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Airline schedule development continues to remain one of the most challenging planning activity for any
airline. An airline schedule comprises of a list of flights and specifies the origin, destination, scheduled
departure, and arrival time of each flight in the airline’s network. A critical component of the schedule
development activity is the choice of flight block-times, which depend on several factors. Many airlines
decide schedule block-times based on fixed percentiles of block-time distributions built from historical data,
however, such techniques have not resulted in significantly improved on-time performance of the schedule
during operations. Thus, from a passenger’s perspective, the service level guarantee of an airline’s network
continues to be low. We first define two service level metrics for an airline schedule. The first one is similar
to the on-time performance measure of the U.S. Department of Transportation and we define it as the flight
service level. The second metric, called the network service level, is geared towards completion of passenger
itineraries. We then develop a stochastic integer programming formulation that optimally perturbs a given
schedule to maximize expected profit while ensuring the two service levels. We also develop a variant of this
model that maximizes service levels while achieving desired network profitability. To solve these models we
develop an efficient algorithm that guarantees optimality. Through extensive computational experiments,
using real-world data, we demonstrate that our models and algorithms are efficient and achieve the desired

trade-off between service level and profitability.
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1. Introduction
In a recent article (Associated Press 2007) The Associated Press reported that the U.S. airline

industry’s on-time performance (OTP) through the first eleven months of 2007, was the second
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worst on record. According to the U.S. Department of Transportation, a flight is delayed if it arrives
at its destination gate 15 minutes or more after its scheduled arrival time. Even in the previous
year, i.e., 2006, statistics showed that there were 823,030 arrival delays out of a total of 3,805,313
commercial flights operated by all the major U.S. carriers (Bureau of Transportation Statistics
2009). Flight delays and cancelations have been attributed to several causes some of which include
weather conditions, airport congestion, national air-space congestion, aircraft maintenance related
issues, and more recently airline security related services. Consequently, such delays lower service
reliability and adversely affect a commuter’s travel experience.

While some of the causes of delays, such as weather conditions, are beyond the control of the
airlines, previous research shows that some causes of delays are attributable to the network and
schedule design decisions of an airline. For example, while an airline develops its hub-and-spoke
network, it typically does not account for the congestion externality imposed on other carriers
operating out of the same hub stations. In a recent paper, Mayer and Sinai (2003a) empirically
demonstrate that the gains from hubbing activities offset the costs incurred by flight delays and
congestions. In such cases, congestion pricing at certain capacity constrained airports, may be a
solution to elevate the problem. In a companion paper, Mayer and Sinai (2003b) also hypothesize
that wage cost minimization and aircraft utilization maximization result in airlines flying with very
tight schedules. Such objectives are typical in most airline planning systems, which are designed to
achieve cost efficient resource utilization. Schedule planning models do not address the following
two important issues. First, they do not include passenger-centric service reliability measures in
the schedule development process. Second, the schedules ignore block-time uncertainty (variance)
and hence fail to capture robustness measures. In this paper we address these issues by devel-
oping schedule planning models that incorporate both, passenger centric metrics and block-time
uncertainty, in the planning process.

Airline schedule development continues to remain one of the most challenging planning activity
for any airline. An airline schedule comprises of a list of flights and specifies the origin, destination,

scheduled departure, and arrival time of each flight in the airline’s network. A critical component of
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the schedule development activity is the choice of flight block-times. A flight block-time is defined
as the total elapsed time between the time an aircraft pushes back from its departure gate and
arrives at its destination gate. The block-time comprises of several components including taxi-out
time, enroute time, and taxi-in time. Each of these components is subject to different causes of
delay and the total block-time delay is the sum of all individual component delays. Since airline
schedules must be published well in advance of the actual day of operation, block-times, for all
the flights in the schedule, are typically decided using historical information of similar flights
operated in the past. The Department of Transportation OTP metric is computed against these
published flight block-times. Most airline operations are compared based on their OTP rankings and
hence airlines perceive their OTP as an important operational measure of their schedule reliability.
However, research indicates that airlines fail to adequately adjust block-times and typically do
not incorporate uncertainty in their planned schedules. Since most planned resource costs, such as
aircraft and crew utilization costs, depend on the cumulative hours in a schedule, airlines face a key
trade-off decision between adjusting (increasing) flight block-times to improve schedule reliability
and incurring additional planned costs. Using data made available by the Bureau of Transportation,
Deshpande and Arikan (2009) argue that airlines systematically “under-schedule” flights, i.e., the
amount of block-time allocated for a flight is less than the average block-time expected for the
flight. Conversations with planners at a large U.S. carrier suggested that airlines do not judiciously
allocate block-times to scheduled flights to balance costs versus operational benefits. Typically,
planners use ad-hoc techniques to either lower or raise block-times across the entire flight network in
the hope of increasing OTP. Results in Deshpande and Arikan (2009) also corroborate these findings
and indicate that airlines do not maintain consistent service levels by adjusting their schedules
based on the time of the day, origin airport congestion, and destination airport congestion.
Planning for uncertainty in the schedule building process becomes necessary not just to improve
OTP rankings but also to improve passenger service levels. As stated earlier, the goal of this paper
is to develop a robust optimization approach to schedule planning by specifically incorporating

passenger centric goals and block-time uncertainty in the planning models. The key trade-off in
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such a process is between higher service levels achieved through increasing (and better allocation
of) flight block-times and higher planned costs (i.e., lower planned profits). In this paper we develop
a model that re-times (perturbs) a proposed flight schedule by considering block-time probability
distributions. First, we explicitly define notions of passenger and network service levels. Then we
develop a model that maximizes the expected profit while guaranteeing minimum service levels.
This model allows imposition of minimum service levels. Second, we develop a variant of this model
that maximizes service levels while achieving required profitability. While the optimization models
are complex, we also develop computational procedures, based on cut generation techniques, to
efficiently solve these models. To this end, this paper also has a methodological contribution to the
development of computationally efficient procedures. We provide extensive computational experi-
ments, using real airline data from a large U.S. carrier, that validate our model and demonstrate
potentially large operational gains for an airline. Overall network reliability is also improved.

The contributions of this paper are at several levels. First, to the best of our knowledge, this paper
is an initial attempt at developing a comprehensive and holistic model that includes block-time
uncertainty in developing robust schedules. Second, through chance constraints, we explicitly model
block-time distributions allowing us to incorporate operational uncertainty in the schedule planning
process. This makes the resultant schedule robust. We also incorporate network service levels, which
probabilistically model passenger connections. Third, we propose a new cut generation algorithm
to solve these stochastic binary integer programming models and establish its convergence. The
analysis is non-trivial since the feasible region of the original problem is non-convex and first a
linearization is required. Upon linearization, the resulting (modified) model is infinite dimensional
with infinitely many constraints. Thus, our algorithmic procedure and optimal convergence result
generalizes previously established convergence results for (1) semi-infinite linear programs with
finitely many variables but infinitely many constraints, and (2) infinite dimensional problems with
finitely many constraints and infinite number of variables.

