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Abstract

We investigate the convex hull of the set defined by a single inequality with continuous and binary
variables, which are additionally related by variable upper bound constraints. First we elaborate on
general sequence dependent lifting for this set and present a dynamic program for calculating lifting
coefficients. Then we study variable fixings of this set to knapsack covers and to the single binary
variable polytope. We explicitly give lifting coefficients of continuous variables when lifting the knapsack
cover inequality. We provide two new families of facet-defining inequalities for the single binary variable
polytope and we prove that combined with the trivial inequalities they give a full description of this
polytope.

Keywords: Mixed integer programming, Polyhedral theory

1 Introduction

Many optimization problems arising from a variety of applications are formulated as mixed integer programs.
In many of these applications variable upper bound constraints are already present, e.g. the facility location
problem (see e.g. Aardal (1998)), the lot-sizing problem (see e.g. Salomon (1991)), and the network design
problems (see e.g. Bienstock and Giinlik (1996)). Even if these constraints are not present, they can
be generated by preprocessing, Savelsbergh (1994). A successful approach for solving problems of this
type is branch-and-cut, Nemhauser and Wolsey (1988), which requires generating valid inequalities for the
underlying polyhedron. Surveys for recent techniques in mixed integer programs are provided in Richard
(2011), Atamtiirk (2004) and Atamtiirk (2005). In this paper we study the polyhedron S associated with
the set consisting of a single inequality involving both continuous and binary variables and variable upper
bounds that additionally link continuous and binary variables. Set S is described by



where a;, b;, @i, U; € Q for every i € N and d € Q. By defining new variables z; = |a;|Z;, y; = ¥ if b; > 0,
and y; =1 —g; if b; <0, S is equivalent to set S given by

Sowi— > @i+ Y bwyi+ > biyi<d
iENT iEN] 1ENS i€EN,
ngigui—kviyi ZE]\TQJr
0 <z <uy —viy; 1€ Ny

y binary,
where b; = |Bz|, d=d- Zbi<0 Bi’
v; = |a;|0; if (bi = 0 and [a;|0; = 0), or if (b; <0 and |a;[v; < 0),
v; = |l if (b > 0 and [ald; < 0), or if (b < 0 and Jale; > 0).

The defined parameters satisfy b; > 0 and v; > 0 for every i € N = N;t UN; = Nj7 U N, . Let P be the
convex hull of S. We say that variable i has a zero constant bound if u; = 0 and it has a positive constant
bound otherwise.

To avoid trivial cases, we make the following assumption.

Assumption 1. u;’s and v;’s satisfy
1. u; —v; >0 forv e Ny,
2. uiEOforieN;,
3. u; +v; >0forie NS,
4. u; >0 forie N, .

Note that Assumption 1 is necessary for full dimensionality of P. Shebalov and Klabjan (2006) give
sufficient and necessary conditions for full dimensionality of P.

The basic special case not involving binary variables in the constraint, i.e. b; = 0 for every ¢ € N, and
the seminal study on the topic is the work by Padberg et al. (1985), which is extended and enhanced in Van
Roy and Wolsey (1986), Goemans (1989), Gu et al. (1999), and Atamtiirk et al. (2001). They all build on
the notion of a cover. Richard et al. (2003a,b) studied a similar polyhedron, where v; = 0 for all i € N.
This is clearly a relaxation of S. However, S has more structure, which is embedded with the variable upper
bound constraints and it is heavily exploited in our work. Another special case of our polyhedron is studied
by Miller et al. (2003) in the context of multi-item lot-sizing. Their case corresponds to N, = Ny = 0,
u; = 0,v; = K — b; for every i € N, where K is a constant. Cimren (2010) studied the polyhedron with
N = Ny =0 and u; = 0 for every i € N. Atamtirk and Gunlik (2007) studied the problem with
N; = N; =0 and b; = u; = 0 for every 4 € N but their constraint has an additional integer variable in
the constraint. Atamtiirk et al. (2001) study the problem with no binary variables in the constraint (b; = 0
for all i € N) but uses more general variable upper bounds. The polyhedron considered by Marchand and
Wolsey (1999) can be obtained from our polyhedron if v; = 0 for all i € N and u; = 0 for all i € N but one.
Their paper also shows that their model is a relaxation of the standard single node fixed charge flow model.
By using the same technique, it can be seen that it is also a relaxation of our model. Agra and Constantino
(2006) studied the polyhedron with N; = @) and b; = 0 for all ¢ € N but the variable bound is defined as
Ly; < x; < Uy;, where L and U are positive constants and y;’s are integer. Shebalov and Klabjan (2006)
study S. They develop a flow cover type inequality, which is valid when N;~ = @. They lift it into a valid
inequality for P by using sequence independent lifting.

The present work differs from Shebalov and Klabjan (2006) as we study sequence dependent lifting and
lifting of knapsack covers, whereas Shebalov and Klabjan (2006) studies sequence independent lifting and



lifting of flow cover inequalities. Sequence independent lifting requires completely different proof techniques
than those used in the current paper and also the resulting valid inequalities are very different. We also
present a full description of convex hull for the single binary polytope. The main contribution of this paper is
that we give different sets of lifted inequalities from Shebalov and Klabjan (2006) for S by using completely
different techniques and we provide the full description of a single binary variable polytope which is an
interesting result on its own.

In this work we focus on sequence dependent lifting. In Section 2 we present two optimization problems
for computing the lifting coefficients. We also develop a dynamic program for computing lifting coefficients
of binary variables. Unfortunately the optimization problem for computing lifting coefficients for continuous
variables is a nonlinear mixed integer program and therefore very hard to solve. Section 3 first gives the
knapsack cover inequality, which is facet-defining if all variables outside of the cover are fixed at zero, and
it discusses both sequence independent and dependent lifting of these inequalities. For sequence dependent
lifting we explicitly obtain lifting coefficients for continuous variables if these variables are lifted first. Note
that this elevates the problem of solving the nonlinear mixed integer program for computing the lifting
coefficients of continuous variables. In Section 4 we consider the single binary variable polytope obtained
from S by fixing all but one binary variables. We derive a full description of this polytope by presenting
two new families of facet-defining inequalities. Lifting coefficients of binary variables can be computed by
dynamic programming. Since continuous variables are not fixed, as with the knapsack cover inequalities, we
do not need to solve the nonlinear mixed integer programs for computing the lifting coefficients of continuous
variables.

2 Sequence dependent lifting

In this section we first give a brief overview of sequence dependent lifting for P. As is typically the case,
different lifting orders can yield different inequalities. In the remainder of the section we focus on the
underlying optimization problem for computing lifting coefficients of binary variables. We also show that in
many circumstances it is easy to obtain the lifting coefficients for the continuous variables in N; .

Whenever we do not need to distinguish between N, and N, , we write +uvy, since they are handled
similarly. Let Ly € N and L; C N be the set of binary variables that are fixed at 0 and 1, respectively. The
actual value is denoted by ¥;, i.e. §; = 0fori € Lgand ¢; = 1fori € Ly. Let L; C N be the set of continuous
variables fixed at 0 and the corresponding value is denoted by Z; = 0. The set L, C Ly U Ly corresponds to
the continuous variables that are fixed at their upper bounds. If i € L,, then we define z; = u; £ v;¥;.

The set of non fixed continuous variables is denoted by C* = N\ (L; U L,) and the set of non fixed
binary variables is denoted by C¥ = N\ (Lo U L;). Let us define §; = 1 for i € N;", and §; = —1 for i € N; .
The resulting polyhedron is

(z,y) € RICI x RIC"I: Yicce 0iTi+ Y icon biyi <d =D icp 8iTi — Y e, bi

y binary

We denote the convex hull of P° by P¢. Let
0<ao— > awi— Y Biti (2)
icCe icCy
be a valid inequality for P°. The goal is to construct a valid inequality for P of the form
0<ao— > ami— > Biyi— Y oulzmi—z)— Y Bilyi — %) (3)
ieCe ieCy i€L1UL, i€LoULy

We lift variables one by one. For example, the lifting sequence {2%,3¥,1%,3% ...} encodes that we first lift
To, then ys, next xp, followed by x3 and so forth. Observe that not all lifting orders are possible, e.g. if
ur, = 0 and y; is fixed at 0, then we cannot lift x; before y;.



