1

0.0 0.0.0,s0.0

0.0.0 0.0.0.0,s0.0.0

0.0.0.0 r2,r3

s0.0 r4

s0.0.0 r1

0.1 0.1.0,0.1.1

0.1.0 0.1.0.0,0.1.0.1

0.1.0.0 r5

0.1.0.1 r6

0.1.1 r7

0.1.1

0.1.0.1

Map - Tabular View Map - Graphical View

Figure 2. GID Map - Tabular and Graphical
Views

3.3 Hierarchy of RFID-Cuboids

Each dimension in thestayandinfo tables has an associ-
ated concept hierarchy. A concept hierarchy is a partial or-
der of mappings from lower levels of abstraction to higher
ones. The lowest corresponds to the values in the raw RFID
data stream itself, and the associated per item information,
which could be at the Stock Keeping Unit (SKU) level. The
highest is∗ which represents any value of the dimension.

In order to provide fast response to queries specified at
various levels of abstraction, it is important to pre-compute
someRFID-Cuboidsat different levels of the concept hi-
erarchies for the dimensions of theinfo and stay tables.
It is obviously too expensive to compute all the possible
generalizations, and partial materialization is a preferred
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choice. This problem is analogous to determining which set
of cuboids in a data cube to materialize in order to answer
OLAP queries efficiently given the limitations on storage
space and precomputation time. This issue has been studied
extensively in the data cube research [2, 8], and the princi-
ples are generally applicable to the selective materialization
of RFID-Cuboids.

In our design, we suggest to compute a set of
RFID-Cuboidsat the minimal interesting level at which
users will be interested in inquiring the database, and a
small set of higher level structures that are frequently re-
quested and that can be used to quickly compute non-
materializedRFID-Cuboids.

An RFID-Cuboid residing at the minimal interesting
level will be computed directly from the cleansed RFID
database and will be the lowest cuboid that can be queried
unless one has to dig directly into the cleansed data in some
very special cases.

4 Construction of an RFID Warehouse

In this section, we study the construction of the RFID
warehouse from the cleansed RFID database.

In order to construct theRFID-Cuboid, as described in
the paper, we need a compact data structure that allows us
to do the following efficiently: (1) assign path-dependent
labels to the gids, (2) minimize the number of outputstay
records while computing aggregates that preserve the path-
like nature of the data, and (3) identify path segments that
can be collapsed. We argue that using a tree-like structure to
represent the different paths in the database is an ideal solu-
tion, where each node in the tree will represent a path stage;
all common path prefixes in the database will share the same
branch in the tree. Using the tree we can traverse the nodes
in the breath-first fashion while assigning path-dependent
labels. We can quickly determine the minimum number
of output stay records by aggregating the measures of all
the items that share the same branch in the tree. And we
can collapse path segments by simply merging parent/child
nodes that correspond to the same location. Additionally,
the tree can be constructed by doing a single scan of the
cleansed RFID database, and it can be discarded after we
have materialized the outputinfo, stay, andmaptables.

The most common implementation of the group-by op-
erator, which would sort the input records on location,
time in, and timeout, and generate a list of RFID tags that
share the same values on those dimensions, would fail in
generating theRFID-Cuboid in an efficient manner. The
problem with this approach is that we lose the ability to
determine which of the items that share the same location,
time in, and timeout values can actually have their mea-
sures aggregated into a single measure. The reason is that
we cannot quickly determine which subset of all the items

followed the same path throughout the system without do-
ing an unmanageable number of item list intersections. For
this same reason we cannot easily construct the map table,
assign path-dependent labels to the gids, or determine if two
different records can be collapsed into one.

Algorithm 1 summarizes the method for constructing an
RFID-Cuboidfrom the cleansed RFID database. It takes as
input the cleanstayrecordsS, theinfo recordsI describing
each item, and the level of abstraction for each dimensionL.
The output of the algorithm is anRFID-Cuboidrepresented
by thestay, info, andmap tables aggregated at the desired
abstraction level.