Overall, this research is in line with the growing literature on linking operational variability

(and hence costs) to planning models. For example, research in robust fleeting (Rosenberger et al.
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2004); robust aircraft routing (Lan et al. 2003), robust crew scheduling (Shebalov and Klabjan
2006), and the robust approach to passengers rerouting in disruption management (Karow 2003)
show this emerging trend. Another growing area is the development of simulation systems of airline
operations, e.g., SimAir by Rosenberger et al. (2002) and MEANS by Bly et al. (2003). These
systems play a crucial role in evaluating and comparing the performance of different schedules. This
paper also contributes to several techniques developed in the airline schedule planning literature.
In general, airlines, though plagued with low profitability margins, airspace and airport congestion,
and high capital and operating costs are heavy users of mathematical optimization techniques
(Dobson and Lederer 1993, Lohatepanont and Barnhart 2004, Barnhart et al. 2003). Barnhart and
Cohn (2004) and Klabjan (2005) provide an extensive review of OR models used in airline schedule
planning. There is other literature in the domain of stochastic scheduling that is also related to
our work (see Portougal and Trietsch 2001). However, existing literature in stochastic scheduling
ignores the need to achieve high customer service level.

The rest of the paper is organized as follows. First in § 2 we develop the two optimization models
for schedule perturbation. Next, in § 3 we discuss issues related to the computational tractability of
these models and develop the solution methodology and optimal algorithms. We provide extensive
computational experiments in § 4. Finally, in § 5 we conclude the paper. Additionally, we provide
a complete set of results of all the other computational experiments in an online appendix (see

Sohoni et al. 2008).

2. Model Description

As discussed earlier, our goal is to develop a model to perturb the incumbent flight schedule to

improve the service levels provided to the end consumers. Perturbing a flight schedule implies

adjusting the scheduled departure times of flights® in the network within an allowable time window.
Soon after determining the flight schedule, the airlines determine capacity assignments (fleeting)

and assign generic aircraft to routes. The latter, in the literature, is referred to as the aircraft routing

! Throughout this paper we use the terms “flight” and “leg” interchangeably.
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problem. It is after these processes that we consider the issue of schedule re-timing (perturbation)
to fine tune block-times and improve robustness of the schedule with respect to the service level
metrics defined later. While perturbing the incumbent schedule, however, we must guarantee that
the resulting schedule continues to remain feasible with respect to the aircraft turns built of the
incumbent schedule. Every flight in the incumbent schedule is assigned to exactly one aircraft. An
aircraft turn is essentially a pair of consecutive flights flown by the same aircraft. We assume that
the set of turns associated with the incumbent schedule is known a priori.

A passenger travel plan, or itinerary, may comprise of multiple flight legs. Broadly defined, a
fare class is the price an airline charges to book a passenger in a particular booking class. Airline
seats are divided into several booking classes. Next, we define the important modeling notation and

parameters.

N :The set of all flights (legs) in the airlines flight network,
B :the total available planned budget (depends on the total block-time across all flights),
O :the set of all passenger itineraries,
T :the complete set of aircraft turns,
F  :the set of all fare classes,
«; :the origin station of flight 4,
0B; :the destination station of flight 7,
m;; :minimum passenger connection time between two flights ¢ and j,
t;; :minimum turn-time between flights 7 and j on the aircraft rotation,
D,; :expected demand for itinerary o and fare class f,
[l;,u;] : the allowable departure time-window for flight 4,
¢; :the per time unit cost incurred for flight ¢, which includes unit costs

corresponding to crew pay and aircraft utilization,
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B;s :booking limit for fare class f on flight i,

rof :the average fare of itinerary o and fare class f,

d? :the previously scheduled departure time of flight ¢ in the incumbent schedule,
e; :the penalty for deviating from the preferred departure time of flight i, and

0  :the Department of Transportation OTP measure for flight delay

(typically 15 minutes after the scheduled arrival time).

Next, we define the decision variables of the model:

d; :the published departure time of flight i,
a; :the published arrival time of flight ¢,
X,s :demand of itinerary o and fare-class f satisfied, and

z;; :binary variable indicating if the passenger connection between flights 7 and j is feasible.

We define d and a to be the set of departure and arrival times respectively. The only random
variables in the model are the block-times and are denoted by Y;;, where ¢ represents the departure
time of flight 7. We assume that these are continuous random variables. The relation between
a flight’s departure time, arrival time, and the corresponding block-time is as follows: A; =d; +
Yia,, where A; is the actual random arrival time of flight 7. The probability density function of
a flight’s block-time is represented by p;(-,¢) since it might depend on the departure time ¢t. The
cumulative density function is assumed to have finite support [d7,d%]. To reduce the complexity of

our computational experiments we assume the following.

ASSUMPTION 1. The expected demand D,s for an itinerary does not vary significantly for rea-

sonable deviations in departure time.

Given that we disallow large perturbations of the departure time by controlling the time window

[l;,u;] for every flight i in the network, it is reasonable to assume the following:
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ASSUMPTION 2. For each flight i we require that, p;(-,t) = p;(+), i.e., the pdf of the block-time

distribution does not depend on the departure time.

A flight j is said to follow-on flight ¢ if passengers of flight i can connect to flight j. The set of
all passenger connections for flight ¢ depends on the arrival time of flight ¢ and departure times of
possible connecting flights. We define the connection set for flight ¢ as follows.

DEFINITION 1. The connection set for flight ¢, with respect to the incumbent schedule, is defined

as
Ci(d,a) = {j EN:dj — a; > m;; & ﬁz :Oéj} (1)

Building on the definition of C;(d,a) we define a modified connection set C;, which denotes the
largest set of possible connections for flight ¢ under any departure and arrival time adjustment.
For example, C; can be the set of all flights originating at station «;, or we can further refine the

set as

C; ={j € N:3; =q; and can connect to i regardless of re-timing}

={JeN:Bj=ai,u;— (li+0]) =my}. (2)

The advantage of using set C; instead of the original connection set C;(d,a) is that, for any flight i
the latter set is non-stationary, i.e., as the departure time of flight ¢ changes, the flights in the set
may change. Thus it depends on the decision variables. As we show later, this poses a modeling
and optimization challenge since we cannot guarantee a convex feasible region.

We now define the Service Level, SL;, of any flight i € V.