2.1 Optimization problems for computing the lifting coefficients

Let first consider lifting x. Let I, C L; U L, and I, € Ly U Ly be the index sets for = and y, respectively,

that have been lifted prior to xj. Let us define

(2,y) :
0 S €Ty S (173 :I:Uiyh

O = 0 < <w vy,

y binary
where d’

Zﬁiyifz Q;

i€CY i€l

ap = min{<a0 — g o —

ieC”

If kK € L,, then
ap = maX{( Z 0T+ Z Biyﬂrz o
ieCe

Note that both values are attainable.

0 S Tk S uk:tvkyk,
0 < zp < ug + gk,

7*501

(wi—Zi)+ > _ Bily

ieCvy icl, iel,

for k ¢ I,

=d— ZiGLu\(IIU{k}) 0;Ti — ZiGLl\Iy b;. If k € L;, then

- Bily

i€ly

Opr + z:z'eCZuIz dizi + Zz‘eCyuIy biyi < d'
e(Cctncv)u

i€ (CT\CY) U
for ke I, or

(I N1,)
(L\1,) | (4)

)/l’k z,Y) € Qk, T >0}

—a0>/(xk—xk) S (x,y) € Qr,xp < xk}.

The objective functions are nonlinear and we do not know how to reformulate it as a linear optimization

problem with the same structure.

We present two approaches to overcome this difficulty.

In the first

one, described in Section 3.3, we exploit the special structure of (2) to explicitly derive as if the continuous
variables are lifted first. An alternative approach, discussed in Section 4, is to include all continuous variables

in C®.

Consider now lifting i, where I, and I, are defined in the same way as before.
ZieLl\(IyU{k}) b;. If k € Ly, then By is defined by

2 ol

DicLag, 0i%i —

fr = min (Oéo - > wi— Y Biyi—

ieCe ieCy i€l,
s.t. Z ;i + Z biy; < d — by
ieC*ul, i€CYUI,
0 <z < uy vy,
O S iz S (173 :l:’Uz'gi,
0 < zp < ug + g,
y binary.

If k € Ly, then By is defined by

iftkel,

b= max (X et Y pt Y aila
ieCe ieCy iel,
1€CTUIl, 1€CYUI,

O S iz S (173 :l:’Uiyi,
0 <z <wuy vy,
0 S Tk S Uk,

y binary.

ifkel,

These two optimization problems, with the appropriate choice of M, a,

ie (CTnCY)
ie(CT\CY)U

ie(C*nCY)uU
i€ (CT\CY)U

— > Bilvi

iely

U (I, N1y)

(L \ 1)

z_x +Zﬁz

icly

(I, N I,)
(L \ 1)

Let d = d —

)

_ ao)

¢, b, d, 11, and © can be transformed



into the following general optimization problem that defines fs.

M M
max Z a;r; + Z i)lyZ (5a)
i=1 i=1

k M M
i=1 i=k+1 i=1
y binary, (5d)

where a; <0 fori=1,...,kand a; >0 fori=k+1,...,M, and ¢ > 0,4 > 0. Note that 0;, a}nddAcanbe
negative and we allow 0s to be 0. Without loss of generality we assume that a,b, ¢, 4, 0, and d are integer.
In the next section we develop a dynamic program, which solves this program, and thus computes fs.

2.2 A dynamic program for computing the lifting coefficients of binary variables

The presence of continuous variables makes a non trivial task of developing a dynamic program. Without
loss of generality we assume 41 < dg < -+ < dp <0 < a1 < -+ < apr. We parameterize (5) with respect
to the number of variables and the right hand side. For each integer n,1 < n < M let

fa(d) = max i&ixi + ii?iyi
i=1 i=1
s.t. i: 0;x; + Zn: Ciyi < Ci
=1 i=1

0<z; <u; + 0;y; 1=1,2,...,n
y binary,

where §; = —1if i <k and 6; =1 if i > k + 1. Note that fys(d) gives a solution to (5). Let

k M k
W1=—Z(ﬁi+@f), wo = Z(ﬁri-ﬁf-kéi)—i—zém
i=1 i=k+1 i=1
where s = max{0, s}. In addition, we define Q = {wy,w; + 1,...,ws}. It is easy to see that it suffices to

define f,, on [wy,ws]. The dynamic program will actually show that it suffices to consider deq.
For k+1<1i< M, we define t(i) € {1,...,k+ 1} as

1 |a;| < a; for all 1 < j <k,
t@)=qk+1 l|ax] > a,
s |a;| < a; for all j > s and |as—1] > @; .

From definition it follows that ¢(i) is the index where a; fits in the order |az| < |agp—1] < --- < a1
For any integers 1 < s <k, k<p<M,1<j<sk+1<I< M and d € 2 we define
k

p
gle(d) = max Y (4 +a)vyi + (b — i)y

i=s =3

k P k k
st d—i+ Y 0 <Y Gy — Y oy <d+ Y i
i=s =] i=s i=s

y binary

and



k

p
gls(d) = max > (& +a)vy;+ Y (b — aéi)yi
'L~:s 1:] ) . ) .
SR S DT IR YRS )
i=s =] i=s =8
y binary.
For any integers 1 <[l <kand 1 <p<kand d € Q we define
p
hh(d) = max > (bi+ i)y
=1 »
s.t. Z
y bin ary
and
~ ~ p A~
hh(d) = max Y (b + ;)

+Ul+cz+vl

P
s.t. cz—i— ¢ < Z

Y bmary -

Whenever the underlying feasible region is empty, we define the corresponding function value to be —oco. We
show how to use dynamic programming to calculate these functions in Appendix A. First we give recursive
relationships for f,.

Theorem 1. For any n =1,2,...,k and any d €  we have

fn 1(‘?) “
o fo- 1(d+ﬂn)+dﬂ
fn(d) = max fn 1(ci~+ (i + D) = En) + (i + ) + by, o
1( D) = nd,
_y(d) = by —a(d - ¢,)

Foranyn=k+1,k+2,...,

M and any d € Q we have

fn—l(cpa R
fn—l(d_én) +bna
~ fnfl(cz_ﬁn) +dn'&na
fald) = max ¢ £,y (d — (it + D) — n) + @ (i + D) + bn, : (7)

n,t(n)

gy (d) + Zf:t(n) ity + i (d - Zf:t(n) “z) .
(

~n,t k PPN ~ 7 k ~ 7
Z (17’L1) ) + Zi:t(n) a;U; + (07%% d — Cp — Zi:t(n) 'Uzq() + bn

For the proof of Theorem 1 and the computation of g, §, h, h by dynamic programming, see Appendix A
and Appendix B. We conclude this section by discussing the complexity of the presented algorithm. Let

and note that —w; =

O(ME),wa =0

g_i

maxM{cl, QW |0;]}

(M¢). The running time of the algorithm is O(M*(ws—w1)) =

oM

The algorithm is clearly pseudo-polynomial. If k£ = 0, i.e., a; > 0 for every 4, then we can use w; = 0, ws =
and in turn the running time is O(M*d).



2.3 Lifting coefficients for continuous variables in N;" projected to 0

The next theorem shows that under some mild conditions the lifting coefficients of the continuous variables
in N;t, which are projected to 0, are 0 regardless of the lifting order. A similar result for the case v; = 0 for
each i € N is given by Richard et al. (2003a).

Theorem 2. Let (2) be valid facet defining inequality for P°, which is not a multiple of (1). Let us assume
that as and s in (3) are obtained by using the optimization problems from Section 2.1. Then «y = 0 for
every k € N N L.