First, we aggregate the information table to the level of
abstraction specified byL. This can be done by using a
regular cubing algorithm.

Second, we call the BuildPathTree procedure (Al-
gorithm 2) which constructs a tree for the paths trav-
eled by items in the cleansed database. The paths
that have the same branch in the tree share the same
path prefix. Each node in the tree is of the form
(location, time in, time out, measure list, children list),
where time in is the time at which the items en-
tered location, time out the time at which they left,
measure list contains the stay measures (from the par-
ent’s location to this node’s location) for every item that
stayed at the node, andchildren list is a list of nodes
where the items in the node moved next. All processing
from this point on in the algorithm will be done using the
tree which we will callpath tree.

Third, we merge consecutive nodes in the tree that cor-
respond to the same location. This happens because it is
possible for two distinct locations to be aggregated to the
same higher level location. This step achieves compression
by collapsing paths at the given abstraction level.

Fourth, we generate gids for the nodes in the tree. This
is done in the breath-first order, where each node receives
a unique id that is appended to the gid of its parent node.
This naming scheme is used to speed up the computation of
linked stay records for query processing.

Fifth, we take themeasure list at each node and com-
pact it to one aggregate measure for each group of RFID
tags that share the same leaf (descendant from the node)
andinfo record. Further compression is done when several
leaves share the same measure.

Finally, we traverse the tree, generating the newstayta-
ble: each node generates as many records as the number
of distinct measures it contains. It is possible for multi-
ple nodes to share the samestay record if they share all
the attributes and measures. For example, if there are two
nodes in the pathtree that have the same location,time in,
time out, and measures, we generate a singlestay record
that has two gids, one for each node.
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4.1 Construction of Higher Level RFID-Cuboids
from Lower Level Ones

Once we have constructed the minimum abstraction level
RFID-Cuboid, it is possible to gain efficiency by construct-
ing higher levelRFID-Cuboidsstarting from the existing
RFID-Cuboid instead of directly from the cleansed RFID
data. This can be accomplished by running Algorithm 1
with thestayandinfo tables of the lower levelRFID-Cuboid
as input, and using themaptable of the inputRFID-Cuboid
to expand each gid to the EPCs it points to. The benefit of
such approach is that the inputstayand info tables can be
significantly smaller than the cleansed tables, thus greatly
gaining in space and time efficiency.

Algorithm 1 BuildCuboid
Input : Stay recordsS, Information recordsI, aggregation
levelL
Output : RFID-Cuboid
Method:

1: I ′ = aggregate I to L;
2: path tree = BuildPathTree (S, L);
3: Merge consecutive nodes with the same location in the

path tree;
4: Traverse pathtree in the breath-first order and assign

gid to each node (gid = parent.gid + ‘.’ + unique id),
where the parent/children gid relation in the pathtree
defines the output MAP;

5: Compute aggregate measures for each node, one per
group of items with the same information record and
in the same leaf;

6: CreateS′ by traversing pathtree in the breath-first or-
der, and generating stay records for each node (Multiple
nodes can contribute to the same stay record);

7: Output MAP,S′, andI ′

Observation. Given a cleansed stay and info input tables,
the RFID cuboid structure has the following properties:

1. (Construction cost) The RFID-Cuboid can be con-
structed by doing a single sequential scan on the
cleansed stay table.

2. (Completeness)The RFID cuboid contains sufficient
information to reconstruct the original RFID database
aggregated at abstraction levelL.

3. (Compactness)The number of records in the output
stay and info tables is no larger than the number of
records in the inputstayandinfo tables respectively.