DEFINITION 2. Service level SL; is the probability that passengers from flight ¢ can connect to

any follow-on flight included in the set C;(d,a), i.e.,
SL; =Pr[A;+m;; <d; for every jeC;(d,a)]. (3)

Observe that from definition 2 it follows that SL;, =Pr[Y;,, < rcnl(rdl : {d; — d; —m;;}]. The Network
J1eC;(d,a

Service Level (NSL) is defined as follows.
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DEFINITION 3. The NSL is defined as the minimum service level across all the flights in the
airline’s network, i.e.,

NSL=minSL,. (4)

Finally, the Flight Service Level (F'SL), also referred to as the OTP, is defined as follows.
DEFINITION 4. The FSL is the probability that a particular flight is not delayed based on the

Department of Transportation acceptable arrival delay measure ¢, i.e.,

Lastly, for notational convenience, we denote the fact that flight j follows flight ¢ in an itinerary
0€ O by i — j. Next, we describe the two optimization models.

2.1. Maximizing Operational Profits

We first consider the case when an airline must maintain a minimum F'SL, v, over all flights in
the network and simultaneously guarantee a minimum NSL of 7,. The profit maximizing model

(PMM) reads:

(PMM)max » 1o Xop— > _e;ldi—d5| = ci(a; — d;) (6)

o,f iEN iEN
PI‘[K@ZSCLZ—dl—F&]Z’Yf 1e€N (8)

ZCi(ai —d;))<B 9)

iEN
XofSDof OGO,fGF (10)
> X <By ieN,feF (11)
0€0,i€0
Z XofSKijzij ZeN,jEGZ (12)
o,f,j€0,i—]
dj—alzm”z”—K(l—ZU) ZeN,jEGZ (13)
l; <d; <y 1N (15)

zi; €{0,1}, d, a unrestricted. (16)
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The first term in the objective function (6) corresponds to the net revenue due to satisfied
itinerary demand, the second term is the net penalty due to deviation from preferred departure
time (departure time specified in the incumbent schedule), and the third term represents the total
operational cost. Constraint (7) ensures that the minimum NSL is at least as large as the desired
value of ,. It is not difficult to observe that NSL > =, if and only if constraint (7) is satisfied.
Constraint (8) guarantees that the minimal F'SL is at least ;. Constraint (9) restricts the total
network operating cost incurred and constraint (10) restricts the fare-class itinerary demand to the
maximum allowable. Since every flight 7 within an itinerary o can carry at most B;; of a particular
fare-class f, constraint (11) ensures that the booking limit constraint on each flight is satisfied.
Constraints (12) and (13) ensure that we only account for those itineraries whose flight sequence
is legal with respect to the minimum passenger connection time. Here K;; = Z B+ ZBj 7. The
constant K is the length of the time horizon, ie., K = maxu; — Ereuj{} L + rzrgm\;&; Cons]icraint (14)
guarantees that the pre-determined aircraft turns are preserved and hence the aircraft routing
solution always remains feasible. Finally, constraint (15) bounds the departure time adjustment
for every flight and the constraint (16) restrict the choice of z;; to be binary.

In § 3, we discuss issues regarding the computational tractability of the optimization model
PMM. One peculiarity of PM M is immediately observable; the constraint set in (7) depends on
the decision variables.

2.2. Maximizing Service Level

An alternate goal could be to maximize the service level across the entire flight network. However,
the airline may only be willing to do so provided it maintains minimum operational profitability.
In this case the optimization model differs from the PAM M model described earlier, i.e., 7; and v,
are no longer parameters but are decision variables. Furthermore, the profit objective in PM M is
now a constraint. We impose that the minimum operational profit must be at least U, units. The

service level maximizing model (SLMM) reads:

(SLMM) max w s +w, Yy (17)
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Pr[YVlszd7_dz_ml]]_’Yﬂ20 ZGN,]ECZ(C[,G) (18)
PI’[Y;)di gaz—dl—i-(ﬂ -Vt >0 1e€N (19)

> ela;—di)<B (20)

iEN
XofSDof OGO,fGF (21)
Z Xoy < By iEN,fcF (22)
0€0,i€o0
Z X,y < Kz ieN,jeC; (23)
o,f,j€0,i—] -
d; —a; >m;z; — K(1—2;;) teEN,je€C; (24)
dj—a;—t; 20 (i,j) €T (25)
S rop Xop =Y eildi—di| =Y eiai—d)) > U, (26)
o.f iEN iEN
l; <d; <y 1€N (27)
z;; €{0,1}, d, a unrestricted. (28)

The objective function (17) is a weighted sum of the minimal N.SL and F'SL quantities where w;
and w,, are the weights corresponding to the F'SL and NSL, respectively. All the other constraints
are similar to those described in PM M. The only additional constraint is (26) which ensures that

any solution makes an expected operational profit of at least U,,.

3. Solution Methodology

In this section we discuss issues regarding computational complexity and tractability of the models
discussed in § 2. More importantly, we exhibit two algorithms for solving PMM and SLM M.
In the model PMM constraints (7) and (8) are non-linear. This makes the model difficult to
solve computationally. Similarly, in model SLM M constraints (18) and (19) are non-linear. Addi-
tionally, objective function (6) and constraint (26) contain the absolute value function, however,
it is straightforward to linearize these terms. A technical assumption regarding the block-time

distribution allows us to simplify the model and reduce its computational complexity.

ASSUMPTION 3. The block-time distributions are log-concave and stationary with respect to the

departure time.



Sohoni, Lee, and Klabjan: Robust Airline Scheduling under Block Time Uncertainty

12

Through extensive empirical studies using Bureau of Transportation Statistics data, Deshpande
and Arikan (2009) estimate the best distribution fit for observed truncated block-times across
several US airlines. Specifically, they use log-Normal and log-Laplace distributions. While the log-
Normal distribution provides a reasonable fit, they show that the log-Laplace distribution is better.
It is noteworthy that both of these cumulative distribution functions are log-concave (Bagnoli
and Bergstrom 2005) and thus satisfy Assumption 3. The Laplace distribution is defined by two
parameters: v, a location parameter, and b, a scale parameter where the mean equals to v and
the variance is 2b*. The probability density function of the Laplace(v, b) distribution is f(z|y,b) =
ﬁ exp (—@) Assumption 3 allows us to simplify the complicating chance constraints (8) and
(19) into convex constraints. Given that we assume the block-time distribution is independent of

the departure time we drop the departure time subscript, i.e., ¥;4, =Y;. Constraints (7) and (8)

are transformed as follows.

IOg (PY[K de _dl_mlj]) ZIOg’Yn ZGN?] Gcz(d7a) (29)

log (Pr[Y; <a; —d; +6]) > log~s i€ N. (30)

It is known that the feasible set of constraint (30) is convex due to log-concavity (see, e.g., Birge
and Louveaux 1997). Unfortunately, constraints in (29) are not convex since their index depends
on d and a. This fact poses a significant algorithmic and computational challenge. To devise an
efficient solution strategy we first develop a linear approximation scheme to these constraints in
§ 3.1. The resulting mixed-integer model has an infinite number of variables and constraints. We
then describe a cut generation algorithm that generates these linear constraints as needed and
builds an optimal solution to the models.

