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Abstract

Due to irregular operations, the crew cost at the end of a month is typically substantially higher than
the projected crew cost in planning. We present a model and a solution methodology that produces
robust crew schedules in planning. Besides the objective of minimizing the crew cost, we introduce the
objective of maximizing the number of move-up crews, i.e. the crews that can potentially be swapped in
operations. We use delayed column generation, and Lagrangian decomposition for solving the restricted
master problem. We report computational experiments, which demonstrate benefits of using the robust
crew schedule instead of the traditional one.

1 Introduction

In the last decade of the 20th century the international and the US domestic air traffic was rapidly growing
and was expected to double in the next 10 to 15 years. As a result of this trend, in the US the airports
and the national air space became extremely congested. In addition, the airlines, to be competitive, were
notorious to keep the market presence by scheduling many flights. The result was a large number of flight
delays that kept growing every year. In the US, according to the Department of Transportation, from 1995
to 1999 the total number of delayed minutes, not counting delays that are shorter than 15 minutes, had
increased by 11%, Bond (2000). The piling delays brought a nation-wide attention in Summer of 2000, when
the airline with the best on-time performance had only 75% on-time flights. The events of September 11th
2001 led to a crisis the consequences of which still have effects. However, the airline industry is strongly
recovering and in the next two years and a half revenue passenger mile (RPM) in the US is expected to
reach the level of 2000, Donoghue (2004), FAA (2003). Therefore, the problems caused by over extensive air
traffic demand and other uncontrollable events will soon raise again.

To fight congestion, the infrastructure needs to be expanded, e.g. by building new runways. On the other
hand, the airlines can improve their own operations. Inclement weather, congestions, employees’ sickness
and other uncontrollable factors lead to delayed arrivals, which in turn snowball to delaying other flights
due to missing or late resources such as aircraft and crews. In particular, a disrupted crew schedule can
result into delayed or cancelled flights. Since the crew cost is second only to the fuel cost, the airlines incur
substantial additional crew cost as a result of disruptions or irregular operations.
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The crew pairing problem is to find crew itineraries or pairings, that cover all of the flights and minimize
the crew cost. The crew pairing problem is solved several months before the actual flight schedule goes
in operation. It is assumed that all of the flights will be flown as planned, i.e on-time. Due to irregular
operations, the crew cost at the end of a month, called the operational crew cost, can be up to 5% larger
than the planed crew cost obtained by the optimal crew schedule in planning. To decrease the operational
crew cost the airlines can use better recovery procedures in disruption management, see e.g. Stojković et al.
(1998), or an alternative is to develop robust crew pairing solutions in planing. Robust crew schedules take
into account possible disruptions in operations and therefore they should perform better in operations. This
work focuses on the robust airline crew pairing problem.

When a disruption occurs, a low cost solution to an airline is to swap two crews. In a crew swapping
scenario, a crew whose arrival is delayed, next flies a flight with a later departure time than its originally
assigned flight. A different crew, called the move-up crew, then covers the flight of the disrupted crew,
Figure 1. In addition to low cost of crew swapping, they are appealing to crew controllers since typically
it is easy to find a crew swap. If the crew schedule does not allow many such opportunities, then often
a controller has to opt for alternative solutions like a more complicated crew recovery, delaying flights or
even cancelling flights. We present a tactical planning crew pairing model that considers move-up crews. In
addition to capturing the crew cost, our model obtains crew schedules that have many opportunities for crew
swapping, thus the model is a bicriteria optimization model. The resulting large-scale model is solved by a
combination of Lagrangian relaxation and delayed column generation. We evaluate solutions of our model
by means of simulation. The experiments show that our robust solutions yield lower operational crew cost
and fewer flight cancellations. One important conclusion is that the trade-off between the planed crew cost
and robustness has to be considered judiciously since sacrificing too much crew cost is often not beneficial.

j i’
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disrupted flight (planned arrival)
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i’

disrupted flight (realized arrival)

Figure 1: Crew swapping

In Section 2 we give a brief description of the airline crew pairing problem and we review previous work on
robust airline crew pairing. We present in Section 3 the model. Section 4 presents the solution methodology,
and the computational experiments are given in Section 5.

2 Crew Pairing and Robustness

In this section we overview the crew pairing problem and we discuss previous literature on robustness in the
airline industry.

2.1 The Crew Pairing Problem

In tactical planning, first an equipment type is assigned to each flight. Since cockpit crews are not cross
qualified, the crew scheduling problem that follows decomposes based on different equipment types. We
assume that a flight schedule of a given equipment type is selected.
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A flight leg or segment is a nonstop flight. We denote by L the set of all flight legs and let dti/ati be
the departure/arrival time of leg i. A hub is a station with high activity and every other station is called a
spoke.

A duty is a working day of a crew. It consists of a sequence of flights, where the arrival station of a
flight equals to the departure station of the next flight. A duty is subject to regulatory (such as FAA)
and company rules. Among other rules, there is a minimum and maximum connection time between two
consecutive flights in a duty, denoted by minSit and maxSit, respectively. A connection within a duty
is called a sit connection. The minimum sit connection time requirement can be violated only if the crew
follows the plane turn, i.e. it does not change planes. The cost of a duty is usually the maximum of three
quantities: the flying time, a fraction of the elapsed time, and the duty minimum guaranteed pay. All three
quantities are measured in minutes.

Crew bases are designated stations where crews are stationed. A crew base is often a hub. A pairing is
a sequence of duties, starting and ending at the same crew base. Notation p = (d1, · · · , dk) encodes pairing
p in terms of its duties, i.e. d1 is the first duty in p, d2 is the second duty, and so forth until the last duty
dk. A connection between two duties is called an overnight connection or a layover. We refer to the time
of a layover as the rest. Like sit connection times, there is a lower and an upper bound on the rest, denoted
by minRest and maxRest, respectively. The cost of a pairing is also the maximum of three quantities: the
sum of the duty costs in the pairing, a fraction of the time away from base and a minimum guaranteed pay
times the number of duties. The excess cost or pay-and-credit of a pairing is defined as the cost minus the
flying time of the pairing. Note that the excess cost is always nonnegative. The flight time credit (FTC) of a
pairing is the excess cost times 100 divided by the flying time. Occasionally a crew needs to be repositioned
and in this case the crew members fly as passengers, i.e. the crew is deadheaded.

