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Airline schedule development continues to remain one of the most challenging planning activity for any

airline. An airline schedule comprises of a list of flights and specifies the origin, destination, scheduled

departure, and arrival time of each flight in the airline’s network. A critical component of the schedule

development activity is the choice of flight block-times, which depend on several factors. Many airlines

decide schedule block-times based on fixed percentiles of block-time distributions built from historical data,

however, such techniques have not resulted in significantly improved on-time performance of the schedule

during operations. Thus, from a passenger’s perspective, the service level guarantee of an airline’s network

continues to be low. We first define two service level metrics for an airline schedule. The first one is similar

to the on-time performance measure of the U.S. Department of Transportation and we define it as the flight

service level. The second metric, called the network service level, is geared towards completion of passenger

itineraries. We then develop a stochastic integer programming formulation that optimally perturbs a given

schedule to maximize expected profit while ensuring the two service levels. We also develop a variant of this

model that maximizes service levels while achieving desired network profitability. To solve these models we

develop an efficient algorithm that guarantees optimality. Through extensive computational experiments,

using real-world data, we demonstrate that our models and algorithms are efficient and achieve the desired

trade-off between service level and profitability.
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1. Introduction

In a recent article (Associated Press 2007) The Associated Press reported that the U.S. airline

industry’s on-time performance (OTP) through the first eleven months of 2007, was the second
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worst on record. According to the U.S. Department of Transportation, a flight is delayed if it arrives

at its destination gate 15 minutes or more after its scheduled arrival time. Even in the previous

year, i.e., 2006, statistics showed that there were 823,030 arrival delays out of a total of 3,805,313

commercial flights operated by all the major U.S. carriers (Bureau of Transportation Statistics

2009). Flight delays and cancelations have been attributed to several causes some of which include

weather conditions, airport congestion, national air-space congestion, aircraft maintenance related

issues, and more recently airline security related services. Consequently, such delays lower service

reliability and adversely affect a commuter’s travel experience.

While some of the causes of delays, such as weather conditions, are beyond the control of the

airlines, previous research shows that some causes of delays are attributable to the network and

schedule design decisions of an airline. For example, while an airline develops its hub-and-spoke

network, it typically does not account for the congestion externality imposed on other carriers

operating out of the same hub stations. In a recent paper, Mayer and Sinai (2003a) empirically

demonstrate that the gains from hubbing activities offset the costs incurred by flight delays and

congestions. In such cases, congestion pricing at certain capacity constrained airports, may be a

solution to elevate the problem. In a companion paper, Mayer and Sinai (2003b) also hypothesize

that wage cost minimization and aircraft utilization maximization result in airlines flying with very

tight schedules. Such objectives are typical in most airline planning systems, which are designed to

achieve cost efficient resource utilization. Schedule planning models do not address the following

two important issues. First, they do not include passenger-centric service reliability measures in

the schedule development process. Second, the schedules ignore block-time uncertainty (variance)

and hence fail to capture robustness measures. In this paper we address these issues by devel-

oping schedule planning models that incorporate both, passenger centric metrics and block-time

uncertainty, in the planning process.

Airline schedule development continues to remain one of the most challenging planning activity

for any airline. An airline schedule comprises of a list of flights and specifies the origin, destination,

scheduled departure, and arrival time of each flight in the airline’s network. A critical component of
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the schedule development activity is the choice of flight block-times. A flight block-time is defined

as the total elapsed time between the time an aircraft pushes back from its departure gate and

arrives at its destination gate. The block-time comprises of several components including taxi-out

time, enroute time, and taxi-in time. Each of these components is subject to different causes of

delay and the total block-time delay is the sum of all individual component delays. Since airline

schedules must be published well in advance of the actual day of operation, block-times, for all

the flights in the schedule, are typically decided using historical information of similar flights

operated in the past. The Department of Transportation OTP metric is computed against these

published flight block-times. Most airline operations are compared based on their OTP rankings and

hence airlines perceive their OTP as an important operational measure of their schedule reliability.

However, research indicates that airlines fail to adequately adjust block-times and typically do

not incorporate uncertainty in their planned schedules. Since most planned resource costs, such as

aircraft and crew utilization costs, depend on the cumulative hours in a schedule, airlines face a key

trade-off decision between adjusting (increasing) flight block-times to improve schedule reliability

and incurring additional planned costs. Using data made available by the Bureau of Transportation,

Deshpande and Arikan (2009) argue that airlines systematically “under-schedule” flights, i.e., the

amount of block-time allocated for a flight is less than the average block-time expected for the

flight. Conversations with planners at a large U.S. carrier suggested that airlines do not judiciously

allocate block-times to scheduled flights to balance costs versus operational benefits. Typically,

planners use ad-hoc techniques to either lower or raise block-times across the entire flight network in

the hope of increasing OTP. Results in Deshpande and Arikan (2009) also corroborate these findings

and indicate that airlines do not maintain consistent service levels by adjusting their schedules

based on the time of the day, origin airport congestion, and destination airport congestion.

Planning for uncertainty in the schedule building process becomes necessary not just to improve

OTP rankings but also to improve passenger service levels. As stated earlier, the goal of this paper

is to develop a robust optimization approach to schedule planning by specifically incorporating

passenger centric goals and block-time uncertainty in the planning models. The key trade-off in
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such a process is between higher service levels achieved through increasing (and better allocation

of) flight block-times and higher planned costs (i.e., lower planned profits). In this paper we develop

a model that re-times (perturbs) a proposed flight schedule by considering block-time probability

distributions. First, we explicitly define notions of passenger and network service levels. Then we

develop a model that maximizes the expected profit while guaranteeing minimum service levels.

This model allows imposition of minimum service levels. Second, we develop a variant of this model

that maximizes service levels while achieving required profitability. While the optimization models

are complex, we also develop computational procedures, based on cut generation techniques, to

efficiently solve these models. To this end, this paper also has a methodological contribution to the

development of computationally efficient procedures. We provide extensive computational experi-

ments, using real airline data from a large U.S. carrier, that validate our model and demonstrate

potentially large operational gains for an airline. Overall network reliability is also improved.

The contributions of this paper are at several levels. First, to the best of our knowledge, this paper

is an initial attempt at developing a comprehensive and holistic model that includes block-time

uncertainty in developing robust schedules. Second, through chance constraints, we explicitly model

block-time distributions allowing us to incorporate operational uncertainty in the schedule planning

process. This makes the resultant schedule robust. We also incorporate network service levels, which

probabilistically model passenger connections. Third, we propose a new cut generation algorithm

to solve these stochastic binary integer programming models and establish its convergence. The

analysis is non-trivial since the feasible region of the original problem is non-convex and first a

linearization is required. Upon linearization, the resulting (modified) model is infinite dimensional

with infinitely many constraints. Thus, our algorithmic procedure and optimal convergence result

generalizes previously established convergence results for (1) semi-infinite linear programs with

finitely many variables but infinitely many constraints, and (2) infinite dimensional problems with

finitely many constraints and infinite number of variables.

