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Abstract

In airline revenue management, the modeling of the spillrecdpture effects is essential for an accurate estima-
tion of the passenger flow and the revenue in a flight netwodweéver, as most current approaches toward spill and
recapture involve either non-linearity or a tremendousamof additional variables, it is computationally intralote
to apply those techniques to the classical network desidrcapacity planning models. We present a new framework
that incorporates the spill and recapture effects, whegesgill from an itinerary is recaptured by other itineraries
based on their attractiveness. The presented framewdribdigs the accepted demand of an itinerary according to
the currently available itineraries, without adding extesiables for the recaptured spill. Due to its compactness,
we integrate the framework with the classical capacity mpiag and network design models. Our preliminary com-
putational study shows an increase of 1.07% in profitabditgl a better utilization of the network capacity, on a
medium-size North American airline provided by Sabre AgliSolutions. Our investigation leads to a holistic model
that tackles the network design and capacity planning sanabusly with an accurate modeling of the spill and re-
capture effects. Furthermore, the presented frameworpitirand recapture is versatile and can be easily applied to
other disciplines such as the hospitality industry and peotine design (PLD) problems.

Key words: spill and recapture; attractiveness; airline network glesairline capacity planning; fleet assignment;
frequency and market selection; departure and block tineeten

1 Introduction

Fleeting, the assignment of specific equipment types tochiéduled flights, is an essential part of network and
capacity planning. Historically, optimization models foetwork planning largely focus on supply management,
ensuring feasibility and cost-efficiency of a fleeting simlnt However, due to increasing fuel prices, high labor cost
and fickle customers, airlines’ decisions regarding thepmsition of their flight network are progressively sensitiv
to the interaction between the supply and demand and thugreagodels that more closely approximate reality. On
the demand management side, estimating the revenue frortwarkehas long been one of the most critical areas
in revenue management. As revenue estimation technigaage#ting increasingly accurate, it is necessary to revise
traditional network planning models with a more detailepresentation of the supply and demand interaction. Many
current network planning models ignore the dynamics ingragsr choices with respect to different itineraries offiere
Nevertheless, the changes in customers’ preference uiftlgedt scenarios can lead to a significant deviation from
simplistic revenue estimation based on an unconstrairgathdd forecast, because the excessive demand on a flight
due to its capacity (spill) or due to a no-longer availakileeitary would turn to other available itineraries (recagju

In this paper we discuss how to equip a broad selection ofgr&tplanning models with a new spill and recapture
paradigm in order to more precisely approximate reality.



In the airline industry, estimating the spill and recaptiffects originated in revenue management, as incorpgratin
correct demand information with various optimization misdgreatly improves the quality of demand management
decisions. For instance, making upsell decisions, so thgisaenger might purchase more expensive itineraries if
cheaper options are not available, requires an accurateadisin of the probability that a passenger would turn to any
open itinerary in the market. Since a flight network has atBohtcapacity, the excessive demand on an itinerary will be
either lost or recaptured by other itineraries with freecgpa the same market. Modeling passenger choices without
considering the spill and recapture effects dramaticailigarestimates the traffic in the flight network as well as the
revenue captured.

Past approaches toward modeling spill and recapture iac@pglying the discrete choice analysis by Ben-Akiva
et al. 1985 [3] to select the best set of products offeredle@alet al. 2004 [7] applied such a technique in revenue
management and formulated the choice-based determilivités programming. Although the model has the ability to
deal with spill and recapture, it introduces an exponentiahber of variables, because it needs to find the bestsubset
of the itineraries to be offered. On the other hand, Rab&fa?@06 [12] derived an integrated model for airline
schedule generation, also based on the discrete choicdingdencept, with mixed integer fractional programming
methods. Even though the number of variables are greatlycestlin the Rabetanety’s model, the problem becomes
much harder to solve because of its nonlinear objectivetiomand constraints.

Another notable effort in modeling spill and recapture liegshe work of formulating the itinerary-based fleet
assignment model (FAM) by Barnhart et al. 2002 [2], wherertte of recapture is determined by the quantitative
share index (QSI), the carrier’s estimation of the relatitteactiveness of an itinerary. One of the problems with thi
approach is that the rate of recapture stays constant legarf the composition of the set of the itineraries aviglab
in the market, but in reality passengers constantly chahgie preference toward itineraries based on the options
available in the market. Furthermore, because the traffiarofinerary is represented by the sum of the demand
recaptured by itself and other itineraries in the same nattke number of variables is essentially the number of all
itineraries squared, significantly more than the numberoifables in the original model that does not consider spill
and recapture. Since in an airline network the number oéiifiries is substantial, such characteristics of the model
can make it impractical to solve.

Lately Dumas et al. 2008 [5] incorporated the spill and régagpeffects in their model that approximates the
expected passenger flow on the network, to improve the e#bimaf the revenue and cost of the given flight network.
With a similar approach to QSI, spill coefficients are useddtermine how much of the demand on an itinerary turns
to other itineraries. Since the spill coefficients stay tansregardless of the itineraries available, the fram&wor
does not capture the dynamic reallocation of passengensdifierent sets of itineraries offered. In 2007, Budhiraja
[4] presented a different methodology in modeling the sqiltl recapture effects by penalizing any spill or unmet
capacity in the objective function. However, with the asption of constant recapture rates and nonlinearity in both
the objective function and constraints, the model can Hedif to solve and it also does not reflect the impact of the
variation in the flight network on passenger choices.