3.1. Model Reformulation

Our goal in this section is to develop a linear formulation to the two models, PM M and SLM M.
Recollect that the NSL constraints given by equation (29) are non-convex. To circumvent this
issue, we construct a linear approximation for the NSL constraint over a stationary set of linear

functions as follows. The added advantage of doing so is that the reformulation allows us to develop
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an algorithm, similar to the Bender’s cut generation algorithm (Birge and Louveaux 1997), to solve

the model.
Recollect that the distributions have a finite support K; = [d},4%]. Now, for every flight i, we
define a function g;(x) as
gi(x) =logPr[Y; <z], xz€Kk,. (31)

Since Y; is log-concave, g;(x) is concave, see, e.g. Birge and Louveaux (1997). To build an outer
linear approximation to equation (31), we consider a set of linear functions, Uy, defined over
interval IC;. We show the form of these linear functions later. For now, using these linear functions

we rewrite g;(z) as follows (this is a known fact in convex analysis):

gi(x) = min Uy, (). (32)

kek;

Using equation (32) we now reformulate the N.SL constraint as

9i(dj —d; —my;) >logy, €N, jeCi(d,a). (33)
The above equation can be rewritten as

2;;9i(d; — d; —my;) > logy, i€ N, jedC, (34)

where C; is defined by equation (2). Observe that log~y, < 0 and thus inequality (34) holds if z;; = 0.
If z;; =1, then j € C;(d,a) and thus g;(d; — d; — m;;) > log~y, must hold, which is guaranteed by

constraint (34). Thus, constraint (29) is equivalent to
Z;; I0in Uir(d; —d; —my;) >logy, i€N, jeC,. (35)

It is noteworthy that in (35) if d; —d; —m,;; <0, then z;; =0 and hence we need not worry about
negative arguments, i.e., we restrict our attention to positive values only.
We now characterize the functions Uy, (x). Given the probability density function p;(-) for block-

time Y;, we can write these functions as

(x—k) —i—log/o pi(t) dt. (36)
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To this end, notice that Uy (6] — my;) <0 and Uy (6] — my;) < Uy, (z) for all x > §; —m;; (see Figure
1). This is the tangent of g;(x) at the point k£ € K;. It is known that a concave function is the

minimum of its tangents and thus equation (32) holds. We still need to linearize constraints (35).

Figure 1  Linearization of constraints (35).

We now define additional continuous decision variables, s, for all i € N, j € C;, and k € K;.

Constraint (35) can then be replaced by the following set of linear constraints:

ZijUik(éz_mij)SSiijO iEN,jEC_'i,k‘EICi (38)
(l—zij)Uik(éf—mij)—i—sijkSUik(d‘j—di—mij) ieN,jEéi,kGKi. (39)

If z;; =0, then (38) implies that s, =0 and thus (37) holds. In this case, (39) also holds since
Uir.(6; — my;) < Uy (dj — d; — my;). On the other hand, if z;; = 1, then we can assume that s;;; =
min{0, Uiy (d; — d; —m;;)} and thus (37) holds if and only if Uiz (d; — d; — m;;) > log .

Similarly, the F'SL constraint given by equation (30) is equivalent to
]Eni}CnUik(ai—di—i—é)zlogfyf i€ N. (40)
eK; ’
It is clear that (40) is equivalent to

Up(a;—d;+9) >logvy; i€ N, kek,. (41)
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It is evident that the number of constraints in (37) - (39) and (41) is extremely large. Incorpo-
rating these constraints and variables a priori into the model is impossible. Hence, we must develop
an iterative cut generation algorithm that generates relevant inequalities at each iteration as the
solution progresses. A further complicating factor is the fact that we have an infinite number of
sij variables (uncountably many).

As discussed earlier, in addition to the above service level constraints, the term Zei |d; — df]
is also a non-linear term in the objective function (6). However, this term can be linieiivrized using
standard techniques and hence we do not discuss this linearization technique in detail. Next, in §
3.2, we describe the cut generation algorithm for the profit maximizing model PM M.

3.2. The Cut Generation Algorithm for PM M
Based on the constraint linearization procedure described earlier, in this section we develop a
constraint generation algorithm to solve our optimization model PM M.

We begin by ignoring the NSL and F'SL constraints, i.e., constraints (35) and (40). Recollect
that we replace the original constraints (7) and (8) with these new constraints. In addition the term
Z e; |d; — d?| is linearized in the objective function. We refer to the resulting model, without these
fojzlstraints, as the restricted profit maximizing model R — PM M. We initialize our algorithm with
R—PMM. Let h >0 denote an iteration step of the proposed algorithm. Further, let Z"* = <ZZ*>,
d" = (d"), and a"* = (al*) denote an optimal solution at the beginning of iteration h, i.e., after
solving R — PM M. At every iteration let S denote the set of new NSL constraints generated
and let S¢) denote the set of additional F'SL constraints generated. Let S denote the set of
combined NSL and F'SL constraints added to the restricted problem R — PM M. Each time an
NSL constraint is generated, the corresponding s variable is also introduced into R — PM M.

We list the steps of our constraint and variable generation algorithm in Algorithm 1. In Step 3 of
the algorithm we gather all the current passenger connections. Since k;; is the function argument
in the right-hand side of (39), we need to consider tangents at this particular point (see Figure 1).

Flight j; is the index with the maximum violation in (37). Step 4.2, in Algorithm 1, introduces the

new s variable and adds the corresponding constraints (37) - (39).
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Algorithm 1 Algorithm for solving PM M
Step 1: Initialize h=1,S =0 and let R— PM M consist of objective function (6) and constraints (9)-(16).

Step 2: Optimize R — PM M with constraints in S. Let Z"*, d"*, a"* be the corresponding optimal solution.

Step 3: Build updated connection sets, i.e., for each flight ¢ € N collect
Si={jeN:zly=1}.

Step 4: Check for the set of most violated NSL constraints. Set $™ «— ) and k;; = d}* — d?* —m,;. For
each flight i € N

1. Find

ji = argmax {log v, — U, (ki;) } -

Jj€S;
2. Iflogvy, — Ui, (kij,) >0, then define a variable s, ;, x,; , and generate constraints using (37) - (39) with
j=Jji,k=kiy,. Add these constraints to S™.
Step 5: Check for the set of violated F.SL constraints. Set S/) « () and k; = a"* — d* 4 4. For each flight
te€N
1. If logy; — U, 1, (k;) > 0, generate a constraint using (41) with k=k,, and add it to SU.