The crew pairing problem has drawn a lot of attention in the past. In recent years, due to novel
algorithmic methodologies and advances in computer hardware and software, the excess cost for large fleets
has been pushed close to zero. A survey on crew scheduling is given by Barnhart et al. (2003). This survey
also gives a detailed discussion of legality rules and the cost structure.

The airline crew pairing problem is to find the minimum cost pairings that partition all the legs. The
daily airline crew pairing problem is the crew pairing problem with the assumption that each leg is flown
every day of the week. In practice, some legs are not operated during weekends. Since the number of such
irregular legs is small, the daily problem forms a good approximation (see Barnhart et al. (2003) how to
obtain a workable crew schedule from a daily one). This work deals exclusively with the daily problem.

In a typical problem, the number of pairings varies from 200,000 for small fleets, to about a billion
for medium size fleets and to billions for large fleets. Furthermore, since the cost function of a pairing is
nonlinear and the legality rules are complex, it is hard to perform delayed column generation, i.e. generating
columns only as needed. Traditionally the crew pairing problem is modeled as the set partitioning problem

min{cx : Ax = 1, x binary}, (1)

where each variable corresponds to a pairing, aij = 1 if leg i is in pairing j and 0 otherwise, and cj is the
cost of pairing j.

At the day of the operations, if an irregular event occurs, most airlines first recover the flight schedule,
then the new crew assignments are created, and at the end passengers are reaccomodated. In crew recovery,
crew itineraries can be changed and if need be, additional crew members are required. If new flying duties are
created, first regular crew members are asked for voluntary overtime flying. Since frequently their response
is not sufficient, the next step is to consider standby reserve crews. Standby reserve crew members have
predefined duty times and they are located at the corresponding crew base. Since these crew members are
located at the airport, their response time is quick. If there is still shortage of crew members, then regular
reserve crews are contacted. These are typically not on duty and their response time can be as high as 20
hours. An extremely high cost solution for the airline is to ask for involuntary flying of regular crews at
a premium pay. As the last resort, the airline might cancel a flight due to crew unavailability. Models for
solving the crew recovery problem are surveyed in Barnhart et al. (2003).

Although heavily studied and used in practice, the set partitioning model (1) has a serious drawback.
Namely, a solution to this model is an optimal or near optimal crew schedule under the assumption that all
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the flights will be operated on-time. The airline then incurs a much larger crew cost in operations. Typically
for large fleets the FTC in planning is below 1% and it increases to 3% to 4% in operations whereas for
smaller fleets the planning FTC is approximately 3% or higher and it jumps to around 8% in operations.
These numbers translate into millions of dollars of the increased crew cost. Solutions of large fleets are much
more sensitive to disruptions since they have many tight connections. A disrupted short connection can have
significant impact on the entire flight schedule due to snowball effects. This fact shows severe limitations in
existing approaches.

2.2 Robust Optimization in the Airline Industry

Only recently practical approaches to robust crew pairing were introduced. Schaefer et al. (2000) investigate
two approaches. In one approach they consider the effect of less restrictive feasibility parameters, e.g. what
is the impact on robustness and the crew cost if the minimum sit connection time is increased. In the second
approach they solve the crew pairing model (1) with a modified crew cost. Instead of considering the pairing
cost, they estimate the expected pairing cost. The estimation is done by means of simulation, where they
assume a specific crew recovery procedure called push-back, which, however, is not often used in practice.
In the push-back recovery procedure a flight is delayed until all the resources are available. Yen and Birge
(2000) and Ehrgott and Ryan (2001) consider the effect of maximizing the sit connection time whenever
the crew does not change the plane, but they do not take into account the recovery procedure at all. The
former work presents a stochastic model and the latter a deterministic variant. The stochastic programming
approach is computationally difficult and Yen and Birge (2000) report computational results only for small
fleets. In addition, both of these two approaches use weights to encourage long sit connections and it is not
clear how to set these weights. Our model is completely different from all these approaches. We assume an
underlying recovery procedure that considers crew swapping, which is widely used in practice.

Robustness paved its way also in other areas of airline tactical planing. Work in robust fleeting, Rosen-
berger et al. (2003), Kang and Clarke (2003), Listes and Dekker (2003), robust aircraft routing, Ageeva
(2000), Lan et al. (2003) and the robust approach to passengers rerouting in disruption management by
Karow (2003) show this emerging trend. Another growing area is the development of simulation systems of
airline operations, e.g. SimAir by Rosenberger et al. (2002) and MEANS by Bly et al. (2003). These systems
play a crucial role in evaluating and comparing the performance of different schedules.

3 The Crew Pairing Model with Move-Up Crew Count

In this section we present a model, called the crew pairing model with move-up crew count, whose solution
yields robust crew schedules. We also give extensions to the model.

3.1 Move-up Crews

We first introduce the notion of a move-up crew. Let crew crew1 cover flight j that is followed by flight j′ in
a pairing. Let a different crew crew2 fly flights i′ and i based on the crew schedule produced in the planning
stage, see Figure Figure 2. We assume that the two crews are based in the same crew base. Suppose that
flight i′ is delayed in operations and as a consequence crew crew2 cannot cover flight i since it would violate
the minimum sit or rest connection time (whichever occurs in the planed crew schedule). If the departure
time of flight j′ is after the departure time of flight i and crew crew1 is ready to fly before the departure
time of i, i.e. it is on the ground longer than either minSit or minRest, than crews crew1 and crew2 can
potentially be swapped. Precisely, crew crew1 can fly flight i and crew crew2 can potentially cover flight j′.
Such a swap is completely feasible if the two swapped pairings are feasible. In addition to pairing feasibility
rules, we would like that the two involved crews finish their respective pairings on the same day. If, for
example, crew crew1 is scheduled to finish the pairing on Wednesday and crew crew2 on Thursday, then if
we swap the pairings on Monday, we severely disrupt their monthly schedules since it is likely that they will
not be able to fly the next pairing in the schedule. In addition, the union rules may prohibit extending the
length of a pairing. Therefore in addition to pairing feasibility, we impose that the two pairings must have
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an equal number of days till the end. If these requirements are met, then we say that crew crew1 has a
move-up opportunity since it moves up in the crew schedule.

