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Abstract. Computer vision techniques have found widespread use in
the realm of sports. With the growth of big data, it has become increas-
ingly important for both coaches and broadcasters to analyze detailed
player performance data in sports such as football and soccer. This in-
cludes player movements and poses, as well as team formations. A fully
automated tracking and identification system would provide valuable in-
sights towards these goals. However, this is a challenging task due to 1)
the players’ similar visual features caused by their jerseys, helmets, etc.,
if done unsupervised; and 2) the cost of annotating player tracking in
videos for each sport if supervised.
To overcome the challenges of sport player localization and tracking with
a moving camera, we present a novel unsupervised method that consists
of three main steps. First, the method learns a transformation from a
moving camera to a static camera to stabilize the frames. Second, it
learns to localize sport players from frame subtraction by leveraging the
difference between static background and moving objects. Finally, the
method learns the object center displacement between consecutive frames
to achieve continuous tracking.
The experimental results of our proposed method show that it performs
as well as supervised models without fine-tuned detectors, with an im-
provement of more than 0.9% on the HOTA metric for soccer videos and
3.1% on the MOTA metric for NFL videos with respect to other un-
supervised methods. These results demonstrate the effectiveness of our
unsupervised approach and its potential to enhance sport player tracking
in difficult scenarios.

Keywords: Object Detection, Object Tracking, Unsupervised learning,
Sports Video Analysis

1 Introduction

The use of rapidly advancing scientific technologies have made modern sports
more intriguing, have improved athletes’ performance, and have provided an ad-
vantage to innovation. Despite this progress, there is still significant room for
improvement in many aspects of sports. Sport analysts and coaches are con-
stantly seeking an automated way to collect player tracking information, which
can help them analyze and improve player performance. An automatic player
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tracking system would also benefit the entertainment industry, offering audi-
ences a more professional viewing experience.

Wearable technology has become the most common solution to this problem.
Many hardware companies have developed GPS (Global Positioning System)
and IMU (Inertial Measurement Unit) based systems that players must wear.
Efforts have been made to reduce the weight and size of these wearable units,
but they still present challenges such as battery life, comfort, and high cost.

Multiple Object Tracking (MOT), a case of sport player tracking, has gained
significant attention due to the impact deep learning has had on computer vi-
sion. More and more models based on the detection-tracking logic have been
proposed. Applying MOT methods to sports videos provides information on
player positions and trajectories.

However, training MOT methods requires extensive and costly labeling ef-
forts, leading to a lack of publicly available datasets for sport player tracking.
Meanwhile, the amount of sports videos continues to grow rapidly. An unsuper-
vised learning method is desired to take advantage of this abundance of data.

Our goal is to develop an automatic sport player tracking framework that
does not require any manual annotations. There are several challenges associ-
ated with this task: 1) the camera view in most sports videos is often moving,
2) players have similar visual features due to their uniforms, helmets, etc., 3)
occlusions are more common than in general videos, and 4) players often have
extreme poses.

The primary focus of our work is to tackle these challenges in sport player
tracking using an unsupervised system. The proposed system consists of four
critical components, each addressing a specific aspect of the problem.

The first component of our system is designed to align consecutive video
frames accurately. The goal of this component is to ensure that each frame is in
the similar camera view relative to the previous frame. Proper frame alignment
is essential for accurate player tracking and object segmentation, which are the
subsequent steps in our system.

The second component of our system is responsible for segmenting all moving
objects in the video frames. This component identifies all the objects that are
moving within each frame, including players, ball, and other dynamic elements.
This segmentation process is essential to ensure that the subsequent steps in
our system only focus on relevant objects and not on any static or irrelevant
elements.

Our third component is aimed at distinguishing players from all other mov-
ing objects identified in the previous step. The component leverages clustering
methods to separate all objects and trains a contrastive learning model to dif-
ferentiate players from other objects. The result is a set of players identified in
each frame, which serves as input for the subsequent tracking step.

The fourth component of our system is an unsupervised tracking model that
treats each object as a circle with height and width on the frame’s heatmap. It
predicts the displacement of centers using heads and is trained using continuous
and conservative assumptions, without any human annotations.
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Our contributions to the field of sport player tracking are:
1. The development of a novel unsupervised multiple object tracking frame-

work that is specifically designed for sports videos. As such our work is the first
fully unsupervised approach for player tracking in sports videos.

2. The introduction of an unsupervised learning component that aligns video
frames, which enables us to overcome the challenge of camera movement in sports
videos.