Overall, this research is in line with the growing literature on linking operational variability

(and hence costs) to planning models. For example, research in robust fleeting (Rosenberger et al.
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2004); robust aircraft routing (Lan et al. 2003), robust crew scheduling (Shebalov and Klabjan

2006), and the robust approach to passengers rerouting in disruption management (Karow 2003)

show this emerging trend. Another growing area is the development of simulation systems of airline

operations, e.g., SimAir by Rosenberger et al. (2002) and MEANS by Bly et al. (2003). These

systems play a crucial role in evaluating and comparing the performance of different schedules. This

paper also contributes to several techniques developed in the airline schedule planning literature.

In general, airlines, though plagued with low profitability margins, airspace and airport congestion,

and high capital and operating costs are heavy users of mathematical optimization techniques

(Dobson and Lederer 1993, Lohatepanont and Barnhart 2004, Barnhart et al. 2003). Barnhart and

Cohn (2004) and Klabjan (2005) provide an extensive review of OR models used in airline schedule

planning. There is other literature in the domain of stochastic scheduling that is also related to

our work (see Portougal and Trietsch 2001). However, existing literature in stochastic scheduling

ignores the need to achieve high customer service level.

The rest of the paper is organized as follows. First in § 2 we develop the two optimization models

for schedule perturbation. Next, in § 3 we discuss issues related to the computational tractability of

these models and develop the solution methodology and optimal algorithms. We provide extensive

computational experiments in § 4. Finally, in § 5 we conclude the paper. Additionally, we provide

a complete set of results of all the other computational experiments in an online appendix (see

Sohoni et al. 2008).

2. Model Description

As discussed earlier, our goal is to develop a model to perturb the incumbent flight schedule to

improve the service levels provided to the end consumers. Perturbing a flight schedule implies

adjusting the scheduled departure times of flights1 in the network within an allowable time window.

Soon after determining the flight schedule, the airlines determine capacity assignments (fleeting)

and assign generic aircraft to routes. The latter, in the literature, is referred to as the aircraft routing

1 Throughout this paper we use the terms “flight” and “leg” interchangeably.
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problem. It is after these processes that we consider the issue of schedule re-timing (perturbation)

to fine tune block-times and improve robustness of the schedule with respect to the service level

metrics defined later. While perturbing the incumbent schedule, however, we must guarantee that

the resulting schedule continues to remain feasible with respect to the aircraft turns built of the

incumbent schedule. Every flight in the incumbent schedule is assigned to exactly one aircraft. An

aircraft turn is essentially a pair of consecutive flights flown by the same aircraft. We assume that

the set of turns associated with the incumbent schedule is known a priori.

A passenger travel plan, or itinerary, may comprise of multiple flight legs. Broadly defined, a

fare class is the price an airline charges to book a passenger in a particular booking class. Airline

seats are divided into several booking classes. Next, we define the important modeling notation and

parameters.

N : The set of all flights (legs) in the airlines flight network,

B : the total available planned budget (depends on the total block-time across all flights),

O : the set of all passenger itineraries,

T : the complete set of aircraft turns,

F : the set of all fare classes,

αi : the origin station of flight i,

βi : the destination station of flight i,

mij : minimum passenger connection time between two flights i and j,

tij : minimum turn-time between flights i and j on the aircraft rotation,

Dof : expected demand for itinerary o and fare class f,

[li, ui] : the allowable departure time-window for flight i,

ci : the per time unit cost incurred for flight i, which includes unit costs

corresponding to crew pay and aircraft utilization,
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Bif : booking limit for fare class f on flight i,

rof : the average fare of itinerary o and fare class f,

ds
i : the previously scheduled departure time of flight i in the incumbent schedule,

ei : the penalty for deviating from the preferred departure time of flight i, and

δ : the Department of Transportation OTP measure for flight delay

(typically 15 minutes after the scheduled arrival time).

Next, we define the decision variables of the model:

di : the published departure time of flight i,

ai : the published arrival time of flight i,

Xof : demand of itinerary o and fare-class f satisfied, and

zij : binary variable indicating if the passenger connection between flights i and j is feasible.

We define d and a to be the set of departure and arrival times respectively. The only random

variables in the model are the block-times and are denoted by Yit where t represents the departure

time of flight i. We assume that these are continuous random variables. The relation between

a flight’s departure time, arrival time, and the corresponding block-time is as follows: Ai = di +

Yidi
, where Ai is the actual random arrival time of flight i. The probability density function of

a flight’s block-time is represented by pi(·, t) since it might depend on the departure time t. The

cumulative density function is assumed to have finite support [δi
l , δ

i
u]. To reduce the complexity of

our computational experiments we assume the following.

Assumption 1. The expected demand Dof for an itinerary does not vary significantly for rea-

sonable deviations in departure time.

Given that we disallow large perturbations of the departure time by controlling the time window

[li, ui] for every flight i in the network, it is reasonable to assume the following:
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Assumption 2. For each flight i we require that, pi(·, t) = pi(·), i.e., the pdf of the block-time

distribution does not depend on the departure time.

A flight j is said to follow-on flight i if passengers of flight i can connect to flight j. The set of

all passenger connections for flight i depends on the arrival time of flight i and departure times of

possible connecting flights. We define the connection set for flight i as follows.

Definition 1. The connection set for flight i, with respect to the incumbent schedule, is defined

as

Ci(d,a) = {j ∈N : dj − ai ≥mij & βi = αj} . (1)

Building on the definition of Ci(d,a) we define a modified connection set C̄i, which denotes the

largest set of possible connections for flight i under any departure and arrival time adjustment.

For example, C̄i can be the set of all flights originating at station αi, or we can further refine the

set as

C̄i = {j ∈N : βj = αi and can connect to i regardless of re-timing}

=
{

j ∈N : βj = αi, uj −
(

li + δi
l

)

≥mij

}

. (2)

The advantage of using set C̄i instead of the original connection set Ci(d,a) is that, for any flight i

the latter set is non-stationary, i.e., as the departure time of flight i changes, the flights in the set

may change. Thus it depends on the decision variables. As we show later, this poses a modeling

and optimization challenge since we cannot guarantee a convex feasible region.

We now define the Service Level, SLi, of any flight i∈N .

Definition 2. Service level SLi is the probability that passengers from flight i can connect to

any follow-on flight included in the set Ci(d,a), i.e.,

SLi = Pr [Ai +mij ≤ dj for every j ∈Ci(d,a)] . (3)

Observe that from definition 2 it follows that SLi = Pr[Yidi
≤ min

j∈Ci(d,a)
{dj − di−mij}]. The Network

Service Level (NSL) is defined as follows.
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Definition 3. The NSL is defined as the minimum service level across all the flights in the

airline’s network, i.e.,

NSL = min
i

SLi. (4)

Finally, the Flight Service Level (FSL), also referred to as the OTP, is defined as follows.

Definition 4. The FSL is the probability that a particular flight is not delayed based on the

Department of Transportation acceptable arrival delay measure δ, i.e.,

FSLi = Pr[Yi,di
≤ ai− di + δ]. (5)

Lastly, for notational convenience, we denote the fact that flight j follows flight i in an itinerary

o∈O by i→ j. Next, we describe the two optimization models.