j i’

i j’

disrupted flight

ready 
time‘min sit’ or ‘min rest’

disrupted crew schedule (crew2)
move-up crew (crew1)

Figure 2: A move-up crew

Move-up crews have an additional benefit besides the crew swapping opportunities. In a presence of a
move-up crew, the move-up crew can cover either flight i or j′. If the airline has to cancel a flight, it gives
the opportunity to cancel either of the two flights and therefore the airline may consider cancelling a flight
that minimizes passenger disruptions. If the move-up crew is not present, then the airline does not have a
crew for leg i and therefore it has to cancel this flight.

We introduce a new objective function that captures the number of move-up crews. For each flight i
we count the number of move-up crews for this flight, i.e. the number of those crews that are ready to fly
before the departure time of this flight and have the same number of days till the end of the pairing as the
pairing covering flight i. In addition we assume that each pairing of a move-up crew has to start at the same
crew base as the pairing covering flight i. We do not take into account other pairing feasibility rules. If we
denote by zi the number of move-up crews for flight i, then the new objective function is

∑
i∈L zi. A crew

schedule that has a large number of move-up crews is likely to be more robust since it has many potential
swappable crews. Note that besides making the approximation of neglecting some pairing feasibility rules of
the swapped pairings, in operations it can happen that the crew flying the disrupted flight i′ cannot connect
to flight j′, but, if there are many move-up crews for this flight, then it is likely that the crew covering i′

will be able to cover at least one flight j′ from a move-up crew.
Clearly there is a trade-off between minimizing the crew cost and maximizing the number of move-up

crews in planning. A schedule that maximizes the number of move-up crews may as well have high crew
cost. To circumvent this problem, we assume that first the traditional crew pairing problem (1) is solved,
thus the planned crew cost is given. Our model maximizes the number of move-up crews and we add a
constraint controlling that the crew cost does not increase too much above the planned one.

3.2 Model

In order to count the number of move-up crews we need to know, given a flight i, the crew base of the pairing
covering i and the number of days until the end of the pairing. Therefore the already introduced z variables
need to be augmented.

Let HL be the set of all legs originating at a hub, and let CB be the set of all crew bases. We assume
that each crew base is a hub. Since at spokes there are not many opportunities to swap crews, we count
move-up crews only at hubs. Let Pi,cb,d be the set of all pairings covering leg iinL, starting at crew base
cbinCB and having d days from flight i to the end of the pairing. Let P i,cb,d be the set of all pairings that
yield a move-up crew for the pairing covering leg i. Formally, if p = (d1, . . . , dk) ∈ P i,cb,d, then there must
exist a leg j ∈ ds, 1 ≤ s ≤ k with the following properties:
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1. the flight following leg j in p is not leg i (a pairing itself does not yield a move-up crew),

2. the arrival station of leg j is the same as the departure station of leg i,

3. p starts at crew base cb,

4. d = k − s + 1 (there must be the same number of days till the end of the pairing),

5. atj + t ≤ dti, where t is either minSit or minRest depending if p has a sit or an overnight connection
at the arrival station of leg j (the crew must be ready at the departure time of leg i),

6. dtj′ > dti, where leg j′ is the flight following leg j in p (the crew covering leg i can potentially fly leg
j′).

In addition, let Pi be the set of pairings covering leg i and let D = {1, 2, . . . ,K}, where K is the maximum
number of days in a pairing. Since most of the times (double overnight rests are exceptions) the number of
flying days of a crew equals to the number of duties in a pairing, we have that if p = (d1, . . . , dk) ∈ Pi,cb,d

and i ∈ dj , then d = k − j + 1. Finally, let P be the set of all the pairings.
The model has the following variables:

• a binary variable yp for each pairing p, which is 1 if and only if pairing p is selected, and

• let zi,cb,d count the number of move-up crews to flight i if i ∈ p for a p ∈ Pi,cb,d.

The crew pairing model with move-up crew count (CPMC) reads

max
∑

i∈HL
cb∈CB

d∈D

zi,cb,d (2)

∑
p∈Pi

yp = 1 i ∈ L (3)

zi,cb,d ≤
∑

p∈P i,cb,d

yp i ∈ HL, cb ∈ CB, d ∈ D (4)

zi,cb,d ≤ M
∑

p∈Pi,cb,d

yp i ∈ HL, cb ∈ CB, d ∈ D (5)

∑
p∈P

cpyp ≤ (1 + r) · COPT (6)

y binary .

Constraints (3) are the standard set partitioning constraints. (4) and (5) together count the number of
move-up crews. If pairing p from Pi,cb,d covers leg i, then (4) by definition of P i,cb,d counts the number of
move-up crews for i. (5) imply that if i is not covered by a pairing from Pi,cb,d, then zi,cb,d is 0. Constant
M regulates the maximum number of move-up crews we want to capture per leg. If we want to exclusively
maximize the number of move-up crews, we select a large enough M . However, it makes more sense to
require, for example, that we take into account only at most two move-up crews for each flight (M = 2). A
solution with k move-up crews, where each move-up crew covers a different leg, is preferable over a solution
with k move-up crews for a single leg. To control the crew cost, we include (6). Here COPT is the optimal
value of (1), and r, r ≥ 0 is the robustness factor, which measures how much extra crew cost we are willing
to absorb.

3.3 Extensions

The CPMC model allows that a crew is a move-up crew to several other crews, but in reality it can be
swapped only with a single crew. This can lead to cases with large objective value, but the solution does
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not provide good flexibility during irregular operations. We call this property double counting. An example
is given in Figure 3. In case I crew flying leg 1 serves as a move-up crew for leg 3, and crew flying leg 2 for
leg 4. In case II crew flying leg 2 serves as a move-up crew for both legs 3 and 4. Although both I and II
have an objective value 2, crew schedule I is clearly preferable, since if both legs 3 and 4 are disrupted, only
one of them can use the move-up crew covering leg 2.

