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The objective of this paper is to demonstrate a methodology for designing and evaluat-
ing the operational planning for interplanetary exploration missions. A primary question
for space exploration mission design is how to best design the logistics required to sus-
tain the exploration initiative. Using terrestrial logistics modeling tools that have been
extended to encompass the dynamics and requirements of space transportation, an archi-
tectural decision method has been created. The model presented in this paper is capable
of analyzing a variety of mission scenarios over an extended period of time with the goal of
defining interesting architectural scenarios for space logistics. This model can be utilized to
evaluate different logistics trades, such as where the push-pull boundary for commodities
exists, which can aid in the decision of where to pre-position commodities for later use. In
the final paper, the results of this implementation will be presented for a lunar campaign
using estimated surface demands for exploration. In addition, the final paper will explore
the use of pre-positioning of propellant for later use and incorporate the capability for
refueling during the mission to gain a greater understanding of the benefits to exploration
of this technology development.

I. Introduction

On January 14th, 2004, President Bush set forth a new exploration initiative to achieve a sustained human
presence in space. Included in this directive is the return of humans to the Moon by 2020 and the human
exploration of Mars thereafter.1 The President has tasked NASA with the development of a sustainable
space transportation system that will enable continual exploration of the Moon, Mars and ’beyond’.

Inherent to the problem of transporting people to the Moon, Mars, and ‘beyond’ is sustaining the people
and the operations while in transit and at the respective destinations. Especially for long-term missions, the
amount of consumables required becomes a significant issue in terms of mass in LEO which translates to
mission cost. In order to develop a sustainable space transportation architecture it is critical that interplan-
etary supply chain logistics be considered. The goal of the supply chain logistics problem is to adequately
account for and optimize the transfer of supplies from Earth to locations in space. Although the commodities
themselves may be of low value on Earth the consideration of these commodities is of high importance and
can directly impact the mission success. As such, it is desirable to find low cost yet reliable methods of
transporting these supplies to the destinations.

The space exploration missions will evolve over time which will generate an increased demand at in-space
locations. In order to develop a sustainable architecture it is necessary to recognize the interdependencies
between missions and how this coupling could effect the logistics planning. By viewing the set of missions
together, as a space network, and optimizating the operations of the transportation system that provides the
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logistics for the exploration missions, a reduction in cost can be achieved which promotes a more sustainable
system architecture.

The integration of the multiple missions creates an opportunity to analyze the effect of pre-positioning
and combining missions. Specifically, the effect of pre-positioning fuel from one mission to the next can effect
both the safety and the cost of the missions. The idea of pre-positioning fuel can take on two forms. In one
instance, fully fueled propulsion elements can be pre-positioned at a fuel depot or at strategic locations for
future use. However, what may prove to be more effective in the future is to establish inteplanetary fueling
stations where propulsive elements can be re-fueled for continued use. Therefore, it is necessary to develop
a model for space logistics that can evaluate these different scenarios.

There exists a great deal of literature on the design of transportation networks on Earth. For example in
Reference 2 the design of the school bus routing problem is presented and solved. In this problem there exists
a number of restrictions on feasible solutions, including time window constraints on pick-up and delivery,
which add to the complexity of a large-scale problem. In Reference 3 a smaller aircraft network design
problem is considered to understand the effects of the network design and vehicle selection on the system
cost. By defining three different classes of aircraft, small, medium, and large, the optimal allocation of
vehicles to routes can be defined to meet the given demand.

Many of the tools and methods of terrestrial logistics can be extended to space networks. Specifically,
time expanded networks represent a method for modeling transportation systems that are operated over
time.4 Using this modeling technique the static network is expanded and time is incorporated directly into
the network definition. As shown in Reference 5 time expanded networks were used to plan the routing of
trucks for companies that rely on less than truck load carriers for shipping products to customers.