2.1. Maximizing Operational Profits

We first consider the case when an airline must maintain a minimum FSL, γf , over all flights in

the network and simultaneously guarantee a minimum NSL of γn. The profit maximizing model

(PMM) reads:

(PMM)max
∑

o,f

rof Xof −
∑

i∈N

ei |di− ds
i | −

∑

i∈N

ci(ai− di) (6)

Pr [Yidi
≤ dj − di−mij]≥ γn i∈N,j ∈Ci(d,a) (7)

Pr[Yi,di
≤ ai− di + δ]≥ γf i∈N (8)

∑

i∈N

ci(ai− di)≤B (9)

Xof ≤Dof o∈O,f ∈F (10)

∑

o∈O,i∈o

Xof ≤Bif i∈N,f ∈F (11)

∑

o,f,j∈o,i→j

Xof ≤ K̄ijzij i∈N,j ∈ C̄i (12)

dj − ai ≥mijzij −K(1− zij) i∈N,j ∈ C̄i (13)

dj − ai− tij ≥ 0 (i, j)∈ T (14)

li ≤ di≤ ui i∈N (15)

zij ∈ {0,1}, d, a unrestricted. (16)
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The first term in the objective function (6) corresponds to the net revenue due to satisfied

itinerary demand, the second term is the net penalty due to deviation from preferred departure

time (departure time specified in the incumbent schedule), and the third term represents the total

operational cost. Constraint (7) ensures that the minimum NSL is at least as large as the desired

value of γn. It is not difficult to observe that NSL ≥ γn if and only if constraint (7) is satisfied.

Constraint (8) guarantees that the minimal FSL is at least γf . Constraint (9) restricts the total

network operating cost incurred and constraint (10) restricts the fare-class itinerary demand to the

maximum allowable. Since every flight i within an itinerary o can carry at most Bif of a particular

fare-class f , constraint (11) ensures that the booking limit constraint on each flight is satisfied.

Constraints (12) and (13) ensure that we only account for those itineraries whose flight sequence

is legal with respect to the minimum passenger connection time. Here K̄ij =
∑

f

Bif +
∑

f

Bjf . The

constant K is the length of the time horizon, i.e., K = max
i∈N

ui −min
i∈N

li + max
i∈N

δi
u. Constraint (14)

guarantees that the pre-determined aircraft turns are preserved and hence the aircraft routing

solution always remains feasible. Finally, constraint (15) bounds the departure time adjustment

for every flight and the constraint (16) restrict the choice of zij to be binary.

In § 3, we discuss issues regarding the computational tractability of the optimization model

PMM. One peculiarity of PMM is immediately observable; the constraint set in (7) depends on

the decision variables.

2.2. Maximizing Service Level

An alternate goal could be to maximize the service level across the entire flight network. However,

the airline may only be willing to do so provided it maintains minimum operational profitability.

In this case the optimization model differs from the PMM model described earlier, i.e., γf and γn

are no longer parameters but are decision variables. Furthermore, the profit objective in PMM is

now a constraint. We impose that the minimum operational profit must be at least Uo units. The

service level maximizing model (SLMM) reads:

(SLMM)maxwfγf+wnγn (17)



Sohoni, Lee, and Klabjan: Robust Airline Scheduling under Block Time Uncertainty
11

Pr [Yidi
≤ dj − di−mij ]− γn ≥ 0 i∈N,j ∈Ci(d,a) (18)

Pr[Yi,di
≤ ai− di + δ]− γf ≥ 0 i∈N (19)

∑

i∈N

ci(ai− di)≤B (20)

Xof ≤Dof o∈O,f ∈F (21)

∑

o∈O,i∈o

Xof ≤Bif i∈N,f ∈ F (22)

∑

o,f,j∈o,i→j

Xof ≤ K̄ijzij i∈N,j ∈ C̄i (23)

dj − ai ≥mijzij −K(1− zij) i∈N,j ∈ C̄i (24)

dj − ai− tij ≥ 0 (i, j)∈ T (25)

∑

o,f

rof Xof −
∑

i∈N

ei |di− ds
i | −

∑

i∈N

ci(ai− di)≥Uo (26)

li ≤ di ≤ ui i∈N (27)

zij ∈ {0,1}, d, a unrestricted. (28)

The objective function (17) is a weighted sum of the minimal NSL and FSL quantities where wf

and wn are the weights corresponding to the FSL and NSL, respectively. All the other constraints

are similar to those described in PMM . The only additional constraint is (26) which ensures that

any solution makes an expected operational profit of at least Uo.

3. Solution Methodology

In this section we discuss issues regarding computational complexity and tractability of the models

discussed in § 2. More importantly, we exhibit two algorithms for solving PMM and SLMM .

In the model PMM constraints (7) and (8) are non-linear. This makes the model difficult to

solve computationally. Similarly, in model SLMM constraints (18) and (19) are non-linear. Addi-

tionally, objective function (6) and constraint (26) contain the absolute value function, however,

it is straightforward to linearize these terms. A technical assumption regarding the block-time

distribution allows us to simplify the model and reduce its computational complexity.

Assumption 3. The block-time distributions are log-concave and stationary with respect to the

departure time.
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Through extensive empirical studies using Bureau of Transportation Statistics data, Deshpande

and Arikan (2009) estimate the best distribution fit for observed truncated block-times across

several US airlines. Specifically, they use log-Normal and log-Laplace distributions. While the log-

Normal distribution provides a reasonable fit, they show that the log-Laplace distribution is better.

It is noteworthy that both of these cumulative distribution functions are log-concave (Bagnoli

and Bergstrom 2005) and thus satisfy Assumption 3. The Laplace distribution is defined by two

parameters: γ, a location parameter, and b, a scale parameter where the mean equals to γ and

the variance is 2b2. The probability density function of the Laplace(γ, b) distribution is f(x|γ, b) =

1
2b

exp
(

− |x−γ|

b

)

. Assumption 3 allows us to simplify the complicating chance constraints (8) and

(19) into convex constraints. Given that we assume the block-time distribution is independent of

the departure time we drop the departure time subscript, i.e., Yidi
= Yi. Constraints (7) and (8)

are transformed as follows.

log (Pr[Yi ≤ dj − di−mij ])≥ logγn i ∈N,j ∈Ci(d,a) (29)

log (Pr[Yi ≤ ai− di + δ])≥ logγf i ∈N. (30)

It is known that the feasible set of constraint (30) is convex due to log-concavity (see, e.g., Birge

and Louveaux 1997). Unfortunately, constraints in (29) are not convex since their index depends

on d and a. This fact poses a significant algorithmic and computational challenge. To devise an

efficient solution strategy we first develop a linear approximation scheme to these constraints in

§ 3.1. The resulting mixed-integer model has an infinite number of variables and constraints. We

then describe a cut generation algorithm that generates these linear constraints as needed and

builds an optimal solution to the models.

3.1. Model Reformulation

Our goal in this section is to develop a linear formulation to the two models, PMM and SLMM .

Recollect that the NSL constraints given by equation (29) are non-convex. To circumvent this

issue, we construct a linear approximation for the NSL constraint over a stationary set of linear

functions as follows. The added advantage of doing so is that the reformulation allows us to develop
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an algorithm, similar to the Bender’s cut generation algorithm (Birge and Louveaux 1997), to solve

the model.