To account for double counting we augment CPMC as follows. Let HL be the set of all flights arriving
at hubs. For every i ∈ HL, j ∈ HL such that the arrival station of leg i is the same as the departure station
of leg j and the connection time is within [minSit, maxSit] ∪ [minRest, maxRest] we define a new binary
variable vij , which is equal to 1 if leg i yields a move-up crew to leg j and 0 otherwise. To prevent double
counting the following constraints are added to the model∑

j∈HL

vij ≤ 1 i ∈ HL (7)

∑
i∈HL

vij =
∑

cb∈CB,d∈D

zj,cb,d j ∈ HL . (8)

Constraints (7) guarantee that each leg arriving at a hub can be a move-up crew for at most one leg.
Constraints (8) make sure that the number of assigned move-up crews to a leg is equal to the number of
available move-up crews. A drawback of this extension is that, for example, a solution with a single flight
having one move-up crew has the same objective value as a solution with a single flight having two move-up
crews. The latter is preferable since we are neglecting some pairing feasibility rules in crew swaps.

To take this into account we can proceed as follows. We introduce for every i ∈ HL, cb ∈ CB, d ∈ D two
binary variables vi,cb,d/wi,cb,d, which are equal to 1 if leg i is covered by pairing p ∈ Pi,cb,d, it can serve as a
move-up crew, and the next connection is a sit/rest. In this case we add

vi,cb,d ≤
∑

p∈(∪j∈S(i)Pj,cb,d)\Pi

yp i ∈ HL, cb ∈ CB, d ∈ D (9)

vi,cb,d ≤
∑

p∈P S
i,cb,d

yp i ∈ HL, cb ∈ CB, d ∈ D, (10)

wi,cb,d ≤
∑

p∈(∪j∈S(i)Pj,cb,d)\Pi

yp +
∑

p∈(∪j∈R(i)Pj,cb,d−1)\Pi

yp i ∈ HL, cb ∈ CB, d ∈ D (11)

wi,cb,d ≤
∑

p∈P R
i,cb,d

yp i ∈ HL, cb ∈ CB, d ∈ D. (12)

Here S(i), R(i) is the set of all legs departing from the same station as the arrival station of leg i and with
the connection time within [minSit, maxSit], [minRest, maxRest], respectively. PS

i,cb,d/PR
i,cb,d is the set of

pairings p ∈ Pi,cb,d such that the next connection is a sit/rest. Constraints (10) and (12) make sure that the
leg is actually covered by a pairing p from Pi,cb,d and it has the desired connection length. Constraints (9)
and (11) count the number of legs which can use the crew flying leg i as a move-up crew. Note that we have
to exclude pairings that cover leg i. We also add the term α

∑
i∈HL

cb∈CB
d∈D

(vi,cb,d +wi,cb,d) (α > 0 is a parameter)

to the objective function to encourage a larger number of potential move-up crews. In Figure 3 this term is
2α for case I, and α for case II. Thus the first case is preferable.

Another property, which the CPMC model does not captures, is the dispersion of move-up crews in the
crew schedule. In Figure 4 both I and II have 4 move-up crews, but II is preferable, since it is more likely
that both legs 1 and 2 will be able to use a move-up crew in case of a disruption. To capture this feature
we introduce integer variables ui,j,cb,d for each i ∈ HL, j ∈ HL, which depart from the same hub, and
cb ∈ CB, d ∈ D. We add constraints

ui,j,cb,d ≥ zi,cb,d i ∈ HL, j ∈ HL, cb ∈ CB, d ∈ D

ui,j,cb,d ≥ zj,cb,d i ∈ HL, j ∈ HL, cb ∈ CB, d ∈ D.
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Figure 3: Double counting

I

II

1 2

1 2
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Figure 4: The dispersion effect

Thus ui,j,cb,d = max{zi,cb,d, zj,cb,d}. To encourage even distribution of move-up crews we add the term
β

∑
i∈HL,j∈HL
cb∈CB,d∈D

ui,j,cb,d (β < 0 is a parameter) to the objective function. In our example, in case I this term
equals to 3β, and in the second case to 2β.

We can also enhance the objective function (2). The objective function can be generalized by assigning
weights qi,cb,d to each zi,cb,d, thus maximizing

∑
i∈HL

cb∈CB
d∈D

qi,cb,dzi,cb,d. In this way we can control the number

of move-up crews corresponding to different legs. Airlines have strategic flights, which yield substantial
revenue. Higher weight could be assign to such flights. An airline might also give weight based on the
on-time performance of a leg. We can also assign higher weights for lower values of d. Due to snowball
effects, legs which are towards the end of a pairing are more likely to be disrupted due to crew problems and
therefore it is desirable that they have move-up crews.

4 Solution methodology

In this section we describe the underlying methodology for solving CPMC. Because of the enormous number
of pairings, columns need to be generated dynamically. Since there is also a substantial number of con-
straints, we chose not to apply the standard branch-and-price algorithm. Instead we employ a combination
of Lagrangian relaxation, see e.g. Fisher (1981), and column generation. The restricted master problem
consists of only a subset of pairings and it is solved by Lagrangian relaxation. Based on Lagrangian multi-
pliers, we generate new pairings, which are added to the restricted master problem. Our model is suited for
Lagrangian relaxation, since relaxing (4) and (5) yields the standard set partitioning formulation (1) with a
single side constraint (6).

4.1 Algorithm

Instead of relaxing both (4) and (5), we can potentially relax just a single family of these constraints even
though the corresponding restricted master problem would no longer be well structured. The next proposition
shows that relaxing both families yields the same Lagrangian dual value as relaxing only on a single family.
For generality, we give a result that covers slightly more general models.
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Proposition 1. Consider the following optimization problem

max
∑
i∈N

pizi

x ∈ S

z ≤ Cx (13)
z ≤ Dx (14)

where S is an arbitrary non-empty bounded set. Let z1 be the optimal value of the Lagrangian dual if only
(13) are relaxed and let z2 be the optimal value of the Lagrangian dual if both (13) and (14) are relaxed.
Then z1 = z2.