In Section two the general problem is defined. Included in this section is the definition of the commodities
or supplies and the elements or physical containment and propulsion units used to transport the commodities.
The definition provided is extensive to clarify terminology developed to integrate the aerospace community
with the terrestrial logistics community. Furthermore, the network definition is presented as well as the
definition and description of the time expanded network which is the terrestrial modeling technique employed
for the space logistics model. Section three presents the problem formulation and constraints. Section four
presents an overview of the solution methodolgy and Section five provides a quick example, using Apollo
to clarify this complex formulation. Section six details the future work that will be conducted for the final
paper.

II. Problem Definition

A. Commodities

The goal of the space logistics project is to determine how to meet the demand for the exploration missions.
As such, we are investigating how to optimally ship multiple types of commodities. For the purpose of the
logistics problem, a commodity will be defined as a high-level aggregate of a type of supply. Thus, we will
define a set of k = 1, . . . , K commodities, each with the following parameters.

• Denote the demand of each commodity as dk.

• Denote the origin of each commodity as sok.

• Define the destination of each commodity as sdk.

• Define the availability interval of each commodity as tok =
[
stok, etok

]
, where stok is the starting time

of the interval and etok is the ending time of the interval.

• Define the delivery interval of each commodity as tdk =
[
stdk, etdk

]
, where stdk is the starting time of

the interval and etdk is the ending time of the interval.

• Define the maximum time that a commodity can be in transit as tkmax.

• Define the unit mass of each commodity as mk when it arrives at the destination.

• Define the unit volume of each commodity as vk when it arrives at the destination.
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• Define an absolute mass gain/loss factor for each commodity after being available at sok for τ periods
as fmk

τ where fmk
τ < 0 if the commodity gains mass over time, fmk

τ > 0 if the commodity loses mass
over time and fmk

τ = 0 if the commodity mass remains constant over time. a

• Define an absolute volume gain/loss factor for each commodity after being available at sok for τ periods
as fvk

τ where fvk
τ < 0 if the commodity gains volume over time, fvk

τ > 0 if the commodity loses volume
over time and fvk

τ = 0 if the commodity volume remains constant over time.

B. Elements

Elements are physical, indivisible functional units that transport the commodities from origin to destination.
An element is classified by the amount of commodity capacity and propulsive capability it possesses. Elements
can be divided into two classes: non-propulsive elements MN and propulsive elements MP . The element
parameters are (cf. Figure 1):

• The maximum fuel mass of a propulsive element m, m ∈MP is defined as mfm.

• The fuel volume of a propulsive element m is defined as vfm.

• The structural mass of element m is defined as msm.

• The mass capacity of element m is defined as CMm.

• The volume capacity of element m is defined as CV m.

Figure 1. Element Representation

1. Assumption

We make the following assumptions regarding elements and stacks.

Consecutive Burns An active element burns only on consecutive burns. Once an element becomes active,
it stays active for a certain number of burns. As soon as it becomes passive, it can no longer be active
again unless it is refueled. During two consecutive burns, an active element can be idle for an arbitrary
length of time. The number of consecutive burns is not constrained.

Fuel Consumption We assume that before every initial burn, the active element is filled to capacity with
fuel and after the burns are completed, the remaining fuel is expelled. If an element is later refueled,
it is filled to maximum capacity.

For example, consider an element that starts burning. Just before this first burn the element was filled
to capacity with fuel. The element then executes four consecutive burns and after the fourth burn it
expells any remaining fuel. Then it travels as a passive element for a period of time. If at some point

a For example, let commodity k become available at its origin sok at time to ∈ tok and arrive at the destination sdk at time
td ∈ tdk. For any time tc ∈ [to, td], the unit mass of commodity k at time tc is mk +

∑td
t=tc

fmk
t−to

.

3 of 13

American Institute of Aeronautics and Astronautics



it is refueled, it can remain passive for another period of time before it executes another sequence of
burns.

Docking/Undocking We assume that any two elements can be docked and undocked. In addition, if any
cost is associated with these operations, it is not explicitly captured. If some elements cannot be docked
together, then this must either be captured in stack formation or in a post optimization analysis.