Recollect that the distributions have a finite support Ki = [δi
l , δ

i
u]. Now, for every flight i, we

define a function gi(x) as

gi(x) = logPr[Yi ≤ x], x∈Ki. (31)

Since Yi is log-concave, gi(x) is concave, see, e.g. Birge and Louveaux (1997). To build an outer

linear approximation to equation (31), we consider a set of linear functions, Uik, defined over

interval Ki. We show the form of these linear functions later. For now, using these linear functions

we rewrite gi(x) as follows (this is a known fact in convex analysis):

gi(x) = min
k∈Ki

Uik(x). (32)

Using equation (32) we now reformulate the NSL constraint as

gi(dj − di−mij)≥ logγn i∈N, j ∈Ci(d,a). (33)

The above equation can be rewritten as

zijgi(dj − di−mij)≥ logγn i∈N, j ∈ C̄i, (34)

where C̄i is defined by equation (2). Observe that logγn ≤ 0 and thus inequality (34) holds if zij = 0.

If zij = 1, then j ∈ Ci(d,a) and thus gi(dj − di −mij)≥ log γn must hold, which is guaranteed by

constraint (34). Thus, constraint (29) is equivalent to

zij min
k∈Ki

Uik(dj − di−mij)≥ log γn i∈N, j ∈ C̄i. (35)

It is noteworthy that in (35) if dj − di−mij ≤ 0, then zij = 0 and hence we need not worry about

negative arguments, i.e., we restrict our attention to positive values only.

We now characterize the functions Uik(x). Given the probability density function pi(·) for block-

time Yi, we can write these functions as

Uik(x) =
pi(k)

∫ k

0

pi(t) dt

(x− k) + log

∫ k

0

pi(t) dt. (36)
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To this end, notice that Uik(δ
i
l −mij) < 0 and Uik(δ

i
l −mij)≤Uik(x) for all x≥ δi

l −mij (see Figure

1). This is the tangent of gi(x) at the point k ∈ Ki. It is known that a concave function is the

minimum of its tangents and thus equation (32) holds. We still need to linearize constraints (35).Uik(x) x0 i

l
k gi(x)

Figure 1 Linearization of constraints (35).

We now define additional continuous decision variables, sijk, for all i ∈N , j ∈ C̄i, and k ∈ Ki.

Constraint (35) can then be replaced by the following set of linear constraints:

sijk ≥ log γn i∈N,j ∈ C̄i, k ∈Ki (37)

zijUik(δ
i
l −mij)≤ sijk ≤ 0 i∈N,j ∈ C̄i, k ∈Ki (38)

(1− zij)Uik(δ
i
l −mij) + sijk ≤Uik(dj − di−mij) i∈N,j ∈ C̄i, k ∈Ki. (39)

If zij = 0, then (38) implies that sijk = 0 and thus (37) holds. In this case, (39) also holds since

Uik(δ
i
l −mij)≤ Uik(dj − di −mij). On the other hand, if zij = 1, then we can assume that sijk =

min{0,Uik(dj − di−mij)} and thus (37) holds if and only if Uik(dj − di−mij)≥ log γn.

Similarly, the FSL constraint given by equation (30) is equivalent to

min
k∈Ki

Uik(ai− di + δ)≥ logγf i∈N. (40)

It is clear that (40) is equivalent to

Uik(ai− di + δ)≥ logγf i ∈N , k ∈Ki. (41)
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It is evident that the number of constraints in (37) - (39) and (41) is extremely large. Incorpo-

rating these constraints and variables a priori into the model is impossible. Hence, we must develop

an iterative cut generation algorithm that generates relevant inequalities at each iteration as the

solution progresses. A further complicating factor is the fact that we have an infinite number of

sijk variables (uncountably many).

As discussed earlier, in addition to the above service level constraints, the term
∑

i∈N

ei |di− ds
i |

is also a non-linear term in the objective function (6). However, this term can be linearized using

standard techniques and hence we do not discuss this linearization technique in detail. Next, in §

3.2, we describe the cut generation algorithm for the profit maximizing model PMM .

3.2. The Cut Generation Algorithm for PMM

Based on the constraint linearization procedure described earlier, in this section we develop a

constraint generation algorithm to solve our optimization model PMM .

We begin by ignoring the NSL and FSL constraints, i.e., constraints (35) and (40). Recollect

that we replace the original constraints (7) and (8) with these new constraints. In addition the term

∑

i∈N

ei |di− ds
i | is linearized in the objective function. We refer to the resulting model, without these

constraints, as the restricted profit maximizing model R−PMM . We initialize our algorithm with

R−PMM . Let h≥ 0 denote an iteration step of the proposed algorithm. Further, let Zh∗ = 〈zh∗
ij 〉,

dh∗ = 〈dh∗
i 〉, and ah∗ = 〈ah∗

i 〉 denote an optimal solution at the beginning of iteration h, i.e., after

solving R−PMM . At every iteration let S̄(n) denote the set of new NSL constraints generated

and let S̄(f) denote the set of additional FSL constraints generated. Let S denote the set of

combined NSL and FSL constraints added to the restricted problem R− PMM . Each time an

NSL constraint is generated, the corresponding s variable is also introduced into R−PMM .

We list the steps of our constraint and variable generation algorithm in Algorithm 1. In Step 3 of

the algorithm we gather all the current passenger connections. Since kij is the function argument

in the right-hand side of (39), we need to consider tangents at this particular point (see Figure 1).

Flight ji is the index with the maximum violation in (37). Step 4.2, in Algorithm 1, introduces the

new s variable and adds the corresponding constraints (37) - (39).



Sohoni, Lee, and Klabjan: Robust Airline Scheduling under Block Time Uncertainty
16

Algorithm 1 Algorithm for solving PMM

Step 1: Initialize h = 1, S = ∅ and let R−PMM consist of objective function (6) and constraints (9)-(16).

Step 2: Optimize R−PMM with constraints in S. Let Zh∗, dh∗, ah∗ be the corresponding optimal solution.

Step 3: Build updated connection sets, i.e., for each flight i∈N collect

Si =
{

j ∈N : zh∗

ij = 1
}

.

Step 4: Check for the set of most violated NSL constraints. Set S̄(n)←∅ and kij = dh∗

j − dh∗

i −mij . For

each flight i∈N

1. Find

ji = argmax
j∈Si

{

logγn−Uikij
(kij)

}

.

2. If logγn−Uikiji
(kiji

) > 0, then define a variable si,ji,kiji
, and generate constraints using (37) - (39) with

j = ji, k = kiji
. Add these constraints to S̄(n).

Step 5: Check for the set of violated FSL constraints. Set S̄(f)←∅ and k̄i = ah∗

i − dh∗

i + δ. For each flight

i∈N

1. If logγf −Ui,k̄i
(k̄i) > 0, generate a constraint using (41) with k = k̄i, and add it to S̄(f).

Step 6: If S̄(f) ∪ S̄(n) = ∅, terminate;

Step 7: Set S ←S ∪ S̄(n) ∪ S̄(f), h← h + 1, go to Step 2.

Next, in Theorem 1 we show that Algorithm 1 is guaranteed to converge to an optimal solution.

Theorem 1. There is a subsequence {hq}q such that d∗
i = lim

q→∞
d

hq∗
i , a∗

i = lim
q→∞

a
hq∗
i for every

flight i ∈N is an optimal solution to PMM .