Proof. Without loss of generality assume that pi > 0 for any i. Let λ be Lagrangian multipliers for (13) and
µ Lagrangian multipliers for (14). Then

z1 = min
λ≥0

max
x∈S

z≤Dx

( ∑
i∈N

pizi +
∑
i∈N

λi(cix− zi)
)

= min
λ≥0

max
x∈S

z≤Dx

( ∑
i∈N

(pi − λi)zi +
∑
i∈N

λic
ix

)
,

where ci is the ith row of C and di is the ith row of D. For λ such that λi > pi for some i, we take zi = −∞,
and therefore the inner maximum equals to +∞. The outer minimum is obtained at λ such that λi ≤ pi for
every i, since in this case it is finite. To obtain the inner maximum we consider as large zi as possible, and
therefore zi = dix. Thus

z1 = min
0≤λ≤pi

max
x∈S

( ∑
i∈N

(pi − λi)dix +
∑
i∈N

λic
ix

)
. (15)

On the other hand

z2 = min
0≤λ
0≤µ

max
x∈S

( ∑
i∈N

pizi +
∑
i∈N

(λic
ix− zi) +

∑
i∈N

(µid
ix− zi)

)
.

Let N+ = {i ∈ N : λi + µi < pi}, N0 = {i ∈ N : λi + µi = pi} and N− = {i ∈ N : λi + µi > pi}. Then

z2 = min
0≤λ
0≤µ

max
x∈S

( ∑
i∈N+

(pi − λi − µi)zi −
∑

i∈N−

(λi + µi − pi)zi +
∑
i∈N

(λic
i + µid

i)x
)

.

For λ, µ such that N+ 6= ∅, we consider xi = 0, zi = +∞ for i ∈ N+, and zi = 0 for i /∈ N+. For this choice
the inner maximum is equal to +∞. For λ, µ such that N+ = ∅ and N− 6= ∅, we consider xi = 0, zi = 0
for i /∈ N−, and zi = −∞ for i ∈ N−. Then the inner maximum is again equal to +∞. For λ, µ such that
N+ = N− = ∅ the inner maximum is finite, since S is bounded. Thus

z2 = min
0≤λ,0≤µ
λ+µ=pi

max
x∈S

∑
i∈N0

(λic
i + µid

i)x = min
0≤λ≤pi

max
x∈S

( ∑
i∈N

(1− λi)dix +
∑
i∈N

λic
ix

)
. (16)

Comparing (15) and (16) we conclude z1 = z2.

Based on this proposition we relax both constraints (4) and (5). After relaxing (4) and (5), and accord-
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ingly fixing the values of z variables, the restricted master problem reads

max
∑

i∈CBL
cb∈CB

d∈D

(
λi,cb,d

∑
p∈P̄i,cb,d∩S

yp + Mµi,cb,d

∑
p∈Pi,cb,d∩S

yp

)
(17a)

∑
p∈Pi∩S

yp = 1 i ∈ L (17b)

∑
p∈P∩S

cpyp ≤ (1 + r) · COPT (17c)

y binary , (17d)

where S is a given subset of pairings. Note that this problem is the traditional set partitioning prob-
lem with a single side constraint. Since z variables are not present in constraints, they can be fixed
and therefore eliminated from the restricted master problem (this also follows from (16)). Given an
optimal solution y∗ to the restricted master problem, we can obtain a feasible solution to CPMC as
z∗i,cb,d = min(

∑
p∈P̄i,cb,d∩S y∗p, M(1 −

∑
p∈Pi,cb,d∩S y∗p)). It is clear that (y∗, z∗) is a feasible solution to

CPMC.
The overall solution methodology is given in Algorithm 1. In step 5 we use Lagrangian multipliers to

dynamically generate new pairings. A difficulty arises in the fact that the partitioning constraints (3) and
the cost bounding constraint (6) are not relaxed and therefore it is not clear how to assign “dual values” to
these constraints. At the iteration of the subgradient algorithm that yields the best solution, we solve the LP
relaxation of the restricted master problem and we consider the corresponding dual values. We experiment
in Section 5 by considering (δ = 1) the dual values of the partitioning constraints or not (δ = 0). The dual
value of the cost bounding constraint (6) is always used.

1: Let S be a subset of pairings with low reduced cost based on (1).
2: loop
3: Solve the restricted master problem over pairings in S by relaxing (4) and (5) and by using a subgra-

dient algorithm.
4: Let λ, µ be the resulting Lagrangian multipliers corresponding to (4) and (5), respectively. In addition,

let π, γ be the optimal dual solution to the LP relaxation of the restricted master problem at the
iteration where the best solution is found corresponding to (17b) and (17c), respectively. Let Ŝ be the
set of pairings in the incumbent best solution.

5: Let S̃ be a subset of pairings p with low modified reduced cost defined by

r̂cp = γcp −
∑
i,cb,d

p∈P̄i,cb,d

λi,cb,d −M
∑
i,cb,d

p∈Pi,cb,d

µi,cb,d − δ
∑
i∈p

πi, (18)

where δ is a parameter, which is either 0 or 1.
6: Set S = S̃ ∪ Ŝ.
7: end loop

Algorithm 1: The algorithm

The Lagrangian dual problem of minimizing (17) subject to λ ≥ 0, µ ≥ 0 is solve with the standard
subgradient algorithm, see e.g. Lemaréchal (1989). The Lagrangian multipliers are updated according to
the formula (λ, µ) = max{(0, 0), (λ, µ)− t(uλ, uµ)}, where the maximum is taken componentwise. Here t is
the step size defined by

t =
t0

αbk/βc
fk − fopt

||(uλ, uµ)||2
,

where k is the iteration number, α, β and t0 are parameters, fk is the value of the dual objective function
at kth iteration, fopt is the best primal objective value found so far and (uλ, uµ) is the subgradient defined
as uλ

i,cb,d =
∑

p∈P̄i,cb,d
y∗p − z∗i,cb,d, uµ

i,cb,d = M
∑

p∈Pi,cb,d
y∗p − z∗i,cb,d.
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4.2 Subproblem Solving