Proof. Let I, I, be defined as in Section 2.1 and next we lift £ € N1+ N L;. We need

0<ao— Y awwi— Y Biyi— > ailwi—2) = > Bilys — Us) — g (8)

ieC® i€CY 1€1, i€ly

to be valid for QQp with d; = 1. Let Qk be obtained from @y by fixing x = 0. Thus

OSQO_Zaixi_Zﬁiyi_Z a; z_-rz Zﬁz Yi z (9)

ieCe i€eCY i€l icly

is valid for Qk Since all as and (s are either (i) from the optimization problem Section 2.1, or (ii) a facet
defining inequality in (2), it is easy to see that (9) is a valid minimal inequality for Qy.

Assume first that u, > 0 if £ € CY U I, or assume that k£ ¢ CY UI,. Note that in the latter case
ug +opgr > 0. Consider (Z,9) € Qr, which satisfies (9) at equality, and » 7, cuyyp, 0idi +Zz‘ecyu1y biy; < d'.
Such (&,7) exists, since (2) is not a multiple of (1) and (9) is minimal. Let (Z,§) be the vector obtained
from (Z,y) by appending ¢ to x, where € > 0 is small enough in order to make (Z,7) € Qg. If ap > 0, then
(Z,9) € Qx, but it violates (8). Therefore aj < 0. Since we select oy minimizing (8), we obtain (9) with
Qp = 0.

Assume now that uy, =0 and k € CY U I,,. Let

hp(z) = max apxg
s.t. —TE =2
0 <o < wvryr

and

fr(z) = mm{(ao—Zale—Zﬁiyi—Z ai(wi =) — Y Bilyi z)i(%y)GQk}-

ieCe i€CY i€l, i€l

Validity of (8) for Qf is equivalent to hy(z) < fr(z) for all z. We need to consider this inequality only for

yr = 1, since y, = 0 implies x; = 0 and therefore by assumption we have validity. In this case hx(z) = —ay2
for z € [—vg, 0], fr(0) = 0, and since fx(z) is nondecreasing f;(z) < 0 for z € [—uv,0]. Therefore oy, < 0,
and we know that aj = 0 yields a valid inequality. Thus also in this case aj = 0. O

We use this theorem later with respect to the knapsack cover inequalities in Section 3.3.

3 Lifting of knapsack covers

In this section we introduce the knapsack cover inequality, which has the same form as the standard cover
inequality for the knapsack problem, see e.g. Nemhauser and Wolsey (1988). We then develop sequence
independent and dependent lifting procedures for these inequalities.



3.1 Knapsack cover inequality

Consider C' C Ny such that A = Y, .~ b; —d > 0 and ZieC\{j} b; < d for any j € C. We first generalize
the knapsack cover inequalities.

Theorem 3. The knapsack cover inequality

Y w<lol-1 (10)

i€C

is facet-defining for P° with C* = CY = C,L, = L; = 0, i.e. all variables not in C are projected to 0, if
and only if there exists a j € C' with }_,c o ;3 bi < d, and either u; > 0 or there exists [ € C'\ {j} with

Licovuy bi < d.

Proof. We denote the convex hull of P° by PC. Tt is easy to see that (10) is valid for PC.

To prove that (10) is a facet-defining inequality under the stated conditions, we construct 2|C| affinely
independent vectors in P¢ satisfying (10) at equality. By assumption there exists j € C such that
>icc\(jy bi < d. Without loss of generality assume that j =1 and C' = {1,...,[C|}.

First, let us consider the case when u; > 0 and consider vectors

2 = (¢ 0 ... 0 0 0 1 .. 1 1
© ... 0 0 0 1 .. 1 1
(: )
0 0 e 0 0 1 1 1)
0 0 0 « 0 1 1 1)
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1)
(: )
0 0 0 0 1 1 1 1)
zoep = (00 0 0 1 1 0 1),
x Yy

where ¢ = min {ul, d— Ziec\{l} b;, min;>o{u; + vl}} > 0. These vectors are feasible, affinely independent
and satisfy (10) at equality. Therefore (10) is a facet-defining inequality.

Next, let us consider the case when u; = 0. By assumption, there exists I € C'\{1} such that >, 1y bi <
d. In this case consider the same vectors, except that instead of z; we take (ee;, 1 —¢;), where 1 = (1,...,1)
and € = min {d — ZieC\{l} bi,d— ZiEC\{l} b;, min;>1{u; £ vl}} > 0.

Finally, we show that (10) is not facet-defining if neither of the conditions stated in the theorem hold.
Consider a feasible point (&,9) such that it satisfies (10) at equality. If Ziec\{j} b; = d for all j € C, then
> icc biii = d, and therefore ), 2; = 0. Thus in this case Z; = 0 for any j € C. This shows that there
exists a j € C such that d — ZieC\{j} b; > 0. If there exists a unique k € C such that ZieC\{k} b; < d and
ug = 0, then &; = 0. In both cases (10) implies z; = 0, hence (10) is not facet-defining inequality. O

Example. Let P be given by

T1+xo + T3+ T4 +2T5 —Tg — X7 — g+
dy1 + 4y + y3 + 6y4 + 25 + Yyg + Tyr + 2ys < 12

0<z1 <342y 0<z4<3-2y; 0<ay<5—4dy;
0< a9 <5—ys 0<a5<5+2; 0<zs<3—ys.
O§x3§473y3 O§x6§2+y6



Thus Nj™ = {1,2,3,4,5}, N{ = {6,7,8}, Ny = {1,5,6}, and Ny = {2,3,4,7,8}. Consider C' = {1,2,4,5},
which is a cover, since } ;.0 bi —d =4+44+6+2—12 =4 > 0. Note that } ;.0\ (4 bi = 10 < 12 and
ug > 0. Therefore, by Theorem 3

Nt+y2t+yst+ys <3 (11)

is a facet-defining inequality for PC. O

Since (10) is valid only for P¢, we need to lift it. We first consider sequence independent lifting and then
we elaborate on sequence dependent lifting.

3.2 Sequence independent lifting

One of the techniques used to construct valid inequalities for a given polyhedron is sequence independent
lifting, see Wolsey (1977) and Gu et al. (2000). In sequence independent lifting, variables (z;,y;) are lifted
simultaneously and the lifting order does not matter. In order to lift pairs simultaneously, we must impose
C* = CY, which for knapsack cover inequalities equals to C, and we assume that L, = L; = 0.

We start with (2), which is valid for PY. We need to choose (c, 3;) for every i € N \ C such that the
lifted inequality (3) is valid for P. In order to do so, we introduce the functions

hi(z) = max {a;(x — T;) + Bi(y — ) = 6i(x — i) + by = 2,0 < & < u; £ vy, y binary},
and
f(2) = min {040 — Z(aixi + Biyi) Z(&xz +biy) <d—2,0<z; <u; £vy;,i€Cy binary} .
ieC ieC

The following theorem from Gu et al. (1999) provides a way to obtain the lifting coefficients «; and §; from
functions h;(z) and f(z) when f(z) is superadditive. A function f is superadditive on Z if f(z1) + f(z2) <
f(z1+ 22) for all 21, 29, 21 + 22 € Z.

Theorem 4. Assume that (2) is valid for P° and that (c;,3;) are chosen in such a way that h;(z) < f(2)
for any z where both functions are defined, and any ¢ € L; = Ly. Assume also that f(z) is superadditive.
Then (3) is valid for P. O

If f is not superadditive, Gu et al. (1999) prove that it is sufficient to find a superadditive function g such
that g(z) < f(z) for all z, and use the inequality h;(z) < g(z) to find values for («;, 8;). There might be many
functions that satisfy these conditions. To obtain the strongest inequality we choose a non-dominated g(z),
which means that there exist no ¢, ¢’ # g such that ¢’ is superadditive and g(z) < ¢'(z) < f(z) for every z.
In addition, the strongest inequalities are obtained by choosing («;, 8;) in such a way that h;(z) = g(z) for
at least two distinct z values (see Gu et al. (1999) for details).

3.2.1 The lifting function

The lifting function f(z),z < d for the knapsack cover inequality is given by

f(2) = min (|C|*1*2yi)

ieC
s.t. in—l—Zbiyigd—z
eC ieC
ngiguiiviyi 1eC

y binary.