Proof. See the appendix, §6, for the proof. 2

It is noteworthy that the proof of Theorem 1 also exhibits an optimal Z∗, s∗, and X∗. As a

result, Algorithm 1 converges to an optimal solution for model PMM . Furthermore, it is worth

emphasizing that the analysis is not trivial. As stated earlier the feasible region of the original

problem is non-convex, but, the linearization procedure allows us to circumvent this issue. However,

upon linearization, the modified model is infinite dimensional with infinitely many constraints.

Algorithm 1 and Theorem 1 generalize the convergence results achieved with (1) semi-infinite linear
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programs with finitely many variables but infinitely many constraints, and (2) infinite dimensional

problems with finitely many constraints and infinite number of variables.

The computational time to convergence could still be an issue. While we cannot guarantee a

bound on the computational time, in §4 we demonstrate that the algorithm converges within

reasonable CPU time through extensive computational experiments using real airline data. Next,

in § 3.3 we develop an approximate algorithm to solve SLMM .

3.3. Cut Generation Algorithm for SLMM

The algorithm to solve PMM can be modified to approximately solve the alternate model SLMM .

Notice that constraints (37) - (39), and constraint (41) are also valid for SLMM ; they replace

constraints (18) and (19). To enable a complete linear transformation we define variables ζn = log γn

and ζf = log γf . Thus, constraints (37) - (39) and (41) transform as follows:

sijk ≥ ζn i∈N,j ∈ C̄i, k ∈Ki (42)

zijUik(δ
i
l −mij)≤ sijk ≤ 0 i∈N,j ∈ C̄i, k ∈Ki (43)

(1− zij)Uik(δ
i
l −mij) + sijk ≤Uik(dj − di−mij) i∈N,j ∈ C̄i, k ∈Ki (44)

Uik(ai− di + δ)≥ ζf i∈N,k ∈Ki. (45)

We change the objective function of model SLMM using ζn and ζf , however, the objective func-

tion is now a non-linear function, i.e., wf exp{ζf}+wn exp{ζn}. Unfortunately, this is a maximiza-

tion problem of a convex function and thus is not easily amendable to computational tractability. To

simplify the computational procedure we use the first-order linear approximation of exp{x}= 1+x

which transforms the objective function to

maxwfζf +wnζn. (46)

The new objective is an approximation of the original problem. Thus, any optimal solution to the

transformed objective function may not result in an optimal solution to the original problem. How-

ever, the linear approximation allows us to solve for the service levels efficiently. We demonstrate

this using several computational experiments in § 4.
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In addition to the above service level constraints, the term
∑

i∈N

ei |di− ds
i |, in constraint (26), is

also non-linear. Just as in the case of PMM , this term can be linearized using standard techniques

and hence we do not discuss it in detail here.

As with the solution methodology for PMM , to begin, we ignore the NSL and FSL con-

straints, i.e., constraints (42)-(45). We refer to the resulting model, without these constraints, as

the restricted service level maximizing model R− SLMM . In addition, the objective function is

replaced by (46). We initialize our algorithm with R − SLMM . Let h ≥ 0 denote an iteration

step of the proposed algorithm. Further, let Zh∗ = 〈zh∗
ij 〉, dh∗ = 〈dh∗

i 〉, and ah∗ = 〈ah∗
i 〉, ζh∗

f , and

ζh∗
n denote the optimal solution at the beginning of iteration h. At every iteration let S̄(n) denote

the set of new NSL constraints generated and S̄(f) denote the set of additional FSL constraints

generated. Let S denote the set of combined NSL and FSL constraints added to the restricted

problem R−SLMM . We list the steps used to solve SLMM in Algorithm 2. The steps are similar

to those in Algorithm 1.

Similar to Theorem 1 it is easy to verify that Algorithm 2 is guaranteed to converge to an

optimal solution for the approximate model of SLMM with the objective function (46). We state

this result as a corollary to Theorem 1 without proof.

Corollary 1. Algorithm 2 converges to an optimal solution of the approximate model SLMM

with the objective function (46).

Next, we describe the computational experiments.

4. Computational Experiments

In this section we describe a series of computational experiments using real airline data. The goal of

these experiments is twofold. The primary goal is to study the efficiency of the optimization models

PMM and SLMM to solve the robust scheduling problem. A secondary goal is to study the trade-

off an airline faces between higher passenger service levels (as defined by the NSL and FSL) and

the possible degradation in profit using the models described earlier. To this end, we implemented

the algorithms described in § 3.2 and § 3.3 to solve 5 airline network instances. We first describe
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Algorithm 2 Algorithm for solving SLMM

Step 1: Initialize h = 1, S = ∅ and let R− SLMM consist of objective function (46) and constraints (20)-

(28).

Step 2: Optimize R− SLMM with constraints in S. Let Zh∗, dh∗, ah∗

i , ζh∗

f and ζh∗

n be the corresponding

optimal solution.

Step 3: Build updated connection sets, i.e., for each flight i∈N collect

Si =
{

j ∈N : zh∗

ij = 1
}

.

Step 4: Check for the set of most violated NSL constraints. Set S̄(n)←∅ and kij = dh∗

j − dh∗

i −mij . For

each flight i∈N

1. Find

ji = argmax
j∈Si

{

ζh∗

n −Uikij
(kij)

}

.

2. If ζh∗

n −Uikiji
(kiji

) > 0, then define a variable si,ji,kiji
and generate constraints using (42) - (44) with

j = ji, k = kiji
. Add them to S̄(n).

Step 5: Check for the set of violated FSL constraints. Set S̄(f)←∅ and k̄i = ah∗

i − dh∗

i + δ. For each flight

i∈N ,

1. If ζf −Ui,k̄i
(k̄i) > 0, generate a constraint using (45) with k = k̄i, and add it to S̄(f).

Step 6: If S̄(f) ∪ S̄(n) = ∅, terminate;

Step 7: Set S ←S ∪ S̄(n) ∪ S̄(f), h← h + 1, go to Step 2.

the characteristics of these network instances in Table 1. Due to confidentiality issues we report

only the underlying ranges. Instance 1 is the largest network covering all the fleets. Instances 3,

Instance Flights Stations Itineraries # Fleets
1 1500 85 50,000 5
2 450 75 30,000 2
3 850 80 45,000 3
4 1000 70 30,000 3
5 850 80 35,000 2

Table 1 Characteristics of network instances for the computational experiments.
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4, and 5 are relatively medium sized networks and instance 2 is the smallest network. In Table

1, the largest network consists of 5 fleets with varying capacities. The set of itineraries consists

of itineraries with up to 4 flights. All the networks are hub-and-spoke and the largest network

has 5 hubs. Given that there are a large number of flights in each network, we do not report the

block-time statistics for individual flights in these networks. To obtain block time distributions, we

analyzed the realized block-times over two consecutive years. We concluded that arrivals are never

earlier than 30 minutes before the scheduled arrival time based on the incumbent schedule, however

flights can be significantly late. As a result, we assume that the block-times follow a truncated

Normal distribution with a lower limit of 30 minutes before the scheduled arrival time and no

upper limit. The truncated-Normal distribution satisfies Assumption 3 (Bagnoli and Bergstrom

2005). Obviously, our computational results depend on the form of the assumed distribution and we

acknowledge the limitations of the results discussed in the section. However, as mentioned earlier,

our main goal is to demonstrate that the solution methodology performs well on the real-world

data. Additionally, our models allow planners to study important tradeoffs faced by an airline while

increasing schedule reliability. Fine tuning the distributions would definitely provide more accurate

results. The means of the block-time distributions vary from 36 minutes to 387 minutes and the

variances range from 24.9 to 595.3.