3. The introduction of a new segmentation method to detection, which has
not been done before.

4. The evaluation of our proposed framework on a soccer video dataset and
an NFL video dataset through experiments and comparison with state-of-the-art
methods.

The paper is organized as follows. Section 2 reviews related work in the field,
Section 3 presents the proposed detection and tracking method and its com-
ponents, Section 4 discusses the training strategies, datasets, and experimental
results, and finally, conclusions and future plans are outlined in Section 5.

2 Literature Review

In this section, we begin with a review of visual object localization techniques,
followed by a comprehensive overview of the main methods and frameworks
proposed for MOT, as well as contrastive learning, and sports video analysis.
Our emphasis is on unsupervised approaches.

2.1 Visual Object Localization

Localizing sport players within video frames is a crucial step towards achieving a
sport player tracking system. This task falls under the category of visual object
localization, which is a critical issue in computer vision. Supervised versions
of visual object localization have been extensively studied [13, 27, 28, 40, 42],
but these approaches require large amounts of annotated training data, which
can be expensive to obtain. Moreover, these models are vulnerable to domain
shift, where the distribution of the training data differs significantly from that
of the test data. Unsupervised approaches to visual object localization remain
challenging but are gaining increasing attention due to their potential for more
cost-effective and domain-robust solutions.

The study by Nair et al. in 2004 [26] presents an unsupervised framework for
object detection that uses motion information, specifically background subtrac-
tion, to label the training examples automatically. Additionally, there are some
other researches that use optical flow to detect moving objects as a source of
motion information [1].

Self-supervised vision transformer (ViT) [10] has shown a great success in
computer vision, and researchers [5] observe that self-supervised ViT features
contain explicit information about the semantic segmentation of an image, which
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does not emerge as clearly with supervised ViTs, nor with convolutional net-
works. Drawing from this observation, LOST [30] and TokenCut [33] utilize
self-supervised ViT features and suggest the segmentation of a solitary salient
object from each image by constructing a graph using DINO’s patch features.

This work’s primary distinguishing factor is its utilization of the temporal
information present in videos. In contrast to prior research that has relied on
pre-trained models, our approach employs the frame subtraction as a soft label
to train the unsupervised object segmentation model from scratch, and has the
capability to detect multiple objects at once.

2.2 Multiple Object Tracking

MOT refers to the computer vision problem that involves identifying and fol-
lowing multiple objects in a video sequence. The common approach to MOT is
based on a two-stage strategy. First is a detection step and second is a tracking
step that associates an identifier with each object. We focus on the tracking step
in this section.

Recently, several deep learning-based MOT algorithms have been proposed.
DeepSORT [35] is a deep learning-based extension of SORT [3] that tracks ob-
jects using a Kalman filter and the Hungarian matching algorithm. It includes
appearance features generated by a deep neural network in its association met-
ric. FairMOT [39] is similar to JDE [34] but aims to balance object detection
and re-identification. ByteTrack [38] tracks objects by associating every detec-
tion box, using IoU scores to assign tracklets and recovering true objects. It uses
the YOLOX [11] detector for the detection task.

The problem of tracking multiple objects in video sequences has been widely
studied, but it remains a challenging task due to the need for large amounts of
annotated data by supervised learning methods [7,22,25]. Unsupervised methods
for MOT have received much less attention in the literature. UnOVOST [24]
is built up to segment and track diverse objects by first grouping segments
into short tracklets that are spatio-temporally consistent, then merging these
tracklets into long-term consistent object tracks based on their visual similarity.
SimpleReID [18] trains a re-identification model using labels predicted by SORT
[3].

UnOVOST uses visual embeddings which capture more information than nec-
essary. On the other hand, we use object heatmaps only of location information.
Our tracking part is simpler than SimpleReID and it exhibits better results.

2.3 Contrastive Learning

Recently, contrastive learning has gained popularity and become widely adopted
as a method for unsupervised visual representation learning [6]. It trains models
by learning similarities between multiple inputs, through comparison of their
representations. A framework for unsupervised object detection using multi-level
supervision and contrastive learning between global images and local patches has
been proposed in [36].
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Contrastive learning can also be utilized to train unsupervised classification
models. For example, [21] uses contrastive learning to classify sport players, in a
fully unsupervised manner, by maximizing the distance between representations
of players from different teams.

To filter out players from all moving objects detected in the video frames,
we build a player classification task using contrastive learning. This technique
allows us to distinguish players from other moving objects with high accuracy
and without the need for human annotations. Our approach differs from [21]
since the latter is distinguishing players by team, while we separate players from
other entities such as balls and similar objects.