The presented framework of spill and recapture is based @atthactiveness of the itineraries composed of not
only the host carrier’s network, but also the whole markéte @ttractiveness of each itinerary simultaneously deter-
mines the ratio at which the spilled passengers from anréiyeare recaptured by other itineraries. This ratio also
automatically adjusts itself according to the itineraagailable in the market. The presented framework has the ad-
vantage over other models on spill and recapture previalisussed, since it does not complicate the model with an
excessive amount of variables and nonlinearity. Moredvepresented framework provides an intuitive and natural
way to estimate the demand and spill split among itineraries

FAM, traditionally a critical area in the airline planningqgeess, is integrated with our new spill and recapture
framework as the core model, since it closely interacts Witth the supply and demand. Initially, FAM was modeled
with independent leg demand in Abara 1989 [1]. However thigleh fails to recognize the network effect (Farkas
1995 [6]), the correlation among leg demands, becausee&dtlproducts are itineraries instead of flights and a large
percentage of itineraries are multi-leg. In 1999, Jacols.ef10] proposed a formulation of FAM with itinerary-
level demand to capture the network effect. Later the coatrtal studies of Barnhart et al. 2002 [2] suggest
that incorporating the network and recapture effects cgnifstantly impact the revenue (with a range from around
$34 million to $153 million in a year in their experiments).itW/such improvements in FAM modeling, we build
our models based on the itinerary-based FAM. In additiom;esiboth leg and itinerary demands are stochastic in
nature, incorporating stochastic demands into FAM givestéebexpected revenue, as shown in Jacobs et al. 1999



[10]. Nevertheless, integrating stochasticity in demaiittl tine spill and recapture effects still remains an opetctop
Therefore we treat the demand forecast as deterministic.

The purpose of this paper is to integrate the new spill andptece framework with various network planning
models, using the itinerary-based FAM as the core model. ddmand management side of our models is related
to the deterministic sales-based linear programming (SBafnulation by Gallego et al. 2010 [8], also based on
the attractiveness of itineraries. Our preliminary comatiohal experiments show that the optimal fleet assignment
given by our reformulated FAM increases the profit by 7.588@npared to the optimal solution from the traditional
itinerary-based FAM, for a mid-size North American airlinen addition, the profit to revenue ratio increases by
1.07%, from 9.33% using the traditional FAM solution, to4@%. The improvement in profitability comes from a
0.34% decrease in revenue and a 1.46% decrease in cost, tvbem®del maximizes the utilization of the network
capacity with fewer aircraft in use. When we gradually lifetdemand level, our model increasingly captures more
revenue than the traditional model, whereas the cost indlutien increases only slightly more than the one from the
traditional model. Such increase in profit benefits from thiesideration of the spill and recapture effects.

The reminder of paper is organized as follows. First we gigeraceptual example of the mechanism behind spill
and recapture. Section 2 states the passenger mix probtemporated with our spill and recapture framework. In
section 3 we present different network planning models gl and recapture. We formulate the itinerary-based fleet
assignment model with spill and recapture. We also inclasheespreliminary computational results and analyses of
the proposed model versus the traditional model. This@eetiso discusses various aspects of network design models
such as the selection of markets, frequency, departurelanokl times. We present these aspects in a modularized way
so that the model can be tailored to integrate only a subsbbeé aspects for flexibility.

2 Modeling Passenger Choices

To model the mechanism of spill and recapture, it is necggsaestimate the attractiveness of each itinerary in all
markets. The attractiveness of an itinerary is usually tjfiad by the exponential utiliteV, whereU is the linear
combination of an itinerary’s attributes such as its departime, number of stops, total duration, the type of aftcra
used, the operating airline’s presence at the point of orignd other influences on customers’ preference.

The concept of our spill and recapture framework is derivedhfthe classical multinomial logit model (MNL)
introduced by Ben-Akiva et al. 1985 [3], where the proba&pilhat a customer chooses a product is determined by
the ratio of the product’s attractiveness to the total ativaness of all products. This is equivalent to the proligbi
of selecting the itinerary proportional to the highestitytil In the context of spill and recapture, this probabiligy
automatically adjusted by considering only itinerariest thre available. As demonstrated by Gallego et al. 2010 [8],
the presented framework of spill and recapture differs fthenclassical MNL because the probability is estimated in
a less optimistic way. Our model also considers the podsiltilat the spilled passengers will be lost or turn to the
itineraries offered by other airlines. It derives the expdanarket share of each itinerary as the product of the marke
share times the unconstrained demand of the market whertrtbiary resides. The market share of an itinerary is
on the one hand a decision variable and on the other hand pieped to its attractiveness. Next we show an example
revealing how the attractiveness of different itineragielits the market demand among itineraries in the uncagadit
case.

Consider the following scenario of market IND DSM (from Indianapolis to Des Moines) with estimated demand
of 200 passengers. We assume there are three itineranesteohost airline: A, B and C.

Figure 1 shows a conceptual example listing all of the itinerariesnfiND to DSM. Apart from the set of the
itineraries from other airlines that is shown as a cloudeitary A, B and C are from the host airline and are disjoint,
since itinerary A is a non-stop itinerary and itinerariesi®l &€ have one stop at different stations. Since itinerary
A is non-stop, it is naturally more attractive than one-stoperaries B and C, and thus its attractiveness is higher,
arbitrarily set to 5 for illustrative purpose (itinerary 8 probably the most expensive, which drives its attractgsn
lower but we nevertheless assume that it is the most aitedctiAs the departure time and duration of itineraries
also affect customers’ preference, itinerary C is lessetitre than itinerary B with the first leg in itinerary C beiag
red-eye flight. Therefore the attractiveness of itineragnd C is estimated to be 3 and 2, respectively.

Initially the itineraries are all uncapacitated, and thendad for each itinerary sums to the unconstrained total
demand of the market from IND to DSMable 1. Since it is reasonable to expect more passengers on theath@e



Attractiveness 5 3 2 10
Itinerary A Itinerary B Itinerary C Other itineraries
DSM > > > :s ?—»
,)~I )J

/

/

; 7 DTW,/
V4
; ORD O O @
V4 /
/ p—»(j ,1 .

/

/ / /
IND ;A ;A ;A RedEye ;// e
2@, 2@, > ) 2 W, >

Figure 1: All itineraries from IND to DSM

tive itineraries, passengers are distributed proportiptathe attractiveness of each itinerary. With 200 pagsesin

this market, the difference between two itineraries’ ativ@ness naturally quantifies how many additional passeng
would travel on the more attractive itinerary. Thus, acoogydo Table 1, itinerary A receives 50 passengers, more
than 30 passengers on itinerary B and 20 passengers omiri@rbut fewer than 100 passengers on other itineraries
combined. With this concept, next we present the mathealdtiomulation of the passenger mix model with spill and

recapture.