Since variables = are not present in the objective function we eliminate them from the problem and thus
obtain the pure integer knapsack case. Gu et al. (2000) completely characterize f(z) when z > 0. To express



f(2) in a closed form, let |C| = r, and let us reorder the variables in C so that by > by > ... > b,.. Let also
pi=d—23 1<j<,bi fori=0,...,r. Note that uo = —A. Then

f(2)={.1 Fe

Joopi<z< 41, j=0,...,7=1L

Function f(z) is not superadditive. To construct a superadditive valid lifting function g(z) we use the
function used by Gu et al. (2000) and extend it for negative z. For z < 0 we apply the idea developed in
Shebalov and Klabjan (2006), i.e. we repeat g(z) for z > 0, shifting it down by f(d). Thus

J=(ms+pi—2)/p pi <z <pitp;, j=1,...,r—1

J i+ pj < z<pjyr, j=1,...,7r—1

9(2 + pr—1 + pr-1) — (r = 1) B — pr—1 <2 < fljp1 — pr—1—pr—1, J=1...,7r—1
g(z) = or — pr—1 —2pr-1 <2< fl1 — fr—1 — Pr—1

j_T‘i‘M i — pr—1 — pr—1 < 2 < pj —plr—1, J=1,...,7=1

P1
g(z+t(pr—1+pr—1)) = (r =1t —pr—1 = 2pr—1 — t(ppr—1 4+ pr-1) < 2 < —pr—1 — t(ptr—1 + pr—1)
fort=1,2,3,...,

where p; = max{0,b;41 — by + A} for j = 0,...,r — 1, see Figure 1. It is proven in Gu et al. (2000) that
g(z) is a superadditive valid lifting function for f(z) for all z > 0 and that is nondominated and maximal
for z > 0. For negative z we have f(z) > —1, and therefore g(z) < f(z) for all z < d. Function g(z) is
superadditive for all z, since it is constructed identically to g(z) in Shebalov and Klabjan (2006).

|CJ =1 em -

Figure 1: f(z) and g(z) for knapsack cover inequality in the case p,_1 =0

3.2.2 The lifted knapsack cover inequality
We now present the inequality obtained by sequence independent lifting of (10).
Theorem 5. If
a) {ie N :u; >0} =0or
b) by =...=b,, and {i € N| :u; >0} #0,
then the lifted knapsack cover inequality
Zyi + Z 9(bi)ys — plfl Z z; + Z 9(bi)yi + Z (izi + Biyi) <|C] =1, (12)
ieC iqui(\)c ieé\ifgéc ’Eﬁiéc ziN:\oC

where (a, B;) € J;, is a valid inequality for P. The lifting sets .J; are defined in the online appendix. ' O

Thttp://www.klabjan.dynresmanagement.com/articles/Sequence dependent lifting online appendix.pdf
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Proof. To obtain lifting coefficients we need to consider cases u; > 0 and u; = 0 separately.
Consider first the lifting coefficients for variables with positive constant bound. Shebalov and Klabjan
(2006) show that for w; > 0, h;(z) is given by

max sp[o;ui]’ w[bi’ui+vi+bi] for i € NlJF ) ]\/’2+
max soéi“L], war ) fori e NN
h‘l(’z) = u“O] b —Uz_Uzabf] y - +
max (p_, ,1/1 for i € N| NN,
max 7;:0]71/) . uﬂ)lb] for i € Ny NNy,

where

I _Jaiz zel

I B ozi(z—bi)—kﬁi zel
wai(z>_{oo z ¢ 1.

To obtain lifting coefficients («;, 8;) we consider three cases.

1. If i € N (see Figure 2), then a;z < h;(z) < g(z) =0 for 0 < z < yuy, and therefore o; = 0. We obtain
the value of ; from the condition h;(z) = 8; < g(z), which has to be satisfied for b; < z < u; +v; + b;.
We obtain 3; = g(b;), which corresponds to the second term in (12).

2. If i € Ny and there exist i1,93 € C such that iy # 1, io # 1 and b;, # b;,, then —a;z < h;(2) < g(z) =
—1 for —§ < z < 0, where § > 0 is small enough. This behavior of g(z) around 0 follows from the

definition of 41,9, see also Figure 2. Therefore lifting is not possible in this case and we require (a)
and (b) in Theorem 5.

3. If i € Ny and by = ... = b, then lifting is possible, since g(z) is continuous at z = 0 (see Figure 3).
In this case a; = —1/p1 and B; = g(b;), which corresponds to the third and fourth terms in (12).

€] A |1 -
- z 4 T i iz
iz ) d
My g b ybyh d g '
FE e — Nh(2)
- . L 8(2)
o &(2)
Figure 3: ¢(z) and h(z) for i € Ny, u; > 0 and
Figure 2: g(z) and h(z) for i € N1+ and u; > 0 by=bys=...=b,

We next study the lifting coeflicients for variables with zero constant bound. These coefficients correspond
to the fifth term in (12). In this case

z=0

0
Mz) = {ai(z —b)+ B z€[bi,bi +vi]

11



for i € N;t and

0 z=0
h(z) = {—ai(z — b)) + B; z € [b; — v, b;]

for i € Ny, see Figure 4 and Figure 5.

IC1-1

cl-1

Figure 4: g(z) and h(z) for i € N, u; =0 Figure 5: g(z) and h(z) for i € Ny, u; =0

Similar to Shebalov and Klabjan (2006), there are several possible optimal values for («;, ;). The
derivation of J; is omitted since it follows closely Shebalov and Klabjan (2006).
O

3.3 Sequence dependent lifting

In this section we use sequence dependent lifting to lift (10). We argued in Section 2.1 that computing as is
very difficult due to integrality and nonlinearity, and for this reason we do not consider an arbitrary lifting
sequence. We assume that first the continuous variables are lifted and then all of the binary variables. The
order within these two sets is arbitrary. For continuous variables we are able to explicitly derive as while
for binary variables the dynamic program from Section 2.2 needs to be employed.

3.3.1 Lifting of continuous variables

We first derive a;,i € Nit. Since (10) is not a multiple of >, @; + > ;. biys < d and is a facet defining
inequality, we can apply Theorem 2. Hence, we conclude a; = 0 for every i € Nfr .

Now we explicitly derive «; for i € N; . For ease of exposition we assume N; = {1,...,|N |} and that
this is the lifting order within N;~. Let j > 1 be the index such that 32, o;.; ju; <A < 320 u; (we
define 3, ;.o u; = 0 and Zlging u; = 00). For k € Ny let

hi(z) = max oz
s.t. —Tp = Z
0 <z <ug

k—1 k-1
fr(2) = min (|C—1—Zyi+zoéil‘i) = min <|O|_1_Zyi+zail'i>

ieC i=1 ieC i=1
k—1 k—1
s.t. in—in—l—Zbiyigd—z s.t. —Zmi—i—ZbiyiSd—z
ieC i=1 ieC i=1 icC
OSZEZSUZ:EUII% 1eC 0<z; <uy izl,...,k—l
0<z; <wu; i=1,...,k—1 y binary.
y binary

12



We obtain the lifting coeflicient «; by induction.

l.ay=0ifj>1,and g = —% if j = 1.
We start from (10), which is facet-defining for P¢, and consider

apry + Yy yi <0 -1, (13)
ieC

which has to be valid for

YiccTi— 1+ i cobiyi <d
0< 2 <u; vy, ieC
0<z <uy

y binary.

If (13) is to be valid, then hi(z) < fi(z). In this case hi(z) = —ayz for z € [—uq,0], and fi(z) =
IC|—1- max{ziec Vit ecbiyi <d—2z,y binary}, which is -1 for z < —X and 0 for —\ < z <0,
see Figure 6. If A > ug, then the largest hi(z) = 0, and therefore oy = 0. If A < uq, then ay = —%.

—u, -A

Figure 6: hi(z) and f1(2) if A <wuy

2. lfa; =...=ag_1 =0, then ap =0 for k < j.