Next we give more details on step 5 of the algorithm. The problem to solve is

min
p∈P

{γcp −
∑
i,cb,d

p∈P̄i,cb,d

λi,cb,d −M
∑
i,cb,d

p∈Pi,cb,d

µi,cb,d − δ
∑
i∈p

πi} . (19)

We use the constrained shortest path algorithm with backward node scanning. Details on constrained
shortest path can be found in Desrosiers et al. (1991), Desrosiers et al. (1995), and Desaulniers et al. (1998).
We first briefly describe the segment timeline network, see e.g. Barnhart et al. (2003). The segment timeline
network has two distinct nodes for each flight i, one for the arrival denoted by bi and the other for the
departure, which is denoted by ei. For each flight there is an arc connecting the two nodes. Additionally, the
network has an arc between the arrival node of a flight and the departure node of a flight if the connection
time between the two flights is within [minSit, maxSit]∪ [minRest, maxRest] and the arrival station of the
first flight is the same as the departure station of the second flight. For ease of exposition we assume that
all plane turns are longer than minSit. The network has two additional nodes s, t. Every flight with the
arrival station being a crew base is connected to t and s is connected to every flight originating from a crew
base. For every flight i let NS(i), NO(i) be the set of all flights j such that (ei, bj) is an arc in the network
with the connection time [minSit,maxSit], [minRest, maxRest], respectively. Since we deal with the daily
problem and to avoid cyclic networks, we replicate each flight several times until the maximum elapsed time
of pairings. For example, if pairings cannot exceed 5 days, then the network has 5 copies of each flight, each
one offset in time by a day. The resulting network captures all pairings and it is acyclic.

It is clear that each pairing corresponds to an s− t path but an s− t path might violate pairing feasibility
rules. In order to circumvent this, to find a favorable pairing the constrained shortest path algorithm must
be employed. In such an algorithm, a label is maintained for each feasibility and cost resource. The latter are
required if the cost of a pairing is non linear. Examples of labels are those corresponding to the maximum
number of duties, the maximum elapsed time, the sum of the duty costs, the number of legs in a duty, etc.
In addition, to capture the dual prices, an additional label is required. Each s − i path is represented as
a vector consisting of the values of all resources. Thus every node contains a set of label vectors. In the
constrained shortest path algorithm a node is selected and then all of its label vectors and adjacent nodes
are scanned. For each label vector v and each neighbor node j a new label vector is formed by updating v
using the underlying arc and the new label vector is inserted at j. If a label vector is dominated by another
one, it is discarded.

The constrained shortest path algorithm for (19) is based on the segment timeline network and it uses the
same resources or labels as the constrained shortest path algorithm for solving the traditional crew pairing
problem. For ease of discussion, we assume that the first label corresponds to the dual prices, i.e. r̂cp − γcp.
We show next how to update this label and the necessary changes to the constrained shortest path algorithm.

For each i ∈ L, k ∈ NS(i) ∪NO(i), cb ∈ CB, d ∈ D let

αi,k,cb,d =
∑

j∈NS(i)
dtj<dtk

λj,cb,d +
∑

j∈NO(i)
dtj<dtk

λj,cb,d−1 .

For each pairing p and leg i ∈ p, let cb(p) ∈ CB be the crew base of p, let d(i, p) be the number of days in p
from i till the end of the pairing, and let next(i, p) be the leg following i in pairing p. Now it is easy to see
that

r̂cp − γcp = −M
∑
i∈p

µi,cb(p),d(i,p) − δ
∑
i∈p

πi −
∑
i∈p

αi,next(i,p),cb(p),d(i,p) =
∑
i∈p

βi,next(i,p),cb(p),d(i,p) ,

where for every i ∈ L, k ∈ NS(i) ∪NO(i), cb ∈ CB, d ∈ D we have

βi,k,cb,d = −Mµi,cb,d − δπi − αi,k,cb,d .

We have transformed the dual vector contribution into one that is linear in terms of β’s.
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The constrained shortest path starts at t and it performs a backward scan of nodes. Therefore a label
vector encodes an i− t path. We first precompute all β’s. Given a flight (node) i, let vi be a label vector at
i. In addition, let cb(vi) be the crew base corresponding to the underlying i− t path encoded by vi and let
d(vi) be the number of days on the i − t path encoded by vi. Let j be a flight such that (j, i) is an arc in
the segment timeline network and we denote by vj the newly formed label vector at j. Then the update of
the first label is given by

vj
1 =

{
vi
1 + βj,i,cb(vi),d(vi) (j, i) ∈ NS(j)

vi
1 + βj,i,cb(vi),d(vi)+1 (j, i) ∈ NO(j)

and

cb(vj) = cb(vi)

d(vj) =

{
d(vi) (j, i) ∈ NS(j)
d(vi) + 1 (j, i) ∈ NO(j) .

This shows that (19) can be solved by the backward constrained shortest path algorithm.

5 Computational Experiments

The computational experiments were carried out on a PC with a 333 MHz Pentium III processer, 520MB of
RAM, and Windows 2000 operational system. Microsoft Visual Studio 6.0 was the development environment.
We used ILOG CPLEX 7.5 as the mixed integer programming solver. We have considered 3 instances, which
are given in Table 1. We have obtained these instances from 2 airlines. The pairing cost structure and the
feasibility rules comply with those of the corresponding airline. Both airlines use the hub-and-spoke network
structure and they have to comply to the computationally hard 8-in-24 pairing feasibility rule. Even though
the first and the third instance do not have many legs, they are computationally hard due to the heavy
hub-and-spoke structure. It takes two hours to solve the crew pairing problem (1) for these two instances.
An acceptable solution to the crew pairing problem for the second instance is computed in 4 hours. The last
column shows the number of move-up crews in the traditional solution.