Itinerary A Itinerary B Itinerary C | Other itineraries
Attractiveness 5 3 2 10
Initial capacity 00 00 00 00

5 _ 1 3 _ 3 2 _ 1 10 1
Marketshare || sr35075 = 7 | 59352970 = 30 | 57392710 — 10 | 59542910 — 2
Demand 1x200=50| 2 x200=30| & x200=20| 3 x200=100

Table 1: An example of market IND-DSM in the uncapacitateskca

2.1 Passenger Mix Model with Spill and Recapture: SBLP

Glover et al. 1982 [9] present the classic passenger mix hiBd¥M), where the objective is to find the optimal control
of available itineraries, subject to both the limited capeaf the flights in an itinerary and the demand estimated for
each itinerary. The passenger mix model maximizes the tetenue. Here for simplicity we assume that each
itinerary is really a combination of the fare class and theerary as a sequence of flights. A fare class represents a
particular fare for a trip, composed of a set of connectirghti. Each trip may have different fares due to different
services or cabin classes. Therefore the demand has todzmfted not only for a trip overall, but also for all of its
fare classes. In the classical PMM, the accepted demanditharary has to be less than or equal to the forecasted
demand of the itinerary. More importantly, the total aceelldemand of all of the itineraries that include a flight must
be less than or equal to the number of seats available on gin. flHowever, with this formulation of the constraints
in the classical PMM, the spills from an itinerary are coeséat! lost, which usually leads to an underestimation of the
revenue.

Gallego et al. 2010 [8] revise PMM to take into account thdl apid recapture effects, based on the attractiveness
of itineraries, also named sales-based linear program(®BgP). We first present the mathematical formulation of
SBLP and then illustrate the key concept of the model withxam®le. In the following notation, the host airline is
the airline for which we maximize the revenue, and thus themairlines refer to all of the airlines that compete with
the host airline. Each market is an origin-destination,pagiuding all of the itineraries that begin from the market
origin and end at the market'’s destination, regardlessaf ttumber of stops. Hence the market share for an itinerary
is just the ratio of how the itinerary splits the market dedhatile competing with other itineraries in the same market.



We consider the following sets

HA the label of the host airline
OA setof other airlines
M  set of all markets, indexed by

L setofall legs, indexed by
IHA(1)  setof all itineraries of the host airline, in market including legl, m € M,l € L
I9A4(1) setof all itineraries of the other airlines, in marketincluding legl, m € M,1 € L,

and decision variables

s; market share taken by itineraiyn marketm, i € 174, m € M
sy’ market share taken by all the itineraries of other airlimesiarketm, m € M.

We also need parameters

Dem,,, total demand for market,, m € M
fare; fare associated with itineraiyi € 174, m ¢ M
Cap; capacity of the equipment type assigned tolldge L
A; =V’ attractiveness of itinerary wherelU" is the utility of itineraryi, i € 174, m € M
AR =2ier0a V", attractiveness of all itineraries from other airlines enéi/’ is the utility
of itineraryi, i € IHA, m e M.

The formulation of the passenger mix model with spill ancapgare (RM-SBLP) reads:

maximize Z (Demy, Z fare;s;) ()
meM ielHA
subject to

Z (Demyy, Z s;) < Capy Vie L (2)

meM i€ THA(l)
sB”—i—Zsizl Ym e M 3)

€IHA
Al's; < A Vie IHA me M (4)
s>0 (5)

The objective function is the revenue captured from the dehzecepted for all the itineraries from the host airline.
Note thatin (1),Dem,,s; is the accepted demand for itineraryConstraint (2) imposes that the total demand captured
on all itineraries including leg must not exceed the capacity of the aircraft assigned té leg

For spill and recapture, the set of variabledenotes the demand acceptance level of the competingatiasiin
the market and forms the spill-recapturing constrainta(®) (4): market demand constraint (3) imposes that the total
accepted demand of all itineraries in a particular markettrhe equal to the unconstrained demand estimation of that
market; demand-splitting constraint (4) ensures thatpiiked demand is recaptured in such a way that the probgbilit
of recapture is proportional to the attractiveness of tineitry.

Note that if we replace constraints (3) and (4) with the fwilog constraint (6), the model is the same as the
classical PMM with traffic variablé;, = Dem,,s; for each itinerary; € In’{A and each marketh € M, where
DemEst; is the expected value of the unconstrained demand for &iger

Demy,s; < DemEst; Vi € InIfA,m eM (6)



Note that we can reformulate constraint (4)sas< (A;/A§") - s§*. In the uncapacitated case, the demand for a
market should be split strictly according to the attragiees of all the itineraries in the market. However with the
capacity limit in constraint (2), some demand on the hoseitiries might be lost. The inequality in constraint (4)
hence gives room for the passengers leaving either the markbe host airline’s itineraries. On the other hand,
constraint (4) still stays feasible when an itinerary isseld 6, = 0 and0 < (A;/A§") - s{*), and constraint (3)
guarantees that the market shares always sum up to one.tBerrket share of the other airlines’ itinerarigg, is
always present in the model, the ratlg/ A" directly gives the upper limit of an itinerary’s demand gueace level
without considering whether other itineraries are openlosed. Therefore the market shares for the host airline’s
itineraries are essentially adjusted automatically adiogrto the itineraries left open.

Additionally, this formulation relieves the model from ang extra variables for the spilled passengers who leave
the market. With the assumption of the unlimited capacitpthrer airlines, the variablg® for marketm, representing
the market share of the itineraries from other airlinesgsatiny passenger spilled from the itineraries on the host
airline, regardless of whether a passenger turns to the atimes or is actually leaving the market. With such a
formulation, SBLP provides an optimal control of the tickate for each itinerary on the host airline. Next we will
show an example built updfigure 1 andTable 1.