Rationale. The first property has been shown in the
RFID-Cuboidconstruction algorithm. The complete-
ness property can be proved by using themaptable to

Algorithm 2 BuildPathTree
Input : StayS, aggregation levelL
Output : path tree
Method:

1: root = new node;
2: for each records in S do
3: s′ = aggregate s to level L;
4: parent = lookup node fors′.rfid;
5: if parent == NULLthen
6: parent = root;
7: end if
8: node = lookups′.rfid in parent’s children;
9: if node == NULLthen

10: node = new node;
11: node.loc = s.loc;
12: node.t1 = s.t1;
13: node.t2 = s.t2;
14: add node to parent’s children;
15: end if
16: node.measurelist += 〈s′.gid, s′.measure〉;
17: end for
18: return root

expand the gids for eachstay record to get the origi-
nal data. The compactness property is proved noticing
that Algorithm 1 emits at most one output record per
distinct measure per node, and the number of distinct
measures in a node is limited by the number of input
stayrecords. The size of the outputinfo table, by def-
inition of the group-by operation is bound by the size
of the inputinfo table.

5 Query Processing

In this section we discuss the implementation of the basic
OLAP operations, i.e., drill-down, roll-up, slice, and dice,
applied to the RFID data warehouse, and introduce a new
operation, Path Selection, relevant to the paths traveled by
items.

Given the very large size and high dimensionality of the
RFID warehouse we can only materialize a small fraction
of the total number ofRFID-Cuboids. We will compute the
RFID-Cuboidthat resides at the minimum abstraction layer
that is interesting to users, and thoseRFID-Cuboidsthat
are frequently requested. Initially, the warehouse designer
may decide to materialize a subset ofRFID-Cuboidsthat
are interesting to the users, and as the query log is built, we
can perform frequency counting to determine frequently re-
questedRFID-Cuboidsthat should be pre-computed. When
a roll-up or drill-down operation requires anRFID-Cuboid
that has not yet been materialized, it would have to be com-
puted on the fly from an existingRFID-Cuboidthat is close
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to the required one but at a lower abstraction level.
The slice and dice operations can be implemented quite

efficiently by using relational query execution and opti-
mization techniques. An example of the dice operation
could be: “Give me the average time that milk stays at the
shelf in storeS1 in Illinois”. This query can be answered by
the relational expression:
σstay.location=′shelf ′,info.product=′milk′(stay ./gid info).

Path Selection

Path queries, which ask about information related to the
structure of object traversal paths, are unique to the RFID
warehouse since the concept of object movements is not
modeled in traditional data warehouses. It is essential to al-
low users to inquire about an aggregate measure computed
based on a predefined sequence of locations (path). One
such example could be: “What is the average time for milk
to go from farms to stores in Illinois?”.

Queries on the paths traveled by items are fundamental
to many RFID applications and will be the building block
on top of which more complex data mining operators can
be implemented. We will illustrate this point with two real
examples. First, the United States government is currently
in the process of requiring the containers arriving into the
country by ship to carry an RFID tag. The information can
be used to determine if the path traveled by a given con-
tainer has deviated from its historic path. This application
may need to first execute a path-selection query across dif-
ferent time periods, and then use outlier detection and clus-
tering to analyze the relevant paths. Second, plane manu-
facturers are planning to tag airplane parts to better record
maintenance operations on each part. Again using path se-
lection queries you could easily associate a commonly de-
fective part with a path that includes a certain set of suppli-
ers that provide raw materials for its construction and are
likely the sources of the defect. This task may need fre-
quent itemset counting and association mining on the rele-
vant paths. These examples show that path selection can be
crucial to successful RFID data analysis and mining, and it
is important to design good data structures and algorithms
for efficient implementation.

More formally, a path selection query is of the form:

q ← 〈σcinfo, (σc1stage1, . . . , σck
stagek)〉,

whereσcinfo means the selection on theinfo table based
on conditionc, andσcistagei means the selection based on
conditionci on thestay tablestagei. The result of a path
selection query is a set of paths whose stages match the
stage conditions in the correct order (possibly with gaps),
and whose items match the conditionc. The query ex-
pression for the example path query presented above is
c ← 〈product = “milk”〉, c1 ← 〈location = “farm”〉,

andc2 ← 〈location = “store”〉. We can compute aggre-
gate measures on the results of a path selection query, e.g.,
for the example query the aggregate measure would be the
average time.