In this case we want

arze+ Y 4 <0 -1

e
to be valid for
k

S St S <

ieC i=1 ieC

nglgul 1= ,...,k

y binary.
As before we have hy(z) = —ayz for z € [—uy, 0], and since o; = 0 for all ¢ = 1,...,k — 1, variables

x; do not affect the value of fi(z), therefore we eliminate them from the problem by setting them to
their upper bounds. As a result we have

fu(z)= |C|—-1 — max Zyi

e
k—1
s.t. Zbiyi§d+2ui—z
ieC i=j
y binary.

13



For —u; < z <0 we have

d+Zuz—z<Zb —/\+Zuz<2bz,

ieC e

where the last inequality follows from k& < j. Therefore at an optimal solution y; = 0 for at least one
i € C. We conclude that fx(z) > 0 and thus aj = 0.

C 4T 21 LU

Again we obtain «; from the inequality h;(z) < f;(2), which in this case gives

0 —)\+Zjlul<z<0
—1 —0 <2< A+

—a;z < fi(z) = {

The expression for f;(z) is obtained by using the similar argument as in Case 1. Thus a;; = — Z —
= 1 T

Note that this case is consistent with Case 1, since if j =1, then 23_1 u; = 0.

1

.Ifaj:aj+1:...:ak_1=— thenak:—

1 1
A= us A=z i
We want
k—1
Qg —I-Zoéiﬂfi +Zyi <|C]—-1
i=j ieC

to be valid for

Zmz Zx1+zbzyz<d

e’ ieC

ngzguz:i:vzyZ 1eC
0<ux; <u i=1,...,k
y binary,

where we used that a; = 0 for ¢ < j — 1. We have, after fixing x; = u; fori=1,...,5 —1,

friz)= |C]-1 - (Zyz+ajzmz>

zeC
s.t. 72x2+2b1y15d+2u172
ieC
nglgulivlyl 1eC
nglgul i:j,...,k—l
y binary.

We consider several ranges for z.

(a) For —uy < z < =\, we havezecb —d+/\<d—z<d—z+zl 1uZ Therefore xz; = 0 for
j<i<k—1andy; =1 for every i € C is a feasible solution to fi. It gives an objective value of
-1 and therefore fi(z) > —1.
k—1

(b) Let now —\ < z < 0. Ifzk .lxz > M- ZJ—1 uitz, then =3 5 7wt} cobi < fz+zl 1 L ui4d
and therefore at the optlmal solution y; = 1 for any i € C. Therefore fy(z) = —1 — ()\ —

ZJ lul—i—z)
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(c) If Zf:_jl 2 < A= 30" u; + 2, then — Zf:_jl T+ Y ecbi > —2+ S~ w; 4+ d and therefore in
an optimal solution at least one y; = 0,7 € C. Therefore fr(z) > 0.
Thus the condition hk( ) < fr(2) gives —apz < —1 4 =1 E (A - ZZ 1 ul) /vz%luz’ and
=1 7t

therefore oy, = —m
i=1 K

To summarize, ap =0 for kK < j—1 and ap = — for k>j.

A— E
3.3.2 Lifting of binary variables

We are not able to obtain a closed form expression for the lifting coefficients of binary variables. We show
how to compute 8s by the dynamic program from Section 2.2 if all continuous variables are lifted first. Let
us assume that we start with (10) and y; for ¢ € I, have already been lifted. Then

[N |
- sz+zyz+2ﬁzyz<‘c‘_l
Ui i=j ieC i€l

is valid when y; = 0 for every ¢ € N \ I,. From Section 2.1, i,k € N \ I, is determined by

[Ny |
fr= min (01 =1+ = D mi= > ui— D Aiw)
Ui = 7 ieC i€l
s.t. — Z x; + Z biyigd—bk
iENT i€CUI,

ngiguiiviyi iEIy

0<xp <upxuv lfk‘GN;

y binary.

This problem can be easily transformed to (5), and therefore it can be solved by the dynamic programming
algorithm presented in Theorem 1.

Example (continued). Here we show the procedure of lifting (11). First we lift the continuous variables
T3, Zg, T7, and g, and then the binary variables in the order ys, ys, y7, and yg. Variable x5 has zero lifting
coefficient by Theorem 2. Since A\ = 4 we have j = 2, and ag = 0, a7 = ag = —ﬁ = —%. Value fSs is

defined by the following optimization problem
Bs= min 34+izr+izs—yi—yo—vyi—ys
S.t 4y +4ys + 6yy + 2ys —x6 —x7 — a8 < 11
0< z7 < )
0 S xs S 3
y binary,

which has a solution 83 = 0. Repeating this procedure in the selected order we obtain g = 1, 87 = 1 and

Bs = 0. Thus the lifted inequality

1 1
yl+y2+y4+y5+y6+y7—§$7—§9€8§3

is valid for P.
If order z7, zg, x¢, x3 is selected, then j = 1, and hence ay = ag = ag = i, az = 0. O
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4 Single binary variable polytope

As discussed in Section 2, we do not know an effective procedure to compute the lifting coefficients of
continuous variables. One possible approach is not to fix them. In order to be able to obtain a valid
inequality (2), all but one binary variables are projected. We give facets of the underlying polytope and we
show that they completely describe the underlying convex hull.

For ease of exposition, we assume that index 1 is the only non fixed binary variable. Thus C* = N and
CY = {1}. The resulting projection P° reads

dwi— Y witbiyn <d— Y b
ieN; iENT icly
0<z <up viyn
0 <z <u; £v;%; iGN\{l}
y1 binary.
If we denote by = by, d' =d — >, pv bi, uf =uy, V) = v1, uj = u; £ v;y; for i € N\ {1}, then the above
set is equivalent to

Z @ — Z zi+ by < d (14a)

iENT iEN,

0 < <uj £vjy (14b)
0<uz; <u ie N\ {1} (14c)
y1 binary. (14d)

Let P! be the convex hull of the set described by (14a)-(14d). We are only interested in the case when P!
is full-dimensional. Hence we assume that u; > 0 for i # 1, v} + v} > 0 if 1 € N and either u} > 0 or
uy —vp > 0if 1 € Ny . In addition, it is easy to see that for full-dimensionality we also need ;¢ v+ u; > d,
and — 7, n—uj + by <d'if 1 € N, and —Diens Wi FUL b <dif 1 €Ny

If v} = 0, then the resulting polytope has been studied in Atamtiirk et al. (2001), who also give a complete
polyhedral description. Magnanti et al. (1993) studied the same polytope with v; =0, d’ =0, b} < 0 and y;
integer, in the context of network design problems. The main result of this section is to identify a family of
facets of P! and to show that they completely describe this polytope. Throughout this section we consider
the following example.

Example. Let P be given by
x1+x2 + o3 — Ty — 5 + OY1 + 2y2+3ys + 2ys + 4ys < 14

0<z1<3—-wu1 0<z4<2+ys
0<z2 <2+ 2y 0<z5<5—3ys
0<z3<4-3y3

y binary.

Thus N;” = {1,2,3} and Ny = {4,5}. We fix y and y3 to 0, and y4 and y5 to 1. Then the resulting
polytope P! is described by

T14+xo + 23 — T4 — x5+ 5y1 <8

0<z21<3—wm 0<z4<3
0<zy<2 0<z5<2
0SZ‘3§4
y1 binary,
and thus 1 € N;" N Ny . O
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4.1 Facet-defining inequalities
Consider C = C*t UC~, where CT C N{", CT # () and C~ C N; . We define

A= Zu;f Z up+ by —d.

The following theorem gives facet-defining inequalities of P'.

Theorem 6. If 1 € (N; \C7)UCT and Fv] <A< bj,or 1 € (N;7\C*)UC~ and 0 < A < b}, then

Zmz sz A Fovy)yr < Zu

ieCt i€C— 1eCt
is facet-defining for P'. Here 6 =1if 1 € N; \ C~ and § = 0 otherwise.

Proof. First we show that (15) is valid. Let (Z,¢1) be a vector satisfying (14a)- (
equivalent to D, oy Ti — D ico- Ti < D e Ui, which follows from (14c). If 3

SoEm =Y E+ > u— Y wFo A —d <Y @ -y E— Y Ei+b)

ieCc+ i€eC- i€Ct  ieNT\O- ieC+ i€C~  ieN\C-

<le sz—l—b’

iENT iEN,

Since the first term equals to the left hand side of (15), this shows the claim.