Itinerary A Itinerary B Itinerary C Other itineraries
Attractiveness 5 3 2 10
Fare $100 $200 $300 -
Uncapacitated demand 50 30 20 100
Traditional demand 35 30 20 115
Traditional revenue $3,500 $6,000 $6,000 -
Leq capacit IND-ORD: 40 IND-DTW: 40 00
g capactly IND-DSM: 35 | ORD-DSM: 50| DTW-DSM: 30 00
Spill generated [50 —35]T =15 | [30 —40]T = [20 — 30]" = -
Recapture rate - 3+23+10 =3 3+22+10 =5 3+50+10 =3
Spill recaptured - 1x15=3 Zx15=2 2 x15=10
New demand 50 —-154+0=3530—-0+3=33|20—-0+2=22| 100—0+10=110
New revenue $3,500 $6,600 $6,600 -

Table 2: An example of spill and recapture for market IND-D®#h SBLP

Table 2 explains how the capacity on a flight invokes spill and regept The accepted demand of an itinerary
is limited by the minimal capacity on one of the legs includedhe itinerary. When this bottleneck capacity of the
itinerary is lower than its uncapacitated market demangijlbis generated and the spilled passengers will eithar tur
to other itineraries available in the market or leave thekaiann the example iffable 2, if the host carrier limits the
capacity of itinerary A to 35, then the extra 15 passengealiegfrom itinerary A in the uncapacitated case will go to
other itineraries available in the market. The recaptutesraf the spill to other itineraries, different from the ketr
shares inTable 1, depend on the attractiveness of the itineraries left o@@mtrary to a constant recapture rate, the
formulation of constraints (2) and (3) ensures that eachptere rate automatically adjusts itself based on the @iabl
options left, since the denominator of the recapture ratksdo the sum of the attractiveness of the open itineraries
If any excessive spill is further generated, it will be reempd by the remaining itineraries with vacancies.

Compared to the traditional passenger mix model, SBLP hasra atcurate representation of the revenue so that
the solution identifies the most valuable itineraries ifitgaFor instance, infable 2 the actual benefit of offering
itinerary A is more than $3,500, with an additional reventi$X200 from the spill toward itineraries B and C.

3 Network Modelswith Spill and Recapture

In general, two kinds of spill are generated when the contiposdf a flight network changes according to a fleeting
decision - capacity spill and network spill. The capacitill gp the spill due to a capacity restriction imposed by
different equipment types, whereas the network spill iat@é due to an elimination of a particular itinerary in the



schedule design phase. Compared to the capacity spill etiweork spill is more prominent and hence requires more
accurate modeling to the spill and recapture effects, sitiogf the passengers who would have originally chosen a
closed itinerary are spilled to other open itineraries himfollowing discussion, we first introduce FAM with spillén
recapture in order to address the capacity spill effectthend various network design modules are integrated with our
new FAM model to incorporate the network spill effect.

3.1 Fleet Assignment with Spill and Recapture: FAM-SBLP

An airline’s fleeting decision is to make an optimal assigntred different equipment types to a set of flights with
a fixed schedule. Originally, Abara 1989 [1] assumed inddpahleg-based demand and proposed the leg-based
FAM, which minimizes the cost of assigning aircraft to flighgubject to a set of network constraints. Although
computationally hard, with the aid of various heuristicsl &ine fast growing computing power, the leg-based FAM
can be solved fairly easily nowadays.

The leg-based FAM assumes no dependency among the demaiffeéaind flights. However, since a significant
portion of customers use multi-leg itineraries, leg demianmdeed dependent ("the network effects”). Itinerargduh
FAM was proposed in order to capture network effects by ipoaating itinerary-level demand estimation in Jacobs et
al. 1999[10]. As this approach significantly increases tioblem size, itinerary-based FAM has many computational
issues and takes hours to solve even with heuristics.

Since traditional itinerary-based FAM does not consider ghill of demand due to limited capacity, it fails to
recognize the opportunity to gain revenue by recapturiiify 3ne solution is likely suboptimal and overly conserva-
tive because larger than needed aircraft are used to captluable demand. Several publications propose different
methodologies to model the effect of spill and recapturehsas the QSI model used by Barnhart et al. 2002 [2] to
calculate the recapture rate at which the spill from an iinewould be accepted by other itineraries.

Due to the steadily rising demand for air transportationpiporation of the effect of spill and recapture in op-
eration management is critical to design a cost-effectiee@ofitable capacity assignment. Using the framework of
SBLP, FAM as a decision support system also takes passemgiees into account for a more accurate representation
of the passenger flow. The following formulation aims at@sisig a market share to each itinerary based on its attrac-
tiveness, so that the interaction between fleeting and démamagement decisions can utilize the capacity efficiently
to achieve maximum profit.

Let F' be the set of all fleets, indexed By cost; the operations cost of equipment typef € F, and letCapy
be the capacity of equipmenttyge f € F.

In addition, we define a new set of decision variables:

| 1 iffleet fis assigned to flight, f € F,l € L,
I T\ 0 otherwise.

The fleet assignment model with spill and recapture (FAM-BJRBils formulated as follows.

maximize Z (Demyy, Z fare;s;) — Z Z costyxy (1a)

meM ieTHA leL feF



subject to:

Standard flow balance constraints @)
Standard aircraft count constraints (8)
Z Tif = 1 lel (9)
feF
Z (Demyy, Z s;) < Z Capyrxif lel (2a)
meM ieTHA(]) feF
(3),(4), and(5)
x € {0,1} (10)

The objective of FAM-SBLP (1a) subtracts the cost of assigrpecific fleets to flights from the itinerary-level
revenue estimation based on the demand captured in SBLEtiwbj€l), hence maximizing the operating profit.

The three sets of network constraints (7)-(9) are standaehtory and assignment constraints in the traditional
FAM (Abara 1989 [1]), ensuring the feasibility of any flees@gmment solution. Constraints (7) and (8) are standard
network flow balance and aircraft count constraints. Flighterage constraint (9) requires that each flight must be
assigned to exactly one equipment type.

