
Dynamic Cell Structure via Recursive-Recurrent
Neural Networks

Xin Qian1, Matthew Kennedy2, and Diego Klabjan3

1,3Department of Industrial Engineering and Management Sciences, Northwestern University
2Weinberg College of Arts and Sciences, Northwestern University

Abstract

In a recurrent setting, conventional approaches to neural architecture search find
and fix a general model for all data samples and time steps. We propose a novel
algorithm that can dynamically search for the structure of cells in a recurrent neural
network model. Based on a combination of recurrent and recursive neural networks,
our algorithm is able to construct customized cell structures for each data sample
and time step, allowing for a more efficient architecture search than existing models.
Experiments on three common datasets show that the algorithm discovers high-
performance cell architectures and achieves better prediction accuracy compared
to the GRU structure for language modelling and sentiment analysis.

1 Introduction

First proposed by Hopfield [12], recurrent Neural Network (RNN) models excel at machine learning
tasks that involve sequential data such as natural language processing. Researchers soon noted that
a major obstacle of RNN models is in backpropagation when computing gradients. Since RNNs
are trained by backpropagation through time, when the recurrent structure is unfolded into a huge
feed-forward network with many layers, gradients tend to grow or vanish exponentially in the same
way as in very deep feed-forward neural networks [20]. Many extensions of RNN models, such
as Long Short-Term Memory (LSTM) [11] and Gated Recurrent Units (GRU) [5], are proposed to
address this problem. These models achieve state-of-the-art results in many machine learning tasks
like language modeling [6] and speech recognition [15, 22].

However, the cell structure of these hand-crafted RNN models, like LSTM and GRU, is fixed across
all time steps and data samples. It is also a time-consuming and tedious effort to find a suitable cell
structure through trial and error [19]. Lastly, there is no universal answer to which cell structure to
use when facing different types of data and a different problem at hand. Therefore, a more flexible
model that can automatically determine the cell structures based on a finite set of trainable parameters
is needed to deal with more and more complicated and diversified data sources and problems.

There is another line of research about Recursive Neural Network (RecNN) models [24]. A RecNN
model is defined over recursive tree structures – each node of the tree corresponds to a vector
computed from its child nodes, and the information passes from the leaf nodes and internal nodes
to the root node in a bottom-up manner. The model produces a structured prediction such as a tree
by applying the same set of trainable parameters recursively. Derivatives of errors are computed
with back-propagation over the tree structures [8]. RecNN has shown great success in learning tree
structures of certain natural language processing tasks [25] because the structures it dynamically
produces are customized for each data sample.

We consider how to replace the cell structure in RNN models to be time-variant and sample-dependent.
We note that the equations governing a cell can be represented as a computational tree where each
non-leaf node corresponds to a vector that is computed from the vectors on its two child nodes. The

initial multiset of vectors is composed of the current feature vector at time t and all vectors produced
by the previous cell (hidden state representation). If we augment this multiset with constant vectors,
such as the zero vector, we can then express mathematical equations behind a cell as a tree on this
multiset. RecNN is an appropriate model to capture such a tree by means of a finite set of trainable
parameters. In summary, our proposed model is using RecNN in each time step as a replacement for a
fixed set of equations. In this way we obtain an architecture with cells depending on time and on each
individual sample. In addition to this flexibility, the approach does not require hand-crafting of cells.

Our model shows great results on a series of language modeling and sentiment prediction tasks.
In the experiments we show that RRNN is able to design sample-dependent tree structures on the
Wikipedia dataset and achieves 5.5% improvement in Bits per Character (BPC) compared to GRU.
The performance on the datasets also show the advantage of dynamically designing cell structures for
each sample.

The major contribution of this paper is a novel architecture that dynamically searches for the structure
of cells in an RNN. Our model, called a Recursive-Recurrent Neural Network (RRNN), recursively
designs the cell structure with the help of a scoring function and allows us to build different cell
structures under a fixed set of parameters. The proposed model can generate the cell structure of some
traditional RNN models, like GRU and LSTM which we establish theoretically. Most importantly,
the output tree structure of hidden cells in RRNN are customized based on each data sample, and
therefore they are time-variant and data-dependent. Besides, we define a new tree distance metric
that can measure the difference between the tree with vectors on each of its nodes. We also exhibit
and prove the sufficient and necessary conditions for avoiding the gradient exploding and vanishing
problem that usually appears in recurrent neural network models. While such results are known for
RNNs, they have not yet been established for RecNNs. Furthermore, our result applies to RRNNs
which are a combination of RNN and RecNN.

The rest of the manuscript is structured as follows. In Section 2 we review the literature while in
Section 3 we present the RRNN model, including an algorithm to construct trees, the design of the
loss function, and other extensions. Section 4 presents some properties of the RRNN model. In
Section 5 we introduce the data sets and discuss all experimental results. We defer the proofs of the
theorems and other technical details to Appendix.

2 Literature Review

A recurrently connected structure in RNN can improve the performance of a model by its ability to
infer sequential dependencies [16]. Despite their success, vanilla RNN models are still limited by the
algorithms employed due to the problems of exploding or vanishing gradients that may appear in
the training phase [2]. LSTM [11] is one of the most popular ways to address this problem. Many
variants are then proposed to improve the performance of LSTM [10, 14]. RNN models often work
well if a hand-crafted cell structure is well-designed, which requires time and expertise, and it leads
to a fragile setting that works only on a particular problem or, worse, on a single dataset. This is
clearly less general and less flexible than the method proposed in this paper where the cells are
algorithmically designed.

Recursion is the division of a problem into subproblems of the same type and the application of
an algorithm to each subproblem. It can help with augmenting neural architectures and improving
the generalization ability of a model [3]. RecNN greedily searches hierarchical tree structures and
achieves state-of-the-art performances on tasks like semantic analysis in natural language processing
and image segmentation [24, 25].

To provide better flexibility and robustness, automatically searching a neural network architecture is
thus a logical next step. Neural Architecture Search (NAS), a subfield of AutoML, is a method which
algorithmically finds an architecture; it has significant overlap with hyper-parameter optimization and
meta-learning [7]. A simple approach to NAS is to build a layer-chained neural network where layers
are differentiated by their choices of operations (pooling, convolution, etc.), activation functions
(ReLU, Sigmoid, etc.), width, etc. [4, 26, 1]. Despite its impressive empirical performance, NAS is
computationally expensive and time consuming [29].

Various methods of producing novel cell structures for RNNs have been recently proposed. [28]
introduce a reinforcement learning approach that utilizes policy gradient to search for convolutional

2

and recurrent neural architectures. However, the reinforcement learning approach is computationally
expensive in the sense that obtaining an architecture with state-of-the-art performance on CIFAR-10
and ImageNet requires 1,800 GPU days [29]. [21] accelerate the search process by sharing parameters
among potential architectures. [23] introduce a more flexible algorithm that searches for novel RNNs
of arbitrary depth and width. [17] relax the discrete architecture space by continuous probability
vectors and utilize a gradient based optimization method to derive an optimal architecture. All these
methods are extremely computationally demanding and they yield a fixed network architecture for all
times and samples. Some exceptions are in [9] and [27] where the proposed models automatically
adjust the number of layers of the LSTM model based on time and sample but the cell structures
are static. Our RRNN model further extends this property such that the predicted cell structures are
time-variant and sample-dependent.

3 Recursive-Recurrent Neural Network Model

Generally, RNNs consist of two parts which are a hidden cell (recurrent cell) and an output layer.
A single sample input of an RNN is a sequence of vectors {xt ∈ Rp : t = 1, 2, . . . , T}, labeled by
time step t. Given a hidden state ht−1, the t-th recurrent cell defines the next hidden state ht by
ht = f(xt, ht−1). The output layer is usually a simple network that takes xt and ht as input and
returns qt = g(xt, ht; Γ) as output. These two equations are applied for t = 1, 2, . . . , T .

Function f defined above is time-invariant and thus remains the same in all time steps and for all
samples. To address this shortcoming, we propose a new model that can dynamically design the
recurrent cell structure (i.e. generate different functions f) with respect to the argument vectors. This
is inspired by the idea of RecNNs, thus we call it the Recursive-Recurrent Neural Network model. A
dynamic architecture has two advantages: (1) no need to hand-craft a cell, and (2) it automatically
adjusts based on timestep and sample.