(15)

d). If §; = 0, then (15) is

=1, then

fd’+z u
d + Zuig Zu;

ieCt

Next we show that (15) is facet-defining. By assumption P! is full-dimensional, we must have a feasible

solution with y; = 1. Hence,

—Zu;+b’1—d'<OifIEN1+ and —ZU;‘:':U1+b/1_d/<0if1€Nl_'

ieNy ieNT

If1le (Nl_ \C*) U C™T, then by assumption A > Fv] and hence by definition of A we have

Z ul — Z w, + by —d +v] > 0.

ieCct iENT\C-

If1e (Nf' \ C’+) U C~, then by assumption A > 0 and again by definition of A we have

Soup— > w4t —d >0

iect iEN]\C~

Inequalities (16)-(18) guarantee that the polytope described by

in_ Zaci: Z ul, £ 6v] — b +d

ieCt €C— iENT\C—
0<z <uj £ iflectucC-
0<az; <uj iceCtuC,i#1

(16)

(17)

(18)

(19a)

(19b)
(19¢)

has dimension |C| — 1. Therefore there exist k = |C| affinely independent vectors ! which satisfy (19). Let

e= min {uj,d Zu;—I— Z uj F 6v ).

1EN\C )
1€Ct iENT\C~
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Note that € > 0, since A < b}. Consider vectors

21 = (e oo 0 upyy ce g Ugyq -ty 0 ..o 00 0)
0 ... e upy,y cee U Ugyq -t 0 ... 0 0)
0 ... 0 u;_i_lfe... uﬁl u;_,_l w0 ... 0 0)
0 ... 0 upyyy cee Uy —€ Upiq-..un 0 0 0)
0 ... 0 upyy ce Uy Flooooo. . ;1)
0 ... 0 u:p_,_l u; i‘jf ...... REERERE 1)
Fntl = (L,_/ Up+1 s Uy M L,_g 0)
—_————
N\C+ N\ o c- v1
Vectors &',..., %" are affinely independent, hence 2 — #',...,#* — Z! are linearly independent. Thus
(22 —a) — (#* — @),...,(@" — @) — (&' — @) are linearly independent for an arbitrary vector #. Therefore
' —@,...,7% — @ are affinely independent and in turn (' — 4, 1),..., (Z* — @, 1) are linearly independent.
Finally, 2; = z; — 2,41 for 1 < i < n are linearly independent, and hence z; for 1 < i < n 4 1 are affinely
independent and they all satisfy (15) at equality. Therefore (15) is facet-defining. O
Example (continued). There are 9 subsets C' that satisfy conditions of Theorem 6. Together with the
resulting facets they are given in Table 1. O
ct c~ A | Inequality
{173} {4} 2 X1 +$3*Z4+2y1 S 7
{2,3} {4} 1| ze+o3—24+1y1 <6
{3} {45} |1 | a3 —as—a5+y1 <4
{1,2,3} | {4} 4 | vy +x2+x3—24+4y; <9
{123} [ {5} |3 |zi+m2+a3—25+3y1 <9
{1,2} {4,5} 2 | xy+xe—24—25+2y1 <5
{1,3} {45} |4 | a1 +x3—2g—a5+4y1 <7
{2,3} {45} | 3 | a9+ a3 —24—25+3y1 <6

Table 1: Facet-defining inequalities of P*

Note that Theorem 6 does not introduce a single inequality for 1 € C*t N N5 and v} > b}. We discuss
this case separately, since the resulting inequalities have a different structure. Let

p=d — Zué—!—vi—&— Z u;.

icCt iENT\C~

Theorem 7. If 1 € Ct NN, and b] < p < v}, then

in—in+uy1§d'+ Z ) (20)

1€Ct i€C— iENT\C~

is facet-defining for P?.
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Proof. First we show that (20) is valid for P'. Let (Z,91) be a vector satisfying (14a)-(14d). If §; = 0, then

Sa-Y m< Y m- Y wnt+ Y w<d+ Yl

i€Ct i€C— iENT 1ENT iEN;\C— €N, \C—
If g1 =1, then
Z:EZ-— Zii—l—d’— Zug—&—ui—i— Zu; SZ(@—u;)—&—(il—u’l—i—v’l)— Z;ﬁi—i—d’—i— Zu;
ieCct i€C- ieC+ ieNT\C— CT\{1} i€ iEN\C™
<d + Z u .
i€EN;\C—

Since the first term equals to the left hand side of (20), this shows the claim.
Next we show that (20) is facet-defining. By assumption P! is full-dimensional, and therefore

=Y uj—d <o (21)
iEN,
By assumption p < v}, and therefore by definition of u we have
Z u; — Z u; —d > 0. (22)
ieCt iEN]\C~

Inequalities (21) and (22) guarantee that the polytope described by

in—in: Z w4+ d (23a)

ieCt 1€C— iENT\C—
0<uz <u ieC (23Db)
has dimension |C| — 1. Hence there exist k = |C| affinely independent vectors Z‘ which are feasible to
(23a)-(23Db). Let
— min {u.d —b — Ly "
e= min {u,d - 'Z wi+vi+ Y ul)
i€CTt iENT\C~

Then & > 0 since p > b}. Consider vectors

21 = (6 v 0 wpyy couy ugy —Vygeeeu. 00 00 1)
O ... e upyq -o-uy upy —vggeeu, 0.0 00 1)
0 0 ¢ 0 wypiq—vpyq---up, 0 ... 0 1)
(0 0 0/ ° Qfaﬂrl Uggr--- Uy 0 3 1)
0 0 upyq Uy FL oo z, 0)
O ... 0 wpyy ... u i? ...... FRRRRNS FENRRERES iy 0)
Znp1= (0 ... 0 0 ...0 ‘wyqg—vyq.oup 0 ... 0 1)

N\C+ NT\C— o+ C- Y1

Similar arguments to those used in Theorem 6 show that zs are affinely independent. Therefore (20) is
facet-defining. O
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4.2 Full description of the convex hull

In this section we show that inequalities derived in Theorem 6 and Theorem 7, combined with the trivial
inequalities, provide the full description of P! when P! is full-dimensional. The proof is based on the
following concept. Given a set of valid inequalities, if all optimal solutions corresponding to an arbitrary
objective function over P!, satisfy one of the inequalities in the family at equality, then these inequalities
describe P!.

Theorem 8. Inequalities (14a)-(14c), (15) and (20) completely describe P1.

Proof. Let us consider the maximization problem with arbitrary objective function (a,c), where a corre-
sponds to z and ¢ to y;. Let M(a,c) denote the corresponding set of optimal solutions. We consider the
following cases.

1. If ax < 0 for some k € N7, then M(a,c) C {(z,y1) : 2 = 0}.
2. If a, < 0 for some k € Ny and k # 1, then M(a,c) C {(z,y1) : xr = u}, }.
3. Ifa; <0and 1€ Ny, then M(a,c) C {(x,y1) : 1 = v} £ viy1}.

4. Let us consider the case when a; > 0 fori € C =CTUC™ and a; =0 for i € N\ C. Here C* C Nfr
and C~ C N; . Note that if (#,7;) is an optimal solution, then #; = 0 for any i € N;” \ C* and
Z; =} forany i € Ny \C™ (&1 = v} £vjy; if 1 € Ny \ C7). We now consider several cases. The
general strategy is to consider several intervals for the capacity constraint (14a) with respect to the
upper bound d’. For large values of d’, continuous variables are limited only by their upper bounds
for any choice of y, so optimal solutions satisfy constraints x; = u} for i € C*, i # 1 at equality. For
small values of d’, the capacity constraint becomes active and is therefore satisfied at equality by an
optimal solution. In the intermediate case, the capacity constraint plays a role for either y; = 0 or
y1 = 1, but not both. In this case the inequalities described by Theorem 6 and Theorem 7 are used.