Algorithm 3 illustrates the process of selecting the gids
matching a given query. We first select thegids for
the stay records that match the conditions for the ini-
tial and final stages of the query expression. For ex-
ample, gstart may look like 〈1.2, 8.3.1, 3.4〉 and gend

may look like 〈1.2.4.3, 4.3, 3.4.3〉. We then compute the
pairs of gids fromgstart that are a prefix of a gid in
gend. Continuing with the example we get the pairs
〈(1.2, 1.2.4.3), (3.4, 3.4.3)〉. For each pair we then retrieve
all the stay records. The pair(1.2, 1.2.4.3) would require
us to retrieve stay records that include gids 1.2, 1.2.4,
and 1.2.4.3. Finally, we verify that each of these records
matches the selection conditions for eachstagei and for
info, and add those paths to the answer set.

If we have statistics on query selectivity, it may be pos-
sible to find a better optimization query execution plan than
that presented in Algorithm 3. If we have a sequence of
stages(stage1, . . . , stagek), we could retrieve the records
for the most selective stages, in addition to retrieving the
stayrecords forstage1 andstagek, in order to further prune
the search space.

Algorithm 3 PathSelection
Input : q ← 〈σcinfo, (σc1stage1, . . . , σck

stagek)〉,, RFID
warehouse.
Output : the paths that match query conditions,q.
Method:

1: gstart = select gids of stay records matching the condi-
tion atstage1;

2: gend = select gids of stay records matching the condi-
tion atstagek and that forinfo;

3: for every pair of gids(s, e) in gstart, gend such thats is
a prefix ofe do

4: path = retrieve stay records for all gids froms to e;
5: if the stay records inpath match conditions forinfo

and for the remaining stagesthen
6: answer = answer + path;
7: end if
8: end for
9: returnanswer

Analysis. Algorithm 3 can be executed efficiently if we
have a one-dimensional index for each dimension of the
stay table; a one-dimensional index on the gid dimension
of the map table; and a one-dimensional index on the EPC
dimension of the info table. The computation ofgstart and
gend can be done by retrieving the records that match each
condition atstage1 andstagek, and intersecting the results.
Verification of the conditionσcinfo is done by using the map
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table to retrieve the base gids for each gid instagek that has
as prefix a gid instage1. The info record for each basegid
can be retrieve efficiently by using the EPC index on the
info table.

6 Performance Study

In this section, we perform a thorough analysis of our
model and algorithms. All experiments were implemented
using C++ and were conducted on an Intel Xeon 2.5GHz
(512KB L2 cache) system with 3GB of RAM. The system
ran Red Hat Linux with the 2.4.21 kernel andgcc 3.2.3.

6.1 Data Synthesis

The RFID databases in our experiments were generated
using a tree model for object movements. Each node in the
tree represents a set of items in a location, and an edge rep-
resents a movement of objects between locations. We as-
sumed that items at locations near the root of the tree move
in larger groups, while tags near the leaves move in smaller
groups. The size of the groups at each level of the tree de-
fine the bulkiness,B = (s1, s2, . . . , sk), wheresi is the
number of objects that stay and move together at leveli of
the tree. By makingsi ≥ sj for i > j we create the effect
of items moving in larger groups near the factory and dis-
tribution centers, and smaller groups at the store level. We
generated the databases for the experiments by randomly
constructing a set of trees with a given level of Bulkiness,
and generating the cleansed RFID records corresponding to
the item movements indicated by the edges in the tree.

As a notational convenience, we use the following sym-
bols to denote certain dataset parameters.

B = (s1, . . . , sk) Path Bulkiness
k Average path length
P Number of products
N Number of cleansed RFID records

6.2 RFID-Cuboid compression

The RFID-Cuboids form the basis for future query
processing and analysis. As mentioned previously, the ad-
vantage of these data structures is that they aggregate and
collapse many records in the cleansed RFID database. Here,
we examine the effects of this compression on different data
sets. We will compare two different compression strategies,
both use thestayandinfo tables, but one uses the map table
as described in the paper (map), whereas the other uses a
tag list to record the tags at each stay record (nomap).