Step 6: If SYUS™ =), terminate;

Step 7: Set S —SUSM™M USW h« h+1, go to Step 2.

Next, in Theorem 1 we show that Algorithm 1 is guaranteed to converge to an optimal solution.

THEOREM 1. There is a subsequence {h,}, such that d; = lim d?q*, a; = lim afq* for every

q—00 q—00

flight i € N is an optimal solution to PM M.

PROOF. See the appendix, §6, for the proof. O

It is noteworthy that the proof of Theorem 1 also exhibits an optimal Z*, s*, and X*. As a
result, Algorithm 1 converges to an optimal solution for model PM M. Furthermore, it is worth
emphasizing that the analysis is not trivial. As stated earlier the feasible region of the original
problem is non-convex, but, the linearization procedure allows us to circumvent this issue. However,
upon linearization, the modified model is infinite dimensional with infinitely many constraints.

Algorithm 1 and Theorem 1 generalize the convergence results achieved with (1) semi-infinite linear
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programs with finitely many variables but infinitely many constraints, and (2) infinite dimensional
problems with finitely many constraints and infinite number of variables.

The computational time to convergence could still be an issue. While we cannot guarantee a
bound on the computational time, in §4 we demonstrate that the algorithm converges within
reasonable CPU time through extensive computational experiments using real airline data. Next,
in § 3.3 we develop an approximate algorithm to solve SLM M.

3.3. Cut Generation Algorithm for SLM M

The algorithm to solve PM M can be modified to approximately solve the alternate model SLM M.
Notice that constraints (37) - (39), and constraint (41) are also valid for SLM M; they replace
constraints (18) and (19). To enable a complete linear transformation we define variables (,, = log~y,

and (; =log~y;. Thus, constraints (37) - (39) and (41) transform as follows:

Sijk > Cn ieN,jeC;kek; (42)

2ijUin (6] —mij) < 8556 <0 ieN,jeC; kek; (43)

(1= 2 ) Ui (8] — mij) + sijr. < Ugpo(dj — di — my) ieN,jeC;kek; (44)
Uir(a;i —d; +9) > (; 1€ N,kek,. (45)

We change the objective function of model SLM M using ¢,, and (¢, however, the objective func-
tion is now a non-linear function, i.e., w; exp{¢;} + w, exp{¢, }. Unfortunately, this is a maximiza-
tion problem of a convex function and thus is not easily amendable to computational tractability. To
simplify the computational procedure we use the first-order linear approximation of exp{z} =14z

which transforms the objective function to

maxw(y + Wy, G- (46)

The new objective is an approximation of the original problem. Thus, any optimal solution to the
transformed objective function may not result in an optimal solution to the original problem. How-
ever, the linear approximation allows us to solve for the service levels efficiently. We demonstrate

this using several computational experiments in § 4.
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In addition to the above service level constraints, the term Zei |d; — d3|, in constraint (26), is
also non-linear. Just as in the case of PM M, this term can be I;Z]garized using standard techniques
and hence we do not discuss it in detail here.

As with the solution methodology for PM M, to begin, we ignore the NSL and FSL con-
straints, i.e., constraints (42)-(45). We refer to the resulting model, without these constraints, as
the restricted service level maximizing model R — SLM M. In addition, the objective function is
replaced by (46). We initialize our algorithm with R — SLM M. Let h > 0 denote an iteration
step of the proposed algorithm. Further, let Z"* = <zfj*>, d" = (d"), and a"* = (al*), (J’Z*, and
¢ denote the optimal solution at the beginning of iteration h. At every iteration let S™ denote
the set of new NSL constraints generated and S) denote the set of additional F'SL constraints
generated. Let S denote the set of combined NSL and FSL constraints added to the restricted
problem R— SLM M. We list the steps used to solve SLM M in Algorithm 2. The steps are similar
to those in Algorithm 1.

Similar to Theorem 1 it is easy to verify that Algorithm 2 is guaranteed to converge to an

optimal solution for the approximate model of SLM M with the objective function (46). We state

this result as a corollary to Theorem 1 without proof.

COROLLARY 1. Algorithm 2 converges to an optimal solution of the approximate model SLM M

with the objective function (46).
Next, we describe the computational experiments.

4. Computational Experiments

In this section we describe a series of computational experiments using real airline data. The goal of
these experiments is twofold. The primary goal is to study the efficiency of the optimization models
PMM and SLM M to solve the robust scheduling problem. A secondary goal is to study the trade-
off an airline faces between higher passenger service levels (as defined by the NSL and F'SL) and
the possible degradation in profit using the models described earlier. To this end, we implemented

the algorithms described in § 3.2 and § 3.3 to solve 5 airline network instances. We first describe
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Algorithm 2 Algorithm for solving SLM M
Step 1: Initialize h=1,5=0 and let R — SLM M consist of objective function (46) and constraints (20)-

(28).
Step 2: Optimize R — SLMM with constraints in S. Let Z"*,d"*,a}*,(}* and (!* be the corresponding

7 0

optimal solution.

Step 3: Build updated connection sets, i.e., for each flight i € N collect
Si:{jGN:zZ.*zl}.

Step 4: Check for the set of most violated NSL constraints. Set $™ «— ) and k;; = d}* — d?* —m,;. For
each flight i € N

1. Find

j; = arg InaX{CfL’* = Ui, (k”)} .

JES;

2. If ¢} — Uiy, (kij,) > 0, then define a variable s and generate constraints using (42) - (44) with

igiski,
j=jik=kiy,. Add them to S™.
Step 5: Check for the set of violated F.SL constraints. Set S/) « () and k; = a"* — d* 4 4. For each flight
1 €N,

1. If s — U, s, (k;) > 0, generate a constraint using (45) with k= k;, and add it to S).

Step 6: If SV US™ =(), terminate;

Step 7: Set S —SUSMUSY) h—h+1, go to Step 2.

the characteristics of these network instances in Table 1. Due to confidentiality issues we report

only the underlying ranges. Instance 1 is the largest network covering all the fleets. Instances 3,

Instance | Flights | Stations | Itineraries | # Fleets
1 1500 85 50,000 5
2 450 75 30,000 2
3 850 80 45,000 3
4 1000 70 30,000 3
5 850 80 35,000 2

Table 1 Characteristics of network instances for the computational experiments.
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4, and 5 are relatively medium sized networks and instance 2 is the smallest network. In Table
1, the largest network consists of 5 fleets with varying capacities. The set of itineraries consists
of itineraries with up to 4 flights. All the networks are hub-and-spoke and the largest network
has 5 hubs. Given that there are a large number of flights in each network, we do not report the
block-time statistics for individual flights in these networks. To obtain block time distributions, we
analyzed the realized block-times over two consecutive years. We concluded that arrivals are never
earlier than 30 minutes before the scheduled arrival time based on the incumbent schedule, however
flights can be significantly late. As a result, we assume that the block-times follow a truncated
Normal distribution with a lower limit of 30 minutes before the scheduled arrival time and no
upper limit. The truncated-Normal distribution satisfies Assumption 3 (Bagnoli and Bergstrom
2005). Obviously, our computational results depend on the form of the assumed distribution and we
acknowledge the limitations of the results discussed in the section. However, as mentioned earlier,
our main goal is to demonstrate that the solution methodology performs well on the real-world
data. Additionally, our models allow planners to study important tradeoffs faced by an airline while
increasing schedule reliability. Fine tuning the distributions would definitely provide more accurate
results. The means of the block-time distributions vary from 36 minutes to 387 minutes and the
variances range from 24.9 to 595.3.