C. Networks

1. Static Network

The physical network, or static network, represents the set of physical locations, or nodes, and the connec-
tions, or arcs, between them. The physical nodes, or static nodes, represent the different physical destinations
in space, including the origin and destination of all the commodities, as well as the possible locations for
transshipment. Three types of nodes have been identified: Body nodes, Orbit nodes, and Lagrange point
nodes. The physical arcs, or static arcs, represent the physical connections between two nodes, that is, an
element can physically traverse between these two nodes. We define an arc (si, sj) to be a static arc that
represents a feasible transfer from static node si to static node sj.

The mathematical description of the static network is given below.

• Define the static network as a graph GS, where GS = (NS,AS).

• Define the set of nodes, NS = {s1, . . . , sn}, in the static network.

• Define the set of arcs, AS ⊆ NS ×NS in the static network.

Example 1 Consider 2 commodities shown in the following table.

Commodity Origin Destination Availability Interval Delivery Interval
Commodity 1 1 3 [1, 2] [5, 7]
Commodity 2 2 3 [1, 3] [5, 6]

The corresponding static network is shown in Figure 2. As indicated by the arcs in the network, there exists
a transfer arc from node 1 to node 3, node 2 to node 3, node 1 to node 4, node 2 to node 4, and node 4 to
node 3. Note that node 4 here is neither an origin nor destination of any commodity. It is included in the
static network since both commodities can be transhipped at node 4, which may result in a lower cost.

Figure 2. Example of a Static Network

2. Time Expanded Network

The space logistics project is investigating the design of a sequence of missions that evolve over an extended
period of time. In addition, certain properties of the space network are time-varying. For these reasons we
have chosen to introduce time expanded networks as a modeling tool. In the time expanded network, the
absolute time interval under consideration, is discretized into T time periods of length ∆t. A copy of each
static node is made for each of the time points and the nodes are connected according to the following rules.

• The arc must exist in the static network.
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• The arc must create a connection that moves forward in time.

• The arc must represent a feasible transfer, in terms of orbital dynamics.

The mathematical description of the time expanded network is given below.

• Define the time expanded network as a graph G, where G = (N ,A).

• Define the set of nodes in the time expanded network as N = {i = (si, t) | si ∈ NS, t = 1, . . . , T}. To
simplify the notation, for a given node i ∈ N , let s(i) and t(i) denote the physical node and the time
period corresponding to node i, i.e., if i = (si, t) then s(i) = si and t(i) = t.

• Define node s as the general source that generates the supply of elements. This node is connected to
every node in the network where an element can originate (e.g. in the current setting s is connected
to every node i with s(i) corresponding to LEO).

• Define the set of arcs in the time expanded network as A ⊆ N ×N . An arc a = (i, j) = ((si, t), (sj, t+
T t

si,sj)) exists if and only if there exists an arc (si, sj) in the static network, and the transit time from
static node si to static node sj starting at time t is T t

si,sj . Note that if si = sj, then T t
si,sj = 1 for all

t.

• Define path p as a sequence of nodes. In particular, let f(p) and l(p) denote the first node and the last
node of path p. If path p originates at node s, f(p) = s for all such p.

Example 2 Consider the static network shown in Example 1. Let the numbers next to each arc (si, sj)
indicate the transit time from node si to node sj. The corresponding time expanding network is shown in
Figure 3. Note that T = maxk etdk = 7.

Figure 3. Example of a time expanded network

To account for the fact that on certain transfer arcs two burns occur, we slightly modify the time expanded
network. We first introduce a new fictitious static node labeled fic. Note that this node is not related to
the static network. On every transfer arc (i, j), s(i) 6= s(j) requiring two burns we add a new auxiliary node
k = (fic, t) with two arcs; one connects i to k and the other one k to j. The value of t is irrelevant. In this
new network, each arc (i, j) with s(i) 6= s(j) corresponds to a single burn. All such arcs are called burn arcs
and we denote them by AB .

The mass fraction for element m to execute the burn corresponding to arc a ∈ AB is defined as

φm
a = 1− exp

(−∆Va

Img0

)
.
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III. Formulation

A. Commodity Flows

1. Commodity Path Feasibility

In order to understand how each commodity should move through the network it is not sufficient to know
which arcs are traversed. Instead, it is necessary to determine the path followed from the origin node to the
destination node where the commodity fulfills the specified demand. If we define a path variable p, then for
each commodity k it is possible to determine a set of feasible paths Pk.