In addition to these constraints, we replace the right-lsiael of the demand management constraint (2) with the
right-hand side of constraint (2a), so that the capacityftifat depends on the equipment type assigned to the flight
in the solution. This allows the interaction between demamai supply to give not only an optimal fleet assignment,
but also an optimal control policy for demand acceptancellev

In Table 3, which builds on the example iFigure 1 andTable 2, originally the equipment type assigned to the leg
from IND to ORD has a capacity of 40 passengers. However,gihgrihe equipment type to a smaller fleet with a
capacity of 27 passengers significantly reduces the costetirig from $6,000 to $5,000 due to potential savings in
fuel and crew cost. With spill and recapture we can evaludéferent alternatives more accurately and thus achieve
better profit. For instance, if we assign the smaller fleeh&lég from IND to ORD, 6 passengers are spilled from
itinerary B. Since itinerary A and B already met their capabiimits, the spilled passengers can only turn to itinerary
C or other itineraries. According to the attractivenesginérary B and other itineraries, 1 passenger is recaptwyed
itinerary C but the rest of them turn to other itineraries.

Itinerary A Itinerary B Itinerary C Other itineraries

Attractiveness 5 3 2 10
Fare $100 $200 $300 -
Initial capacity 35 40 30 0
Initial demand 35 33 22 110
Initial revenue $3,500 $6,600 $6,600 -
Initial cost — | (IND-DEN) $6,000 - -
New leg capacit IND-ORD: 27 IND-DTW: 40 00

g capaclyl |\p-psm: 35 ORD-DSM: 50| DTW-DSM: 30 %0
Spill generated - [33 —27]T =6 - -
Recapture rate - - 2% = 3 1o = 5
Spill recaptured - - ix6=1 5%x6=6
New demand 35| 33-6+0=27]22-0+1=23|110—-0+5=115
New revenue $3,500 $5,400 $6,900 -
New cost — | (IND-DEN) $5,000 - -

Table 3: An example of spill and recapture for market IND-D&ith FAM-SBLP

With the more accurately-evaluated demand acceptanck teeaet benefit of this assignment is $100 in profit,
$1,000 for cost-saving plus $300 for the spill recaptureshus $1,200 for the loss of revenue. However, without



spill and recapture, the impact of this assignment is negaecause the traditional model does not consider the $300
gained from the recaptured passenger on itinerary C. FAMPSBeighs the benefit of cost-saving versus the loss of
demand considering the spill that can be recaptured. Agdiieds increase steadily nowadays, a small recapture of
the spill might substantiate the cost-saving of assignimglker aircraft to non-critical flights.

Next we present computational results of FAM-SBLP and a @mspn with the traditional itinerary-based FAM.

3.1.1 Computational Resultsfor FAM-SBLP

Table 4 shows the computational results of FAM-SBLP for a mid-sipet American airline with a traditional hub
and spoke flight network, operating both domestically atérimationally. The airline has over 2,000 flights weekly
and millions of itineraries. The range of capacity on itgift is between 60 and 250 seats. FAM-SBLP, solved at the
weekly level, is tested by estimating the unconstrainedatetat different levels. In order to compare the solutions
from FAM-SBLP and itinerary-based FAM, we check the quatifytinerary-based FAM solutions under the FAM-
SBLP model. For more reliable results, different scenagi@sgenerated by randomly adjusting the fares based on
the original values. These scenarios are further testddwaiious demand levels to conclude how demand influences
the fleeting decisions with spill and recapture. The reduolfBable 4 and Table 5 are the average values across all
scenarios associated with each demand level.

Demand Level| Profit | Revenue| Cost | Load Factor| Total Unused Aircraft

70% 4.24%| -0.27%| -0.81% -0.28% 10.63%
100% 7.58% | -0.34%| -1.46% -0.73% 45.02%
150% 2.04%| 0.63%| -0.19% 1.23% 20.00%
230% 1.19%| 0.92%| 0.69% 2.34% -3.55%

Table 4: Relative improvements of key performance indicsatd FAM-SBLP over itinerary-based FAM

The optimal fleet assignment given by FAM-SBLP greatly iases the profit (by 7.58% for the original demand
level, with 0.34% decrease in revenue and 1.46% decreasssi)y compared to an optimal solution from itinerary-
based FAM. Profitability, defined as the ratio of profit to newe, increases by 1.07%, from 9.33% under the traditional
FAM solution to 10.40% under the solution in the new modelisTihcrease results from a significant saving in cost
as the FAM-SBLP solutions use fewer aircraft on average. Mthe demand level is increased, the improvement is
mainly due to the additional revenue captured by considetia spill and recapture effects in FAM-SBLP. Especially
when unconstrained demand is high, FAM-SBLP yields sigaificevenue increments.

Table 5 summarizes the changes in the fleet assignments of FAM-SBEPItinerary-based FAM. The number
of different fleet assignments in FAM-SBLP in comparisonhwitinerary-based FAM increases as the interaction
between demand and seat capacity becomes stronger, whro@ieg spill and recapture is beneficial. With high
demand levels, negligible change occurs in the number ofadtrused, but the reassignment of aircraft is significant
to encourage spill to flow into larger aircraft, as indicavgdhe number of different fleet assignments between FAM-
SBLP and itinerary-based FAM. This difference graduallyagipears when the two models seek more capacity for
even higher demand levels.

Additional Number of Used Aircraft in

Demand Level|| Different Flight Assignments Itinerary-based FAM over FAM-SBLP
(in percentage) Small | Medium | Medium-Large| Large
70% 6.9% 1.25 -0.25 0.25| 2.00
100% 17.0% 3.75 -1.25 2.75| 1.25
150% 25.4% 0.00 0.33 0.00| 0.00
230% 20.5% 0.00 -0.25 0.00| 0.00

Table 5: Difference in the characteristics of FAM-SBLP atiddrary-based FAM solutions

In general, itinerary-based FAM gives a more conservatlet®n than FAM-SBLP, because more aircraft are



used in the itinerary-based FAM solutions to capture vdkidbmand that cannot be recaptured as opposed to FAM-
SBLP. The number of aircraft numbers are the average nurabeuss different scenarios.

3.2 Integrated Network Design: | SD-FAM-SBLP

FAM-SBLP can also be revised to facilitate network desigs.tie basis of a flight network, schedule design is one
of the most critical areas in airline operations managemeatrectly modeling passenger preference and choices on
itineraries can guide the flight network toward critical flig and markets. Considering spill and recapture in scleedul
design models can greatly improve the robustness of théiolquality because any network spill generated from
new or recovered flights can be recaptured. Next we preseigigamodels incorporating spill and recapture with
different aspects of network design.