Figure 3 shows the size of the cleansed RFID database
(raw) compared with the map and nomapRFID-Cuboids.
The datasets contains 1,000 distinct products, traveling in
groups of 500, 150, 40, 8, and 1 through 5 path stages, and

500 thousand to 10 million cleansed RFID records. The
RFID-Cuboidis computed at the same level of abstraction
of the cleansed RFID data, and thus the compression is loss-
less. As it can be seen from Figure 3 theRFID-Cuboid
that uses the map has a compression power of around 80%
while the one that uses tag lists has a compression power of
around 65%. The benefit of the map comes from the fact
that it avoids registering each tag at each location. In both
cases the compression provided by collapsing stay records
is significant.
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Figure 3. Compression vs. Cleansed Data
Size. P = 1000, B = (500, 150, 40, 8, 1), k = 5.

Figure 4 also shows the size of the cleansed RFID
database (raw) compared with the map and nomap
RFID-Cuboids. In this case we vary the degree of bulkiness
of the paths, e.g., the number of tags that stay and move
together through the system. We define 5 levels of bulki-
nessa = (500, 230, 125, 63, 31), b = (500, 250, 83, 27, 9),
c = (500, 150, 40, 8, 1), d = (200, 40, 8, 1, 1), ande =
(100, 10, 1, 1, 1). The bulkiness decreases from dataseta
to e. As it can be seen in the figure, for more bulky data
theRFID-Cuboidthat uses the map clearly outperforms the
nomap cuboid; as we move towards less bulky data the ben-
efits of the map decrease as we get many entries in the map
that point to just one gid. For paths where a significant por-
tion of the stages are traveled by a single item the benefit
of the map disappears and we are better off using tag lists.
A possible solution to this problem is to compress all map
entries that have a single child into one.

Figure 5 shows the compression obtained by climbing
along the concept hierarchies of the dimensions in the stay
and info tables. Level-0 cuboids have the same level in the
hierarchy as the cleansed RFID data. The three higher level
cuboids offer one, two, and three levels of aggregation re-
spectively at all dimensions (location, time, product, man-
ufacturer, color). As expected the size of the cuboids at
higher levels decreases. In general the cuboid using the map
is smaller, but for the top most level of abstraction the size
is the same as for the nomap cuboid. At level 3 the size of
the stay table is just 96 records, and most of the space is ac-
tually used by recording the RFID tags themselves and thus
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it makes little difference if we use a map or not.

0

2,000

4,000

6,000

8,000

10,000

12,000

0 1 2 3

Abstraction Level

B
yt

es
 (

th
o

u
sa

n
d

s) map

nomap

Figure 5. Compression vs. Abstraction Level.
P = 1000, B = (500, 150, 40, 8, 1), k = 5, N =
1, 000, 000.

Figure 6 shows the time to build theRFID-Cuboidsat
the same four levels of abstraction used in Figure 5. In all
cases the cuboid was constructed starting from the cleansed
database. We can see that cuboid construction time does not
significantly increase with the level of abstraction. This is
expected as the only portion of the algorithm that incurs ex-
tra cost for higher levels of abstraction is the aggregation of
the info table, and in this case it contains only 1,000 entries.
This is common as we expect the cleansed RFID stay table
to be orders of magnitude larger than the info table. The
computation ofRFID-Cuboidscan also be done from lower
level cuboids instead of doing it from the cleansed database.
For the cuboids 1 to 3 of Figure 6 we can obtain savings of
50% to 80% in computation time if we build cuboidi from
cuboidi− 1.