(a) Le (NF\CHUuC-

LIEY S cor uf — ZieNl‘\C— u) + b} < d', then we claim M(a,c) C {(z,y1) : @ = ul,i € CT}.
To show this, assume (&£,¢1) is an optimal solution and Z; < u; for some j € C*. Consider
(Z,91) such that 7; = &;, i # j, ¥; = uj and g1 = ¢. Then (Z,7;) is feasible and provides a
larger objective value, since a; > 0. Therefore, (Z,71) is not optimal, and this contradiction
proves our claim.

i If ) o uj— ZieN;\C_ up < d' <Y ieon Ui — ZieN;\C_ u} + b}, we have two possibilities.
A. M(a,c) C{(z,y1) : (z,y1) satisfies (14a) at equality} and there is nothing to prove.

B. M(a,c) € {(z,y1) : (x,y1) satisfies (14a) at equality}, i.e. there exists an optimal so-
lution (2%,27,91), where 2T corresponds to i € Nt and #~ corresponds to i € N™,
satisfying (14a) as a strict inequality. Consider first §; = 1. Since (27,47, 91) satisfies

(14a) at inequality, all :fc;r are equal to u; and all £ are equal to 0. Hence

Doaf =D a b=y a = Yy = Y u Vg =) ui = i+ b,

iENT 1EN— iceCt i€C— iEN;\C~ iceCt iENT\C~

which is larger than d’ by assumption. Therefore §; = 0, and as above 2¥ = v’ and

2= = 0. Thus if (2¥,27,91) is an optimal solution, then it either satisfies (14a) at

equality, or 9; = 0,27 = «/,2~ = 0. Combining these two possibilities together we
obtain M(a,c) C {(z,y) : (x,y) satisfies (15) at equality}.

iii. Finally, let us consider the remaining case d’ <), uj — ZieN? \c- Ui- Let (Z,91) be an

optimal solution, which satisfies (14a) at inequality. Since d’ < ;1 u; — ZZEN; \Cc- ul,

there exists j € CT, such that #; < u;-, or there exists j € C~ such that £; > 0. Consider
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(i,gl), such that z; = %;, @ # 7y jj = jj + e lfj S O+, .fj = j?j — € lf] € C~ and
71 = §1. There exists € small enough such that (Z,g;) is feasible. Vector (Z,7;) provides
a larger objective value and therefore (Z,¢;) is not optimal. This contradiction proves that
M(a,c) C{(z,y1) : (x,y1) satisfies (14a) at equality}.
(b) 1eCtn NS
I § O e ZieNf\C, u} + by < d', then for both y; = 0 and y; = 1 all continuous
variables z;, i € CT are bounded from above only by their upper bounds, and all continuous
variables z;, ¢ € C~ are bounded from below only by 0. Therefore M (a,c) C {(z,y1) : 1 =
uy + vy, z; = ul,i € CT}L
i I o ug 7Zi€Nl’\C* up < d' <Y icor uptvy 7Zi€N1’\C* u} + b, we have two subcases.
A. M(a,c) C{(z,y1) : (z,y1) satisfies (14a) at equality} and there is nothing to prove.
B. M(a,c) € {(x,y1) : (x,y1) satisfies (14a) at equality}, i.e. there exists an optimal solu-
tion (£7,27,41), where 2* € Ct and £~ € C~, satisfying (14a) as a strict inequality.
Using the same argument as in case a.ii.B we can prove that g3 = 0. Thus if (7,27, §) is
an optimal solution, then it either satisfies (14a) at equality, or §; = 0. Combining these
two possibilities together, we obtain M (a,c) C {(x,y1) : (z,y1) satisfies (15) at equality}.
iii. For the remaining case d’ < )7,y uj — EieNl_ \c- U, similarly to the case (a).iii, we have
M(a,c)C{(z,y) : (z,y) satisfies (14a) at equality}.
(¢) 1e CT NNy and v] <V
In this case we consider three subcases with the arguments identical to those used in the previous
case. The only difference is the intervals for the value of d’. Here they correspond to:

L. ZiEC+ u; - rU,l - ZieN{\C* u; + bll < dla
i D e Wi = 2ieno- Wi <d' < Piecr Wi — U1~ Xien\o- Ui+ 01,
i, d' <370 up — ZieNl‘\C— ul.
(d) 1e CTN N, and v] > b}
LIEY o up— ZieN;\c, u}, < d', then for both y; = 0 and y; = 1 all continuous variables z;,
i € Ct are bounded from above only by their upper bounds, and all continuous variables z;,
i € C~ are bounded from below only by 0. Therefore M(a,c) C {(x,y1) : ©1 = v} +viy1, x; =
uj, i€ Ct}
o I3 e wi =V = Dien\o- Wit <d' < Picor ui—Dieno\c- Ui, We have two subcases.
A. M(a,c) C{(z,y1) : (z,y1) satisfies (14a) at equality} and there is nothing to prove.
B. M(a,c¢) € {(z,y1) : (z,y1) satisfies (14a) at equality}. That is, some optimal solution
(27,27 ,91), where £ corresponds to i € N and £~ corresponds to i € N~ satisfies
(14a) as a strict inequality. Consider first §; = 0. Since (1,27, 7;) satisfies (14a) at
inequality, :f?j =} for any i € C* and #; =0 for any i € C~. Hence

PR BE AR LD DR DD ST DR P
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which is greater than d’ by assumption. Therefore §; = 1, and as before a":f = uj —
vy, 37 = ul fori € Ctandi # 1, ; = 0 for i € C~. Thus if (2+,27,91) is an
optimal solution, then either it satisfies (14a) at equality, or §; = 1. Combining these
two possibilities together we obtain M (a,c) C {(x,y1) : (z,y1) satisfies (20) at equality}.
iii. For the remaining case d’ < } ;e tj — v = Y J;en—\o- i + b, similar to the case (a).ii,
we have M(a,c¢) C {(z,y1) : (x,y1) satisfies (14a) at equality}.
(e) 1€ (Nl_ \C’_) UN,
In this case we consider three subcases with the arguments identical to the previous case. The
only difference is the intervals for the value of d’, which in this case correspond to the following.
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I ZieN{\C* ul +v] + b < d': Vector (uf —vj,',0,1) and (u},u,0,0) are both
feasible, hence upper bounds (14c) are satisfied at equality.
i Yot Ui = Dien—\o- U T UL b < d < Yicor ui — Yieno\o- uit Setting y1 = 0 is
feasible, y; = 1 is not. Hence (15) is satisfied at equality.
i, d' <) icor ui — ZieNf\C, ul: Inequality (14a) is satisfied at equality.
(f) 1€ (N; \C7)UN, and vj <
In this case we consider three subcases with the arguments identical to the previous case. The
only difference is the intervals for the value of d’. They correspond to the following.
LY et ui— ZieNf\C_ u —vp + b <d': (u) —vi,v,0,1) and (u}, o/, 0,0) are both feasible,
hence upper bounds (14c) are satisfied at equality.
i Y et up — Dient\c- W — VL + by < d < Yicorup— Yieno\c- Wit Setting y1 = 0 is
feasible, y; = 1 is not. Hence (15) is satisfied at equality.
i, d' <) ieor = Xen\o- Ui Inequality (14a) is satisfied at equality.
(g) 1€ (N; \C7)UN, and v > b}
In this case we consider three subcases with the arguments identical to the previous case. The
only difference is the intervals for the value of d’. They correspond to the following.
LY cor uj— ZieNf\C, w, —vp + b <d: (u] —vi,u,0,1) and (u},u/,0,0) are both feasible,
hence upper bounds (14c¢) are satisfied at equality.
e Yiect Ui — Dien\o- W — v AV < d < Yieor ui — Yien\o- Uit Setting y1 = 1 s
feasible, y; = 0 is not. Hence (20) is satisfied at equality.
i, d' <370 up — ZieN{\C’* u}: Inequality (14a) is satisfied at equality.