3.2.1 Frequency Selection

In network design, it is important to decide on which day ofeeW a flight should be operated due to the periodic
nature of demand. For example, leisure travelers mightepreérly afternoon flights during weekends, whereas
business travelers tend to like early morning and evenigti on weekdays. The set of flights is split into two
subsets, one for the fixed flights that the carrier mandaté thown and the other one for the rest of the flights
including optional flights that can be added and existindnfghat can be canceled. The flight network here includes
all flights that can be added to the service. For now we asshatgossible newly-added flights use only already-
served markets.

Let L¥ be the set of mandatory legs that are not allowed to be caheele letL® be the set of optional legs
that are allowed to be added or canceled. Frequency selemdio be easily integrated with FAM-SBLP with a few
additional constraints:

lef=1 leL” (9a)
fer
lefé 1 leL? (9b)
fer
> myp > s ie IHA(),1e L9 me M. (11)
feFr

Constraint (9) in FAM-SBLP is split into constraints (9a)da{®b), corresponding to the set of fixed and optional
flight. Constraint (9a), similar to (9), imposes that the gfefixed flights must be flown. Constraint (9b) gives the
flexibility to make decisions to add or cancel the optionglts. In addition, constraint (11) ensures that an itinerar
is closed if any leg of the itinerary is canceled. Next we slaovwexample based dagure 1 andTable 3, integrating
frequency selection with spill and recapture.

In Figure 2, the host airline has the option to operate another direbeye flight from IND to DSM, A, the
night before the current day time flighCAleparts (the horizontal time axis is not up-to-scale). Tigimal flight is
mandated but the red-eye flight is optional, denoted by timedibtted arrow. If the utility function that determines the
attractiveness of an itinerary values appropriate depatime more than the number of stops, the optional red-eye
flight in Figure 2 would be less attractive than itinerary B, even though ramg B has one more stop. Therefore for
demonstration purposes, we evaluate itineratig Attractiveness to be 2.4, higher than that of the one+stdieye
itinerary C, but lower than the day time itinerary B. To make example easier to follow, we update the original
market demand from 200 passengers to 224 passengers amedhsili the assigned capacity to the red-eye itinerary
Al has capacity of 24 passengers, which is lower than the dgpfdtinerary A°, partially because the host carrier
does not expect high passenger flow on this flight.

Table 6 starts with the initial scenario that the red-eye flight froviD to DSM is operated. Following the calcu-
lation shown in the example iMable 3, itinerary Al's capacity of 24 passengers is filled up, but no capacity ispil
generated. In addition to the profit from the cas@able 3, the operating profit increases by $600 from the $3,600
revenue from the 24 passengers on itineratyminus the $3,000 operating cost for the morning flight.
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Attractiveness 24,5 3 2 10

Itinerary A'!, A° Itinerary B Itinerary C Other itineraries
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Figure 2: All itineraries from IND to DSM including an optiahred-eye itinerary A

DSM —»p—»p > >
Red Eye )J }‘I

v

Itinerary A° | Itinerary At | Itinerary B Itinerary C Other itineraries
Attractiveness 5 2.4 3 2 10
Fare $100 $150 $200 $300 -
Initial capacity 35 24 27 30 00
Initial demand 35 24 27 23 115
Initial revenue $3,500 $3,600 $5,400 $6,900 -
Additional cost - $3,000 - - -
Operated Yes No Yes Yes -
Spill generated - 24 - - -
Recapture rate - - - 25 = & 705 = %
Spill recaptured - - - ix24=4 2 x24=20
New demand 35 0 271 23—-04+4=27| 115—-0+420=135
New revenue $3,500 $0 $5,400 $8,100 -
New cost - $0 - - -

Table 6: An example of spill and recapture for market IND-D&4th frequency selection

The second part ofable 6 shows the scenario when the red-eye flight from IND to DSM isaprated. The 24
passengers on itinerary'Are spilled to itinerary C and the itineraries from othelirads, since itineraries fand B
are already full. With the spill and recapture frameworingtary C takes 4 passengers from the spill, bringing in an
additional net profit of $1,200 from the recaptured spill.isTécenario has a net increment in profit of $600 over the
initial scenario where the red-eye flight is operated.

With the traditional frequency selection model, howevemoving the red-eye flight from IND and DSM results in
$600 less profit over the initial scenario where itinerafyid\offered, since the spilled passengers are not recaptured
Hence in this example with spill and recapture, the net podf1,200 from 4 passengers spilled from itinerary A
well justifies the cost-saving approach, against the logsafit of $600 from the remaining 20 passengers.

Table 6 clearly illustrates how spill and recapture with attraetiess of itineraries can lead the model to select a
better alternative, because considering spill and recagignificantly improves the accuracy of the model.

3.2.2 Market Selection

Market selection is slightly more complicated than frequyeselection because usually a fixed cost is invoked by
entering a new market. Similar to the approach used in fregyuselection, we define a set of potential markets to
enter to determine whether these markets benefit the whgie fietwork. Market selection is not a standalone feature
though it is presented separately. Instead, market sefeistbuilt on top of frequency selection to incorporate thstc

of entering new markets, since marking all of the itinemiiea market as optional naturally determines if a market
should be opened.
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Let M© be the set of optional markets that are allowed to be openetbsed and leMKT be the maximum
number of new markets to enter. We need to also include th@afislg decision variables to indicate if a potential
market is selected:

Lot if marketm is openedm € MO,
™ 71 0 otherwise.

Market selection can be easily integrated with the previnadels by adding the following constraints:

Zm > 8 ieIfA me MO© (12)

> zm <MKT (13)
meMO

z e {0,1}. (14)

Constraint (12) imposes that marketis considered open if any itinerary for that market acceptspngers in the
solution. Constraint (13) limits the number of markets\ald to be opened. Note that constraint (12) marks a market
to be open only if an itinerary for this market is availablestead of an operated flight for the market. This approach
gives the airline the flexibility to offer itineraries thatdlude flights between two stations without entering theketar
between these two stations, as long as the airline doesfeotamiy itinerary solely consisting of such flights.