No. move-up crews in traditional
No. of legs No. of crew bases No. of hubs M = 1 M = 2

Instance 1 123 3 7 2 3
Instance 2 228 5 11 5 5
Instance 3 80 1 7 4 5

Table 1: Instances

A robust crew schedule or robust solution is a solution to CPMC. On the other hand, a traditional crew
schedule or traditional solution is a solution to (1). In the first part we study the effects of parameters such as
M and r on the crew cost and the number of move-up crews. We also exploit the two options in computing
the modified reduced cost in the solution methodology. In the second part we provide a computational
analysis of the trade-off between the crew cost and robustness. We generate several robust solutions with
respect to M and r and we evaluate them by generating random disruption. For each disruption we then run
a crew recovery decision support system to get the operational crew cost after the disruption. We perform
the same analysis for the traditional solution. At the end we compare the resulting operational crew cost,
the number of deadheads, the number of used reserved crews, and the number of canceled flights.

5.1 Parameter Sensitivity and Solution Methodology Analysis

All presented experiments but the last one in this section were carried out on the first instance. To justify
the choice of the Lagrangian decomposition approach for solving CPMC we first give a comparison between

12
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the performance of CPLEX and our Lagrangian decomposition approach. Since CPLEX cannot handle
all pairings at once due to their prohibitive number, we first solve the root node LP relaxation of (1).
Next we select 10,000 pairings with the lowest reduced cost and for both approaches CPMC is solved only
by considering these selected pairings. The results are given in Table 2 and we used r = 0.01,M = 2. All
presented times are CPU times in minutes. The stopping criteria for CPLEX is 900 minutes and the stopping
criteria for our approach is always 30 iterations of loop 2-7. Our methodology finds a solution with the same
objective value, i.e. the number of move-up crews, in substantially lower computational time. The resulting
crew cost shown as “FTC offset” in the second column and measured as the deviation from the FTC of
the traditional solution is higher for the solution obtained by Lagrangian decomposition but this is a pure
coincidence since the identical constraint (6) is used. The last column “Gap” gives the gap at the end of
the computation, which is defined as (z̄− z∗)/z̄, where z∗ is the move-up value of the best obtained solution
and z̄ is the upper bound on the optimal solution produced by the underlying algorithm. The gap of both
algorithms is unusually high, but nevertheless the gap of our algorithm is substantially lower than the gap
produced by CPLEX. It is clear from the presented results that the underlying mixed integer program is very
challenging for branch-and-bound solvers and our Lagrangian decomposition approach is a clear winner.

FTC offset time Move-up count Gap
CPLEX 3.5% 900 12 62%
Lagrangian Decomposition 4.8% 15 12 43%

Table 2: Comparison of CPLEX and our methodology

Next we show in Table 3 how is the running time effected by different choices of M and r. The two cases
labeled by † use the following “softer” constraint∑

p∈P

cpyp ≤ (1 + r) · cOPT + t (20)

instead of (6). Here t is a new nonnegative real variable with a large negative objective coefficient. Note
that by using (20) the cost upper bound can be violated but the violation is penalized. The choice of M
does not effect substantially the running time, however increasing r increases the running time. The reason
is that for small values of r the restricted master problem has only few feasible solutions, which results
into a small branch-and-bound tree (branch-and-bound is warm started with the solution of the restricted
master problem from the previous iteration). On the other hand, the branch-and-bound algorithm struggles
in finding feasible solutions. To elevate this, we have developed softer constraints (20). Indeed, by using
this constraint the running time decreases, especially for the case M = 2, r = 0.015. As shown later,
unfortunately these solutions do not perform well in practice.

M = 1 †M = 1 M = 2 M = 2 M = 2 †M = 2
r = 0.005 r = 0.005 r = 0.005 r = 0.01 r = 0.015 r = 0.015

Time 38 34 59 167 202 70

Table 3: Execution times

We have performed additional experiments, which are geared toward sensitivity analysis and algorithmic
choices of the our methodology.

1. Constraint (6) imposes an upper bound on the crew cost. Clearly, larger values of r produce more
move-up crews. For r ∈ {0.005, 0.001, 0.015, 0.025} and M = 2 the corresponding crew cost and the
number of move-up crews are given in Table 4. Recall that r is not the maximum crew cost, but it is
the allowed margin over the crew cost of the traditional solution. As expected, the number of move-up
crews grows with increasing r. As shown later in Section 5.2, the best schedules from the operational
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point of view were obtained at r = 0.005. This shows that although the number of move-up crews is
increasing with an increase of r, it does not provide large enough recovery flexibility to compensate
cost loss during regular operations.

r 0 0.005 0.01 0.015 0.025
Schedule cost 26015 26132 26255 26375 26627
Move-up count 3 14 17 18 21

Table 4: Effects of r

2. Increasing M in (5) results in a larger number of move-up crews, as shown in Table 5. Here we use
r = 0.005. The last columns shows that number of legs that actually have at least one move-up crew.
We note that this number increases up until M = 3 and then the solution for M = 5 is clearly inferior.
The solutions for M = 2 and M = 3 are very similar. In the experiments that follow we use either
M = 1 or M = 2.

M 1 2 3 5
Move-up count 14 21 26 26
No. legs with a move-up crew 14 16 17 13

Table 5: Effects of M

3. The size of the restricted master problem and the choice of δ in calculation of the modified reduced
cost given by (18) effect the solution quality and the running time. Clearly the larger the size of the
restricted master problem, the better the solution. However, with the increasing size of the restricted
master problem the running times grow. Table 6 confirms these trade-offs. These results were obtained
for the second instance with M = 2 and r = 0.005. Even though the running time for δ = 0 and the
size of 5,000 is the highest one, it gives by far the best quality solution. The running time is acceptable
since this is a tactical planning problem. This is the default strategy in the experiments that follow.