A simple RecNN model starts with a set of input nodes {p1, . . . , pn} with corresponding embedding
vectors {c1, . . . , cn}. Two nodes are merged into a parent node using a pair of weight matrices
L and R, a bias vector b, and an activation function σ that provides non-linearity. For two nodes
pi and pj , their parent, denoted by pi,j , is also a node with the embedding vector calculated by
ci,j = σ (Lci +Rcj + b). In each iteration, we compute the scores si,j = W scoreci,j for all pairs of
nodes (pi, pj) and select the pair of nodes (pi1 , pj1) with the highest score. We next merge nodes
pi1 and pj1 into the parent node pi1,j1 and remove the two child nodes pi1 and pj1 from further
consideration. This procedure repeats until all nodes are merged and only one parent node pout

remains. The set of parameters and activation function {L,R, b, σ,W score} are shared across the
whole network. The RecNN model returns pout and the binary tree rooted at pout as the model output.

The RRNN model replaces the fixed hidden cell of RNN by a recursive tree, dynamically determined
by an algorithm similar to RecNN. Note that, even with the fixed set of parameters and activation
function {L,R, b, σ,W score}, the RecNN model can dynamically produce different tree structures
based on input nodes (vectors). Therefore, in RRNN, the recurrent cell is different across all time
steps and data points. We further discuss the RRNN model in the following sections.

3.1 Recursive-Recurrent Neural Network Model Framework

We start with an example of how to represent the hidden cell structure of GRU to be a binary tree
with computational information on it. In the following we assume X is a given sample, where
X = (x1, . . . , xT), xi ∈ Rp is a sequence of input vectors. Recall that the GRU equations are:

rt = σ (Wrxt +W ′rht−1 + br) , (1)

zt = σ (Wzxt +W ′zht−1 + bz) , (2)

h̃t = tanh (Whxt +W ′h (rt � ht−1) + bh) , (3)

ht = zt � ht−1 + (1− zt)� h̃t, (4)

where {Wr,W
′
r,Wz,W

′
z,Wh,W

′
h} and {br, bz, bh} are parameter matrices and bias vectors of GRU,

respectively. Equations (1) – (4) jointly define the function f of the t-th hidden cell of GRU. As
shown in Figure 1, the above equations can also be regarded as a binary tree where each node of
the tree corresponds to a 3-tuple (binary operator, activation function, bias vector), and each edge is
associated with a trainable matrix or identity matrix.

3

Figure 1: Representation of GRU equations as a binary computational tree. Here red labels are the
vectors correspond to each node, blue labels are the weight matrices corresponding to each edge from
a child node to its parent, and the 3-tuple in each node is the binary operation, activation function,
and the bias vector that are used to calculate the vector of this node. 0 stands for the zero vector, 1−
the one-minus activation and id the identity activation (mapping).

The tree structure can be achieved in the scheme of RecNN by giving a multiset of initial nodes
N0 = {xt, xt, xt, xt, ht−1, ht−1, ht−1, ht−1, ht−1,0}. Assuming an appropriate scoring function,
in the first iteration, we can find that the parent node that combines xt and ht−1 with parameters and
operations (Wr,W

′
r, br,+, σ) has the highest score, thus we merge two nodes xt and ht−1 together to

achieve node qt. In the second iteration, we find that the parent node zt = σ (Wzxt +W ′zht−1 + bz)
has the highest score among all potential parent nodes, thus we again take two nodes xt and ht−1

from the node set and merge them to be zt. After 9 iterations, we end up with one node ht and this
is exactly the output of the t-th hidden cell of GRU. We can prove that, with an appropriate choice
of the scoring function, a RecNN can find the tree in Figure 1 and thus it can produce GRU. The
statement is given in Section 4.1 and the proof is in the Appendix.

Next, we present the RRNN model. The RRNN model has the same recurrent structure as RNN and
an algorithm for building the hidden cell. We start with the case where only one hidden state needs to
be transferred between two consecutive hidden cells (GRU falls in this case, but in LSTM we have
two states, i.e. the hidden state ht and the memory state). We extend the model to be compatible with
multiple hidden states in Appendix B.

For each hidden cell of RRNN, we build up a binary tree from a multiset of initial nodes with
corresponding vectors on each node. A set of trainable parameter matrices and bias vectors, ac-
tivation functions, binary operations, and a scoring function is given prior to the construction of
the tree. We denote L = {L1, . . . , Lnl

} and R = {R1, . . . , Rnl
} with Li, Ri ∈ Rp×p as the set

of trainable weight matrices, B = {b1, . . . , bnl
} with bi ∈ Rp as the set of trainable bias vectors,

U = {u1, u2, . . . , unu
} andO = {o1, o2, . . . , ono

} as the set of available activation (unary) functions
and binary operations, respectively. Besides, a scoring function α(·; Θ), depending on a set of train-
able parameters Θ, is given. A multiset of initial nodes N0 = {c1, c2, . . . , cN} with ci ∈ Rp is also
given as input of the hidden cell. We do not distinguish between a node and its corresponding vector
in the following discussion, however we note that nodes in the tree are unique while the corresponding
vectors form a multiset. The tree shown in Figure 1 is the equivalent RRNN representation for the
GRU cell.

Formally, the RRNN hidden cell can be understood as a function f : N0 → (T ,Rp), where T is the
set of all possible (binary) computational trees such that each node of the tree corresponds to a vector
and a 3-tuple (u, o, b), u ∈ U , o ∈ O, b ∈ B, and each directed edge from each one of the two child
nodes to its parent node is associated with a weight matrix.

Function f can be recursively defined as

f = fN ◦ fN−1 ◦ · · · ◦ f2 ◦ f1, (5)

4

where fk : Nk−1 7→ Nk, k = 1, 2, . . . , N − 1 and fN : NN−1 → (T ,Rp). For k =
1, . . . , N − 1, function fk maps multiset Nk−1 to multiset Nk by the following three steps: (i)
Ck = {c : c = u(o(Lci, Rcj) + b), ci, cj ∈ Nk−1, i < j, L ∈ L, R ∈ R, b ∈ B, u ∈ U , o ∈ O}, (ii)
c∗k = arg max

c
{α(c; Θ) : c ∈ Ck}, (iii)Nk = {c∗k}∪Nk−1 \{c∗i , c∗j}, where c∗i , c

∗
j are the two child

nodes combined to get c∗k.

Note thatNN−1 = fN−1 ◦ · · · ◦f1(N0) contains only one node, i.e. NN−1 =
{
c∗N−1

}
. Function fN

then takes c∗N−1 and returns the tree rooted at c∗N−1 (we can discover it by unfolding the collapsing
decisions and tracing each parent node down to its child nodes until all initial nodes appear) and the
corresponding vector c∗N−1 ∈ Rp as the output. We point out that by definition the produced binary
tree is full, i.e. each node has exactly 2 or 0 child nodes.

We next specify the recursive relationship of our cells. To this end, let multiset N t
0 = N t

0(xt, ht−1)
consist of several copies of xt, several copies of ht−1 and other constant vectors such as the vector
of all zeros or all ones or unit vectors. The numbers of each of them can vary by t. The transition
equations and cell output are as follows:

(T pred
t , ht) = f(N t

0(xt, ht−1)), qt = g(xt, ht; Γ).

It remains to specify the loss function. The generic function is as follows with further details provided
in Section 3.3. We assume that a sample consists of (X,Y) where Y = (y1, . . . , yT) is a sequence
of ground truth labels. We also assume that we are given a ground truth binary tree T target

t which is
specified as in Figure 1 but without the trainable matrices and bias vectors. The target tree usually
does not depend on t. Ideally this target tree should not be specified but we leave this as future
research work.

One further complication is the fact that the ground truth tree does not have a unique representation.
Indeed, since the leaf nodes corresponding to N0 are unordered, there are several isomorphisms
of a given tree that yield the same underlying ground truth transition function, i.e. mathematically
equivalent expressions. To this end, let Iso(T target

t) be the set of all isomorphic trees to T target
t . Note

that we do not need to consider the isomorphisms when leaf nodes are ordered, as is the case in [24].

The set of all trainable parameters in RRNN is denoted by Φ = {L,R,B,Θ,Γ}. The loss function is
specified by

L(Φ) = E(X,Y)

[
T∑
t=1

{
λ1l(yt, qt) + λ2 min

T̄∈Iso(T target
t)

TD(T̄ , T pred
t) + λ3

N−1∑
k=0

m(N t
k)

}]
+ λ4

∑
φ∈Φ

‖φ‖2 ,
(6)

where function l is the standard loss function, TD measures the difference of two trees, and m is
the margin function. These two are described in detail in Section 3.3. The minimum operation over
isomorphic target trees can also be replaced by expectation.