All the problem instances were solved on an Intel Xeon 3.2 GHz dual core server running Redhat’s
4.1 version of the Linux operating system. The cut generation algorithm, Algorithm 1, and its
variant for the SLM M model, Algorithm 2, were developed using the g++ compiler, version 4.1.
The mixed integer programming instances were solved using ILOG CPLEX version 10.1 and the
models were developed using the ILOG Concert library, version 2.3.

In the accompanying online appendix (Sohoni et al. 2008) we list all the detailed computational
results of all the instances described in Table 1. In this paper, however, to demonstrate the efficiency
of our models and algorithm, we only summarize some of the performance metrics of PM M, for all

the 5 instances, in Table 2. A priori, after adjusting for a few outliers, the NSL of the incumbent
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schedule is 0.4 and the F'SL is 0.6. Essentially, we ignored 10 flights with very low service levels
to compute the NSL and 5 flights to compute the FSL.

For the first set of experiments the F'SL was held constant at 0.8 and the N SL level was allowed
to vary from 0.8 to 0.95 in increments of 0.1. We denote this set of experiments as Fixed-F.SL. In
the next set of experiments the N.SL was held constant and the F'SL was allowed to vary from 0.8
to 0.95 in increments of 0.1. We denote this set of experiments as Fixed-INSL. All these instances
were solved to optimality. We report the maximum CPU time, maximum number of iterations,

and maximum number of cuts generated using Algorithms 1 and 2 in Table 2. The results show

Network Instance
Metric 1 2 3 4 5)
Fixed-F'SL (max CPU secs) |3,842 167|952 |838|801
Fixed-F'SL (max iterations) 27 |10 | 17 | 12 | 13
Fixed-F'SL (max cuts added) | 980 |227 | 767|315 | 428
Fixed-NSL (max CPU secs) |3,921|187|921 | 873|792
Fixed-NSL (max iterations) 24 8§ 13| 8 | 10
Fixed-NSL (max cuts added) | 987 |243| 793|343 |437
Table 2 Algorithm performance for model PM M.

that PM M performs reasonably well on all networks, especially, considering the fact that schedule
development is performed several months prior to the day of operations and airlines do not mind
spending additional computation time. Furthermore, the results also indicate that both algorithms
converge within a few iterations.

For the remainder of the computational experiments we restrict our attention to instance 1
because it is the largest network. We discuss these experiments in §4.1 and §4.2. As mentioned
earlier, results for all other instances can be found in Sohoni et al. (2008).

4.1. The PM M Model

The first set of experiments are for model PM M. Through several experiments we demonstrate
the trade-off between higher service levels and planned profit. For all these experiments we restrict
the flight departure times to be adjusted within 60 minutes of those specified in the incumbent
schedule. Furthermore, the penalty for adjusting the departure time is assumed to be the same for

all the flights ¢ € N and is held at 1, i.e. e;=e; =1 for all 4,5 € N.
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Effect on Profit. First, in Figure 2 we show how the profit (objective function) varies as the
NSL is varied for different F'SL levels. The profit is computed as a percentage of the planned
profit of the incumbent schedule. In general the profits decrease as NSL increases. Since the NSL
and F'SL of the incumbent schedule are lower than those considered, these profits are also lower.
We vary the NSL from 0.8 to 0.95. With lower F'SL the decrease in profit is less pronounced as
the NSL increases. To achieve extremely high NSL and FSL, substantial profit decrease must be

tolerated. Next, in Figure 3, we show how the profit varies as the F'SL is varied for different NSL

0.98 ~
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X 092 -
= FSL=10.85
& 094
2 0.88 - FSL=0.9
0.86 -
0.84 FSL=0.95
0.82 T T )
0.78 0.83 0.88 0.93 0.98

NSL

Figure 2 Effect of NSL on the profit level (percent of incumbent schedule profit).

levels. In this case too the profit levels decrease. Again, the profit is computed as a percentage
of the planned profit of the incumbent schedule. Similar to the NSL experiments, we vary the
FSL from 0.8 to 0.95. Finally, Figure 4 summarizes the reduction in profit, as a percentage of the
planned profit of the incumbent schedule, as both the NSL and FSL vary from 0.8 to 0.95. It
is noteworthy that at very high service levels the reduction in profit is 13%. However, the airline
may be willing to consider a lesser degradation in profit to still achieve substantial improvement
in FSL and NSL. We observe that the profit decreases almost linearly with respect to the F'SL

and NSL. This is confirmed also in Figures 2 and 3.
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Figure 3 Effect of F'SL on the profit level (percent of incumbent schedule profit).

Figure 4 Effect of F'SL and NSL on the profit level (percent of incumbent schedule profit).

Number of Departures Changed and Passenger Connections for the PM M Model.
In this set of experiments we vary the NSL and F'SL between 0.8 and 0.95 and study the number
of departure times and passenger connections affected. Figure 5 shows the effect of varying the
NSL and Figure 6 shows the effect of varying F'SL. In the former the F'SL is fixed at 0.8 and
in the latter set of experiments the NSL is fixed at 0.8. In both these figures the solid line with
block markers represents the number of passenger connections achievable and the dotted line with
diamond markers represents the number of flight departures affected. In Figure 5 the connections
steadily decrease from 4,186 to 3,725 while the number of departures increases (as shown by the thin

dark trend-line) from 171 to 273 as the NSL changes. Similarly, in Figure 6 the connections vary
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Figure 6 Effect of F'SL on the departures changed and passenger connections.

between 4,197 to 4,055 and the total departures adjusted fluctuate between 164 and 200. There is
not a clear trend in how the F'SL affects the number of departures adjusted, however, as indicated
by the thin dark trend-line the connections show a decreasing trend. Intuitively, to achieve high
service levels, flexibility is required and thus more departure time changes are expected. Figure 5
confirms this, while it is not evident from Figure 6. The N.SL captures passenger connections. If
an airline operates a single flight, the NSL is 100%. We expect that as the NSL is increased, the

number of passenger connections should decrease (clearly at the expense of diminishing profit).
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This intuition is confirmed by both figures.

