
NEURON-BASED PRUNING OF DEEP NEURAL NETWORKS
WITH BETTER GENERALIZATION USING KRONECKER

FACTORED CURVATURE APPROXIMATION

Abdolghani Ebrahimi
Department of Industrial Engineering & Management Sciences

Northwestern University
Evanston, IL 60208

ebrahimi@u.northwestern.edu

Diego Klabjan
Department of Industrial Engineering & Management Sciences

Northwestern University
Evanston, IL 60208

d-klabjan@northwestern.edu
ABSTRACT

Existing methods of pruning deep neural networks focus on removing unnecessary param-
eters of the trained network and fine tuning the model afterwards to find a good solution
that recovers the initial performance of the trained model. Unlike other works, our method
pays special attention to the quality of the solution in the compressed model and inference
computation time by pruning neurons. The proposed algorithm directs the parameters of
the compressed model toward a flatter solution by exploring the spectral radius of Hessian
which results in better generalization on unseen data. Moreover, the method does not work
with a pre-trained network and performs training and pruning simultaneously. Our result
shows that it improves the state-of-the-art results on neuron compression. The method is
able to achieve very small networks with small accuracy degradation across different neural
network models.

Keywords Neural Network Compression · Network Pruning · Flat minimum.

1 Introduction

Deep neural networks (DNNs) are now widely used in areas like object detection and natural language
processing due to their unprecedented success. It is known that the performance of DNNs often improves by
increasing the number of layers and neurons per layer. Training and deploying these deep networks sometimes
call for devices with excessive computational power and high memory. In this situation, the idea of pruning
parameters of DNNs with minimal drop in the performance is crucial for real-time applications on devices
such as cellular phones with limited computational and memory resources. In this paper, we propose an
algorithm for pruning neurons in DNNs with special attention to the performance of the pruned network. In
other words, our algorithm directs the parameters of the pruned network toward flatter areas and therefore
better generalization on unseen data.

In all network pruning studies, the goal is to learn a network with a much smaller number of parameters which
is able to virtually match the performance of the overparameterized network. Most of the works in this area
have focused on pruning the weights in the network rather than pruning neurons. As [26] and [34] discuss in
their work, pruning weights by setting them to zero does not necessarily translate to a faster inference time
since specialized software designed to work with sparse tensors is needed to achieve this. Our work, however,
is focused on pruning neurons from the network which directly translates to a faster inference time using
current regular software since neuron pruning results in lower dimensional tensors.

The pruning framework proposed herein iterates the following two steps: (1) given a subset of neurons, we
train the underlying network with the aim of low loss and “flatness,” (2) given a trained network on a subset
of neurons, we compute the gradient of each neuron with respect to being present or not in the next subset of
neurons. Regarding the first step, we consider flatness as being measured by the spectral radius of Hessian.
This requires computing the spectral radius which is approximated by computing the spectral radius of its
Kronecker-factored Approximate Curvature (K-FAC) block diagonal approximation. The flatness concept
comes from [31] but using K-FAC is brand new. In the second step, the selection of a neuron is binary which
is approximated as continuous in the interval [0,1]. The gradient is then computed with respect to loss plus
spectral radius of K-FAC. Neurons with large gradient values are selected for the next network.

The methodology proposed improves the generalization accuracy results on validation datasets in comparison
to the state-of-the-art results. In all of the four experiments on different architectures, our results outperform
when the sparsity level is lower than a threshold value (around 50% sparsity level for three datasets). The
area under the curve with respect to sparsity and accuracy is higher for our approach from around 1% and up
to 9%.

There is a vast body of work on network pruning and compression (see [5] for a full list of works), however,
their focus is devising algorithms to produce smaller networks without a substantial drop in accuracy. None
of those works tries to find solutions with flatter minima in the compressed network. To the best of our
knowledge, our work is the first study that takes that into account and tries to find solutions with a better
generalization property. Specifically, we make the following contributions.

• We build upon the work of [31] and improve their work by using K-FAC to compute the spectral
radius of Hessian and its corresponding eigenvector. Our algorithm can be easily parallelized for
faster computation. This avoids using a power iteration algorithm that might not converge in a
reasonable number of iterations and time.

• We provide an algorithm for learning a small network with a low spectral radius from a much bigger
network. Despite pruning a big portion of the neurons, the accuracy remains almost the same as in
the bigger network across different architectures.

• Our method allows for aggressive pruning of neurons of the neural network in each pruning epoch,
whereas other methods such as [26] are conservative and prune just one neuron per pruning epoch.

• Our algorithm is able to achieve very small networks with really small accuracy degradation across
different neural network models and outperforms existing literature on neuron pruning across most
of the network architectures we experiment with.

The rest of this paper is organized as follows. In Section 2, we overview the related works. We formally
define our problem, model it as an optimization problem and provide an algorithm to solve it in Section 3.
Finally, In Section 4, we apply the algorithm across different modern architectures and conduct an ablation
study to demonstrate effectiveness of the method and discuss the results.

2

2 Literature Review

Our work is closely related to two different streams of research: 1) network pruning and compression; and 2)
better generalization in deep learning. We review each of the two streams in the following paragraphs.