This covers all the cases and proves the statement of the theorem. O

Example (continued). This theorem shows that the trivial inequalities and all those given in Table 1
completely describe the convex hull of P?. O

4.3 Lifting coefficients for binary variables

Next we show how to compute lifting coefficients for binary variables based on (15). We define a lifting order
ia,..., 4N for y such that 2 <i; < |N| and i; # iy for j # k. Let also i1 = 1. Let us assume that variables
Yig, - - -+ Yip_, have already been lifted, which means that I, = {is,...,i,—1}. Then for i; € L the lifting
coefficient f3;, is defined by

Biy= min (> wuj— Y xi+ > w—AFo)m— >, Biyi— >, Bily—1)

jec+t ject jec— j€l,NLo JjE€I,NL,y
k—1
s.t. E T; — E € + E bi]-yij < d— E bz
JENT JENT Jj=1 i€L1\Iy

ngjguj:tvj j:Zk

0 <a; <u;j £vy; 316{2‘1,...,2;@,.1}
0<z; <uj +v;y; jE{’Lk+1,...,Z|N‘}
y binary.

For i, € L1 we have
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Bip= max (Y uj— > xi+ > xi—AFoody— Y, Biyi— Y, Bily,—1)

jec+ ject jeCc— j€I,NLg jEI,NL,
k—1
s.t. E T — Z xj—"_zbijyij <d- Z b;
JEN JENT Jj=1 i€ L\ (I,U{ix})

Oij S’u]‘ j:’ik

ngjgujivjyj jE{il,...,ik_l}
0<z; <uj vy J € {iksr, 0N}
y binary.

These two optimization problems can be solved by the dynamic programming algorithm developed in
Theorem 1. Similar procedure is applied to lifting of (20).

Example (continued). Consider lifting of the first inequality given in Table 1; x1 +x3 — x4 +2y; < 7. We
lift binary variables in the order y2, y3, ¥4, and ys. To find B2 we need to solve the following problem

fo= min 7—x1 —x3+ x4 — 21
s.t. T1+xo+ a3 — T4 —x5+5Y1 <6
0<z1<3—uy 0<z4<3
0<aw <4 0<z5<2
0§$3§4
y1 binary,

which gives 2 = 0. Similarly we obtain 83 = 3, 84 = —1 and 5 = —2. Thus the resulting inequality is

1+ x3 — Tq +2y1 +3yz — ys — 2y5 < 4. O
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A  Proof of Theorem 1

Proof. Let (2,,,yn) be the nth components of an optimal solution (z,y) to f,(d). To prove the statement of
the theorem consider the following possible cases. The difference between n < k and n > k + 1 is considered
later in the proof.

1. If y, = 0 and z,, = 0, then clearly f,(d) = fn—1(d) (first case in (6) and (7)).

2. If y, = 1 and x,, = 0, then f,(d) = fn_1(d — é,) + by (second case in (6) and (7)).
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3. If y, = 0 and x,, = Gy, then f,,(d) = fu_1(d — ptin) + éniy, (third case in (6) and (7)).

4. If y, = 1 and x,, = 1y + On, then similarly f,,(d) = fo_1(d — 6n(lin 4 0n) — é) + n (n + 0n) + b
(fourth case in (6) and (7)).

5. The case 0 < x,, < Uy, + VnYy is more involved.

We first show that (5b) is satisfied at equality at an optimal solution or we end up in one of the already
considered cases. Assume that (z,y) does not have this property, i.e. it is an optimal solution that
satisfies (5b) as strict inequality. We consider a solution (Z,§), defined by § = y and & = x + d,ce,,
where ¢ is positive but small enough to make (Z,§) feasible. Clearly, (Z, ) provides equal or larger
objective value and therefore it is optimal. If (Z,g) satisfies (5b) at equality, we obtain the claim.
Otherwise either z,, = U, + U, ¥, and we apply cases 3 and 4 or Z,, = 0 and we use cases 1 and 2.

Next we consider two cases.

(a) Let us first assume n > k + 1. Then

i. for every i > k+ 1 and a; < a,, we have z; = 0 in every optimal solution,

ii. if Gg—1 < @q = @g41 = -+ = Gp, then there exists an optimal solution (Z,y) with either
Tp = Up +Onfp O Tg = Tgy1 =+ = Tp—1 =0 and 0 < T < Gy + OnPn,

iii. for every ¢ < k and |a;| > @, we have z; = 0 in every optimal solution,

iv. if i <k and |a;| < a,, then x; = 4; + 0;y; in every optimal solution,

v. if i <k and |agq1| < |ag| = |ag—1] = -+ = |ap| = an < |ap_1| for a p < k, then there exists
an optimal solution (Z,y) with either Z,, = 4y, + 0,7, or £, = Tg41 = -+ = &p = 0 and
0<Z<Up+ OnGn-

We show only case (i) since all other cases can be proved similarly. Let us assume that x; > 0.
Consider vector (z,7), defined by § = y, T = x —ee; +¢ce,, where 0 < £ = min{ i, + 0, yn — Tn, T }-
Vector (Z, §) is feasible, since 224:1 dgq = 224:1 044, however due to G; < @, the objective value
is strictly greater than the objective value of (z,y), which contradicts optimality of (z,y).

As a conclusion of all these claims we either end up in one of the cases 1-4 or we have that

n k
1— Z CiYi Z U; + vzyz (24)
i=t(n

=1

In turn we obtain that

k

fn(d) = max{ Z &l(al + @lyl) + Zgzyz + dn Zczyz + Z U; + Uzyz

i:t(n) i=1 i=t(n)

- Z U; + Uzyz + Zczyz < d (25)

ztn)

- Z i + vyyi) + Zczyz > d — (@ + Dnyn), (26)
i=t(n)

Y binary} .

We have replaced x,, by (24) and we use properties (i)-(v). The condition z,, > 0 is equivalent to
(25). On the other hand, z, < 4, + Upy, is imposed by (26).

By using the standard argument of differentiating between y,, = 0 and y,, = 1 we obtain the fifth
and the sixth terms in (7).
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(b) Let us now assume 1 < n < k. In this case either there exists an optimal solution under cases 1-4
or z; = 0 for every 1 <+¢ < n. This statement can be shown similarly as the equivalent statement
in the case n > k + 1. Thus in this case we have

Tp = Z ézyz - &
i1
and thus
fu(d) = max { S b + (3 g — )
i=1 i=1
Z Gy >d
i=1

i=1
Y binary} .
The fifth and the sixth terms in (6) can easily be justified by setting y, = 0 and y, = 1,
respectively.
This completes the proof. O

B Computation of g, §, h, h by dynamic programming

The recursion for h and h are simple. For any integers 1 <[ < k and 2 < p < k we have

b (d) = max{h!_(d), h,_,(d — &,) + b, + @cp} .

p—1

It is easy to explicitly write h}. A similar recursive relation holds for h.
For g we exhibit three recursions that hold for every d € Q. The first one reads

951 (d) = max{gk® | | (d), g5 1 1(d — &) + by — @é,} (27)
and it is valid for £+ 1 < p < M. The second one is
9125(d) = max{g}®; 1 (d), g, 1 (d — &) + bj — ae;} (28)
and it holds for 1 < j < s — 1. The last one reads
l,s+1

gk s(d) = max{g ' (d+ 8), g0 (d + s — & + 05) + (s + @) D5 + by — rés} (29)

and it is applied for 1 < s <k —1.
The boundary condition reads

o (@ + @) oe + by — aner)t e — i < d < G+ — g
gkk(d) = .
0 otherwise.

We can compute all géfj by following the next steps for every [. Each iteration in what follows is assumed

to be carried out for every d € €.

1. Fixed 5,1 <5< k.
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(a) For every s =k, k—1,...,5 we use (29) to obtain g!*. This gives us gfcgg
(b) Next for j=5—1,5—2,...,1 we compute gfjl by using (28). This step gives us gffl
2. At this point we have 9559,1 for every 5,1 < s < k. Now for p=k+ 1,k+2,...,M we apply (27) to
obtain gzl)fl

Similar recursive formulas can be obtained for g, which leads to a similar procedure to calculate g.
After obtaining h, h and g, g, the complete procedure to calculate fj; is now simple. We first use (6) to
compute f1, fo,..., fr. Next by using (7) we obtain fii1, fkt+2,---, fym-
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