For a given commodity k, the path p is feasible only if it originates at node i = (sok, t) with t ∈ tok and
terminates at node j = (sdk, t′) with t′ ∈ tdk. Moreover, we require that the transit time along the path p
is no greater than the maximum travel time for commodity k, i.e.,

t(l(p))− t(f(p)) =
∑

(i,j)∈p

(t(j)− t(i)) ≤ tkmax p ∈ Pk.

Example 3 Consider commodity 1 in Example 2. If t1max = ∞, all the feasible paths for commodity 1 are
shown in Figure 4, and each color corresponds to a different path. However, if we let t1max = 5, the green
path is infeasible since the total traveling time along this path is 6.

Figure 4. Example of a Feasible Path

2. Commodity Flow Variables and Constraints

We need to determine how many units of commodity k are transported on path p, for any k and p ∈ Pk.
Therefore, for every k and p ∈ Pk we have a decision variable xk

p ≥ 0 such that

xk
p = number of units of commodity k traveling on path p.

In order to satisfy the demand dk of a given commodity xk
p, we have

∑

p∈Pk

xk
p = dk for every commodity k. (1)

B. Element Flows

1. Element Flow Variables

For any non-propulsive element m ∈MN , let us define the decision variable ym
p such that

ym
p =

{
1 if non-propulsive element m travels on path p

0 otherwise,

for each feasible path p in the time expanded network.
Moreover, for any propulsive element m ∈MP ,

zm
p,q =

{
1 if element m is fueled at the first node of p and is active during sub-path q of path p

0 otherwise,
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where p is any feasible path in the time expanded network and q is a sub-path of p. Note that
∑

q zm
p,q = 1

if and only if element m ∈MP travels on path p.
For each path p, the element m can only be refueled at most once at the first node of p, and there is at

most one sub-path q such that the element m is active. Note that some arc a /∈ AB may be included in the
active sub-path q. It is possible for an element to enter the network without fuel, and be fueled at a node i.
To capture this situation, we allow q to be empty if p is the first path of the element, i.e., the first node of p,
f(p) is s. As illustrated in Figure 5, this definition allows the tracking of refueling, and the active sub-path
q is empty for the first path p0.

Figure 5. Illustration of the Propulsive Element Flow Variables

2. Element Flow Constraints

• A non-propulsive element can only travel on a single path,
∑

p

ym
p ≤ 1 m ∈MN . (2)

• For active elements, we constrain at most one element to be active on any burn arc,
∑

m∈MP

∑
p

∑
q:a∈q

zm
p,q ≤ 1 a ∈ AB . (3)

• A non-propulsive element m ∈ MN can travel on an arc a only if there is an active element on that
arc, ∑

p:a∈p

ym
p ≤

∑

m′∈MP

∑
p

∑
q:a∈q

zm′
p,q a ∈ AB ,m ∈MN . (4)

• A propulsive element m ∈MP can travel on an arc a only if there is an active element on that arc,
∑

p:a∈p

∑
q

zm
p,q ≤

∑

m′∈MP

∑
p

∑
q:a∈q

zm′
p,q a ∈ AB , m ∈MP . (5)

• To obtain a valid formulation for refueling, we require the flow conservation constraints for each element
m ∈MP ,

∑

p:f(p)=s

∑
q

zm
p,q ≤ 1 m ∈MP (6)

∑

p:l(p)=i

∑
q

zm
p,q =

∑

p:f(p)=i

∑
q

zm
p,q m ∈MP , i ∈ N . (7)

C. Fuel Flows

For every node i where a propulsive element m will be fueled, there should be enough supply of fuel.
From our assumptions it follows that the required amount of fuel be mfm for element m. Therefore,
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the amount of fuel required at node i can be regarded as a special commodity, with the demand of∑
m∈MP

∑
p:f(p)=i

∑
q mfmzm

p,q. For each of the feasible path p, we define the decision variable

wp = amount of fuel traveling on path p.