Network pruning and compression. Study [7] demonstrates significant redundancy of parameters across
several different architectures. This redundancy results in waste of computation and memory and often
culminates in overfitting. This opens up a huge opportunity to develop ideas to shrink overparameterized
networks. Most of the works in the area focus on pruning weights. Earlier works on weight pruning started
with Optimal Brain Damage [20] and Optimal Brain Surgeon [10] algorithms. These methods focus on the
Taylor expansion of loss functions and prune those weights which increase the loss function by the smallest
value. They need to calculate Hessian of the loss function which could be cumbersome in big networks with
millions of parameters. To avoid this, they use a diagonal approximation of Hessian. Regularization is another
common way for pruning DNNs and coping with overfitting. [14] and [4] augment the loss function with L0

or L1 regularization terms. That sets some of the weights very close to zero. Eventually, one can remove
the weights with value smaller than a threshold. [9] is one of the most successful works in weight pruning.
They simply use a trained model and drop the weights with the value below a threshold and fine-tune the
resulting network. This procedure can be repeated until a specific sparsity level is achieved. However, this
alternation between pruning and training can be long and tedious. To avoid this, [22] develops an algorithm
that prunes the weights before training the network. They use a mask variable for each weight and calculate
the derivative of the loss function with respect to those mask variables and use that as a proxy for sensitivity
of the the loss function to that weight. Our pruning scheme is somewhat related to this work. We consider
sensitivity of the loss function including spectral radius with respect to neurons rather than weights.

On the other hand, some compression works focus on pruning neurons. Our work falls into this group of
methods. As [26] discusses, given current software, pruning neurons is more effective to result in a faster
inference time and that is our main reason to focus on pruning neurons in this paper. [35] uses a data-free
pruning method based on the idea of similar neurons. Their method is only applicable to fully connected
networks. [12] notices that most of neurons in large networks have activation values close to zero regardless
of the input to those neurons and do not play a substantial part in prediction accuracy. This observation leads
to a scheme to prune these zero-activation neurons. To recover the performance of the network from pruning
these neurons they alternate between pruning neurons and training. Some of the works on neuron pruning are
specifically designed for Convolutional Neural Networks (CNNs) as they are much more computationally
demanding compared to fully connected layers [23]. There is abundant work on pruning filters (feature maps)
in CNNs (see [34, 23, 2] as examples). Our neuron pruning scheme has been inspired by the work of [26]
on CNN filter pruning. They adopt a Taylor expansion of the loss function to find how much pruning each
filter in a convolution layer changes the loss function and prune those that contribute the least to the change.
Although, we use the same pruning criteria, our work is different from theirs in the following three substantial
ways. First, they do work with fully trained models and apply pruning to it. Instead, our work integrates the
training and pruning parts together. Second, we augment the loss function with a term related to the spectral
radius of Hessian and thus our neuron pruning scheme is sensitive to the change in flatness of a solution in
addition to the change in the loss function. Finally, our pruning scheme is not just applied to prune filters in
CNNs. It is more general and can be used to prune other type of layers such as fully connected layers.

Better generalization in deep learning. The initial work [21] observes that the Stochastic Gradient Descent
(SGD) algorithm and similar methods such as RMSProp [36] and ADAM [17] generalize better on new data
when the network is trained with smaller mini-batch sizes. [16] experimentally demonstrates that using a
smaller mini-batch size with SGD tends to converge to flatter minima and that is the main reason for better
generalization. [15] later shows that using larger learning rates also plays a key role in converging to flatter
minima. Their work essentially studies the effect of the learning rate to the mini-batch size ratio on the
generalization of found solutions on unseen data. Almost all works in this area focus on investigating the effect
of hyperparameters such as the mini-batch size and learning rate on the curvature of the achieved solution.

3

Despite this finding, there has been little effort on devising algorithms that are guaranteed to converge to
flatter minima. Study [31] is the only work that explores this problem in deep learning settings and tries to
find a flatter minimum solution algorithmically. To achieve flatter solutions, they augment the loss function
with the spectral radius of Hessian of the loss function. To compute the latter, they use power iteration along
with an efficient procedure known as R-Op [30] to calculate the Hessian vector product. This implies that
they need to use the power iteration algorithm in every optimization step of their algorithm. One potential
drawback of using power iteration is that it might not converge in a reasonable number of iterations. To avoid
this, we borrow ideas from K-FAC which is originally developed by [25] and [8] to apply natural gradient
descent [1] to deep learning optimization. Our proposed method adds the same penalty term, however we
use K-FAC as a different approach to find an approximate spectral radius of Hessian. In addition, we use the
augmented loss function not only for training but also for the pruning purpose. K-FAC uses the Kronecker
product to approximate the Fisher information matrix which is a positive semi-definite approximation of
Hessian. K-FAC approximates the Fisher information matrix by a block diagonal matrix where each block is
associated with a layer in the neural network architecture. Another positive semi-definite approximation that
is widely used instead of Hessian is the Gauss-Newton (GN) matrix. Work [3] shows that when activation
functions used in the neural network are piecewise linear, e.g., standard rectified linear unit (ReLU) and leaky
rectified linear unit (Leaky ReLU), the diagonal blocks in Hessian and GN are the same. On the other hand,
[24] and [28] prove that for typical loss functions in machine learning such as cross-entropy and squared
error, the Fisher information and the GN matrices are the same. These observations justify using K-FAC to
approximate Hessian of each layer in a deep learning setting as most of the state-of-the-art neural network
architectures use ReLU as their activation function.