All the problem instances were solved on an Intel Xeon 3.2 GHz dual core server running Redhat’s

4.1 version of the Linux operating system. The cut generation algorithm, Algorithm 1, and its

variant for the SLMM model, Algorithm 2, were developed using the g++ compiler, version 4.1.

The mixed integer programming instances were solved using ILOG CPLEX version 10.1 and the

models were developed using the ILOG Concert library, version 2.3.

In the accompanying online appendix (Sohoni et al. 2008) we list all the detailed computational

results of all the instances described in Table 1. In this paper, however, to demonstrate the efficiency

of our models and algorithm, we only summarize some of the performance metrics of PMM , for all

the 5 instances, in Table 2. A priori, after adjusting for a few outliers, the NSL of the incumbent
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schedule is 0.4 and the FSL is 0.6. Essentially, we ignored 10 flights with very low service levels

to compute the NSL and 5 flights to compute the FSL.

For the first set of experiments the FSL was held constant at 0.8 and the NSL level was allowed

to vary from 0.8 to 0.95 in increments of 0.1. We denote this set of experiments as Fixed-FSL. In

the next set of experiments the NSL was held constant and the FSL was allowed to vary from 0.8

to 0.95 in increments of 0.1. We denote this set of experiments as Fixed-NSL. All these instances

were solved to optimality. We report the maximum CPU time, maximum number of iterations,

and maximum number of cuts generated using Algorithms 1 and 2 in Table 2. The results show

Network Instance
Metric 1 2 3 4 5
Fixed-FSL (max CPU secs) 3,842 167 952 838 801
Fixed-FSL (max iterations) 27 10 17 12 13
Fixed-FSL (max cuts added) 980 227 767 315 428
Fixed-NSL (max CPU secs) 3,921 187 921 873 792
Fixed-NSL (max iterations) 24 8 13 8 10
Fixed-NSL (max cuts added) 987 243 793 343 437

Table 2 Algorithm performance for model PMM .

that PMM performs reasonably well on all networks, especially, considering the fact that schedule

development is performed several months prior to the day of operations and airlines do not mind

spending additional computation time. Furthermore, the results also indicate that both algorithms

converge within a few iterations.

For the remainder of the computational experiments we restrict our attention to instance 1

because it is the largest network. We discuss these experiments in §4.1 and §4.2. As mentioned

earlier, results for all other instances can be found in Sohoni et al. (2008).

4.1. The PMM Model

The first set of experiments are for model PMM . Through several experiments we demonstrate

the trade-off between higher service levels and planned profit. For all these experiments we restrict

the flight departure times to be adjusted within 60 minutes of those specified in the incumbent

schedule. Furthermore, the penalty for adjusting the departure time is assumed to be the same for

all the flights i∈N and is held at 1, i.e. ei = ej = 1 for all i, j ∈N .
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Effect on Profit. First, in Figure 2 we show how the profit (objective function) varies as the

NSL is varied for different FSL levels. The profit is computed as a percentage of the planned

profit of the incumbent schedule. In general the profits decrease as NSL increases. Since the NSL

and FSL of the incumbent schedule are lower than those considered, these profits are also lower.

We vary the NSL from 0.8 to 0.95. With lower FSL the decrease in profit is less pronounced as

the NSL increases. To achieve extremely high NSL and FSL, substantial profit decrease must be

tolerated. Next, in Figure 3, we show how the profit varies as the FSL is varied for different NSL

0.920.940.960.98%) FSL =0 .8
0.820.840.860.880.90.78 0.83 0.88 0.93 0.98P rofi t(%

NSL
FSL =0.85FSL =0 .9FSL =0.95

Figure 2 Effect of NSL on the profit level (percent of incumbent schedule profit).

levels. In this case too the profit levels decrease. Again, the profit is computed as a percentage

of the planned profit of the incumbent schedule. Similar to the NSL experiments, we vary the

FSL from 0.8 to 0.95. Finally, Figure 4 summarizes the reduction in profit, as a percentage of the

planned profit of the incumbent schedule, as both the NSL and FSL vary from 0.8 to 0.95. It

is noteworthy that at very high service levels the reduction in profit is 13%. However, the airline

may be willing to consider a lesser degradation in profit to still achieve substantial improvement

in FSL and NSL. We observe that the profit decreases almost linearly with respect to the FSL

and NSL. This is confirmed also in Figures 2 and 3.
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Figure 3 Effect of FSL on the profit level (percent of incumbent schedule profit).
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Figure 4 Effect of FSL and NSL on the profit level (percent of incumbent schedule profit).

Number of Departures Changed and Passenger Connections for the PMM Model.

In this set of experiments we vary the NSL and FSL between 0.8 and 0.95 and study the number

of departure times and passenger connections affected. Figure 5 shows the effect of varying the

NSL and Figure 6 shows the effect of varying FSL. In the former the FSL is fixed at 0.8 and

in the latter set of experiments the NSL is fixed at 0.8. In both these figures the solid line with

block markers represents the number of passenger connections achievable and the dotted line with

diamond markers represents the number of flight departures affected. In Figure 5 the connections

steadily decrease from 4,186 to 3,725 while the number of departures increases (as shown by the thin

dark trend-line) from 171 to 273 as the NSL changes. Similarly, in Figure 6 the connections vary
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Figure 5 Effect of NSL on the departures changed and passenger connections.
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Figure 6 Effect of FSL on the departures changed and passenger connections.

between 4,197 to 4,055 and the total departures adjusted fluctuate between 164 and 200. There is

not a clear trend in how the FSL affects the number of departures adjusted, however, as indicated

by the thin dark trend-line the connections show a decreasing trend. Intuitively, to achieve high

service levels, flexibility is required and thus more departure time changes are expected. Figure 5

confirms this, while it is not evident from Figure 6. The NSL captures passenger connections. If

an airline operates a single flight, the NSL is 100%. We expect that as the NSL is increased, the

number of passenger connections should decrease (clearly at the expense of diminishing profit).
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This intuition is confirmed by both figures.

Effect of Deviation Penalty for the PMM Model. Here we vary the penalty from the

departure time in the incumbent schedule (ei, i ∈N). In these experiments, however, we do not

discriminate between flights, i.e., we assume ei = ej for every i, j ∈N . First, in Figure 7 we plot

4170418041904200
0.970.980.991fi t(%) ecti onsNSL = FSL = 0.8

4140415041600.930.940.950.96
0 50 100 150 200

P rof
Deviation Penalty # ofC onn

Figure 7 Effect of departure deviation penalty on profit and passenger connections.

the profit (as a percentage of the profit of the incumbent schedule) and the number of passenger

connections changed as the deviation penalty is varied from 0 to 200. The thick-line represents the

profit level and the dashed-line represents the connections affected. The NSL and FSL are held

at 0.8 for all these experiments. The profit, as well as the connections, show a decreasing trend

with respect to the deviation penalty. This is expected since higher deviation penalties imply more

costly perturbations and thus the trade-off between schedule changes and profit sways towards

schedule changes.