Obviously, wp ≥ 0, and the demand of fuel at node i is satisfied by the fuel transported on path p ending at
node i, i.e., ∑

p:l(p)=i

wp =
∑

m∈MP

∑

p:f(p)=i

∑
q

mfmzm
p,q i ∈ N . (8)

D. Capacity

For space travel, it is necessary that all commodities be transferred by elements. As such, we must relate
the amount of commodities (both mass and volume) available at each time to the total capacity available at
that time. Since the mass and volume loss/gain factors for different commodities can be both positive and
negative, for each arc a = (i, j), we consider the capacity at both t(i) and t(j).b

First, for a given arc a = (i, j), let us consider the mass capacity constraint at time t(i).

• For any commodity k, for some path p such that a ∈ p, we need to consider the mass of the amount
xk

p at time t(i). Commodity k traveling along path p enters the network at the first node of p, i.e., at
time t(f(p)) and arrives at the destination at the last node of p, i.e., at time t(l(p)). According to our
definition of the mass loss/gain factor, its mass at time t(i) is

(
mk +

∑t(l(p))
t=t(i) fmk

t−t(f(p))

)
xk

p.

• We need to consider the fuel mass wp such that a ∈ p.

• The total mass capacity available at arc a = (i, j) is
∑

m∈MP

∑
p:a∈p

∑
q

CMmzm
p,q +

∑

m∈MN

∑
p:a∈p

CMmym
p .

Therefore, the corresponding capacity constraint is

∑

k

∑
p:a∈p


mk +

t(l(p))∑

t=t(i)

fmk
t−t(f(p))


xk

p +
∑

p:a∈p

wp ≤
∑

m∈MP

∑
p:a∈p

∑
q

CMmzm
p,q+

∑

m∈MN

∑
p:a∈p

CMmym
p a = (i, j) ∈ AB .

(9)

Similarly, we can get the mass capacity constraints at time t(j),

∑

k

∑
p:a∈p


mk +

t(l(p))∑

t=t(j)

fmk
t−t(f(p))


xk

p +
∑

p:a∈p

wp ≤
∑

m∈MP

∑
p:a∈p

∑
q

CMmzm
p,q+

∑

m∈MN

∑
p:a∈p

CMmym
p a = (i, j) ∈ AB .

(10)

As for volume capacity constraints, we have identical terms except for the fuel carried on arc a. The
bIf we allow nonlinear loss/gain functions, we need to evaluate the capacity of arc a at any time t ∈ [t(i), t(j)]. However, it

is a direct extension of constraints discussed here.
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volume of the fuel traveled on path p such that a ∈ p is vfm

mfm wp. Hence, the volume capacity constraints are

∑

k

∑
p:a∈p


vk +

t(l(p))∑

t=t(i)

fvk
t−t(f(p))


xk

p +
∑

p:a∈p

vfm

mfm
wp ≤

∑

m∈MP

∑
p:a∈p

∑
q

CV mzm
p,q+ (11)

∑

m∈MN

∑
p:a∈p

CV mym
p a = (i, j) ∈ AB

∑

k

∑
p:a∈p


vk +

t(l(p))∑

t=t(j)

fvk
t−t(f(p))


xk

p +
∑

p:a∈p

vfm

mfm
wp ≤

∑

m∈MP

∑
p:a∈p

∑
q

CV mzm
p,q+ (12)

∑

m∈MN

∑
p:a∈p

CV mym
p a = (i, j) ∈ AB .

E. Capability

The capability constraint determines if enough fuel is available to perform a burn. A single propulsive
element can only burn on consecutive burn arcs. All fuel is assumed to be consumed or dropped after the
final burn. The propulsive element cannot be reused until after it is refueled.

Here we model that the total fuel of the active element performing the burn on a sub-path q must be
enough to carry the total cumulative mass along every arc in q. Let q be an arbitrary sequence of possible
consecutive burns and let al = (il, jl) be the lth burn arc in q for l = 1, . . . , |q|. Here |q| denotes the number
of arcs in q. Let r(p, q) denote the sub-path along path p from the first node of p to the first node of q, if q
is not empty. For example, r(p, q) is the sub-path from node i to node ik for the path p shown in Figure 5.