6.3 Query Processing

A major contribution of the RFID data warehouse model
is the ability to efficiently answer many types of queries at
various levels of aggregation. In this section, we show this
efficiency in several settings. We compare query executing
under three scenarios: the first is a system that directly uses
the cleansed RFID database (raw), the second one that uses
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Figure 6. Construction Time. P = 1000, B =
(500, 150, 40, 8, 1), k = 5.

thestaytable but nomap, it instead uses tag lists at each stay
record (nomap), and the third is theRFID-Cuboiddescribed
in the paper usingstayandmap tables (map). We assume
that for each of the scenarios we have a B+Tree on each of
the dimensions. In the case of the map cuboid the index
points to a list of gids matching the index entry. In the case
of the nomap cuboid and the cleansed database the index
points to the tuple(RFID tag, record id). This is neces-
sary as each RFID tag can be present in multiple records.
The query answering strategy used for the map cuboid is
the one presented in Algorithm 3. The strategy for the other
two cases is to retrieve the(RFID tag, record id) pairs
matching each component of the query, intersecting them,
and finally retrieving the relevant records.

For the experiments we assumed that we have a page size
of 4096 bytes, and that RFID tags, record ids, and gids use
4 bytes each. We also assume that all the indices fit in mem-
ory except for the last level. For each of the experiments we
generated 100 random path queries. The query specifies a
product, a varying number of locations (3 on average), and
a time range to enter the last stage (timeout). Semantically
this is equivalent to asking “What is the average time for
productX to go through locationsL1, . . . , Lk entering lo-
cationLk between timest1 − t2? ”.

Figure 7 shows the effect of different cleansed database
sizes on query processing. The map cuboid outperforms the
cleansed database by several orders of magnitude, and most
importantly the query answer time is independent of data-
base size. The nomap cuboid is significantly faster than the
cleansed data but it suffers from having to retrieve very long
RFID lists for each stage. The map cuboid benefits for using
very short gid lists, and using the path-dependent gid nam-
ing scheme that facilitates determining if two stay records
form a path without retrieving all intermediate stages.

Figure 8 shows the effects of path bulkiness on query
processing. For this experiment we set the number of stay
records constant at 1 million. The bulkiness levels are
the same as those used for the experiment in Figure 4.
As with the compression experiment since we have more
bulky paths, the map cuboid is an order of magnitude faster
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Figure 7. I/O Cost vs. Cleansed Data Size. P =
1000, B = (500, 150, 40, 8, 1), k = 5.

than the cleansed RFID database. As we get less bulky
paths, the benefits of compressing multiple stay records de-
creases until the point at which it is no better than using
the cleansed database. The difference between the map and
nomap cuboids is almost an order of magnitude for bulky
paths, but as in the previous case, for less bulky paths the
advantage of using the map decreases.
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Figure 8. I/O Cost vs. Path Bulkiness. P =
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7 Discussion

In this section, we discuss the related work and explore
the possible extensions of the methods.

7.1 Related Work

RFID technology has been researched from several per-
spectives: (1) thephysics of building tags and readers[4, 9],
(2) the techniques required to guaranteeprivacy and safety
[11], and (3) thesoftware architecture required to collect,
filter, organize, and answer online queries on tags[3, 5, 10].

The software architecture line of research is the closest
to our work but differs in that it is mainly concerned with
online transaction processing (OLTP) but not OLAP-based
data warehousing. [10] presents a comprehensive frame-
work for online management of RFID data, called the EPC

Global Network, which is composed of servers that collect
data from readers and contact computers responsible for
keeping detailed information on each tag through a direc-
tory service. The system answers queries on tags through an
XML language called PML [5]. [3] presents an overview of
RFID data management from a high-level perspective and it
introduces the idea of an online warehouse but without go-
ing into the detail at the level of data structure or algorithm.

An RFID data warehouse shares many common prin-
ciples with the traditional data cube [1, 2, 7]. They both
aggregate data at different levels of abstraction in multi-
dimensional space. Since each dimension has an associ-
ated concept hierarchy, both can be (at least partially) mod-
elled by aStar schema. The problem of deciding which
RFID-Cuboidsto construct in order to provide efficient an-
swers to a variety of queries specified at different abstrac-
tion levels is analogous to the problem of partial data cube
materialization studied in [8, 12]. However,RFID-Cuboid
differs from a traditional data cube in that it also modelsob-
ject transitionsin multi-dimensional space, which is crucial
to answer queries related to object movements/transitions as
demonstrated in our analysis.