4.2. The SLMM Model.

Here, we report the experimental results for the SLMM model. For these set of experiments we

define the relative weight between the NSL and FSL as ω = wn

wf
. The first set of experiments for

the SLMM model study the effect of ω on the NSL and FSL achieved. The minimum profit level



Sohoni, Lee, and Klabjan: Robust Airline Scheduling under Block Time Uncertainty
26

(for constraint (26)) is restricted to 100% of the profit achieved with the incumbent schedule. Thus

we do not allow any decrease in profitability. Figure 8 shows the results of these experiments. The

0.50.60.70.8
0.9

eL evel NSLFSL
00.10.20.30.4 0 0.02 0.04 0.06 0.08 0.1

S ervi c
Weight ( )

Figure 8 Effect of ω on NSL and FSL.

dotted-line represents the FSL and the solid-line represents the NSL. Since the objective function

in Algorithm 2 is an approximation to the two service levels, given a solution, we have to compute

the service levels from the schedule obtained. The experimental results, with the departure time

window fixed at 30 minutes, show that FSL drops initially while the NSL increases as ω increases.

Interestingly, though, both these service levels stabilize beyond a weight level and remain almost

constant even for very large values of ω. Such a behavior is expected since ω captures the trade-off

between the two service levels. From Figure 8 we can also observe the maximum possible service

levels with the same profits.

The next set of experiments vary the departure time window between which the flight departure

times are varied. Again, we study the effect on the service levels achievable while still assuring

100% of the original schedule’s profit. Figure 9 plots both these curves. The dotted-line represents

the FSL and the solid-line represents the NSL. As the departure time window is expanded, the

NSL improves while the FSL marginally drops. This affirms that it is harder to increase the NSL
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than the FSL. To increase the NSL, further flexibility has to be provided such as increased time

windows. Figure 9 provides a clear trade-off with respect to the permissible schedule change and

0.70.80.91ceL evel NSL FSL
0.40.50.6

0 5 10 15 20 25 30S ervi c
DepartureTimeWindow

FSL
Figure 9 Effect of departure time window on NSL and FSL (ω = 0.7).

the two service levels without reducing profitability. For example, if the departure time windows

are 10 minutes (which may not be always acceptable, e.g., due to competition and implications

on demand), then a NSL of about 58% and a FSL of about 79% is achievable at the same profit

level. This is a substantial improvement over the original values of 40% and 60% for the NSL and

FSL, respectively. For these experiments ω = 0.7, which is a value of ω where the service levels are

stable.

The final set of experiments study the trade-off between the service levels and the profit level.

The profit is computed as a percentage of the profit for the incumbent schedule when ω = 0.7 and

the departure time window is set to 30 minutes. Figure 10 shows the variation in NSL, FSL, and

the value ωNSL + FSL as the profit is reduced. At 100% profit, NSL = 0.68 and FSL = 0.68.

However, as the profit percentage is reduced, NSL increases only slightly, i.e., up to 0.71 at 90

% profit level, while FSL increases substantially to 0.91. Note that a different trade-off would be

assessed if ω is changed. Thus, the airline may gain on service levels by slightly adjusting the profit.
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Figure 10 Effect of reduction in profit level on NSL and FSL (ω = 0.7).

5. Discussion

In this paper we developed two models that incorporate uncertainty associated with block-times

into the schedule development process. It is an initial attempt in developing a comprehensive

and holistic model for incorporating block-time uncertainty in schedule planning. We explicitly

model time distributions through chance constraints and hence the resulting schedule is robust

with respect to the operational on-time performance measure. We also incorporate network service

levels, which probabilistically model passenger connections. The new cut generation algorithm and

linearization technique proposed are novel in the sense that the convergence result generalizes

previously established results with (1) semi-infinite linear programs with finitely many variables but

infinitely many constraints, and (2) infinite dimensional problems with finitely many constraints

and infinite number of variables.

The benefits of our approach are two fold: (1) airlines could adjust the schedule to increase

operational reliability, and (2) passengers could be guaranteed higher service levels. There are

potentially other indirect benefits of adjusting the schedule by incorporating block-time uncer-

tainty. For example, the schedule recovery cost due to a disruption during actual operations could

be reduced because the planned block-times allow additional flexibility. However, we have not
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specifically included such additional benefits in the models presented. Through extensive compu-

tational experiments we demonstrate the efficiency of our algorithms and models in trading off

between profitability and service level guarantees. The algorithms perform well in achieving this

trade-off and provide airline schedule planners the ability to decide on acceptable reduction in

profitability to achieve desired passenger service levels.

There are several possible modifications and enhancements to the models described in this paper.

First, the dependency of block-time distributions on the departure time can be included, if such

information is readily available. This also allows for wider time windows to vary the departure

times of scheduled flights and capture “time-of-the-day” effects related to block-time distributions.

However, the resulting model is more complicated than those described by the PMM and SLMM

because it requires the introduction of additional binary variables and several additional constraints

to model the choice of the appropriate departure-time dependent block-time distribution. The

key concept is to discretize each time window and assign a specific block-time distribution to

each subinterval. Standard modeling techniques using piecewise linear functions capture these

assignments.

Second, in the current model we assume that the block-times follow continuous log-concave

distributions. It is possible that there may be a discrete jump in the actual block-time, i.e., the

block-time distributions follow a discrete log-concave distribution. While our model can be con-

sidered as an approximation to the discrete case, incorporating discrete distributions may not

guarantee convergence, unlike the case discussed in this paper with continuous distributions.

Third, to keep our analysis tractable and focus on the issue of schedule reliability, our model

does not incorporate the trade-off between the local and through passengers. While constraints,

(14) in the PMM model and (25) in the SLMM model, enforce the fact that the original pas-

senger connections (itineraries) are feasible with any schedule perturbation, any solution to our

model provides a lower bound to the potential revenue (and profit) achievable, if such a profitable

trade-off (substitution of demand) were to be specifically included in these optimization models.

Additionally, such data would also have to be captured. These constraints also enforce that the
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aircraft routing solution to the incumbent solution continues to remain feasible under any schedule

perturbations. In a more general setting it is possible to relax these constraints and allow larger

perturbations of the schedule by embedding fleet assignment and aircraft routing constraints. In

this case several additional passenger connections may also become feasible as the departure times

are perturbed. Such a model would be an extension of our model and significantly harder to solve.

To address the issue of time dependent demand distributions for local and through passengers,

one possible way is to construct multiple copies of the same flight, each with its own specific

demand. This would necessitate the inclusion of additional constraints enforcing that exactly one

of these copies is chosen as well as the connections of aircraft rotations and passenger flows remain

feasible.

Fourth, in this paper, we focus on perturbing the schedule by including block-time uncertainty.