Effect of Deviation Penalty for the PMM Model. Here we vary the penalty from the
departure time in the incumbent schedule (e;, i € N). In these experiments, however, we do not

discriminate between flights, i.e., we assume e; = e; for every i,j € N. First, in Figure 7 we plot
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Figure 7 Effect of departure deviation penalty on profit and passenger connections.

the profit (as a percentage of the profit of the incumbent schedule) and the number of passenger
connections changed as the deviation penalty is varied from 0 to 200. The thick-line represents the
profit level and the dashed-line represents the connections affected. The NSL and F'SL are held
at 0.8 for all these experiments. The profit, as well as the connections, show a decreasing trend
with respect to the deviation penalty. This is expected since higher deviation penalties imply more
costly perturbations and thus the trade-off between schedule changes and profit sways towards
schedule changes.

4.2. The SLM M Model.

Here, we report the experimental results for the SLM M model. For these set of experiments we
define the relative weight between the NSL and FSL as w = Z—’; The first set of experiments for

the SLM M model study the effect of w on the NSL and F.SL achieved. The minimum profit level
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(for constraint (26)) is restricted to 100% of the profit achieved with the incumbent schedule. Thus

we do not allow any decrease in profitability. Figure 8 shows the results of these experiments. The
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Figure 8 Effect of w on NSL and F'SL.

dotted-line represents the F'SL and the solid-line represents the N.SL. Since the objective function
in Algorithm 2 is an approximation to the two service levels, given a solution, we have to compute
the service levels from the schedule obtained. The experimental results, with the departure time
window fixed at 30 minutes, show that F'SL drops initially while the NSL increases as w increases.
Interestingly, though, both these service levels stabilize beyond a weight level and remain almost
constant even for very large values of w. Such a behavior is expected since w captures the trade-off
between the two service levels. From Figure 8 we can also observe the maximum possible service
levels with the same profits.

The next set of experiments vary the departure time window between which the flight departure
times are varied. Again, we study the effect on the service levels achievable while still assuring
100% of the original schedule’s profit. Figure 9 plots both these curves. The dotted-line represents
the F'SL and the solid-line represents the NSL. As the departure time window is expanded, the

NSL improves while the F'SL marginally drops. This affirms that it is harder to increase the NSL
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than the F'SL. To increase the NSL, further flexibility has to be provided such as increased time

windows. Figure 9 provides a clear trade-off with respect to the permissible schedule change and
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Figure 9  Effect of departure time window on NSL and FSL (w=0.7).

the two service levels without reducing profitability. For example, if the departure time windows
are 10 minutes (which may not be always acceptable, e.g., due to competition and implications
on demand), then a NSL of about 58% and a F'SL of about 79% is achievable at the same profit
level. This is a substantial improvement over the original values of 40% and 60% for the NSL and
FSL, respectively. For these experiments w = 0.7, which is a value of w where the service levels are
stable.

The final set of experiments study the trade-off between the service levels and the profit level.
The profit is computed as a percentage of the profit for the incumbent schedule when w = 0.7 and
the departure time window is set to 30 minutes. Figure 10 shows the variation in NSL, F'SL, and
the value wNSL + FSL as the profit is reduced. At 100% profit, NSL = 0.68 and F'SL = 0.68.
However, as the profit percentage is reduced, NSL increases only slightly, i.e., up to 0.71 at 90
% profit level, while F'SL increases substantially to 0.91. Note that a different trade-off would be

assessed if w is changed. Thus, the airline may gain on service levels by slightly adjusting the profit.
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Figure 10  Effect of reduction in profit level on NSL and F'SL (w=0.7).

5. Discussion

In this paper we developed two models that incorporate uncertainty associated with block-times
into the schedule development process. It is an initial attempt in developing a comprehensive
and holistic model for incorporating block-time uncertainty in schedule planning. We explicitly
model time distributions through chance constraints and hence the resulting schedule is robust
with respect to the operational on-time performance measure. We also incorporate network service
levels, which probabilistically model passenger connections. The new cut generation algorithm and
linearization technique proposed are novel in the sense that the convergence result generalizes
previously established results with (1) semi-infinite linear programs with finitely many variables but
infinitely many constraints, and (2) infinite dimensional problems with finitely many constraints
and infinite number of variables.

The benefits of our approach are two fold: (1) airlines could adjust the schedule to increase
operational reliability, and (2) passengers could be guaranteed higher service levels. There are
potentially other indirect benefits of adjusting the schedule by incorporating block-time uncer-
tainty. For example, the schedule recovery cost due to a disruption during actual operations could

be reduced because the planned block-times allow additional flexibility. However, we have not
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specifically included such additional benefits in the models presented. Through extensive compu-
tational experiments we demonstrate the efficiency of our algorithms and models in trading off
between profitability and service level guarantees. The algorithms perform well in achieving this
trade-off and provide airline schedule planners the ability to decide on acceptable reduction in
profitability to achieve desired passenger service levels.

There are several possible modifications and enhancements to the models described in this paper.
First, the dependency of block-time distributions on the departure time can be included, if such
information is readily available. This also allows for wider time windows to vary the departure
times of scheduled flights and capture “time-of-the-day” effects related to block-time distributions.
However, the resulting model is more complicated than those described by the PM M and SLM M
because it requires the introduction of additional binary variables and several additional constraints
to model the choice of the appropriate departure-time dependent block-time distribution. The
key concept is to discretize each time window and assign a specific block-time distribution to
each subinterval. Standard modeling techniques using piecewise linear functions capture these
assignments.

Second, in the current model we assume that the block-times follow continuous log-concave
distributions. It is possible that there may be a discrete jump in the actual block-time, i.e., the
block-time distributions follow a discrete log-concave distribution. While our model can be con-
sidered as an approximation to the discrete case, incorporating discrete distributions may not
guarantee convergence, unlike the case discussed in this paper with continuous distributions.

Third, to keep our analysis tractable and focus on the issue of schedule reliability, our model
does not incorporate the trade-off between the local and through passengers. While constraints,
(14) in the PMM model and (25) in the SLMM model, enforce the fact that the original pas-
senger connections (itineraries) are feasible with any schedule perturbation, any solution to our
model provides a lower bound to the potential revenue (and profit) achievable, if such a profitable
trade-off (substitution of demand) were to be specifically included in these optimization models.

Additionally, such data would also have to be captured. These constraints also enforce that the
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aircraft routing solution to the incumbent solution continues to remain feasible under any schedule
perturbations. In a more general setting it is possible to relax these constraints and allow larger
perturbations of the schedule by embedding fleet assignment and aircraft routing constraints. In
this case several additional passenger connections may also become feasible as the departure times
are perturbed. Such a model would be an extension of our model and significantly harder to solve.