7.2 Possible Extensions

Here we discuss methods for incremental update in the
RFID warehouse, construction of fading RFID model, and
its linkage with mining RFID data.

Incremental Update
Incremental update is crucial to RFID applications. A

warehouse will receive constant updates as new tags enter
the system and objects move to new locations. We can ap-
ply Algorithm 1 only to the new data to generate newstay
andmap tables (we need to initialize the gid naming as to
not generate duplicates with the existing map). The updated
cuboid will be the union of the oldstayandmaptables with
the new ones. The main reason that we can just run the al-
gorithm in the new data without worrying about the old data
is that the updates are only for item movements with higher
timestamps than we already have so they will necessarily
form new nodes in the path tree.

Construction of a Fading RFID Warehouse Model
In most situations, the more remote in time or distance

the data is, the less interest a user would have to study it in
detail. For example, one may not be interested in the de-
tailed tag movements among shelves if the data is years old,
or thousands of miles away, or not being in the same sector
(e.g., manufacturer vs. store manager). This will relieve our
burden to store the enormous size of historical or remote or
unrelated RFID databases.

The RFID warehouse can be easily adapted to afading
modelwhere remote historical or distantly located data can
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be stored with low resolution (i.e., not retaining such data
at a low abstraction level). This can be done incrementally
by further summarizing data being faded at an abstraction
level higher than the recent and close-by data or by simply
tossing some low-level cuboid and raising the level of the
corresponding minimum abstraction levelRFID-Cuboidfor
such data.

Data Mining in the RFID Warehouse
The RFID warehouse model facilitates efficient data

mining since the data in the model is well structured, ag-
gregated and organized. Take the frequent itemset mining
as an example. One can easily mine frequent itemsets at
high abstraction level since such data are already aggregated
with count and other measures computed. The Apriori prun-
ing can be used to prune the search along the infrequent
high-level itemsets. Efficient methods, such as progressive
deepening, can be further explored to reduce the search
space. For example, if dairy products and meat are not
sold together frequently, there is no need to drill-down to
see whether milk and beef will be sold together frequently.
The RFID warehouse model naturally facilitates level-wise
pruning based its multi-level structure and level-wise pre-
computation.

8 Conclusions

We have proposed a novel model for warehousing RFID
data that allows high-level analysis to be performed effi-
ciently and flexibly in multidimensional space. The model
is composed of a hierarchy of highly compact summaries
(RFID-Cuboids) of the RFID data aggregated at different
abstraction levels where data analysis can take place. Each
cuboid records tag movements in thestay, info, andmap
tables that take advantage of the fact that individual tags
tend to move and stay together (especially at higher ab-
straction levels) to collapse multiple movements into a sin-
gle record without loss of information. Our performance
study shows that the size ofRFID-Cuboidsat interesting ab-
straction levels can be orders of magnitude smaller than the
original RFID database and can be constructed efficiently.
Moreover, we show the power of our data structures and
algorithms in efficient answering of a wide range of RFID
queries, especially those related to object transitions.

Our study has been focused on efficient data warehous-
ing and OLAP-styled analysis of RFID data. Efficient meth-
ods for a multitude of other data mining problems for the
RFID data (e.g., trend analysis, outlier detection, path clus-
tering) remain open and should be a promising line of future
research.

Notice that our proposal of the RFID model and its
subsequent methods for warehouse construction and query
analysis is based on the assumption that RFID data tend to

move together in bulky mode, especially at the early stage.
This fits a good number of RFID applications, such as sup-
ply chain management. However, there are also other appli-
cations where RFID data may not have such characteristics.
We believe that further research is needed to construct effi-
cient models for such applications.
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