3 Proposed Approach

Our goal here is designing an algorithm that given a data set and a neural network architecture carefully
prunes redundant neurons during training and produces a smaller network with a flat minimum solution. To
this end, we first introduce the underlying optimization problem and then discuss the algorithm to solve it.

3.1 Optimization Problem for Integrated Pruning and Training

We are given training data D = {(xi, yi)}ni=1 where x represents features and y represents target values and
a neural network with a total of N neurons. We define the set of all the parameters of the neural network
with ` layers and the total number of parameters d as W = (w1

1,w
2
1, ...,w

n1
1 , ...,w1

` ,w
2
` , ...,w

n`

`) ∈
Rd. Here, nl represents the number of neurons in layer l ∈ [`] (where [x] := {1, 2, ..., x}) and
wj
l represents the parameters associated with neuron j ∈ [n`] in layer l ∈ [`]. Since we need

the optimization problem to identify and prune redundant neurons, we introduce the set of binary
(mask) variables MB = (m1

1,m
2
1, ...,m

n1
1 , ...,m1

` ,m
2
` , ...,m

n`

`) ∈ {0, 1}N . We also define M =

(m1
1eα(1,1),m

2
1eα(1,2), ...,m

n1
1 eα(1,n1), ...,m

1
`eα(`,1),m

2
`eα(`,2), ...,m

n`

` eα(`,n`)) ∈ {0, 1}d where es =

(1, ..., 1) ∈ Rs and α(i, j) is the dimension of wj
i . Each element in MB is associated with one of the

neurons and identifies whether a neuron fires (value 1) or needs to be pruned (value 0) in the neural network
architecture. To achieve a solution with the flatter curvature, we represent the spectral radius of Hessian
(or its approximation) of the loss function C (e.g. cross entropy) at point W as ρC(H(W)). Then, given
the maximum allowed number of neurons K and upper bound B on the spectral radius of Hessian, the
optimization problem can be written as the following constrained problem:

min
W,MB

C(W �M;D),

s.t. ρC(H(W �M)) ≤ B,
MT

BeN ≤ K,

(1)

4

where � is the Hadamard product. One drawback of formulation (1) is intractability of a direct derivation of
Hessian of the loss function and subsequently its spectral radius in DNNs with millions of parameters. To cope
with this, we follow [31] and rewrite ρ(H(W �M)) in terms of vector v(W,M) where ‖v(W,M)‖ = 1
and it denotes the eigenvector corresponding to the eigenvalue of H(W �M) with the largest absolute value.
We also introduce the constraint on the spectral radius to the objective function as follows:

min
W,MB

L(W,MB ;D) = C(W �M;D) + µg(W,M)

s.t. MT
BeN ≤ K,

(2)

where g(W,M) := max{0,vT (W,M)H(W �M)v(W,M) − B} and µ is a hyperparameter which
needs to be tuned. The larger the µ is, the optimization problem penalizes larger spectral radii more and the
loss function does have a flatter curvature at the solution point. To calculate g(W,M), one needs to be able
to calculate v(W,M). To this end, we follow [25] and approximate the Hessian of the loss function with a
block diagonal matrix where each block is the second order derivative of the loss function with respect to
the parameters of each layer. In other words, denoting activations and inputs (a.k.a pre-activations) for layer
l ∈ [`] with al(W,M) and sl(W,M), respectively, and defining gl(W,M) := ∂L(W,M;D)

∂sl(W,M) we have:

H(W �M) ≈

 Ψ0(W �M)⊗ Γ1(W �M) 0
. . .

0 Ψ`−1(W �M)⊗ Γ`(W �M)

 . (3)

In (3), Ψl(W �M) := E[al(W,M)aTl (W,M)] and Γl(W �M) := E[gl(W,M)gTl (W,M)] denote
matrices of the second moment for activations and derivative of pre-activations for layer l, respectively. Notice
that no additional computational resources are needed to derive gl(W,M) and al(W,M) as they are derived
as a byproduct of the back-propagation procedure. Let vl(W,M) represent the eigenvector corresponding
to the largest absolute eigenvalue λl(W,M) for block (layer) l. We also define the same eigenvalues
λΨ
l (W,M) and λΓ

l (W,M) along with their corresponding eigenvectors vΨ
l (W,M) and vΓ

l (W,M) for
matrices Ψl(W �M) and Γl(W �M), respectively. Then, we can use properties of the Kronecker product
(see [32]) to produce:

vl(W,M) = vΨ
l−1(W,M)⊗ vΓ

l (W,M)

λl(W,M) = λΨ
l−1(W,M)λΓ

l (W,M).
(4)

Once we have vl(W,M) for each block l, approximating v(W,M) is trivial given the properties of block
diagonal matrices.