δ = 0 δ = 1
Size of the restricted master problem 3,000 5,000 3,000 5,000
Number of move up crews 7 15 5 5
Time for 30 iterations 97 287 21 29

Table 6: Algorithmic choices

5.2 Robust vs. Traditional

In order to evaluate practical performance of robust schedules, we general several random disruptions. The
number of disruptions is proportional to the number of legs. We use 80 minute shut-downs at airports
throughout the day with the number of disruptions proportional to the number of flights. For every disrup-
tion, the new crew assignments are obtained by an automated crew recovery module. The recovery module
uses sophisticated optimization techniques such as integer programming and heuristics. Every disruption
has to be recovered in a 24-hours time window with the objective of minimizing the crew cost of the resulting
schedule and minimizing the number of uncovered legs. Crew swapping, reserve crews, deadheading and flight
cancellation are all considered and therefore the recovery module accurately mimics recent state-of-the-art
recovery procedures.
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When comparing the traditional crew schedule with a robust one, we identically disrupt both schedules
and recover them. We repeat this for all different scenarios and we report an accumulated difference between
performance attributes of the traditional schedule and the robust one. Positive values correspond to robust
schedule outperforming the traditional crew schedule. The performance of a schedule is evaluated by the
following attributes.

• DH (number of deadheads). Often the cheapest recovery solution includes deadheading to reposition
crews. The deadhead flight does not necessarily have to be from the considered fleet or even from the
same airline.

• RC (number of stand-by reserve crews). Stand-by reserve crews are on duty at crew bases and therefore
they are being paid even if they are not used. An advantage here is not only in the reduction of the
number of used reserve crews, but also in the potential reduction of the number of on-duty reserve
crews.

• UL (number of uncovered legs). Sometimes, as a result of a disruption, it is impossible to cover all
legs with crews. For example, a flight from a spoke, (no reserve crews) whose inbound crew is late and
there is not sufficient time to deadhead another crew from a near crew base, requires a cancellation.

• FTC pl (planned flight-time-credit). This is the FTC based on planned departure and arrival times
and it is known before the day of operation. We report the difference in FTC between the traditional
solution and the incumbent solution. If the traditional solution is optimal to (1), then this number is
always nonpositive.

• FTC opt (operational flight-time-credit). This is the FTC at the end of the day and thus it is based on
the operational crew cost. At the first glance, since robust solutions provide more recovery opportu-
nities, their operational FTC should be smaller. However, recall that FTC is based on the block time
and therefore, since traditional schedules tend to have more uncovered legs, their operation cost can
decrease, which effects FTC.

Since the first three attributes are intangibles, we list them separately and we do not attempt to assign any
monetary value.

For the first instance a total of 200 disruptions in 7 stations were generated. The results are given
in Table 7. All numbers are cumulative numbers across all disruptions. The last two cases denoted by †
correspond to employing the soft cost bounding constraint (20). It is obvious that the first crew schedule
with M = 2, r = 0.005 gives by far the best results. It is important to note that theoretically more robust
solutions do not necessarily produce lower operational FTC solutions (recall that the flying time is influenced
by the number of uncovered legs). Another argument is in the fact that some disruptions do not disrupt the
crew schedule and therefore in such cases solutions with lower r perform better. Due to such predominant
behavior of the first solution, for the remaining two instances we always consider r = 0.005.

FTC pl % FTC opt % DH RC UL MC
M = 2, r = 0.005 -0.5 0.32 61 41 18 14
M = 2, r = 0.015 -1.5 -0.13 59 69 -7 18
M = 1, r = 0.005 -0.5 0.18 25 31 -17 10
M = 2, r = 0.01 -1.0 0.17 30 68 -17 17
†M = 1, r = 0.005 -0.8 0.19 36 38 -2 14
†M = 2, r = 0.015 -1.6 -0.71 17 53 -20 20

Table 7: Comparison of traditional and robust solutions for instance 1

For the second instance a total of 240 disruptions in 11 stations were generated. The results are reported
in Table 8. The resulting solution again outperforms the traditional one in all aspects.
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FTC pl % FTC opt % DH RC UL MC
M = 2, r = 0.005 -0.4 2.5 15 7 35 15

Table 8: Comparison of traditional and robust solutions for instance 2

Instance 3 corresponds to a different airline and therefore many pairing feasibility rules and the pairing
cost structure are different. For this fleet a total of 140 disruptions in 7 statiouns were generated. The
comparison of robust and traditional solutions is given in Table 9. Due to a different airline, we performed
the comparison also for M = 1, r = 0.005 setting, which seems promising from Table 7. Both of these crew
schedules outperform the traditional one. The winner between these two solutions is not clear since the first
one outperforms the second one in the number of used deadheads and reserved crews.

FTC pl % FTC opt % DH RC UL MC
M = 1, r = 0.005 -0.5 0.27 3 16 1 9
M = 2, r = 0.005 -0.4 0.51 1 14 10 11

Table 9: Comparison of traditional and robust solutions for instance 3

Note that the above cost gains are based only on irregular operations. Whenever irregular operations
do not occur, the robust crew schedule bears higher crew cost. If there is a single disruption per day, then
the second column in Table 10 shows the yearly gains in thousands of dollars. The third column gives the
same for a single disruption every two days. Note that in this case the robust solution for the first instance
is not profitable solely based on the crew cost. All robust solution in this table have M = 2, r = 0.005.
These annual savings do not take into account the number of deadheads, reserve crews, and the number of
uncovered legs. Based on statistical analysis reported by Bratu and Barnhart (2000), the delays tend to be
longer and longer in time and therefore our 80 minute disruptions are realistic. In addition, based on the
same report a single disruption per day is conservative. When these savings are added over all fleets, an
airline can achieve significant savings by using our robust crew solutions.

1 disruption 1 disruption
per day every 2 days

Instance 1 320 -80
Instance 2 2,400 800
Instance 3 200 15

Table 10: Annual savings in thousands of US dollars

6 Conclusions

The main contribution of this work is to show that robust crew pairing solutions produce lower operational
crew cost. We achieve this by introducing a new model that is based on a realistic and commonly used crew
recovery practice of crew swapping. We performed detailed experimental analysis. The main conclusion is
that one needs to be cautious in trading off the crew cost for robustness. Sacrificing too much crew cost
quickly leads to solutions that do not have operational gains. Nevertheless there is a fine line where the
trade-off is beneficial and robust solutions produce significant annual savings.
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