The resulting constraint family reads

mfm
∑

p

zm
p,q + M

(
1−

∑
p

zm
p,q

)
≥

|q|∑

l=1

Φm
q,l ×


 ∑

m′∈MP

∑

p:al∈p

∑

q′
msm′

zm′
p,q′ +

∑

m′∈MN

∑

p:al∈p

msm′
ym′

p +

mfm +
∑

m′∈MP

m′ 6=m

∑
p

∑

q′:al∈r(p,q′)

mfm′
zm′
p,q′+

∑

k

∑

p:al∈p


mk +

t(l(p))∑

t=t(il)

fmk
t−t(f(p))


 xk

p +
∑

p:al∈p

wp




m ∈MP , path q,

(13)

where

Φm
q,l = φm

al

|q|∏

l′=l+1

(1− φm
al′ ).

F. The Complete Model

Since the cost to route commodities is negligible, we include only the refueling cost and the cost associated
with elements. The objective function reads

min
∑

m∈Mp

cm
∑

p
f(p)=s

∑
q

zm
p,g +

∑

m∈Mn

cm
∑

p

ym
p + f

∑
p

wp + f
∑

m∈Mp

mfm
∑

p
f(p)=s

∑
q

q 6=∅

zm
p,q,

where cm is the cost of using element m and f is the per unit fuel cost. Note that cm should not include the
fuel cost. The last term captures the fuel cost of the propulsive elements on their very first path originating
at s and assuming they burn (i.e. q 6= ∅). This is the fuel that is preloaded on the Earth into selected
propulsive elements.

The model includes constraints (1) through (13). In addition, all x and w variables are nonnegative and
all z and y variables are binary.
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IV. Solution Methodology

Having defined the inputs to the problem and the model, it can readily be seen that although this problem
is linear, it is quite large, and with discrete variables, will require a complex solution methodology. Using
techniques for large-scale optimization, such as column generation and branch-and-price6 we can sequentially
solve a problem of this size efficiently.

Using column generation we select only a sub-set of the variables to be present on each iteration. Using
this sub-set, the branch-and-price computation begins by relaxing the integrality constraints on the variables
and solving the resulting linear program. This iterative process continues by using a previous solution and
resolving the problem after selectively imposing values on certain variables based on the previous solution.
Once converged, the solution is evaluated to determine if there is a better solution exists when using another
sub-set of variables. The optimization algorithm terminates when a better solution does not exist.

A. Initial Solution Methodolgy

In order to effectively utilize the above solution methodology a good feasible initial solution is required.
Due to the size and complexity of the model, it is necessary to utilize optimization techniques prior to
the full-scale optimization to create a very good initial solution that provides both a starting point for the
optimization and a bound for comparison during the optimization process. Therefore the initial solution is
obtained by employing less computationally intensive optimization techniques.

The initial optimization solution has three components: path assignment, commodity to element as-
signment and propulsive element to burn arc assignment. Figure 6 provides a representation of how these
components integrate to form the initial solution.

Figure 6. Diagram of Initial Optimization Solution Methodology

The path assignment is performed by employing a shortest path algorithm where the cost of the arcs is
proportional to the ∆ V of the arcs. The shortest path for each commodity is then determined. In addition,
a benefit is placed on using a previously assigned arc to minimize the number of transfers required. The path
assigned to a commodity is feasible, given the starting and ending node and time intervals. For commodities
with a restricted travel time, it is necessary to utilize a constrained shortest path algorithm where paths can
only be selected if they satisfy the addditional time constraints.

Following the path assignment, it is necessary to allocate commodities to elements based on a surrogate
cost. Here a greedy algorithm is used in conjunction with random surrogate cost selection to rank the
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elements. The surrogate cost of an element is based on an approximate measure of the value of the element.
Equation 14 lists the surrogate costs employed.