3.2 Cell Tree Construction

Several changes of constructing the cell tree are made for practical concerns. Functions fk, k =
1, . . . , N − 1 can be regarded as N − 1 iterations of merging two nodes (vectors). Multisets Nk can
have multiple copies but in practice we keep a single copy that is reused. The new set Nk−1 consists
of three fixed sets of vectors, namely Sdata

t = {xt} as the set of vectors from the data samples, Sprev
t

as the set of vectors from the previous hidden cell, and Saux
t as the set of auxiliary vectors such as

the zero vector, etc., together with the set Pk−1 as the set of generated parent nodes. The model
takes the new set Nk−1 = Sdata

t ∪ Sprev
t ∪ Saux

t ∪ Pk−1 as the set of all potential choices of child
nodes to build the k-th parent node c∗k. Then we set Pk = Pk−1 ∪ {c∗k} and step to the (k + 1)-th
iteration. We further need a hyper-parameter N̄ corresponding to the number of iterations of the tree
construction steps. The practical algorithm for constructing the computational tree for the t-th hidden
cell of RRNN is exhibited in Algorithm 1. It is worth mentioning that the number of iterations N̄ in
Algorithm 1 might be different from the number of nodes N in the predicted tree. A vector might be
chosen several times to serve as a child node in Algorithm 1. In this case, the number of nodes N in
the predicted tree is larger than the number of iterations N̄ .

5

Algorithm 1 Construction of computational tree for t-th hidden cell
1: Input: L,R,B,U ,O, α,Sdatat ,Sprevt ,Sauxt , N̄
2: Output:
3: ht: The hidden state of t-th hidden cell
4: T pred

t : Binary computational tree corresponds to the t-th hidden cell
5:
6: P0 ← ∅
7: for k = 1 to N̄ do
8: V kt ← ∅
9: for r = 1 to |L|, all o ∈ O, and all u ∈ U do

10: for ci, cj ∈ Sdatat ∪ Sprevt ∪ Saux
t ∪ Pk−1, i < j do

11: V kt ← V kt ∪ {u(o(Lrci, Rrcj) + br)}
12: end for
13: end for
14: c∗k ← arg max

{
α(v; Θ) : v ∈ V kt , v 6∈ Pk−1

}
15: Pk ← Pk−1 ∪ {c∗k}
16: end for
17: ht ← c∗

N̄
, T pred

t ← the tree rooted at c∗
N̄

18: Return ht and T pred
t

3.3 Loss Function

We discuss the definition of the tree distance (TD) and the scoring margin m in this section.

Score Margin To give scoring more partitioning power, we incentivize it to leave a significant
margin between the score of the highest-scoring vector and the second-highest vector for each node.
Recall the definition of Ck and c∗k from Section 3.1. We further define c∗∗k to be the vector with
the second highest score among the vectors in Ck. In Algorithm 1 the analogous to Ck is V kt . The
scoring margin function is thereby defined as m(Nk) = − 1

M min{M,α(c∗k; Θ)−α(c∗∗k ; Θ)}, where
M is a hyper-parameter. Intuitively, the margin function incentivizes scoring to increase the gap
between the scores of the highest and second-highest vectors to at least M . We divide by M so that
the overall scale of this loss term is not affected by the choice of M .

Tree Distance For convenience, in the discussion of this part, we use T pd and T tgt to denote the
predicted tree and the target (ground truth) tree, respectively. For any binary tree T̄ , we use Int(T̄) to
denote all internal (non-leaf) nodes of T̄ . We use I(T̄) to denote the labeling of Int(T̄) such that the
root node of T̄ has index 1, and if a node has index i, then its left and right child nodes have index 2i
and 2i+ 1, respectively. For a node n ∈ Int(T̄), we use Subtree(T̄ , n) to denote the subtree of T̄
rooted at node n. In addition, we use ni,T̄ and vi,T̄ to denote the node and the corresponding vector
with index i in tree T̄ , respectively.

Given two binary trees T1 and T2, we define

VD(T1, T2) =
∑

i∈I(T1)∩I(T2)

‖vi,T1 − vi,T2‖
2

+
∑

i∈I(T1)\I(T2)

‖vi,T1‖
2

+
∑

i∈I(T2)\I(T1)

‖vi,T2‖
2

to be the vector differences (VD) of these two trees. The tree distance between T pd and T tgt is the
sum over all minimum VD values between a sub-tree of T pd and all sub-trees of T tgt:

TD(T pd, T tgt) =
∑

n1∈V (Tpd)

min
n2∈V (T tgt)

{
VD
(
Subtree(T pd, n1),Subtree(T tgt, n2)

)}
.

This expression matches each subtree in T pd with the closet subtree in T tgt with respect to VD, and
therefore the TD measures the difference of vectors on all of the nodes of the two trees.

6

4 Properties of RRNN and Gradient Control

In this section, we state some properties of the RRNN model and show how to avoid gradient
exploding and vanishing during training of RRNN. We give theorems in this section and defer the
proofs to the appendix.

4.1 Expressibility of RRNN

We argue that if we carefully choose sets L,R,B,U ,O,Sdatat ,Sprevt ,Sauxt , the quantity N , and the
scoring function α, then Algorithm 1 can replicate the GRU and LSTM equations. We give the formal
statements in this section and defer the choice of the sets and the proof to Appendix C.
Theorem 1. There exists a scoring function α such that Algorithm 1 generates GRU equations (1) –
(4) with an appropriate choice of L,R,B,U ,O,Sdatat ,Sprevt , and Sauxt .
Theorem 2. There exists a scoring function α such that Algorithm 1 (applied twice) generates the
LSTM equations with an appropriate choice of L,R,B,U ,O,Sdatat ,Sprevt , and Sauxt .

4.2 Controlling Gradient

As introduced in [2], the exploding gradient problem refers to the large increase in the norm of the
gradient during training. This is due to the fact that the gradient of long-term dependencies grows
exponentially quicker than for short-term dependencies. The vanishing gradient problem, on the other
hand, refers to the behavior that the gradients of long-term dependencies go to zero exponentially.
[20] introduce a sufficient condition of vanishing gradient and a necessary condition of exploding
gradient for a simple RNN. In this section, we extend their results to a more general case – we provide
these two conditions for our RRNN model. We note that our result as a special case applies to RecNN
where such conditions have not yet been established.

We consider the case where only one hidden state ht is returned by the t-th hidden cell of the RRNN
model. The loss function (6) can be written as L(Φ) =

∑T
t=1 Et where each Et is a function of

all parameters in Φ. For 1 ≤ t ≤ T , the gradient of Et with respect to φ ∈ Φ comes from t cells,
namely ∂Et

∂φ =
∑t
t′=1

∂Et
∂ht

∂ht

∂ht′

∂+ht′
∂φ , where ∂+ht′

∂φ refers to the direct gradient of ht′ with respect to

φ directly appearing within the t′-th hidden cell. If φ is a matrix, then we mean ∂+ht′
∂φ = ∂+ht′

∂vec(φ) ,
where vec(φ) is an appropriate matrix vectorization. The exploding (vanishing) gradient problem is
defined by

∥∥∥ ∂Et∂ht

∂ht

∂ht′

∂+ht′
∂φ

∥∥∥ going to +∞ (0) exponentially fast as t goes to +∞ and t′ is fixed as a
constant. For simplicity, we consider the case where t = T and t′ = 1.

We state a simplified version of the theorems here and defer the full version to Appendix D. We
argue that most of the time these conditions are met in practice and we elaborate them one by one in
Appendix D.2.
Theorem 3 (Sufficient condition of gradient vanishing). Under certain conditions given in Theorem
7, we have

∥∥∥ ∂ET∂hT

∂hT

∂h1

∂+h1

∂φ

∥∥∥→ 0 as T → +∞, i.e., the vanishing gradient problem occurs.

Theorem 4 (Necessary condition of gradient exploding). If we observe the vanishing gradient
problem, then at least one of the conditions listed in Theorem 8 holds.

5 Experimental Results

In this section, we present numerical results by comparing our algorithm with a GRU baseline
model. The experiments are conducted on three datasets, and the source code is available at http:
//after_accepted.