To address the issue of time dependent demand distributions for local and through passengers,
one possible way is to construct multiple copies of the same flight, each with its own specific
demand. This would necessitate the inclusion of additional constraints enforcing that exactly one
of these copies is chosen as well as the connections of aircraft rotations and passenger flows remain
feasible.

Fourth, in this paper, we focus on perturbing the schedule by including block-time uncertainty.
However, as the block-times are varied, and the departure times are perturbed, the ground-times are
automatically adjusted. It is possible, that airlines would want to trade-off between the allocation
of ground-times and block-times to perturb the schedule. Currently, we do not explicitly model
ground-time constraints because the form of the distributions for the ground-time variables is not
known. Our solution methodology could be extended if these distributions are log-concave. It is
possible that, in the current model, we could capture the change in the objective function due to
increase or decrease in ground-times. This could be done by including some cost /profit associated
with perturbing ground-times in the objective function. For example, if G;; denotes the cost/profit
associated with increasing the ground-time between flights ¢ and j in an aircraft’s rotation, we
could include the terms Z Gi;(d; — a;) in the objective function. This, of course, would not

(i,j)ET
qualitatively change our main insights.

Finally, in the current setting we do not distinguish between various markets an airline serves
(i.e., different portions of the network). It is possible to incorporate different service levels for
different markets and use similar models, as described in this paper, to perturb the schedule and
set suitable block-times. In the current setting we only guarantee a minimum service level for the

entire network.
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6. Appendix
Proof of Theorem 1.

Recollect that h denotes the iteration index in Algorithm 1. Given that Z"* only has a finite
number of different values, there exists a subsequence such that Z"M* = Zh2* = Zhs* = ... = 7*,
Furthermore, since for every flight ¢ € NV, d?q* € [l;,u;], there exists a convergent subsequence in
{d?q*}q. From constraint (8) it follows that d,** < a'** for every i € N. Additionally, constraint
(9) ensures that the subsequence {a?q*}q is upper bounded. Thus, we conclude that there exists a
convergent subsequence in {afq*}q.

Let us denote the values of s;j, in the optimal solution to R — PM M by s"*. We now assume

that if zf‘j* =1, then s?j*k = min{(), Ui (d;”‘ —dh —mij)} for every k€ K;, i € N, and j € C;. If

hx

this is not the case, we can easily increase s} to satisfy this property without affecting feasibility.

Furthermore, observe that for every itinerary o and fare-class f combination we have 0 < X : H T <

D, ;. Therefore, there must be a convergent subsequence in {X : H *} . Here X"* denotes the optimal
’ q

itinerary fare-class demand values.

From the above set of arguments and due to a finite number of flight legs, there is a subsequence

where all the departure and arrival times converge in addition to the itinerary fare-class demand
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values. For ease of notation we denote this subsequence by {h,},. Let d* and a* be the sets of
departure and arrival times of flights, respectively, as defined in the statement of the theorem.

Furthermore, we also define, for every k € K; and i € N, j € C;

. fo 2z =0
Sijk = { min {0, Uy, (d} —df —mi;) } Zz{' =1 (47)

It remains to be shown that d*, a*, Z*, and s* is an optimal solution to PM M, i.e., these values
satisfy constraints (9)-(16), constraints (37)-(39), and (41). It is easy to verify that constraints
(9)-(16) are satisfied because only a finite number of them exist. Hence, we first discuss constraints
(37)-(39). On closer observation it is easy to note that constraints (38) and (39) hold by definition.
Thus, we focus our attention on constraints (37).

To this end, let us fix a i € N and j € C;. We first show that

8" ny = logy, (48)

ik,
—_ hq _ . . .
for every q and k;* = k;;, in iteration hj.

First, let 27 =1 and ¢ > ¢ + 1. We have zqu* =1 for every ¢ and thus s}_l_qk*hq <
; ik

Uik;_Lq (d;,%* _ dfq* _ mij) and log~, < sf:;q. We conclude log~,, < Uik;_Lq (d‘;}q* _ d?q* — mw) Since

these constraints are not removed from R — PMM in later iterations, we have log~, <

U’L_khq (d?q* — dfq* — mij)- Since U’s are continuous, by taking the limit as ¢ — oo, we obtain
logy,, < Uiqu (df —di —my;) .

Since log~, <0, we obtain

1Og’7n é min {0, Uik}.Lq (d;F - d;k - mz])} = S*

ik
Thus, we have proved(48).

‘We now consider

}Cffelgl Sijk = }gfell}? {0,Uin(d; — df —miy) } = gi(df —df —my;).
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Observe that we have

gi(dj —di —my;) = gi(d) —d!" —m,;) +gi(dj —di —my;) — Qz'(d?q* —d!" —my;)

J
J ? J ?

= U, (47" =i =y )+ g0(d; = di = myy) = gu(d)™" = di"" = my;) (50)

J

= Uiyha (d}?q* B d?q* B mij) ~Uha (d} — di —my;) +logy,

+gi(d — di —my;) — gid}” —di*" —my;) (51)
3 khq * *
= 5;(71) [d?q —d; +d; —d?q } +log v,
Jo pi(t)dt
gu(d5 = d —my) = gu(d" — di*" — ). (52)

In the above, equation (50) follows from the fact that kzh ¢ maximizes the violation of constraint
(37) (see Step 4.1 in Algorithm 1). Furthermore, (51) follows from (48) and (49). The last equality,

i.e. equation (52), follows from the definition of Uy.

pz(k)
[ pu(t) dt

for all ¢ € V. Similarly, the last two terms also converge to 0 since g; is a continuous function. Thus,

Observe that the first term in equation (52) converges to 0 since is bounded for k € K;
we conclude that

S;jk >log~y, forevery ke K;, i€ N. (53)

It is easy to verify that when z;; = 0 constraint (37) holds. We conclude that (47) holds in general.

Using similar arguments it can be shown that constraint (41) also holds. Hence, Z*, d*, a*, and
s* is a feasible solution to PM M.

It remains to show optimality. Let V (Z*,d*,a*, s*) denote the objective value of the correspond-
ing solution. Further, notice that in each iteration h, the optimal value V** of R — PM M is an

upper bound on the global optimal value V*, i.e., V* < V"*. Thus, we must have
V(Z*,d*,a*,s*) S V* S th* — V(th*,dhq*,ahq*,shq*). (54)

Since the objective function 1is continuous, by taking the limit, we obtain
lim V(Z"e* dha* aqMa* s"a*) = V(Z*,d*,a*,s*). From (54) we obtain V* = V(Z*,d*,a*,s*). To
q—0o0

. . h . .
arrive at this we must also have {X ¢ "}, be a convergent subsequence, which was assumed earlier.

Hence, we have completed the proof. |