Optimization problem (2) has N additional variables MB and is not directly solvable using continuous
optimization methods like SGD due to the existence of the non-continuous mask variablesMB . However,
the separation of each neuron parameters from neuron masks, facilitates measuring the contribution of each of
the neurons to the loss function. In other words, we consider the sensitivity of the loss function to each neuron
as a measure for importance and only keep the neurons with highest sensitivity. To this end, since variables in
MB are binary, sensitivity of the loss function with respect to neuron j ∈ [n`] in layer l ∈ [`] is defined as:

∆L̄jl (W,MB) := | L(W,MB |mB
j
l = 0;D)− L(W,MB |mB

j
l = 1;D) |, (5)

whereMB |mB
j
l = 0,MB |mB

j
l = 1 are two vectors with same values for all neurons except for the neuron

j in layer l. Following [26] and using first order Taylor approximation of L(W,MB |mB
j
l = 0) around

ajl (W,M) = 0, we estimate (5) by

∆L̄jl (W,MB) := | ∂L(W,MB ;D)

∂ajl (W,M)
ajl (W,M) | . (6)

5

This intuitively means that the importance of a neuron in the neural network is dependent on two values:
the magnitude of the gradient of the loss function with respect to the neuron’s activation and the magnitude
of the activation. It is worth mentioning that the numeric value of ∂L(W,MB ;D)

∂aj
l (W,M)

is also derived during the
back-propagation procedure and no further computation is necessary. Following our discussion from above,
we provide the algorithm to solve minimization problem (2).

3.2 Algorithm

The algorithm, Higher Generalization Neuron Pruning (HGNP), solves optimization problem 2 by updat-
ing W and M alternately. When the parameters W are being updated, we fix the binary mask vector
M and vice versa. The alternation procedure between updating mask vector M and weights W hap-
pens gradually during training to avoid a substantial drop in the performance of the model. Pruning an
excessive number of neurons in one shot might result in an irrecoverable performance drop and might
result in low validation accuracy of the final pruned model. To update the parameters W , we fix the
mask variablesMB = M̂B for a certain number of iterations and update weightsW by following Algo-
rithm 1. This algorithm essentially solves the optimization problem minWL(W,M̂B ;D) for fixed M̂B .

Algorithm 1: Mini-Batch SGD Algorithm to updateW for fixed mask vector M̂B

Input: D : training data, M̂B : given mask vector, Ŵ: given initialization weights, α : learning rate, µ :
coefficient for spectral radius, B: bound on spectral radius.

Output: W : the updated weights.
InitializeW ← Ŵ .
while convergence criteria not met do

for each batch of data Db do
Compute∇WC(W � M̂;Db)
/* Spectral radius term operations */
for l = 0, 1, ..., ` do

Derive vψl (W,M̂), vγl (W,M̂) and eigenvalues λψl (W,M̂), λγl (W,M̂).
Compute vl(W,M̂) and λl(W,M̂) using 4.

Approximate v(W,M̂) and its corresponding eigenvalue ρC(H(W �M̂) using eigenvectors and
eigenvalues derived for each block.

Compute using R2-Op from [31]:
∇WρC(H(W � M̂) = 1

|Db|
∑
i∈Db

v(W,M̂)T∇WHi(W � M̂)v(W,M̂) where index i shows

that Hessian is computed with respect to single sample i.
Derive∇Wg(W,M̂) using ∇WρC(H(W � M̂).
/* Gradient descent */

SetW =W − α
(
∇WC(W � M̂;Db) + µ∇Wg(W,M̂)

)
To updateMB , we apply 6 to a random mini-batch to find the neurons that the loss function is least sensitive
to. We updateMB by setting the mask variable associated with such neurons to zero. It means that we can
remove such neurons from the neural network and recreate a new neural network with the remaining neurons
and their associated weights in the parameters vectorW . We now can use this concept to prune neurons along
with Algorithm 1 to propose Algorithm 2.

The algorithm starts with random initialization of parametersW0. We fix the mask variablesMB to all one
at first and updateW using SGD for E1 training epochs. After taking the pre-pruning training steps, we

6

prune the neural network for the first time by pruning the N neurons with the smallest effect on the loss
function change. We then alternate between training and pruning each E2 epochs and continue pruning until
a specific sparsity level κ̄ is achieved. Here, we define sparsity level κ := ‖W�M‖0

‖W�ed‖0 . Although we stop the
algorithm using the same metric, i.e. sparsity level, like other works in weight pruning, there is a fundamental
difference between the actual network architecture after pruning in our work and other works. In our case,
we remove all the weights associated with the pruned neurons, but in other works, such weights are set to
zero. Once the desired sparsity level κ̄ is achieved, i.e. κ ≤ κ̄, we train the network for the last E3 epochs.
One should notice that values E1, E2, E3 and N are hyperparameters and need to be tuned and vary across
different neural network architectures. We summarize the above procedure in Algorithm 2 where we drop the
parameters (W,M) from ∆L̄jl (W,M) and refer to it as ∆L̄jl for simplicity.

Algorithm 2: HGNP Algorithm to update parametersW and mask vectorMB for solving optimization
problem 2.
Input: D : training data,W0: given initialization weights, α : learning rate, µ : coefficient for spectral
radius, B: bound on spectral radius, κ̄: desired sparsity level, N : number of pruned neurons in each
round, E1, E2, E3: number of training epochs pre-pruning, between pruning and post-pruning.

Output: W : the updated weights,M : the final mask vector.
InitializeW ←W0,M← ed, κ = 1, epoch = 0.
while κ > κ̄ do

if epoch ≥ E1 and epoch mod E2 = 0 then
Pick a random mini-batch Db.
Compute ∆L̄jl using 6 for mini-batch Db.
Normalize ∆L̄jl per layer using: ∆L̄jl =

∆L̄j
l√∑nl

k=1(∆L̄k
l)2

Select N neurons with smallest ∆L̄jl and set their corresponding mask value in vectorMB equal
to zero.