J1 =
Cost

MassCapacity

J2 =
Cost2

MassCapacity

J2 = Cost

J4 =
√

Cost

MassCapacity

J5 =
Cost

MassCapacity2

J6 =
Cost√

MassCapacity

(14)

Given these surrogate costs, the greedy algorithm seeks to make the best assignment at each turn by
selecting the element with the lowest surrogate cost first. Given a particular element, the initial optimization
routine evaluates if the element can be used to carry the given commodities to the destination. This
proceedure repeats until all commodities have been assigned.

Finally, the propulsive element to burn arc assignment is performed. Again, a greedy algorithm is
utilized and random surrogate cost functions are applied to each element. The surrogate cost functions for
the propulsive element assignment are provided in Equation 15.

J1 =
Cost

Fuel

J2 =
Cost2

Fuel

J3 = Cost

J4 =
√

Cost

Fuel

J5 =
Cost

Fuel2

J6 =
Cost√
Fuel

(15)

The greedy algorithm tracks from the end of the path to the beginning and assigns propulsive elements
along the burn arcs. For an assignment to be feasible, the amount of fuel currently available in a given
propulsive element must be greater than the fuel required to perform the burn, which is a function of the
mass that needs to be transported. In this manner, an accurate cost of transporting the commodities to their
respective destinations can be computed and a feasilbe initial solution to the optimization can be obtained.

V. Apollo Example

For such a complex problem it is helpful for both generating and understanding the model to examine a
well defined problem. Using the Apollo 11 elements, a simple example has been defined to determine how
the variables above would be set. The example has two commodities that need to be sent to the Apollo 11
landing site. The commodity properties are listed in Table 1.

In order to transport the commodities from low Earth Orbit (LEO) to the lunar surface we must know
the properties of the elements that can transport them. A list of these elements is provided in Table 2.

Figure 7 depicts the solution for this example. As we can see, two different types of elements are used
to transport the commodities. The commodities travel two seperate paths. The first commodity is shipped
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Table 1. List of Commodities and Properties for Apollo 11 Example

Demand Starting Time Ending Time Max Mass Volume Mass Volume
Node Interval Node Interval Time Loss Loss

2 LEO 1, 4 Apollo 11 10, 15 20 100 kg 1 m3 0 0
1 LEO 1, 6 Apollo 11 12, 12 20 100 kg 1 m3 0 0

Table 2. List of Elements and Properties for Apollo 11 Example

Element Fuel Isp Structural Mass Volume Number Cost
Type Mass (sec) Mass Capacity Capacity Available (mil)

Saturn V 1st Stage 2150999 304 135218 0 0 4 692
Saturn V 2nd Stage 451730 421 39048 0 0 4 307
Saturn V 3rd Stage 106600 421 13300 0 0 4 151

SLA 0 0 1837 0 0 4 0.9
Command Module 0 0 5806 100 1 4 148

Service Module 18413 314 6110 0 0 4 118
LM Descent Stage 8156 311 1984 500 5 4 57
LM Ascent Stage 2358 311 2189 100 1 4 79

Figure 7. Apollo 11 Example
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later but arrives earlier. The second commodity arrives exactly at day 12 because that was part of the input,
but since it was shipped earlier, it waits in low Equatorial Lunar orbit for three days. On both paths the
Saturn V 3rd Stage is used to perform the lunar insertion burn. The lunar descent module performs both
the orbit insertion burn and the descent burn to carry the commodities down to the lunar surface.

VI. Future Work

In the final paper, the focus will shift from the model capability to the solutions obtained from the lunar
campaign scenario. Through these solutions an understanding of the architectural decisions necessary to
support space exploration will be developed. The complexities of the logistics problem warrant specifically
considering logistics in the transportation design and require a formal methodology for solution similar to
those considered for terrestrial logistics.

In the final paper, a trade study will be conducted that demonstrates how and when pre-positioning of
fuel should be utilized from a system level perspective. In addition, the concept of refueling will be evaluated
by examining how the capability effects the solution and what are the system level impacts of this technology
on the logistics capabilities of an exploration system.
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