With an additional term denoting the fixed cost for all openkets in the objective function (1a), the cost of gate
acquisitions, marketing, and fees for the new markets carolrectly represented with market selection variables
As market selection is quite similar to frequency selectiba example fronfigure 2 andTable 4 illustrates the same
concept of how the model compares and screens variousatiters

Similar to market selection, codeshare selection incladieltional set of codeshared flights as decision variables.
With the set of all possible itineraries regenerated, eadeshared itinerary is turned on or off depending on whether
the codeshared flights belonging to the itinerary are opdrathe codeshared flights are operated by a partner airline,
but the codeshared itineraries generated are marketedhrotigh the host airline as well as by the partner airline.
The host airline usually takes a percentage of the revermne fine codeshared segments on an itinerary. In such a
case, accurate modeling of spill and recapture is even mgueriant, because the opportunity cost of a spill from a
codeshared itinerary lies within a larger network.

Since codeshare agreements are often quite complicatexy, awlgitional business constraints are required. For
example, only a certain number of groups of flights can be sloaled due to the limited number of flight numbers.
Some airlines also impose consistency constraints, whierkthe flights in the same flight group must be codeshared
together. Additionally, the symmetry constraint mand#tesif a codeshare flight from station A to station B is open,
then its counterpart, from station B to station A, also ndeds codeshared.

3.2.3 DepartureTime Selection

In addition to frequency selection and market selectioghtd can be retimed to generate different flight schedules
and different itineraries as in the work of Lohatepanontief804 [11]. To allow retiming of the flights, each fleet
assignment variable is decomposed into a set of binarybhlagaepresenting the retimed copies for the flight and all
equipment types asigure 3 illustrates.

Figure 3 has only the flights from IND retimed a few minutes earliemtiize original departure times, highlighted
by the arrows in thin dotted lines. Different flights can haiféerent retiming rules. For instance, a flight from IND
to ORD can be retimed to be 20 minutes earlier, denoted ingieefiby the longer gap between the two flight copies
from IND to ORD. The set of itineraries also needs to be uptiatethat all possible and feasible itineraries are
regenerated, based on the extra flight copies added in thelmblge attractiveness of each new itinerary also needs
to be assessed based on its characteristics such as idurtibn and number of stops. In our example, this itinerary
overbuilding step forms itinerariesyAA1, Bg, B1, Cyp and G.

We defineC(!) as the set of retimed copies of leg € L. Additional decision variables are added to the model
as follows:
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Figure 3: Creating copies with different departure timesalbflights from IND

v

. | 1 iffleet fis assigned to flight and retimed copy is selectedc € C(I),l € L, f € F,
Tif T\ 0 otherwise.

With these new decision variables, the original fleet agagmt variables in FAM-SBLP are decomposed into
copies and they are related by

wp =y af leL, feF. (15)
ceC(l)

Since the flight copies of different departure times areudet], the set of itineraries on the host airline also has
to be updated with all possible and feasible combinatiorte@fetimed flight copies and optional flights. Departure
time selection is quite similar to frequency selection hseathe same flight with different departure times can be
considered as a set of optional flights, except that exaotflight copy from this set must be operated. Therefore the
example fronFigure 2 andTable 4 gives similar intuition behind departure time selectiothvgpill and recapture.

3.24 Block Time Selection

Service metrics are crucial for airlines to maintain andriowe their market share, due to the high level of competition
in the industry. One of the key service quality measuresiftinas is their on time performance (OTP). To preserve
goodwill, airlines design their schedules carefully sd tha impact of block and connection times on the chance of a
flight delay or cancellation is minimal. Approaching bloaké selection with the spill and recapture framework can
achieve a better balance between high service quality aechtpnal profits.

In order to integrate block time design with fleet assignnaert schedule design, additional copies are created for
all flight activities (departure and arrival) to represeigtfts with different departure and block times. An examfle o
such an expanded network is providedrigure 4.

In Figure 4 we use the example Figure 3 as the original flight network. If all the flights from IND cae loperated
with either the original block time or 10 minutes more thae driginal block time, then new copies for all the flight
activities are created so that with the same departure thee;opies arrive 10 minutes later at the destination.

Sohoni et al. 2011 [16] propose several models with the facudesigning robust schedules so that potential
disruptions in the network have minimal impact on the neknamd service quality. Service level for each flight is
defined as the probability that passengers from the respdtitjiht have enough time to connect to subsequent flights.
Network service level (NSL)yn s, represents the minimum service level across all flighthenftight network.

On the other hand, flight service level (FSlp sy, is the probability that any flight is not delayed in accordata
the acceptable OTP measure for flight delays, set by the Brepat of Transportation. This valukeis typically 15
minutes after the scheduled arrival time.

The connection set for lejand copyc, Conf C C x L, includes all flights that can connect from where
c € C(l) andl € L. Furthermore, we denote B¥° the unpredictable block time of l[dgand copye, I € L, c € C.
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Figure 4: Creating copies with different departure and blimmes for all flights from IND

Random quantityl/ follows a given probability distribution of the block timerfa specific copy: of leg !, since the
probability of various block times may depend on the departime as well as the market that the flight is in.

The constraints formulated below integrate FAM-SBLP witadk time selection so that both service level re-
quirements are imposed.

PV < Time required to connect to flight cofy, k) from flight copy(c,)] > vnstL

(e,k) € Conj,ce C(l),l € L (16)
P < é + Block time of flight copy(c, 1)] > vrsr,
ceC(),lel 17)

Constraint (16) maintains NSL so that the probability thesgengers from flightcan connect to any follow-on
flight k& in the connection set fdris above the threshold. Meanwhile, constraint (17) guaesithat FSL for any flight
is at leastyrgy, to keep up the on-time performance measure. The objectivituin (1a) can be modified to take
into account the penalty from the deviation of the incumideneferred) schedule, as well as the total variable cost
associated with the block time of each flight, including fueéw time and other fees.

If the model does not consider adding and canceling flighaastaint (16) and (17) can be linearized using
standard statistical techniques. With frequency and degpatime selection, however, the right-hand side of camstr
(17) needs to be modified so that the FSL requirement is ordgssary when a flight is operated. The right-hand
side of constraints (16) also requires a modification to isepits validity only when both flight and its possible
connection flightt are present in the solution. In such cases, constraint Elgemerally non-linear and requires
Benders’ decomposition to solve the whole model efficierflye related methodology is given in detail in Sohoni et
al. 2011 [16].