We test two versions of the RRNN algorithm. The first one is the full algorithm we presented in
Algorithm 1. The second one, which we call it RRNN-GRU, is a simplified version of the RRNN
model where we limit the tree structure to be exactly the same as GRU. This model has a limited tree
search space and the only dynamic component is the choice of the tuple (Li, Ri, bi) to use on each
pair of parent-child nodes, so the positioning of weights in the cell is flexible. Therefore, RRNN-
GRU is still time-variant and data-dependent. In addition, we alternate between training the L,R, b

7

http://after_accepted
http://after_accepted

Table 1: Performance of models on three datasets

Wiki-5k (BPC) Wiki-10k (BPC)

Val Test Val Test

RRNN 2.58 (-5.5%) 2.63 (-1.9%) – –
RRNN-GRU – – 2.43 (-5.8%) 2.42 (-5.8%)
GRU 2.73 2.68 2.58 2.57

SST (Accuracy) PTB (Perplexity)

Val Test Val Test

RRNN-GRU 65.1% (-0.8%) 68.7% (-5.2%) 281 239
GRU 64.6% 65.3 % 247 (-12.1%) 239

parameters and training the scoring neural network α consisting of a 2-layer fully connected neural
network, while continuously training the output layer. The frequency (in epochs) that we switch
training phases is set as a hyperparameter of the RRNN-GRU model. Due to the model architecture,
training can sometimes be unstable with exploding gradients which we clip. The baseline model is
the single layer GRU which has 100-dimensional hidden states.

For both 100-dimensonal character and word embeddings, we used the pre-trained embedding vectors
from GloVe1. The Adam optimizer is used for all experiments and random initial weights are selected.
A random search on hyperparameters is used for all RRNN-GRU models and GRU models. We
train the model parameters on the training set and select the optimal parameters and hyperparameters
based on the performance measure on the validation set. Then we use this set of hyperparameters
and the optimized model parameters to predict on the test set. We test the RRNN model only on the
Wikipedia dataset. We report the performance on both validation and test sets for all datasets in Table
1 and list the optimal hyperparamers in Appendix E.2. Further details about the implementations are
given in Appendix E.1.

5.1 Datasets and Settings

The Wikipedia task is to predict the next character on text drawn from the Hutter prize Wikipedia
dataset2 [13]. We remove all numbers, punctuation, XML tags, and markup characters so that 26
English characters and space are left in the raw text. Performance is measured using BPC (the smaller
the better). For RRNN-GRU, we randomly select 10,000 20-character sequences for the training set,
along with 1,000 sequences for validation and 2,000 for testing, such that no sequences overlap. For
RRNN, the training set has 5,000 sequences while the validation and test sets remain of the same size.

The Stanford Sentiment Treebank (SST) dataset3 [25] is a sentiment analysis task involving classi-
fying one-sentence movie reviews as positive, negative, or neutral. We obtain the dataset from the
torchtext package and use the full 8,544-sample training set, along with a randomly-chosen 1,000
samples for validation and 2,000 for testing. Since the training data has variable length, we prepend
each sample with zeros to make each sample be the same length. The performance is measured in the
accuracy of correctly predicting sentiments (the higher the better).

We also perform word-level language modeling using the Penn Treebank (PTB) dataset4 [18], a
corpus containing articles from the Wall Street Journal. We obtain this dataset from the torchtext
package and randomly select a 10,000 sample subset of 20 words each, along with 1,000 samples
for validation and 2,000 for testing. We predict over all 10,001 unique words in our subset without
eliminating uncommon words. The performance is measured in perplexity (the smaller the better).

1https://nlp.stanford.edu/projects/glove/
2https://cs.fit.edu/~mmahoney/compression/textdata.html
3https://nlp.stanford.edu/sentiment/treebank.html
4https://catalog.ldc.upenn.edu/LDC99T42

8

https://nlp.stanford.edu/projects/glove/
https://cs.fit.edu/~mmahoney/compression/textdata.html
https://nlp.stanford.edu/sentiment/treebank.html
https://catalog.ldc.upenn.edu/LDC99T42

5.2 Discussion

From Table 1 it is clear that RRNN-GRU outperforms GRU by 5.8% on the Wikipedia dataset while
RRNN improves the results of GRU by 5.5% on validation set and 1.9% on test set with a simple set
of hyperparameters. On SST, RRNN-GRU also beats GRU by 0.8% and 5.2% on validation and test
sets, respectively. These experiments show that the data-dependent structures do help improve the
prediction power of the model and achieve better performance. Meanwhile, RRNN-GRU matches the
performance of GRU on PTB. Its performance on the test set of PTB can be improved by a more
dedicated hyperparameter search.

One interesting observation of the full RRNN model is the evolution of the predicted tree structures.
Figure 3 of Appendix A shows the common tree structures we find at the beginning epochs while
Figure 4 of Appendix A shows the common tree structures at later epochs (near the point where
optimal performance is achieved on the validation set). The tree structures tend to be balanced in the
beginning epochs since the structure of the ground-truth tree plays a significant role. In later epochs,
the output layer dominates the predicting ability and therefore the model tends to feed simple ht to
the output layer.

Another interesting observation lies in the dynamics of the RRNN-GRU model. Let us denote Ie,i,t,j
to be the index of parameter tuple (L,R, b) that the j-th internal node of i-th sample on the t-th time
step in e-th epoch, and we further set Ne ,

∑
i,t,j 1 {Ie,i,t,j 6= Ie−1,i,t,j} to measure the number of

changes in the choice of parameter tuples between (e− 1)-th epoch and e-th epoch. Then we should
expect the quantity Ne to be decreasing as e increases since the model is expected to become more
stable as the training goes on and the choice of indices of parameter tuples should also become more
stable. Figure 2 in Appendix A shows the plot of Ne vs epochs which supports our hypothesis.

Acknowledgments

The authors would also like to acknowledge and thank Intel for providing access to Intel’s Computing
environment.

9

References
[1] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network archi-

tectures using reinforcement learning. In International Conference on Learning Representations
(ICLR), 2017.

[2] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

[3] Jonathon Cai, Richard Shin, and Dawn Song. Making neural programming architectures
generalize via recursion. In International Conference on Learning Representations (ICLR),
2017.

[4] François Chollet. Xception: Deep learning with depthwise separable convolutions. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
1251–1258, 2017.

[5] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. In Conference on Neural Information
Processing Systems (NIPS) Workshop on Deep Learning, 2014.

[6] Wim De Mulder, Steven Bethard, and Marie-Francine Moens. A survey on the application of
recurrent neural networks to statistical language modeling. Computer Speech & Language,
30(1):61–98, 2015.

[7] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
arXiv preprint arXiv:1808.05377, 2018.

[8] Christoph Goller and Andreas Kuchler. Learning task-dependent distributed representations
by backpropagation through structure. In Proceedings of International Conference on Neural
Networks (ICNN), pages 347–352, 1996.

[9] Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

[10] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Networks, 18(5-6):602–610, 2005.

[11] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997.

[12] John J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982.

[13] Marcus Hutter. Universal artificial intelligence: Sequential decisions based on algorithmic
probability. Springer Science & Business Media, 2004.

[14] Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. Grid long short-term memory. arXiv
preprint arXiv:1507.01526, 2015.

[15] Xiangang Li and Xihong Wu. Constructing long short-term memory based deep recurrent
neural networks for large vocabulary speech recognition. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 4520–4524. IEEE, 2015.

[16] Zachary C. Lipton, John Berkowitz, and Charles Elkan. A critical review of recurrent neural
networks for sequence learning. arXiv preprint arXiv:1506.00019, 2015.

[17] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search.
In International Conference on Learning Representations (ICLR), 2019.

[18] Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of english: The penn treebank. 1993.

[19] W. Thomas Miller, Paul J. Werbos, and Richard S. Sutton. Neural networks for control. MIT
press, 1995.

10

[20] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In International Conference on Machine Learning (ICML), pages 1310–1318,
2013.

[21] Hieu Pham, Melody Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. In International Conference on Machine Learning (ICML), pages
4092–4101, 2018.

[22] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory recurrent
neural network architectures for large scale acoustic modeling. In Proceedings of the Annual
Conference of the International Speech Communication Association (INTERSPEECH), pages
338–342, 2014.

[23] Martin Schrimpf, Stephen Merity, James Bradbury, and Richard Socher. A flexible approach to
automated RNN architecture generation. arXiv preprint arXiv:1712.07316, 2017.

[24] Richard Socher, Cliff C. Lin, Christopher D. Manning, and Andrew Ng. Parsing natural scenes
and natural language with recursive neural networks. In International Conference on Machine
Learning (ICML), pages 129–136, 2011.

[25] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1631–1642. Association for Computational Linguistics, 2013.

[26] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. In
International Conference on Learning Representations (ICLR), 2016.

[27] Lida Zhang and Diego Klabjan. Layer flexible adaptive computational time for recurrent neural
networks. arXiv preprint arXiv:1812.02335, 2018.

[28] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In
International Conference on Learning Representations (ICLR), 2017.

[29] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 8697–8710, 2018.

11

Appendices
A Figures

Figure 2: The number of changes in the indices of parameter tuples vs epochs

(a) (b)

Figure 3: Example of tree structures at early stage of training.

(a) (b)

Figure 4: Example of tree structures near the optimal stage of training.

12

B Extensions of RRNN model

The exposition so far handles the case where only one state vector transfers between hidden cells
of the RRNN model, and it can capture the structure of GRU. However, LSTM, for example,
has two state vectors ht and ct to transfer between cells. In this section we extend the RRNN
model to be compatible with transferring multiple state vectors. Suppose that a total of M vectors,
ht−1,1, . . . , ht−1,M , are the output of the (t − 1)-th hidden cell. The transition equations and cell
output are thereby

(T pred
t,i , ht,i) = f i(N t

0,i) i = 1, 2, . . . ,M,

qt = g(xt, ht,M ; Γ),

where each f i , f iN ◦ · · · ◦ f i1 has the same definition as the function f defined in (5), and N t
0,i

is the multiset consisting of multiple copies of xt, ht−1,j , j = 1, . . . ,M , ht,j , j = 1, . . . , i − 1,
and possible other constant vectors. In practice, we use Algorithm 1 M times to build functions
f i, i = 1, 2, . . . ,M .

The loss function is redefined as

L(Φ) = E(X,Y)

[
T∑
t=1

{
λ1l(yt, qt) + λ2

M∑
i=1

min
T̄∈Iso(T target

t,i)
TD(T̄ , T pred

t,i) + λ3

M∑
i=1

N−1∑
k=0

m(N t
k,i)

}]
+ λ4

∑
φ∈Φ

‖φ‖2,

where N t
k,i = f ik ◦ · · · ◦ f i1(N t

0,i), k = 1, 2, . . . , N − 1, i = 1, 2, . . . ,M , and T target
t,i is the ground

truth binary tree.

As an example, we show how to transfer two state vectors ct and ht between hidden cells of RRNN
and mimic the structure of LSTM. To adhere with notation from prior works, we use ct and ht to
replace ht,1 and ht,2 in the above general definition. The transition equations and cell output are
therefore

(T pred
t,1 , ct) = f1(N t

0,1(xt, ct−1, ht−1)),

(T pred
t,2 , ht) = f2(N t

0,2(xt, ct−1, ht−1, ct)),

qt = g(xt, ht; Γ),

where N t
0,1(xt, ct−1, ht−1) consists of several copies of xt, ht−1, ct−1 and possible other constant

vectors, andN t
0,2(xt, ct−1, ht−1, ct) consists of several copies of xt, ct−1, ht−1, ct and possible other

constant vectors.

C Expressibility of RRNN

We extend the contect of Section 5 here. We first show that for a given set of vectors, there always
exists a scoring function that can rank the scores of these vectors by any order we want. Formally, we
have the following lemma.

Lemma 1. Given n vectors v1, . . . , vn ∈ Rp, there exists a function α with a set of parameters Θ
such that α(v1; Θ) > · · · > α(vn; Θ).

We next show that if we carefully choose sets L,R,B,U ,O,Sdatat ,Sprevt ,Sauxt , the quantity N , and
the scoring function α, then Algorithm 1 can replicate the GRU and LSTM equations.

To replicate GRU, we should have N = 8, Sdatat = {xt}, Sprevt = {ht−1}, Sauxt = {0}, where 0 is
the zero vector. We further set

• L = {L1, L2, L3, L4}, where L1 = Wr, L2 = Wz, L3 = Wh, and L4 = I ,

• R = {R1, R2, R3, R4}, where R1 = W ′r, R2 = W ′z, R3 = W ′h, and R4 = I ,

• B = {b1, b2, b3, b4}, where b1 = br, b2 = bz, b3 = bh, and b4 = 0,

13

• U = {σ(·), tanh(·),1− ·, id(·)}, where 1 stands for the all-ones vector and id stands for
the identity mapping,

• O = {+,�}, where � is the entry-wise multiplication.

Theorem 1 therefore becomes the following
Theorem 5. There exists a scoring function α such that Algorithm 1 generates GRU equations (1) –
(4) for the choice of L,R,B,U ,O,Sdatat ,Sprevt , and Sauxt specified above.

For LSTM, note that there are two state vectors ht and ct. Therefore, to replicate LSTM (see equations
(7) – (11) below), we run Algorithm 1 twice. In the first run, we should have N = 7, Sdatat = {xt},
Sprevt = {ht−1, ct−1}, Sauxt = {0}. We further set

• L = {L6}, where L6 = Wf , L2 = Wi, L3 = Wo, L4 = Wc, and L5 = I ,
• R = {R1, R2, R3, R4, R5}, where R1 = W ′f , R2 = W ′i , R3 = W ′o, R4 = W ′c, and
R5 = I ,

• B = {b1, b2, b3, b4, b5}, where b1 = bf , b2 = bi, b3 = bo, b4 = bc, and b5 = 0,
• U = {σ(·), tanh(·), id(·)},
• O = {+,�}.

In the second run, we should have N = 2, Sdatat = {xt}, Sprevt = {ht−1, ct−1, ct}, Sauxt = {0}.
We further set L = {L6},R = {R6}, where L6 = R6 = I , B = {b6}, where b6 = 0, U =
{tanh(·), id(·)}, and B = {+,�}. Theorem 2 therefore becomes the following
Theorem 6. There exists a scoring function α such that Algorithm 1 (applied twice) generates the
following LSTM equations

ft = σ
(
Wfxt +W ′fht−1 + bf

)
(7)

it = σ (Wixt +W ′iht−1 + bi) (8)

ot = σ (Woxt +W ′oht−1 + bo) (9)

ct = ct−1 � ft + it � tanh (Wcxt +W ′cht−1 + bc) (10)
ht = ot � tanh(ct) (11)

for the choice of L,R,B,U ,O,Sdatat ,Sprevt , and Sauxt specified above.

C.1 Proof of Lemma 1

Consider function

α(v; Θ) =

n∑
k=1

k exp

(
−‖v − vk‖

2

2σ2
0

)
with Θ = {σ0}, and σ0 is a large enough constant such that σ2

0 ≥ ∆
log(n2)−log(n2−1) , and ∆ =

1
2 minj 6=k ‖vj − vk‖2.

For 0 ≤ i ≤ n− 1, since −‖vi+1−vk‖2
2σ2

0
≤ 0, we have

α(vi+1; Θ) =

n∑
k=1

k exp

(
−‖vi+1 − vk‖2

2σ2
0

)
≤

∑
1≤k≤n
k 6=i+1

k =
n(n+ 1)

2
− (i+ 1) .

On the other hand, for a fixed 1 ≤ i ≤ n and all 1 ≤ k ≤ n, we have exp
(
−‖vi−vk‖

2

2σ2
0

)
≥

exp
(
− ∆
σ2
0

)
≥ exp

(
log(n2 − 1)− log(n2)

)
= 1− 1

n2 ≥ 1− 1
nk , and therefore

α(vi; Θ) =

n∑
k=1

k exp

(
−‖vi − vk‖

2

2σ2
0

)
≥

∑
1≤k≤n
k 6=i

k

(
1− 1

nk

)

=
n(n+ 1)

2
− i− n− 1

n
>
n(n+ 1)

2
− (i+ 1) .

14

In conclusion, for 1 ≤ i ≤ n− 1, we have

α(vi+1; Θ) ≤ n(n+ 1)

2
− (i+ 1) < α(vi; Θ) ,

and thus α(v1; Θ) > · · · > α(vn; Θ).