2.4 Sport Player Detection and Tracking

Player detection and tracking in sports videos is a crucial intermediate step
in a sport video analysis process. It plays an important role in various other
computer vision tasks such as player action recognition, automatic refereeing,
goal prediction, highlight detection, ball tracking, and more. This task benefits
both sport analyses and entertainment by providing insights and information
that are essential for these applications. However, player detection and tracking
in sports videos is challenging due to the fast movement of both players and
the background, as well as similar visual features and non-rigid transformations
of players. Despite these challenges, the player detection and tracking task has
been widely researched, as seen in studies such as [12,32].

Extensive research has been conducted on the topic of sport player tracking
using conventional computer vision techniques, as reported in various surveys
[25, 29]. Some studies utilized multi-camera systems with fixed cameras that
work together to cover the entire playing field [14]. The commonly used player
detection method in these fixed camera systems is background subtraction.

There has been a surge in research on sport player tracking using deep learn-
ing and computer vision methods [4,31]. These approaches build on general ob-
ject detection and tracking frameworks. However, due to the scarcity of training
data, researchers either manually annotate images [20] or rely on automatically
annotated data from previous studies [9].

The first annotated dataset for soccer games, SoccerNet [8], makes it feasible
to train player detection and tracking models on a large scale. However, this
is still a challenge for other sports without a similar dataset. A self-supervised
detection and tracking model has been introduced in [16] when the players form
a small portion of a frame, but it still relies on pretrained computer vision models
trained on general annotated vision data. In contrast, our work does not require
any annotations or pre-trained models, making it truly unsupervised. We are the
first true unsupervised sports tracking work based on deep learning. In addition,
our method works well regardless of the size of the players with respect to a
frame.
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3 Method

In this section, we first formulize the unsupervised sport player tracking task and
then present our proposed framework. The framework consists of two stages: (1)
training an unsupervised sport player detection network (as outlined in Sec-
tion 3.2) and (2) training an unsupervised multiple object tracking network (as
described in Section 3.3).

3.1 Task Description

The general form of multi-object tracking reads,

O = F (I), (1)

where I is a sequence of frames I = {it}Tt=1. The set of trajectories for all
observed objects is denoted by O = {oit}Tt=1. For a given frame i, the trajectory
slice oi contains information about all the observed players, represented as oi =
{IDj , xj

i , y
j
i , h

j
i , w

j
i }

Ni
j=1, where (x

j
i , y

j
i , h

j
i , w

j
i ) is the bounding box for player IDj .

3.2 Unsupervised Sport Player Detection

The design of our deep neural network pipeline for player detection in sports
videos consists of three steps: frame alignment, foreground segmentation, and
player detection. The complete framework of our unsupervised player detection
method is illustrated in Fig. 1.

Fig. 1. Unsupervised Sport Player Detection left: frame alignment module, cen-
ter: foreground segmentation module, right: player classification.

Frame Alignment The first challenge in sport player tracking is the fast-
moving camera view. To overcome this challenge, we propose an unsupervised
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frame alignment model ALIGNτA to learn the camera movements θt−1,t at
timestamp t between consecutive frames [it−1, it]:

θt−1,t = ALIGNτA(it−1, it). (2)

ALIGNτA is a neural network that takes two frames as input and has trainable
parameters τA. This camera alignment model is designed under the assump-
tion that the camera movements preserve lines and parallelism between different
frames. Thus, it is suitable to assume that all movements are affine transforma-
tions and that θt−1,t can be represented as a vector of size 6 (rotation, translation,
scaling). The details can be found in [17]. In theory, the transformation can be
arbitrary, but in practice, we limit it to an affine transformation as it aligns
rigidly with the changes in the camera view.

To enhance the training quality, we make use of reference frame it−s and
current frame it, where s ranges between 1 and smax, a hyperparameter.

This necessitates parameters θp,q that correspond to aligning frame ip with
frame iq. Note that we allow p ≤ q or q ≤ p. The neural network, ALIGNτA , can
be any type of an MSE network that outputs the transformation parameters and
takes any two frames as input (not just consecutive). To ensure invertibility of
the transformation, we employ the following loss function in the training process:

Lossalign = Σt,s(||it−s − i
′

t,t−s||22 + ||it − i
′

t−s,t||22), (3)

where i
′

p,q = Trans(ip,ALIGNτA(ip, iq)). Here Trans is based on [17]. The first
term enforces the transformation to align the reference frame it−s and current
frame it, while the second term ensures invertibility of the transformation.