Update: κ← ‖W�M‖0
‖W�ed‖0

Complete one epoch of training to solve minW L(W,MB ;D) using Algorithm 1 and updateW .
Update: epoch← epoch+ 1

Train the neural network for another E3 epochs using Algorithm 1.

4 Experimental Studies

In this section, we use some widely-used datasets and the HGNP algorithm to select common network models
in deep learning and analyze the results. The datasets used in the experiments are as follows.

Cifar-10: Collected by [19], this dataset contains 60,000, 32× 32 color images with 10 different labels. We
use 50,000 of samples for training and keep out the remaining for validation purposes. We use conventional
technique such as random horizontal flip to augment the data.

Oxford Flowers 102 dataset: This dataset is introduced by [27] and it has 2,040 training samples and 6,149
validation samples. The number of flower categories is 102 and each image is RGB with size 224× 224. We
use random horizontal flip for data augmentation.

Caltech-UCSD Birds 200 (CUB-200): The dataset is introduced in [37] and contains 5,994 training samples
and 5,794 test samples. It contains images of 200 species of birds. For the experiment on the birds dataset, we
crop all the images to 160× 160 to avoid memory issues while we train the model using the HGNP algorithm.

7

We compare the quality of our pruned network and its minimum solution against Taylor [26]. We chose
Taylor as the only benchmark since their work is very recent and it outperforms other neuron pruning methods
we mentioned in Section 2. Unless otherwise stated, we use the training data for training the model and
applying the pruning scheme. In all the experiments, the accuracy on the same validation dataset is measured
and is reported to compare our method with Taylor.

We apply various common architecures AlexNet [18], ResNet-18 [11] and VGG-16 [33]. We choose Alexnet
and VGG-16 as they are used in [26] in their experiments. To show that our method works well with newer
architectures, we select Resnet-18 as it has the power of residual networks and it can be trained in a reasonable
time.We use Pytorch [29] for training neural networks and automatic differentiation on GPU. The Alexnet
experiments are conducted using one, three Tesla K80 GPUs for the HGNP and Taylor method, respectively.
All other Taylor experiments use a single GeForce RTX 2080. For the HGNP method, we use four, four
and five GeForce RTX 2080 GPUs to run VGG-16/Cifar-10, ResNet-18/Cifar-10 and ResNet-18/Birds 200
dataset experiments, respectively.

30%40%50%60%70%80%90%100%
Sparsity Level

0%

20%

40%

60%

80%

100%

120%

Va
lid

at
io

n
Ac

cu
ra

cy
 P

er
ce

nt
ag

e
Di

ffe
re

nc
e

Figure 1: Alexnet pruned network accuracy results on Flowers dataset.

4.1 Various Common Architectures

AlexNet experiment: For the first experiment, we follow the Taylor paper and adopt AlexNet to predict
different species of flowers on the Oxford Flowers dataset. Training the network from scratch does not
result in acceptable validation accuracy, so we use optimal parameters of the model trained on ImageNet [6]
to initialize the network parameters except for the last fully-connected layer which is initialized randomly.
We use the same hyperparameters as [26] and train the model with learning rate α = 0.001 and weight
decay 0.0001. The training data is processed by the network in mini-batch size of 32 and we use SGD with
momentum 0.9 to update the parameters. We use µ = 0.001 and B = 0.5 to penalize the spectral radius of
Hessian. The hyperparameters exactly follow the values chosen by the Taylor paper. We train the network
for 5 epochs initially (E1) and start pruning N = 100 neurons after each E2 = 5 epochs. Once we hit the
desired sparsity level, we train the network for E3 = 50 epochs.

8

For the Taylor method results, we use a pre-trained network which is trained for 20 epochs and prune one
neuron every 30 gradient descent steps afterwards. These values have been optimized by grid search. Figure
1 plots the relative validation accuracy percentage difference of the HGNP and Taylor method against the
sparsity level. It shows that the HGNP and Taylor methods are performing closely with less sparse models,
but when the sparsity level increases, the relative gap between the accuracy of HGNP and Taylor becomes
huge (120% when both models are at 35% sparsity level). For sparsity above 55%, the performance of both
methods are very similar. For sparsity of 50%, 40% and 35% the accuracy is (78.9%, 71.1%), (77.0%, 60%)
and (75.5%, 34%), respectively where the first value corresponds to HGNP and the second belongs to Taylor.

0%10%20%30%40%50%60%70%80%90%100%
Sparsity Level

-4%

-2%

0%

2%

4%

6%

8%

10%

Va
lid

at
io

n
Ac

cu
ra

cy
 P

er
ce

nt
ag

e
Di

ffe
re

nc
e

Figure 2: ResNet-18 pruned network accuracy results on Cifar-10 dataset.

ResNet-18 experiment on Cifar-10: For the second experiment, we train and prune ResNet-18 on the
Cifar-10 dataset. We use mini-batch size 128, along with weight decay 0.0005 and initial learning rate
α = 0.1. SGD with momentum 0.9 is used for a smoother update of the parameters. We set µ = 0.001 and
B = 0.5 for the spectral radius term. The model is trained without any pruning for E1 = 50. We alternate
between pruning N = 100 neurons and training, each E2 = 5 epochs, and fine-tune the model with desired
sparsity level for another E3 = 20 epochs. Moreover, due to the specific structure of the residual networks
and existence of residual connections, some of the layers should have the same number of neurons to avoid
dimension incompatibility during feed-forward. To comply with dimension compatibility, we group those
specific layers together and prune the same number of neurons from each layer by averaging the number of
neurons to prune suggested by our pruning method for those layers.