C.2 Proof of Theorem 5 and 6

We start with the proof of Theorem 5. In Algorithm 1, we setN = 8, Sdatat = {xt}, Sprevt = {ht−1},
Sauxt = {0}, where 0 is the zero vector. In the following, “the algorithm” refers to Algorithm 1. The
scoring function α has a set of parameters Θ and is capable of sorting the scores of different vectors.
We show the existence of this function at the end of the proof by relying on Lemma 1.

We start with P0 = ∅. For k = 1, the algorithm generates the vector set V 1
t and one of its elements

is rt , σ (L1xt +R1ht−1 + b1) = σ (Wrxt +W ′rht−1 + br). The scoring function α guarantees
that α(rt; Θ) > α(v; Θ),∀v ∈ V 1

t , v 6= rt. Therefore, we have c∗1 = rt and P1 = {rt}. Similarly,
the algorithm finds zt to be the vector with the highest score in the set V 2

t \ P1. We have c∗2 = zt and
P2 = {rt, zt}.

For k = 3, the algorithm generates the vector set V 3
t and one of its elements is r̃t , id[(L4ht−1)�

(R4rt) + b4] = rt � ht−1. The scoring function α guarantees that α(r̃t; Θ) > α(v; Θ),∀v ∈
V 3
t \ P2, v 6= r̃t. Therefore, we have c∗3 = r̃t and P3 = {rt, zt, r̃t}.

For k = 4, the algorithm generates the vector set V 4
t and one of its elements is 1− zt = 1− (L40 +

R4zt+b4). The scoring function α guarantees that α(1−zt; Θ) > α(v; Θ),∀v ∈ V 4
t \P3, v 6= 1−zt.

Therefore, we have c∗4 = 1− zt and P4 = {rt, zt, r̃t,1− zt}.

For k = 5, the algorithm generates the vector set V 5
t and one of its elements is h̃t , tanh(L3xt +

R3r̃t+b3) = tanh(Whxt+W
′
h(rt�ht−1)+bh). The scoring function α guarantees that α(h̃t; Θ) >

α(v; Θ),∀v ∈ V 5
t \ P4, v 6= h̃t. Therefore, we have c∗5 = h̃t and P5 = {rt, zt, r̃t,1− zt, h̃t}.

For k = 6, the algorithm generates the vector set V 6
t and one of its elements is zt � ht−1 =

id[(L4ht−1)�(R4zt)+b4]. The scoring function α guarantees that α(zt�ht−1; Θ) > α(v; Θ),∀v ∈
V 6
t \P5, v 6= zt�ht−1. Therefore, we have c∗6 = zt�ht−1 andP6 = {rt, zt, r̃t,1−zt, h̃t, zt�ht−1}.

Similarly, the algorithm finds (1− zt)� h̃t to be the vector with the highest score in the set V 7
t \ P6.

Thus we have c∗7 = (1− zt)� h̃t and P7 = {rt, zt, r̃t,1− zt, h̃t, zt � ht−1, (1− zt)� h̃t}

Finally, for k = 8, the algorithm generates the vector set V 8
t and one of its elements is ht ,

id[(L4(zt � ht−1)) + (R4((1− zt)� h̃t)) + b4] = zt � ht−1 + (1− zt)� h̃t. The scoring function
α guarantees that α(ht; Θ) > α(v; Θ),∀v ∈ V 8

t \ P7, v 6= ht. Therefore, we have c∗8 = ht and
P8 = {rt, zt, r̃t,1− zt, h̃t, zt � ht−1, (1− zt)� h̃t, ht}.
It remains to specify the scoring function α. Note that α should satisfy that α(c∗i ; Θ) > α(v; Θ),∀v ∈
V it \ Pi−1, v 6= c∗i for 1 ≤ i ≤ 8. Since each set V it contains a finite number of vectors, Lemma 1
guarantees that such scoring function α exists. Therefore, the algorithm returns vector ht and the
binary tree rooted at ht as the output, and thus it replicates the GRU equations (1) – (4).

The proof of Theorem 6 is almost the same as the proof above. The only difference is that in the first
run of Algorithm 1, we generate equations (7) – (10), while in the second run of Algorithm 1, we
generate equation (11).

D Gradient Control

In this section, we first give the full statements of Theorem 3 and 4. Then we give proofs for these
two theorems and discuss about them.

15

Theorem 7 (Sufficient condition of gradient vanishing). Let Vt to be the set of vectors on the nodes
of predicted tree T pred

t . Assume that there exist constants C1, C2, C3, C4 such that for all 1 ≤ t ≤ T ,
‖L‖ ≤ C1,∀L ∈ L, ‖R‖ ≤ C1,∀R ∈ R, (12)

‖u′‖∞ ≤ C2,∀u ∈ U , (13)∥∥∥∥∂o(Liv1, Riv2)

∂(Liv1)

∥∥∥∥ ≤ C3,

∥∥∥∥∂o(Liv1, Riv2)

∂(Riv2)

∥∥∥∥ ≤ C3, 1 ≤ i ≤ nl,∀v1, v2 ∈ Vt, v1 6= v2,∀o ∈ O,

(14)∥∥∥∥∂Et∂ht

∥∥∥∥ ≤ C4, t = 0, 1, . . . , (15)

C1C2C3 <
1

2
. (16)

Under conditions (12) – (16), we have
∥∥∥ ∂ET∂hT

∂hT

∂h1

∂+h1

∂φ

∥∥∥ → 0 as T → +∞, i.e., the vanishing
gradient problem occurs.
Theorem 8 (Necessary condition of gradient exploding, restated). Let lmin , blog2(N + 1)c + 1

be the minimum possible depth of all full binary trees T pred
t , 1 ≤ t ≤ T . If the exploding gradient

problem occurs, then at least one of the following conditions hold:

• there exists an activation function u ∈ U such that ‖u′‖ ≥ (N + 1)
− 1

3lmin ,
• there exists a parameter matrix P ∈ L ∪R such that ‖P‖ ≥ (N + 1)

− 1
3lmin ,

• for infinite many t, there exists a pair of parent-child nodes (v, v1) in the tree T pred
t such

that
∥∥∥∂o(Liv1,Riv2)

∂(Liv1)

∥∥∥ ≥ (N + 1)
− 1

3lmin , where v = u(o(Liv1, Riv2) + bi),

• for infinite many t, there exists a pair of parent-child nodes (v, v2) in the tree T pred
t such

that
∥∥∥∂o(Liv1,Riv2)

∂(Riv2)

∥∥∥ ≥ (N + 1)
− 1

3lmin , where v = u(o(Liv1, Riv2) + bi).

D.1 Proof of Theorem 7

Recall that Algorithm 1 builds a full binary tree T pred
t with N internal nodes and N + 1 leaf

nodes for the t-th hidden cell of the RRNN model. We use nint
1,t, . . . , n

int
N,t and nleaf

1,t , . . . , n
leaf
N+1,t

to denote the internal nodes and leaf nodes of the tree T pred
t , respectively. We denote Vt =

{vnint
1,t
, . . . , vnint

N,t
, vnleaf

1,t
, . . . , vnleaf

N+1,t
} to be the set of vectors on the predicted tree T pred

t . We use
‖A‖ and ‖v‖∞ to denote the spectral norm of matrix A and the infinity norm of vector v, respectively.
We use diag{v} to denote the diagonalization of vector v. For an activation function u ∈ U , we use
u′ to denote the derivative of u.

Note that
∂ET
∂φ

=

T∑
t′=1

∂ET
∂hT

∂hT
∂ht′

∂+ht′

∂φ
=

T∑
t′=1

∂ET
∂hT

 ∏
t′<t≤T

∂ht
∂ht−1

 ∂+ht′

∂φ
.

Intuitively, the vanishing gradients problem appears when the norm of ∂hi

∂ht−1
is smaller than 1. We

first provide some lemmas that facilitate proving Theorem 3. For simplicity, we remove the subscript
t in nint

k,t and nleaf
k,t , since the following derivation applies to all 1 ≤ t ≤ T in the same way.

We define the path starting from the root node nint
N to a leaf node nleaf

k by P k =
[
P k0 , P

k
1 , . . . , P

k
lk

]
,

where lk is the length of this path, P k0 = nleaf
k , and P klk = nint

N . Lemma 2 gives an upper-bound for
the norm of the gradient of a node with respect to one of its child node in the binary tree T pred

t .

Lemma 2. Under conditions (12) – (15), there exists a constant C0 <
1
2 such that

∥∥∥∥ ∂Pk
j

∂Pk
j−1

∥∥∥∥ ≤ C0

for all 1 ≤ k ≤ N + 1 and 1 ≤ j ≤ lk.

Proof. For simplicity, we write v = u(o(Liv1, Riv2) + bi), where i is the index in L,R and B,
v = P kj , v1 = P kj−1, and v2 is the other child node of P kj . The case where v2 = P kj−1 is similar.

16

By the chain rule, we have∥∥∥∥ ∂v∂v1

∥∥∥∥ =

∥∥∥∥∂u(o(Liv1, Riv2) + bi)

∂[o(Liv1, Riv2) + bi]

∂[o(Liv1, Riv2) + bi]

∂(Liv1)

∂(Liv1)

∂v1

∥∥∥∥
=

∥∥∥∥diag {u′(o(Liv1, Riv2) + bi)}
∂o(Liv1, Riv2)

∂(Livi)
Li

∥∥∥∥
≤ ‖diag {u′(o(Liv1, Riv2) + bi)}‖

∥∥∥∥∂o(Liv1, Riv2)

∂(Livi)

∥∥∥∥ ‖Li‖
≤ C1C2C3,

where the last inequality follows by ‖diag{u′}‖ = ‖u′‖∞ ≤ C3 by condition (14) together with
conditions (12) and (13). By setting C0 = C1C2C3, the statement holds from condition (16).

We have for all 1 ≤ t ≤ T ,∥∥∥∥ ∂ht
∂ht−1

∥∥∥∥ =

∥∥∥∥∥
N+1∑
k=1

∂ht
∂nleaf

k

1
{
nleaf
k = ht−1

}∥∥∥∥∥ ≤
∥∥∥∥∥
N+1∑
k=1

∂ht
∂nleaf

k

∥∥∥∥∥ ≤
N+1∑
k=1

∥∥∥∥ ∂ht
∂nleaf

k

∥∥∥∥ =

N+1∑
k=1

∥∥∥∥∥∂P klk∂P k0

∥∥∥∥∥
=

N+1∑
k=1

∥∥∥∥∥∥
lk∏
j=1

∂P kj
∂P kj−1

∥∥∥∥∥∥ ≤
N+1∑
k=1

lk∏
j=1

∥∥∥∥∥ ∂P kj
∂P kj−1

∥∥∥∥∥ ≤
N+1∑
k=1

Clk0 ,

(17)
where the last inequality follows by Lemma 2.

Note that l1, . . . , lN+1 are the lengths of all the paths starting from the root node to the leaf node of a
full binary tree. Lemma 3 gives an upper-bound of the sum of exponents of these lengths.

Lemma 3. Suppose lk, 1 ≤ k ≤ N + 1 are the lengths of the N + 1 paths of the full binary tree
T pred
t . Then for any 0 < C0 <

1
2 , there exists a constant ε = ε(C0), 0 < ε < 1, such that

N+1∑
k=1

Clk0 ≤ 1− ε.

Proof. We prove by induction on N that

N+1∑
k=1

Clk0 ≤ CN0 +

N∑
k=1

Ck0 . (18)

For N = 1, the tree T pred
t has exactly one internal node and two leaf nodes, thus there is only one

tree structure for T pred
t if we do not consider isomorphisms. We have {l1, l2, l3} = {2, 2, 1} and∑N+1

k=1 Clk0 = 2C2
0 + C0 = CN0 +

∑N
k=1 C

k
0 .

Suppose that equation (18) holds for N ≥ 1, and we consider the case of N + 1. For a tree T , recall
the definition of I(T) in Section 3.3. Given the full binary tree T pred

t , we denote n0 to be the node
that has the largest index in I(T pred

t) among all N + 1 internal nodes of T pred
t . It is obvious that

both child nodes of n0 are leaf nodes (if not, say the left child of n0 is also an internal nodes, then
it should have a larger index than n0, which leads to a contradiction). We use T0 to denote the tree
obtained by removing the two child nodes of n0 from the tree T pred

t (n0 is a leaf node of T0). Then
T0 has exactly N internal nodes. We use l1, . . . , lN+2 and l′1, . . . , l

′
N+1 to denote the lengths of all

paths of T pred
t and T0, respectively. Without loss of generality, we denote the length of the path that

ends at n0 in T0 as l′N+1, and the length of those two paths that pass through n0 in T pred
t as lN+1

and lN+2, respectively.

17

Note that li = l′i, 1 ≤ i ≤ N and lN+1 = lN+2 = l′N+1 + 1. We have

N+2∑
k=1

Clk0 =

N∑
k=1

C
l′k
0 + 2C

l′N+1+1

0

=

N+1∑
k=1

C
l′k
0 + (2C0 − 1)C

l′N+1

0

≤ CN0 +

N∑
k=1

Ck0 + (2C0 − 1)CN0

= CN+1
0 +

N+1∑
k=1

Ck0 ,

where the inequality follows from the induction equation
∑N+1
k=1 C

l′k
0 ≤ CN0 +

∑N
k=1 C

k
0 and the

facts that 2C0 − 1 < 0 and l′N+1 ≤ N . This complete the induction step.

It remains to define the constant ε. Since C0 <
1
2 , we have

N+1∑
k=1

Clk0 ≤ CN0 +

N∑
k=1

Ck0 < 2−N +

N∑
k=2

2−k + C0

= 2−N +

N∑
k=1

2−k −
(

1

2
− C0

)
= 1−

(
1

2
− C0

)
.

Taking ε = 1
2 − C0 > 0 finishes the proof for Lemma 3.

By (17) and Lemma 3, for every t, 1 ≤ t ≤ T we have∥∥∥∥ ∂ht
∂ht−1

∥∥∥∥ ≤ η , 1− ε < 1.

Combining with condition (15), we have∥∥∥∥∥∥∂ET∂hT

 ∏
1<t≤T

∂ht
∂ht−1

 ∂+h1

∂φ

∥∥∥∥∥∥ ≤
∥∥∥∥∂ET∂hT

∥∥∥∥ ∏
1<t≤T

∥∥∥∥ ∂ht
∂ht−1

∥∥∥∥∥∥∥∥∂+h1

∂φ

∥∥∥∥ ≤ C4η
T−1

∥∥∥∥∂+h1

∂φ

∥∥∥∥ .
As η < 1, we have

∥∥∥ ∂ET∂hT

(∏
1<t≤T

∂ht

∂ht−1

)
∂+h1

∂φ

∥∥∥ goes to 0 exponentially with T →∞.

D.2 Disscussion of Theorem 3

We next discuss the feasibility of conditions (12) – (16). Condition (12) requires all the weight
matrices in L ∪R to have the spectral norm no larger than C1. For sigmoid, condition (13) holds for
C2 = 1

4 while for tanh and ReLU it holds for C2 = 1. Condition (14) bounds the spectral norm of
the gradient of each binary function. If the binary operation o is addition, then the Jacobian matrix
∂o(Liv1,Riv2)

∂(Liv1) is simply the identity matrix and its spectral norm equals to 1. For vector entry-wise
multiplication, note that∥∥∥∥∂[(Liv1)� (Riv2)]

∂(Liv1)

∥∥∥∥ = ‖diag{Riv2}‖ = ‖Riv2‖∞ ≤ ‖Ri‖∞‖v2‖∞

≤ √p‖Ri‖‖v2‖∞ ≤
√
pC1C5,

18

where C5 , maxv∈Vt,1≤t≤T ‖v‖∞ is the upper bound of the infinity norm of all vectors on the
predicted trees. Therefore, if � ∈ O, we should have C3 ≥

√
pC1C5. Condition (16) holds when

the scale of weight matrices or vectors on nodes of the predicted trees are small. In the experiments
we have C2 = 1 and p = 100. Note also that C5 = 1 if each v is the outcome of sigmoid or
tanh, or entry-wise product of such vectors; in presence of addition this no longer holds however
computational experiments have established that C5 ≤ 1 even if addition is a candidate binary
operation. Then condition (16) holds for C1 ≈ 0.223 which has been observed in our experiments.

It is worth to mention that condition (15) is mild since we only require the norm to be bounded by a
sufficiently large constant. By (6), we have

Et = E(X,Y)

[
λ1l(yt, qt) + λ2 min

T∈Iso(T target
t)

TD(T , T pred
t) + λ3

N−1∑
k=0

m(N t
k)
]

+
λ4

T

∑
φ∈Φ

‖φ‖2 .

There are three terms in the expression of Et that are related to ht, namely, the standard loss term, the
tree distance term, and the scoring margin term. We bound them one by one. Since the number of
samples is finite, we only consider each term for one data point in the following (i.e. we ignore the
expectation).

Assume that
∥∥∥∂l(yt,q)∂q

∥∥∥ ≤ C6,
∥∥∥∂g(xt,h;Γ)

∂h

∥∥∥ ≤ C7 hold. Then the loss term is bounded by∥∥∥∥∂l(yt, qt)∂ht

∥∥∥∥ =

∥∥∥∥∂l(yt, qt)∂qt

∂qt
∂ht

∥∥∥∥ ≤ ∥∥∥∥∂l(yt, qt)∂qt

∥∥∥∥∥∥∥∥ ∂qt∂ht

∥∥∥∥ =

∥∥∥∥∂l(yt, qt)∂qt

∥∥∥∥∥∥∥∥∂g(xt, ht; Γ)

∂ht

∥∥∥∥ ≤ C6C7.

If we use htarget
t to denote the vector of the root node of the ground truth tree T target

t and assume that∥∥htarget
t

∥∥ ≤ C8 for all t. Note that ht only appears at the root node of the predicted tree T pred
t , and

the definition of TD can be regarded as a summation over many norms of vector differences. Then the
only term in TD that includes ht is

∥∥ht − htarget
t

∥∥2
. Therefore, the tree distance term is bounded by∥∥∥∥∥∂TD(T target

t , T pred
t)

∂ht

∥∥∥∥∥ =

∥∥∥∥∥∂
∥∥ht − htarget

t

∥∥2

∂ht

∥∥∥∥∥
= 2

∥∥ht − htarget
t

∥∥ ≤ 2
(
‖ht‖+

∥∥htarget
t

∥∥) ≤ 2(C5 + C8).

Again, note that ht only appears in the term

m(N t
N−1) =

1

M
min

{
M,α(ht; Θ)− α(c∗∗N−1; Θ)

}
.

If we assume that
∥∥∥∂α(h;Θ)

∂h

∥∥∥ ≤ C9 holds for any vector h ∈ Rp, then the scoring margin term is
bounded by ∥∥∥∥∥∂

∑N−1
k=0 m(N t

k)

∂ht

∥∥∥∥∥ =

∥∥∥∥∂m(N t
N−1)

∂ht

∥∥∥∥ ≤ ∥∥∥∥∂α(ht; Θ)

∂ht

∥∥∥∥ ≤ C9.

In conclusion, if we assume the existence of constants C5, C6, C7, C8, and C9, then the gradient of
loss function Et with respect to the hidden state ht is bounded. Note that in practice C5 and C8 are
about the norm of a finite set of vectors, and C6, C7, C9 bound the norm of some simple functions or
networks which in practice are all bounded. Therefore, we can easily argue that these constants do
exist and thus the condition (15) is mild.

In summary, gradient vanishing frequently appears in practice.

D.3 Discussion of Theorem 8

In this section, we discuss the conditions appearing in the Theorem 8. As the proof is similar to the
proof of Theorem 3 we omit it here.

The conditions listed in Theorem 8 are common in practice since the quantity (N + 1)
− 1

3lmin is
smaller than 1. If we have tanh ∈ U or ReLU ∈ U , then the first condition above is automatically
achieved. Besides, if the addition operation belongs to B, then the third and the fourth conditions are
both fulfilled. In summary, gradient exploding is frequent in practice.

19

E Details of Experimental Study

E.1 Implementation Details

For our implementation of RRNN-GRU, we use PyTorch and train on Nvidia 1080 Ti GPUs or Intel
Skylake CPUs. In order for our choices of cell structures to be differentiable with respect to the
parameters of the scoring network, we evaluate softmax over the scores of all potential vectors at
each node in the cell. Gradient clipping is used for RRNN-GRU, but random hyperparameter search
often allows large gradient magnitudes. With the optimal hyperparameters, training of RRNN-GRU
takes approximately ten hours for the Wikipedia dataset, one hour for PTB, and eight hours for SST,
which is longer than the GRU training time since the RRNN-GRU weights must adapt to multiple
placements within the cell structure.

For the RRNN model, we use batch normalization to stabilize training. The RRNN training time on
the Wikipedia dataset with 5,000 samples is 40 hours on a CPU of a 12-core server. We find RRNN
to be faster on a CPU than GPU due to its structure searching algorithm, but RRNN-GRU’s algorithm
runs faster on GPUs.

E.2 Hyperparameters

1. GRU on Wiki-5k: batch size of 18, learning rate of 1.71 × 10−3, and `2-regularization
coefficient of 3.60× 10−7.

2. RRNN on Wiki-5k: batch size of 16, learning rate of 10−3, and scoring network hidden size
of 256. λ1 = 1, λ2 = 10−3, λ3 = 10−3, λ4 = 10−5.

3. GRU on Wiki-10k: batch size of 41, learning rate of 1.4231× 10−3, and `2-regularization
coefficient of 1.2124× 10−11.

4. RRNN-GRU on Wiki-10k: batch size of 128, learning rate of 10−3, and scoring network
hidden size of 64. Training alternates between the L,R, and b weights and the scoring
network every five epochs. λ1 = 1, λ2 = 0.1, λ3 = 10−8, λ4 = 0.003. Gradients are
clipped to the maximum norm of 1.

5. GRU on SST: learning rate of 4.85× 10−4, batch size of 3, and `2 weight decay coefficient
of 2.11× 10−12.

6. RRNN-GRU on SST: learning rate of 1.06 × 10−5, λ1 = 1, λ2 = 1.76 × 10−6, λ3 =
2.67× 10−12, λ4 = 5.47× 10−5, max-margin of 5.47× 10−5, scoring network hidden size
of 10 nodes, gradients clipped to the norm of 46.3, alternating training every epoch.

7. GRU on PTB: learning rate of 5.29× 10−4, batch size of 6, and `2 weight decay coefficient
of 2.71× 10−15.

8. RRNN-GRU on PTB: batch size of 116, learning rate of 3.03 × 10−4, λ1 = 1, λ2 =
4.16×10−3, λ3 = 1.22×10−13, λ4 = 1.36×10−3, max scoring margin of 1.74, maximum
gradient magnitude of 1.64, scoring hidden size of 137, and alternating training every epoch.

We next list the hyperparamter search ranges for RRNN-GRU in Table 2 and GRU in Table 3.

Table 2: Hyperpameter search range for RRNN-GRU

Wiki-10k SST PTB

Batch size [1, 316] [1, 316] [1, 316]
Learning rate [10−5, 10−2] [10−5, 10−2] [10−5, 10−2]
λ2 [10−2, 1] [10−5, 10−2] [3× 10−2, 3]
λ3 [10−16, 1] [10−5, 10−2] [3× 10−16, 3× 10−2]
λ4 [10−6, 10−2] [10−8, 10−4] [3× 10−6, 3× 10−2]
Scoring margin M [0.1, 10] [0.1, 10] [0.1, 10]
Gradient clipping threshold [0.1, 100] [0.1, 100] [0.1, 100]
Alternate frequency [1, 10] [1, 10] [1, 10]

20

Table 3: Hyperpameter search range for GRU

Wiki-5k/Wiki-10k SST PTB

Batch size [8, 256] [4, 128] [8, 256]
Learning rate [10−5, 10−1] [10−6, 101] [10−4, 10−1]
`2 weight decay coefficient [10−16, 1] [10−16, 10−2] [10−16, 1]

21

	Introduction
	Literature Review
	Recursive-Recurrent Neural Network Model
	Recursive-Recurrent Neural Network Model Framework
	Cell Tree Construction
	Loss Function

	Properties of RRNN and Gradient Control
	Expressibility of RRNN
	Controlling Gradient

	Experimental Results
	Datasets and Settings
	Discussion

	Appendices
	Figures
	Extensions of RRNN model
	Expressibility of RRNN
	Proof of Lemma 1
	Proof of Theorem 5 and 6

	Gradient Control
	Proof of Theorem 7
	Disscussion of Theorem 3
	Discussion of Theorem 8

	Details of Experimental Study
	Implementation Details
	Hyperparameters