4 Future Studies

With FAM-SBLP as the core model, all modules in Section 3.2 ba integrated seamlessly to provide a complete
model ISD-FAM-SBLP (see Appendix) that targets variouseaspin network planning simultaneously. For a par-
ticular area in network planning, a subset of these modw@ase grouped together to tailor an appropriate network
design model. As FAM-SBLP preserves the basic structureetraditional FAM, it can be further expanded with
many common models in other areas such as maintenance andatreduling. Due to its great flexibility and intu-
itive incorporation of the spill and recapture effects, {sBM-SBLP provides the airline industry with an all-purgos
integrated network planning model that is viable in the fetuGiven an accurate modeling of revenue, the general
ISD-FAM-SBLP framework is capable of making centralizedimization decisions simultaneously with respect to all
aspects of airline schedule design and capacity planniriigp. 8dch a versatile framework governing all major aspects
of network planning, the focus on airline network planniraynshifts to the optimization side. How to efficiently
tackle ISD-FAM-SBLP becomes an immediate task for futunelists.
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Although our preliminary computational studies show prsing results for this new framework of spill and recap-
ture with various network planning models, the computati@tudies also suggest that FAM-SBLP is much harder to
solve than the traditional itinerary-based FAM. Furthereythe significant increase in the number of nonzero coeffi-
cients in the constraint matrix makes even the root nodeaétan of FAM-SBLP much harder to solve than the one
from the traditional FAM. We suspect that, with larger aiés, the complete ISD-FAM-SBLP model with spill and
recapture is very challenging to solve, due to the additifhigéit copies created. With such complexity of our holistic
optimization models, novel methodologies and further cotational analyses are required to approach problems with
our new framework for spill and recapture.

In addition, our computational experiments indicate th#drge number of fleet assignment variables (around
80%) turn out to be binary at the root node relaxation. Sudradteristics could be used as a base towards new
heuristics. Sherali et al. 2005 [14] and 2010 [15] conduetgablyhedral analysis on the traditional itinerary-based
FAM and integrated schedule design with FAM. With a lot of gamity between our models and the models that their
work is based on, it is likely that analogous techniquesd e applied to either FAM-SBLP alone or the complete
ISD-FAM-SBLP model.

The spill and recapture effects are common phenomena in@npetitive industry as customers’ choices heavily
affect the strategy of suppliers. For instance, in therbtainess, product line design (PLD) tries to determindotist
subset of products to offer considering potential consegee such as market expansion and cannibalizatiororSch
2010[13] approached PLD with a multinomial logit choice reband fractional programming techniques. Since PLD
is very similar to itinerary selection in FAM-SBLP (withitéraries being the products in the airline industry [124, t
presented framework of spill and recapture can be appli€l® and give a more accurate and efficient evaluation
of the interaction between supply and demand. The framewofd®BLP could also be used in the hospitality industry
since it highly resembles the airline industry, with peaisle goods such as hotel rooms and cruise trips. As many
airlines are integrating hospitality services into thewdauct line, it is beneficial to consider passenger choidéds av
bigger picture in mind. Modeling spill and recapture at ahleiglevel could achieve a globally optimized result and
inspire suppliers with fresh strategies from a differentpective.
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5 Appendix: Complete | SD-FAM-SBL P
The following additional sets are introduced.

N; setof nodes in equipment tyfés network, f € F, indexed byn
CSy setofarcs or legs passing forward in time through a courtiing line in equipment typg’s
network,f € F
(n) setofoutgoing legs atnodg n € Ny, f € F
(n) setofincominglegs atnode n € Ny, f € F
o(n) outgoing ground arc atnoden € Ny, f € F
(n) incoming ground arc at node n € Ny, f € F

In order to keep track of the aircraft, let the decision Valgg,, be the number of aircraft on ground art equipment
type f’s network,g € C'Sy, f € F.

New parameters are required as follows.

Availy  number of total available equipments of equipment typg € F'
d; original departure time forleg !l € L
df  departure time of legand copye, c € C(1),l € L
tf block time of legl and copye, c € C(1),l € L
my,  minimum passenger connecting time betweern lagdk, [ € L,k € L
p;  the penalty for deviating from the preferred departure tohleg!l, [ € L
Mcost,, costof entering market, m € M©
Fcosty fixed cost of using aircraft of typg, f € F
Veost;  pertime unit cost incurred for lelgl € L, which includes the costs for crew pay, fuel
consumption, etc.

The full model reads as follows.

maximize Z (Demyy, Z fare;s;) —ZZFcostf Z a:lf

meM ieTHA leEL feF ceC(l)
Z MCost,zm,
meMO
S Veon 64 iy
leL ceCc(l) feF
=D oml Doy i) —diy ] D afl (18)
leL  cec(l) feF fEF ceC(l)
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subject to

Z (Demp, Z ZCapf Z Ty

meM zEI}ZA(l) fer ceC(l)
50" + E s; =1
ielHA

AgL S; S A7 SgL

DD D D @ Yoty — Yitmy =0

1€0(n) ceC (1) leI(n) ceC(l)

Z Z Ty + Z yg < Availy

1€CSy ceC(l) geCsS;

YD w=1

fEF ceC(l)

YD aips1

fEF ceC(l)

YD aizs

fEF ceC(l)

Zm = 8

Z 2m < MKT
meM©O

PriWwy < dj, Z Thp —dj Z Ty — mug] > ’YNSL(Z T + Z xip —1)

fer feF feF feF

t7 > afp+6 = Pritypsr] > iy
fer feFr

ze€{0,1}
z€{0,1}
y=>0
s>0

17

lel

meM

ieIHA meM

ne Ny feF
feF
leL”

leL®

ie ITA(),1e L,

meM
i€ A me M@

(19)

(20)

(21)
(22)

(23)

(24)

(25)

(26)
(27)
(28)

(e, k) € Conj,c e C(l),

lelL
ceC(l),lelL

(29)
(30)

(31)
(32)
(33)
(34)
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