Moving Objects Segmentation The process of aligning consecutive frames
makes it possible to separate the moving objects by subtracting frames. How-
ever, as the camera is always rapidly moving and there is no background frame
available for regular background subtraction, we use frame subtraction as soft
labels to train a segmentation model SEGτS . This model operates by taking
a frame as input and generates a single logit for each pixel, with trainable pa-
rameters denoted as τS . The pixel’s logit serves as the basis for calculating the
probability of whether the pixel corresponds to the background or not.

The soft labels for the segmentation model SEGτS are obtained through
frame subtraction between the input frame it and its aligned counterpart i

′

t−1,t =
Trans(it−1, θt−1,t) as shown in Fig. 1.

The difference between the frames is transformed into a binary feature map
∆t−1,t using threshold δ based on

∆t−1,t = 1(|i
′

t−1,t − it| > δ). (4)

The model SEGτS is trained using the cross-entropy loss function to mini-
mize the difference between its prediction segt and the binary feature map∆t−1,t

based on

Lossseg = −Σj

[
∆j

t−1,t · log seg
j
t + (1−∆j

t−1,t) · log(1− segjt )
]

(5)
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where j is a pixel. This optimization is with respect to τA and τS but we solve
them sequentially by first optimizing τA, fixing it, and then τS .

Player Classification The moving foreground in sports videos is composed
of all objects that are in motion against the playfield background, including
players, balls, referees, and coaches. The final step of our player detection pipeline
involves two key challenges: separating individual objects from the foreground
and classifying them as either human or non-human.

We propose the following approach to address the aforementioned challenges.
Our method leverages pixelwise clustering to identify potential individual play-
ers while dynamically expanding high-confidence positive and negative pools to
encompass all pixels. Similar concepts have already been introduced in [21]. The
main differences are in the following. 1) [21] starts contrastive learning with
individual detections, while our method initializes a pool of patches generated
through pixelwise K-Means for various values of K. Consequently, our model
learns to distinguish not only ‘parts of a player’ but also the entire ‘player’
entity. 2) Our iterative strategy diverges from that of [21]. We incrementally
augment our positive and negative pools with ‘player’ images of high confidence
during each iteration. In [21], there is no utilization of such pools; instead, they
update model weights to obtain new embeddings and seek convergence of cluster
centers.

We first use K-Means to divide the foreground defined based on trained
SEGτS to clusters. The number of clusters, i, impacts the final clustering results.

Let p̄ji be the binary encoding (mask) of pixels in cluster j when i clusters

are specified. Let p̂ji be the bounding box of p̄ji as binary encoding. Furthermore,

we introduce pji as the corresponding bounding box of p̄ji , represented as the

pixel-wise product of p̂ji with the frame. We try a range of values for i from 1
to K, where K is a hyperparameter, and denote the union of all these bounding
boxes as P , which can be expressed as P =

⋃K
i=1

⋃i
j=1 p

j
i .

Our goal is to isolate individual players, so we train another convolutional
neural network, EMBτE , to generate embeddings for all object candidates, and
differentiate players from other objects by their embeddings. Network EMBτE

with trainable parameters τE takes elements in P as input and it outputs an
embedding.

At the start of the training and inference process, two candidate pools are
constructed from P . The first pool is the positive player candidate pool Ppos ⊆ P ,
where each candidate is chosen based on a strict criterion. To ensure that the
bounding boxes correspond to complete single human bodies, we establish strict
criteria for the boxes in Ppos. These criteria include 1) the center of p̂jj (bounding

box) must be in p̄ji (cluster) and 2) a low proportion of pixels in p̄ji on the edges

of p̂jj . This eliminates boxes that encompass multiple individuals or only partial
bodies. These rules are not specific to player detection in sports, but can be
applied to other detection problems using rectangular bounding boxes.

The second pool is the negative player candidate pool Pneg ⊆ P , which is
created by merging two clusters from the playfield with low Intersection over
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Union (IoU). To this end, consider Pfield = {randomly cropped patches p with
IoU(p, Ppos) ≤ maxIoU}. We start with Pneg = {Merge(p, q)|p, q randomly se-
lected from Pfield

⋃
(P \Ppos)} where Merge(p, q) is the bounding box of p

⋃
q.

In each training iteration of EMBτE , Ppos and Pneg are expanded based on
the ranking of a bounding box confidence score calculated as

score(p) =
||EMBτE (p)−EMBτE (Pneg)||22 − ||EMBτE (p)−EMBτE (Ppos)||22
||EMBτE (p)−EMBτE (Pneg)||22 + ||EMBτE (p)−EMBτE (Ppos)||22

(6)
where EMBτE (Ppos) is the numerical average of all the embeddings of the can-
didates in Ppos, EMBτE (Pneg) is the numerical average of all the embeddings
of the candidates in Pneg, and p is any bounding box remaining in P . Set Ppos

is expanded by all p with score(p) > thresholdpos and Pneg by all those with
score(p) < thresholdneg.

The model is trained using the triplet loss, with each triplet (pi, pi,+, pi,−)
M
i=1

being constructed by randomly selecting an anchor candidate pi ∈ P , a positive
candidate pi,+ ∈ Ppos and a negative candidate pi,− ∈ Pneg. The loss function
of EMBτE is defined as

Lossemb(P,EMBτE ) = Σimax(0, ||EMBτE (pi)−EMBτE (p+)||22−
||EMBτE (pi)−EMBτE (p−)||22 + ϵ),

(7)

where ϵ is the margin between positive and negative pairs.

3.3 Unsupervised Multiple Object Tracking

We introduce an unsupervised multiple object tracking model based on the Cen-
terTrack approach [41] which is supervised. In this model, every object is treated
as a circle on the frame’s heatmap, and the width and height of the object are
predicted by two regression heads as in [41]. The third center displacement head
predicts the movement of each object center between frames. Although the model
is trained in a fully supervised manner, we use self-supervision to train the center
displacement head.

The center heatmap, denoted as C(x, y, t) ∈ [0, 1], is defined for every pixel
at each frame and is constructed using a set of Gaussian kernels centered at the
object centers

C(x, y, t) = max
k=1,...,Kt

G((x, y), (xt
k, y

t
k);σ), (8)

in which G is the Gaussian kernel with spread of σ, Kt is the number of objects
on frame t, and pixel (xt

k, y
t
k) is the center of each object.

Every pixel (x, y) at time t moving to (x+∆x, y+∆y) after ∆t is captured
by

C(x+∆x, y +∆y, t+∆t) = C(x, y, t). (9)
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Assuming the time change to be very small, the above equation with Taylor
series expansion can be reformulated as

C(x+∆x, y+∆y, t+∆t) = C(x, y, t)+
∂C

∂x
∆x+

∂C

∂y
∆y+

∂C

∂t
∆t+ o(t2), (10)

which leads to

∂C

∂x
∆x+

∂C

∂y
∆y +

∂C

∂t
∆t = 0. (11)

Dividing by dt yields

∂C

∂x

∆x

∆t
+

∂C

∂y

∆y

∆t
+

∂C

∂t
= 0. (12)

The displacement heatmap V (x, y, t) represents the speed of each pixel and
is defined as

V (x, y, t) = lim
∆t→0

(
∆x

∆t
,
∆y

∆t
) = (

dx

dt
,
dy

dt
) = (Vx(x, y, t), Vy(x, y, t)). (13)

The change in the value of C over time can be expressed as

C(x, y, t+∆t)− C(x, y, t) =
∂C

∂t
∆t = −(

∂C

∂x
Vx +

∂C

∂y
Vy)∆t, (14)

where C is known and the unknown variables are Vx, Vy.
Taking a continuous sub-region A of the full image, and the summation for

every pixel inside this region, leads to

Q(A, t) =
∑

(p,q)∈A

[C(p, q, t+∆t)− C(p, q, t)] = −
∑

(p,q)∈A

(
∂C

∂x
Vx+

∂C

∂y
Vy)|(p,q,t)∆t.

(15)
Let us assume that the sub-region A is small enough so that Vx, Vy of each pixel
inside A are the same: ∀(p, q) ∈ A, Vx(A, t) = Vx(p, q, t), Vy(A, t) = Vy(p, q, t).
We get

Q(A, t) = −Vx(A, t)
∑

(p,q)∈A

∂C

∂x
|(p,q,t)∆t− Vy(A, t)

∑
(p,q)∈A

∂C

∂y
|(p,q,t)∆t. (16)

The trainable neural network UMOTτU outputs the displacement heatmap
V (x, y, t) with its loss function defined by

LossA(V
τU
x , V τU

y ) = ||Q∗(A, t) + V τU
x (A, t)

∑
(p,q)∈A

∂C∗

∂x
|(p,q,t)∆t+

V τU
y (A, t)

∑
(p,q)∈A

∂C∗

∂y
|(p,q,t)∆t||22.

(17)
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Value ∆t is 1/(frames per second). Ground truths C∗ and Q∗ are obtained based
on (8) and (16) where the bounding boxes or objects are the outputs of EMBτE .
The tracking loss is defined as the sum of the loss function over all regions in
the image I

Losstrack =
∑
A∈I

LossA(V
τU
x , V τU

y ). (18)

The overall loss is L = Losstrack+Losswidth+Lossheight (see [41] about the
latter two terms). With trained UMOTτU , we consider a bounding box A in
frame t. The model gives Vx(A, t) and Vy(A, t) which we use to offset A in frame
t + 1 to get Ā. To Ā we find the closest bounding box in frame t + 1 which is
then set as the matching bounding box in frame t+ 1 to A.

4 Experiment Analysis

In this section, the training and testing data sets are introduced in Section
4.1. The evaluation metrics and baselines are then discussed in Section 4.2 and
Section 4.3, respectively. The details of the proposed models’ implementation
can be found in Section 4.4, followed by the results on soccer and football game
videos, which are presented in Section 4.5.

4.1 Training and Testing Data

In this study, we evaluate our proposed models on two popular sports: soccer
and football. Our experiments are conducted in an unsupervised setting, where
only raw video frames are used for training and no annotations are provided.
The models are trained solely on the raw video frames without any external
annotations.

SoccerNet-Tracking The SoccerNet-Tracking dataset [8] is a large public re-
source for tracking soccer players in video, Fig. 2. It consists of 200 sequences,
each 30 seconds in length, and a 45-minute half-time. The annotations provided
include bounding boxes, tracklet IDs, player jersey numbers, and team tags, with
a frame rate of 25 frames per second. With over 3.6 million bounding boxes and
over 5,000 unique tracklets, SoccerNet-Tracking is one of the largest multi-object
tracking datasets available. We stress that annotations are used only to evaluate
results (and not in training).

NFL Tracking The NFL Tracking dataset is an adapted version of the NFL
1st and Future dataset [15], which consists of 126 videos capturing NFL plays
from both a sideline and end zone perspective. The original annotations in-
clude bounding boxes and ID tracklets of helmets. We expanded annotations by
generating player bounding boxes based on the helmet information. We simply
increased the size of the helmet bounding boxes by a defined ratio. Examples of
the images and labels can be seen in Fig. 3.
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Fig. 2. SoccerNet-Tracking: This dataset includes 200 soccer videos of 30s each,
representative of interesting moments from 12 soccer games, densely annotated with
player tracklets, teams and jersey numbers [8].

Fig. 3. NFL 1st and Future: This dataset includes 126 football play videos. The
player bounding boxes (green) are generated by enlarging the helmet bounding boxes
(red) in two directions.
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4.2 Evaluation Metrics

We use the same evaluation metrics for the two datasets.

MOTA The Multiple Object Tracking Accuracy (MOTA) metric [2] is com-
monly used for MOT. It penalizes the ratio of missed boxes, false positive boxes,
and identity switches computed over the number of ground truth boxes in the
sequence.

HOTA HOTA (Higher Order Tracking Accuracy) [23] is a more recent metric
proposed to equally weight detection and association. For more information,
refer to the HOTA paper [23]. We use both MOTA and HOTA to evaluate the
overall performance of our proposed method and the baseline models.

4.3 Baselines

To the best of our knowledge, no existing model has been designed specifically for
the unsupervised sport player tracking task in moving camera settings. To evalu-
ate the performance of our proposed model, we compare it to the results reported
in [8] using three state-of-the-art general MOT models: DeepSORT [35], Fair-
MOT [39], and ByteTrack [38]. These models were evaluated on the SoccerNet-
Tracking dataset in [8]. Additionally, we trained the ByteTrack model using
their published code on the NFL Tracking dataset as a baseline (DeepSORT
and FairMOT have no open source code). In [8], experiments were conducted in
two settings: “w/ GT” indicates that ground-truth detections were provided to
the models, while “w/o GT” indicates that each model used its own unsuper-
vised detector. We only consider “w/o GT.” FairMOT-ft was fine-tuned in [8]
on the training dataset for an additional 10 epochs.

4.4 Implementation Details

The setup for our experiments includes a server equipped with an NVIDIA
GeForce RTX 3090, and PyTorch as the deep learning library. All neural net-
works are trained using the Adam optimizer [19] with an initial learning rate of
10−4.

The neural network ALIGNτA consists of 5 convolutional layers with 3x3
kernels, interspersed with pooling layers, and capped by two fully connected
layers. The output of the final layer is a vector of size 6. The training batch
size is set as 64. The neural network SEGτS is a U-Net network that includes 4
encoding blocks and 4 decoding blocks, and returns a binary feature map. The
training batch size is set as 16. EMBτE is a 3-layer convolutional neural network
with 3x3 kernels, pooling layers, and two fully connected layers at the top. The
final layer produces a vector of size 1024. The stopping criteria for training the
EMBτE is when positive candidate boxes cover δ positive pixels. We set δ as
98% in this work. The training batch size is set as 64. The margin ϵ in (7) is 0.5.
UMOTτU is based on [41] which uses DLA [37] as the network backbone, and
the training batch size is set as 16.
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Data augmentation To prevent overfitting due to the green playfield being
the dominant feature in many frames of the sports videos, we randomly convert
half of the training frames to grayscale.

Additionally, we employ data augmentation techniques such as scaling, ro-
tation, and horizontal flipping to improve the quality of our model. The scaling
factor ranges from 0.9 to 1, the rotation is limited to less than 10 degrees, and
horizontal flipping is randomly applied with a probability of 50 percent.

Model selection The SEGτSmodel is trained to identify and extract all moving
objects in the video frames during the training process. However, since the frame
subtraction process involves pixels that change between frames, and ALIGNτA

is not able to perfectly align frames, SEGτS learns to detect more noises as it
is further trained. It is difficult to choose a model that can accurately segment
human objects while avoiding distractions from other noises.

To prevent overfitting caused by the noises, we have created an auxiliary
task to choose the best model SEGτS from the set of candidates {SEGτj

S
}Mj=1

(M being the number of epochs). The goal is to select a model that can effec-
tively ignore distracting elements, such as white lines and goalposts, which are
known to contribute to these noises. The auxiliary task specifically focuses on
filtering out artificially added white lines. The objective of the affiliate task is to
choose the best model SEGτS from the set of candidate models {SEGτj

S
}Mj=1 by

minimizing the difference between the segmentation results on an original video
frame fi and an artificial frame fa

i . The artificial frame fa
i is created by adding

long white lines or white curves to the original frame fi in random directions.
The model selection is performed by minimizing the squared L2 norm between
the segmentation results of the two frames

argminjΣi||SEGτj
S
(fa

i )− SEGτj
S
(fi)||22. (19)

Our proposed model has three modules in the detection framework and one
module in the tracking framework. The modules are trained in a sequential order,
starting with ALIGNτA , then SEGτS , followed by EMBτE , and finally the
tracking module UMOTτU . After training SEGτS for 10 epochs, we choose the
best model using the affiliate task specified by (19). We call the entire pipeline
USTP (unsupervised sports tracking pipeline).

4.5 Experimental results

Our proposed model is composed of several neural networks, and to evaluate the
effectiveness of each component, we also conduct an ablation study comparing
the performance of the full model with models missing individual modules.

– “w/o ALIGNτA”: The θt−1,t for any timestamp t is set as vector of all 0
and the frame subtraction is conducted between original frames it and it−1.

– “w/o SEGτS”: The segmentation model is ignored, instead the ∆t−1,t is
considered as the moving object segmentation mask.
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– “w/o EMBτE”: The initial rule filtered bounding boxes are considered as
the detection results.

Table 1. Experimental results and ablation study for SoccerNet-Tracking:
best result is formatted in bold, and second-best is underscored.

Methods HOTA DetA AssA MOTA

DeepSORT 36.663 40.022 33.759 33.913
FairMOT 43.911 46.317 41.778 50.698

ByteTrack 47.225 44.489 50.257 31.741
USTP 48.127 52.632 44.091 46.845

USTP w/o ALIGN 45.227 46.976 43.238 39.185
USTP w/o SEG 32.613 35.108 29.529 33.783
USTP w/o EMB 39.798 45.265 34.437 42.436

SoccerNet-Tracking The results are summarized in Table 1. USTP has the
highest HOTA score and DetA score, while ByteTrack has the highest AssA
score and FairMOT has the highest MOTA score. Among these models, USTP
consistently ranks in the top two for all four metrics, with its best HOTA score
resulting from its strong lead in DetA.

All ablated models show significant differences in performance compared to
the full model. The model without the SEGτSmodule performs the worst among
all metrics, demonstrating the importance of the segmentation model in learning
high-level object features. Meanwhile, the model without the ALIGN module
has performance that is closest to the full model, suggesting that the segmenta-
tion model can still learn even from unaligned frame subtractions.

As a reference point, supervised ByteTrack yields HOTA of 71.50 and MOTA
of 94.57, which not surprisingly are much higher than the unsupervised counter-
parts. FairMOT-ft which is also supervised by using annotations yields HOTA
of 57.88 and MOTA of 83.57.

In Fig. 4, we present instances of suboptimal inferences. These examples
vividly illustrate the formidable challenge posed by player overlap to USTP.
This challenge results in both detection errors and the loss of tracking IDs.

NFL Tracking We evaluated the model performance of USTP and its ablated
versions on the NFL Tracking dataset, Table 2. USTP outperformed “Byte-
Track” in terms of MOTA. This outcome can be attributed to several factors,
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including the higher level of physical confrontation in football games compared to
soccer games and the varying poses of football players during the game. USTP
performs better than all of its ablated versions, demonstrating the effectiveness
of each component in the framework. However, it is worth noting that the anno-
tations in the NFL Tracking dataset are based on helmet bounding boxes, which
could affect the validity of the performance metrics in validation.

In Fig. 5, we similarly present instances of suboptimal inferences. These ex-
amples underscore the complexity of player overlap in the context of detection.
Notably, it is evident that football videos tend to exhibit a higher frequency of
overlapping players, thereby resulting in lower performance metrics compared to
soccer games.

Fig. 4. Bad inferences examples in SoccerNet-Tracking of USTP: the left
two frames show tracking ID lost; the right two show detection errors for overlapping
players.

Fig. 5. Bad inferences examples in NFL Tracking of USTP: overlapping of
players is challenging for detection.

4.6 Computational Time Analysis

We report training times for both USTP and ByteTrack for the NFL Tracking
dataset. For USTP, the total training time amounts to 19.2 hours, consisting of
4 models: 0.3 hour for training ALIGNτA (with 689,000 parameters), 8.5 hours
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Table 2. Experiment results and Ablation study for NFL Tracking: best result
is formatted in bold, and second-best is underscored.

Methods HOTA DetA AssA MOTA

ByteTrack 35.806 33.968 38.137 26.524
USTP 30.918 33.356 28.337 29.684

USTP w/o ALIGN 25.947 27.605 25.387 22.822
USTP w/o SEG 21.470 23.487 19.074 21.554
USTP w/o EMB 23.802 27.901 21.494 24.725

for training SEGτS (with 7 × 106 parameters), 6.9 hours for training EMBτE

(with 1.7×106 parameters), and 3.5 hours for trainingUMOTτU (with 15.7×106

parameters). On the other hand, ByteTrack requires a training time of 24.5 hours
with 25.3× 106 parameters.

We measure frames per second (FPS) in inference of USTP following the
settings of [11] by using floating point 16-precision on a single GPU, and com-
pare FPS with ByteTrack on the NFL Tracking data set. This result shows
USTP is running 40% slower than ByteTrack with ByteTrack having FPS of
19.3 and USTP 11.8. The primary factor contributing to this disparity is that
the USTP approach predicts the tracking problem incrementally, generating
intermediate outputs such as camera movements and segmentation heatmaps at
different stages.

5 Conclusion

In this study, we propose a novel deep learning-based unsupervised sport player
tracking system. The system is comprised of several innovative modules that
exploit the inherent characteristics of sport videos. It is important to note that
this framework does not require any prior knowledge or pre-trained models.

Through our experiments, we demonstrate the generalizability of our model
to different types of sport videos, including soccer and football games, which
are known to be two of the most complex sports to track. This result highlights
the versatility and robustness of our proposed system. The experimental results
reveal that in the SoccerNet-Tracking dataset, USTP outperforms all existing
unsupervised models. However, when comparing USTP to ByteTrack in NFL
tracking, it exhibits superior results in terms of MOTA but lags behind in HOTA
performance. We also observe that USTP has a big gap in association metrics
compared to ByteTrack, which leads to the gap in HOTA. The divergence in
performance between the two sports domains also offers valuable insights for the
application of USTP . USTP demonstrates significantly superior performance
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compared to other models in soccer, primarily due to the relatively low occur-
rence of player overlap in soccer games. This suggests that applying USTP to
sports with similar characteristics, such as swimming and volleyball, is likely to
yield major improvements over current state-of-the-art. However, it may not be
as effective in sports characterized by frequent physical contact, such as football
or basketball.

We believe that our model can serve as the new baseline for unsupervised
sport player detection and tracking, and has the potential to be used for auto-
matic label generation. In future work, we plan to enhance the performance of
the model with regard to overlapping players and complicated poses.
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