For the Taylor method, we train the model for 200 epochs. Then we start pruning one neuron from the
network and fine-tune the parameters with one epoch of the data. We continue alternating between pruning
and fine-tuning until a desired sparsity level is reached. Figure 2 plots the relative percentage difference
in accuracy on the validation dataset between the HGNP and the Taylor methods. The HGNP method
consistently outperforms at sparsity level 85% and below, although the improvement is not drastic.

ResNet-18 experiment on Birds 200 dataset: The third experiment is conducted on training ResNet-18
on the Birds 200 dataset. Like the first experiment, we rely on transfer learning and utilize the pretrained

9

convolutional network weights of ResNet-18 on ImageNet. The learning and weight decay rates are set
to 0.001 and 0.0001, respectively. We use mini-batch size 32 along with momentum 0.9, µ = 0.001 and
B = 0.5 for training the network. We set E1 = 25 and we prune 100 neurons every 5 epochs afterwards. As
our last fine tuning step, we train for E3 = 20 more epochs after achieving the desired sparsity level. For the

0%20%40%60%80%100%
Sparsity Level

-4%

-2%

0%

2%

4%

6%

8%

10%

Va
lid

at
io

n
Ac

cu
ra

cy
 P

er
ce

nt
ag

e
Di

ffe
re

nc
e

Figure 3: ResNet-18 pruned network accuracy results on Birds 200 dataset.

Taylor method, we initially train the full model for 60 epochs with learning rate 0.01 and weight decay rate
0.0001 for 60 epochs. The hyperparameters are optimized to achieve the best performance. We then start
pruning one neuron at each pruning step and train for an epoch to recover the performance afterwards. Figure
3 suggests that our model outperforms at really high and low sparsity levels. At the sparsity level 14% and
below, our model starts to outperform again. At the sparsity level 5%, the relative accuracy gap is at 6%. All
accuracies range from 70.5% to 51.9% and from 70.5% to 49.0% for HGNP and Taylor, respectively.

VGG-16 experiment: Our last experiment is on training the VGG-16 neural network with batch normal-
ization [13] on the Cifar-10 dataset. The Mini-batch size and the initial learning rate are set to 128 and 0.1,
respectively. We decay the learning rate as training progresses and add a regularization term to the loss
function with coefficient 0.0005. Values µ and B are set to 0.001 and 0.5, respectively. For the Taylor, we
pre-train it for 200 epochs and start pruning one neuron and training for one epoch alternately. For HGNP, the
pre-pruning number of training epochs is E1 = 50 and we prune N = 100 neurons at each pruning epoch
and train the model for E2 = 5 epochs between each pruning epoch. Finally the model is fine-tuned for
another E3 = 20 epochs. Figure 4 compares the two methods. At the 5% sparsity level, the relative gap
between the accuracy of HGNP and Taylor is greater than 8%. Our model outperforms at all sparsity levels
below 90%. At sparsity of 10%, the accuracy of Taylor is 87.3% while HGNP is at 91.4%.

4.2 Train and Inference Times

In this section, we compare the training and inference times of the HGNP and Taylor methods. The total
training and pruning time for the HGNP method is longer than for the Taylor method as it needs to calculate

10

0%10%20%30%40%50%60%70%80%90%100%
Sparsity Level

-4%

-2%

0%

2%

4%

6%

8%

10%

Va
lid

at
io

n
Ac

cu
ra

cy
 P

er
ce

nt
ag

e
Di

ffe
re

nc
e

Figure 4: VGG16 pruned network accuracy results on Cifar-10 dataset.

the largest eigenvalue and its corresponding eigenvector for each block. The times for the experiments are
summarized in Table 1.

Model/Dataset Hardware Target Sparsity % HGNP (hours) Taylor (hours)
AlexNet/Flowers 102 TESLA K80 35.1 57.3 3.8
ResNet-18/Cifar-10 GeForce RTX 2080 4.5 121.0 10.7
VGG-16/Cifar-10 GeForce RTX 2080 4.5 115.1 12.7

ResNet-18/Birds 200 dataset GeForce RTX 2080 5.0 129.9 27.3
Table 1: Comparison of the total training and pruning time across different models/dataset of HGNP vs.
Taylor.

To compare the actual speed up for our pruned models, we measure the inference time of one mini-batch
for the neuron-pruned (using HGNP), weight-pruned and full models. To calculate the inference time for
weight-pruned models, we initialize the network with random weights and randomly kept a percentage
(sparsity level percentage) of them and set other to zero. We believe that using optimal weights along with
state-of-the-art methods in weight pruning would not have significant effects on inference time compared
to the aforementioned strategy. The actual inference time can be dependent on many different parameters
including the hardware. Table 2 compares the inference time for all three models using different GPUs
and mini-batch sizes across various models. The full model corresponds to the 100% sparsity level for
both neurons and weights. Our result shows that inference time for neuron-pruned models is lower than of
the full model as expected. In addition, at the same sparsity level, neuron-pruned models are faster than
weight-pruned models in feed-forward.

We also compare neuron-pruned models with weight pruned models that produce the same level of accuracy.
According to [22], the VGG model on the Cifar-10 dataset has accuracy of 92% at 3% sparsity. This level

11

Model/Dataset Hardware Sparsity (Neurons) % Sparsity (Weights) % Mini-batch Time(ms)

AlexNet/Flowers GPU:TESLA K80 100.0 100.0 5,000 913
GPU:TESLA K80 30.4 5,000 808
GPU:TESLA K80 30.4 5,000 570

ResNet-18/Cifar-10

CPU:3.4 GHz Intel Core i5 100.0 100.0 128 3,437
CPU:3.4 GHz Intel Core i5 4.5 128 1,013
CPU:3.4 GHz Intel Core i5 4.5 128 2,402
GPU:GeForce RTX 2080 100.0 100.0 2,000 192
GPU:GeForce RTX 2080 4.5 2,000 206
GPU:GeForce RTX 2080 4.5 2,000 90

VGG-16/Cifar-10

CPU:3.4 GHz Intel Core i5 100.0 100.0 128 2,251
CPU:3.4 GHz Intel Core i5 4.5 128 482
CPU:3.4 GHz Intel Core i5 4.5 128 1,709
GPU:GeForce RTX 2080 100.0 100.0 2,000 132
GPU:GeForce RTX 2080 4.5 2,000 187
GPU:GeForce RTX 2080 4.5 2,000 39

Table 2: Comparison of inference time for neuron-pruned, weight-pruned and full networks.

of accuracy translates to 14.4% sparsity in our neuron-pruned model. The inference time comparison is
summarized in Table 3. The results show that even though the sparsity level is higher for neuron-pruned
models compared to weight-pruned models to produce the same level of accuracy, neuron-pruned models are
still faster in inference time.

Model/Dataset Hardware Sparsity (Neurons) % Sparsity (Weights) % Mini-batch Time(ms)

VGG-16/Cifar-10

CPU:3.4 GHz Intel Core i5 14.4 128 1,414
CPU:3.4 GHz Intel Core i5 3 128 1,605
GPU:GeForce RTX 2080 14.4 2,000 102
GPU:GeForce RTX 2080 3 2,000 184

Table 3: Inference time comparison of neuron-pruned and weight-pruned models that create 92% accuracy.

4.3 Ablation Study

We conduct ablation experiments to show the effectiveness of our proposed components for pruning. To this
end, we remove two components of HGNP one at a time and compare the results with the full algorithm:
1) We remove the component related to the spectral radius (set µ = 0) and train the model only using the
cross-entropy loss. However, we use the whole loss function including the spectral radius part for deciding
what neurons to prune. 2) We use the loss function with µ = 0 to specify which neurons to prune. However,
the complete loss function is used for training and fine tuning the model.

We conduct ablation experiments on the AlexNet model trained on the Flowers dataset since it trains fast.
The results are shown in Figure 5. Full HGNP is consistently better for the sparsity level less than 58% which
shows the effectiveness of the algorithm.

4.4 Heuristic Method to Switch between Taylor and HGNP

In all the experiments, the benchmark method (Taylor) works better than HGNP up to a sparsity level and
beyond that our algorithm outperforms in terms of the accuracy performance. For instance, for Alexnet this
threshold value is around sparsity level 91% (see Figure 1). If we are after an algorithm that excels for all
sparsity levels, this observation leads to a strategy of using Taylor for large sparsity levels and HGNP for low
levels. The challenge is identifying the switching level. To this end, we use a linear regression model with 4
samples (each one of the experiments is a sample) where the response variable is the sparsity level threshold
value specifying which model outperforms. We consider two types of independent variables. The first type is
related to the dataset and those in the other type characterize the neural network architecture. The dataset

12

30%40%50%60%70%80%90%100%
Sparsity Level

70%

72%

74%

76%

78%

80%

82%

84%
Va

lid
at

io
n

Ac
cu

ra
cy

 P
er

ce
nt

ag
e

HGNP
Ablation experiment 1
Ablation experiment 2

Figure 5: Ablation study results for Alexnet on Flowers dataset.

variables considered are: the number of training and validation samples, the dimension of input images, and
the number of classes in the model to predict. For the neural network architecture related variables we use: the
number of convolutional layers, the number of linear layers, the number of trainable parameters of the neural
network model, the average kernel size across all convolutional layers, and the number of kernels. We use all
these predictors and the response variable to perform Lasso regression. The best model based on R2 and all
p-values below 0.05 contains only two significant predictors: the number of classes and the number of training
samples. By using the model we predict the threshold sparsity level for each of the experiments and use it to
decide when to switch from Taylor to HGNP. We then create accuracy plots and compare the area under the
curve (AUC) for the method which switches between HGNP and Taylor (i.e. the hybrid method) versus the
Taylor method in addition to HGNP versus Taylor and summarize the results in Table 4. Based on the results,
AUC is improved for HGNP compared to Taylor across all model/dataset pairs except for Resnet-18/Birds.
We observe a substantial improvement of hybrid method compared to Taylor forAlexNet/Flowers 102 and
VGG-16/Cifar-10. The hybrid method outperforms Taylor in every experiment.

Model/Dataset Hybrid vs Taylor HGNP vs Taylor Predicted Threshold
AlexNet/Flowers 102 9.33 9.20 91.0

Resnet-18/Birds 0.08 -0.29 48.0
VGG-16/Cifar-10 1.63 1.59 87.8

Resnet-18/Cifar-10 0.47 0.42 87.8
Table 4: Relative percentage of improvement in accuracy across different architectures/datasets.

13

5 Discussion

We propose an algorithm that prunes neurons in a DNN architecture with a special attention to the final
solution of the pruned model. The algorithm is able to achieve flatter minima which generalize better on
unseen data. The experiments show that the HGNP algorithm outperforms the existing literature across
different neural network architectures and datasets. Our compact model achieves an actual improvement in
the inference time given current software by pruning neurons instead of weights.

References

[1] S.-I. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–276, 1998.

[2] S. Anwar, K. Hwang, and W. Sung. Structured pruning of deep convolutional neural networks. ACM
Journal on Emerging Technologies in Computing Systems, 13(3):1–18, 2017.

[3] A. Botev, H. Ritter, and D. Barber. Practical Gauss-Newton optimisation for deep learning. Journal of
Machine Learning Research, pages 557–565, 2017.

[4] Y. Chauvin. A back-propagation algorithm with optimal use of hidden units. In Advances in Neural
Information Processing Systems, pages 519–526, 1989.

[5] Y. Cheng, D. Wang, P. Zhou, and T. Zhang. A survey of model compression and acceleration for deep
neural networks. arXiv preprint arXiv:1710.09282, 2017.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical image
database. In Conference on Computer Vision and Pattern Recognition, 2009.

[7] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. De Freitas. Predicting parameters in deep learning.
In Advances in Neural Information Processing Systems, pages 2148–2156, 2013.

[8] R. Grosse and J. Martens. A Kronecker-factored approximate Fisher matrix for convolution layers. In
International Conference on Machine Learning, pages 573–582, 2016.

[9] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient neural
network. In Advances in Neural Information Processing Systems, pages 1135–1143, 2015.

[10] B. Hassibi and D. G. Stork. Second order derivatives for network pruning: Optimal brain surgeon. In
Advances in Neural Information Processing Systems, pages 164–171, 1993.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

[12] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang. Network trimming: A data-driven neuron pruning approach
towards efficient deep architectures. arXiv preprint arXiv:1607.03250, 2016.

[13] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. International Conference on Machine Learning, pages 448–456, 2015.

[14] M. Ishikawa. Structural learning with forgetting. Neural Networks, 9(3):509–521, 1996.

[15] S. Jastrzebski, Z. Kenton, D. Arpit, N. Ballas, A. Fischer, Y. Bengio, and A. J. Storkey. Finding flatter
minima with sgd. In International Conference on Learning Representations (Workshop), 2018.

[16] N. S. Keskar, J. Nocedal, P. T. P. Tang, D. Mudigere, and M. Smelyanskiy. On large-batch training for
deep learning: Generalization gap and sharp minima. In 5th International Conference on Learning
Representations, 2017.

[17] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

14

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems, pages 1097–1105, 2012.

[19] A. Krizhevsky et al. Learning multiple layers of features from tiny images. Master’s thesis, University
of Toronto, 2009.

[20] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. Advances in Neural Information
Processing Systems, pages 598–605, 1990.

[21] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In Neural networks: Tricks of the
Trade, pages 9–48. Springer, 2012.

[22] N. Lee, T. Ajanthan, and P. H. Torr. Snip: Single-shot network pruning based on connection sensitivity.
arXiv preprint arXiv:1810.02340, 2018.

[23] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient convnets. arXiv
preprint arXiv:1608.08710, 2016.

[24] J. Martens. New insights and perspectives on the natural gradient method. Journal of Machine Learning
Research, 21:1–76, 2020.

[25] J. Martens and R. Grosse. Optimizing neural networks with Kronecker-factored approximate curvature.
In International Conference on Machine Learning, pages 2408–2417, 2015.

[26] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning convolutional neural networks for
resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

[27] M.-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. In
Indian Conference on Computer Vision, Graphics and Image Processing, 2008.

[28] R. Pascanu and Y. Bengio. Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1301.3584, 2013.

[29] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer. Automatic differentiation in pytorch. 2017.

[30] B. A. Pearlmutter. Fast exact multiplication by the hessian. Neural Computation, 6(1):147–160, 1994.
[31] A. Sandler, D. Klabjan, and Y. Luo. Non-convex optimization with spectral radius regularization. arXiv

preprint arXiv:2102.11210, 2021.
[32] K. Schacke. On the Kronecker product. Master’s thesis, University of Waterloo, 2004.
[33] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556, 2014.
[34] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri. Play and prune: Adaptive filter pruning for deep

model compression. In 28th International Joint Conference on Artificial Intelligence, pages 3460–3466,
2019.

[35] S. Srinivas and R. V. Babu. Data-free parameter pruning for deep neural networks. arXiv preprint
arXiv:1507.06149, 2015.

[36] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent
magnitude. Coursera: Neural Networks for Machine Learning, 4(2):26–31, 2012.

[37] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD Birds
200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.

15

	Introduction
	Literature Review
	Proposed Approach
	Optimization Problem for Integrated Pruning and Training
	Algorithm

	Experimental Studies
	Various Common Architectures
	Train and Inference Times
	Ablation Study
	Heuristic Method to Switch between Taylor and HGNP

	Discussion
	References