However, as the block-times are varied, and the departure times are perturbed, the ground-times are

automatically adjusted. It is possible, that airlines would want to trade-off between the allocation

of ground-times and block-times to perturb the schedule. Currently, we do not explicitly model

ground-time constraints because the form of the distributions for the ground-time variables is not

known. Our solution methodology could be extended if these distributions are log-concave. It is

possible that, in the current model, we could capture the change in the objective function due to

increase or decrease in ground-times. This could be done by including some cost/profit associated

with perturbing ground-times in the objective function. For example, if Gij denotes the cost/profit

associated with increasing the ground-time between flights i and j in an aircraft’s rotation, we

could include the terms
∑

(i,j)∈T

Gij(dj − aj) in the objective function. This, of course, would not

qualitatively change our main insights.

Finally, in the current setting we do not distinguish between various markets an airline serves

(i.e., different portions of the network). It is possible to incorporate different service levels for

different markets and use similar models, as described in this paper, to perturb the schedule and

set suitable block-times. In the current setting we only guarantee a minimum service level for the

entire network.
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6. Appendix
Proof of Theorem 1.

Recollect that h denotes the iteration index in Algorithm 1. Given that Zh∗ only has a finite

number of different values, there exists a subsequence such that Zh1∗ = Zh2∗ = Zh3∗ = · · · = Z∗.

Furthermore, since for every flight i ∈N , d
hq∗
i ∈ [li, ui], there exists a convergent subsequence in

{d
hq∗
i }q. From constraint (8) it follows that d

hq∗
i ≤ a

hq∗
i for every i ∈ N . Additionally, constraint

(9) ensures that the subsequence {a
hq∗
i }q is upper bounded. Thus, we conclude that there exists a

convergent subsequence in {a
hq∗
i }q.

Let us denote the values of sijk in the optimal solution to R− PMM by sh∗. We now assume

that if zh∗
ij = 1, then sh∗

ijk = min
{

0,Uik

(

dh∗
j − dh∗

i −mij

)}

for every k ∈ Ki, i ∈ N , and j ∈ C̄i. If

this is not the case, we can easily increase sh∗
ijk to satisfy this property without affecting feasibility.

Furthermore, observe that for every itinerary o and fare-class f combination we have 0≤X
hq∗

of ≤

Dof . Therefore, there must be a convergent subsequence in
{

X
hq∗

of

}

q
. Here Xh∗ denotes the optimal

itinerary fare-class demand values.

From the above set of arguments and due to a finite number of flight legs, there is a subsequence

where all the departure and arrival times converge in addition to the itinerary fare-class demand
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values. For ease of notation we denote this subsequence by {hq}q. Let d∗ and a∗ be the sets of

departure and arrival times of flights, respectively, as defined in the statement of the theorem.

Furthermore, we also define, for every k ∈Ki and i ∈N , j ∈ C̄i

s∗ijk =

{

0 z∗
ij = 0

min
{

0,Uik

(

d∗
j − d∗

i −mij

)}

z∗
ij = 1.

(47)

It remains to be shown that d∗, a∗, Z∗, and s∗ is an optimal solution to PMM , i.e., these values

satisfy constraints (9)-(16), constraints (37)-(39), and (41). It is easy to verify that constraints

(9)-(16) are satisfied because only a finite number of them exist. Hence, we first discuss constraints

(37)-(39). On closer observation it is easy to note that constraints (38) and (39) hold by definition.

Thus, we focus our attention on constraints (37).

To this end, let us fix a i∈N and j ∈ C̄i. We first show that

s∗
ijk

hq̄
i

≥ logγn (48)

for every q̄ and k
hq̄

i = kiji
in iteration hq̄.

First, let z∗
ij = 1 and q ≥ q̄ + 1. We have z

hq∗
ij = 1 for every q and thus s

hq∗

ijk
hq
i

≤

U
ik

hq
i

(

d
hq∗
j − d

hq∗
i −mij

)

and logγn ≤ s
hq∗

ijk
hq
i

. We conclude log γn ≤U
ik

hq
i

(

d
hq∗
j − d

hq∗
i −mij

)

. Since

these constraints are not removed from R − PMM in later iterations, we have log γn ≤

U
ik

hq̄
i

(

d
hq∗
j − d

hq∗
i −mij

)

. Since U ’s are continuous, by taking the limit as q→∞, we obtain

logγn ≤U
ik

hq̄
i

(

d∗
j − d∗

i −mij

)

.

Since log γn ≤ 0, we obtain

log γn ≤min

{

0,U
ik

hq̄
i

(

d∗
j − d∗

i −mij

)

}

= s∗
ijk

hq̄
i

. (49)

Thus, we have proved(48).

We now consider

min
k∈Ki

s∗ijk = min
k∈Ki

{

0,Uik(d
∗
j − d∗

i −mij)
}

= gi(d
∗
j − d∗

i −mij).
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Observe that we have

gi(d
∗
j − d∗

i −mij) = gi(d
hq∗
j − d

hq∗
i −mij) + gi(d

∗
j − d∗

i −mij)− gi(d
hq∗
j − d

hq∗
i −mij)

= U
ik

hq
i

(

d
hq∗
j − d

hq∗
i −mij

)

+ gi(d
∗
j − d∗

i −mij)− gi(d
hq∗
j − d

hq∗
i −mij) (50)

≥U
ik

hq
i

(

d
hq∗
j − d

hq∗
i −mij

)

−U
ik

hq
i

(

d∗
j − d∗

i −mij

)

+ log γn

+gi(d
∗
j − d∗

i −mij)− gi(d
hq∗
j − d

hq∗
i −mij) (51)

=
pi(k

hq

i )
∫ k

hq
i

0
pi(t)dt

[

d
hq∗
j − d∗

j + d∗
i − d

hq∗
i

]

+ log γn

+gi(d
∗
j − d∗

i −mij)− gi(d
hq∗
j − d

hq∗
i −mij). (52)

In the above, equation (50) follows from the fact that k
hq

i maximizes the violation of constraint

(37) (see Step 4.1 in Algorithm 1). Furthermore, (51) follows from (48) and (49). The last equality,

i.e. equation (52), follows from the definition of Uik.

Observe that the first term in equation (52) converges to 0 since
pi(k)

∫ k

0
pi(t)dt

is bounded for k ∈Ki

for all i ∈N . Similarly, the last two terms also converge to 0 since gi is a continuous function. Thus,

we conclude that

s∗ijk ≥ logγn for every k ∈Ki, i∈N. (53)

It is easy to verify that when z∗
ij = 0 constraint (37) holds. We conclude that (47) holds in general.

Using similar arguments it can be shown that constraint (41) also holds. Hence, Z∗, d∗, a∗, and

s∗ is a feasible solution to PMM .

It remains to show optimality. Let V (Z∗, d∗, a∗, s∗) denote the objective value of the correspond-

ing solution. Further, notice that in each iteration h, the optimal value V h∗ of R− PMM is an

upper bound on the global optimal value V ∗, i.e., V ∗≤ V h∗. Thus, we must have

V (Z∗, d∗, a∗, s∗)≤ V ∗ ≤ V hq∗ = V (Zhq∗, dhq∗, ahq∗, shq∗). (54)

Since the objective function is continuous, by taking the limit, we obtain

lim
q→∞

V (Zhq∗, dhq∗, ahq∗, shq∗) = V (Z∗, d∗, a∗, s∗). From (54) we obtain V ∗ = V (Z∗, d∗, a∗, s∗). To

arrive at this we must also have {X
hq∗

of }q be a convergent subsequence, which was assumed earlier.

Hence, we have completed the proof. �


