
Stochastic Variance-Reduced Algorithms for PCA
with Arbitrary Mini-Batch Sizes

Cheolmin Kim Diego Klabjan
Northwestern University Northwestern University

Abstract

We present two stochastic variance-reduced
algorithms for PCA and provide their con-
vergence analyses. By deriving explicit forms
of step size, epoch length and batch size, we
show that the proposed algorithms can at-
tain the optimal runtime with arbitrary batch
sizes. We also establish global convergence
of the algorithms based on a novel analysis,
which studies the optimality gap as a ratio
of two expectation terms. The framework in
our analysis is general and can be applied
to analyze other stochastic variance-reduced
PCA algorithms and improve their analyses.
Moreover, we introduce practical implemen-
tations of the algorithms which require no
hyper-parameters. The experimental results
show that the proposed algorithms outper-
form other stochastic variance-reduced PCA
algorithms regardless of the batch size.

1 Introduction

Principal component analysis (PCA) (Jolliffe, 2011)
is a fundamental tool for dimensionality reduction in
machine learning and statistics. Given a data matrix
A = [a1a2 . . . an] ∈ Rd×n consisting of n data vectors
a1, a2, . . . , an in Rd, PCA finds a direction w onto which
the projections of the data vectors have the largest vari-
ance. Assuming that the data vectors are standardized
with a mean of zero and standard deviation of one, the
PCA problem can be formulated as

maximize f(w) =
1

2n

n∑
i=1

(aTi w)2 =
1

2
wTCw

subject to ‖w‖2 = 1

(1)
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where C = 1
nAA

T ∈ Rd×d is the covariance matrix
of data matrix A. As the largest eigenvector u1 of C
maximizes f(w), (1) can be solved by computing the
singular value decomposition (SVD) of A. However,
the runtime of SVD is O(min{nd2, n2d}), which can be
expensive in a large-scale setting. An alternative way to
solve (1) is to use power iteration (Golub and Van Loan,
2012) which repeatedly applies wt+1 = Cwt/‖Cwt‖ at
each iteration. The sequence of iterates {wt} generated
by power iteration is guaranteed to obtain an ε-optimal
solution after O

(
1
∆ log 1

ε

)
iterations where λ1 > λ2 ≥

. . . ≥ λd ≥ 0 are the eigenvalues of C and ∆ = 1−λ2/λ1

represents the eigen-gap. Since each iteration involves
multiplying vector wt with the matrix C, the runtime
becomes O

(
nd 1

∆ log 1
ε

)
. When n and d are both large,

the runtime of power iteration is better than that of
SVD. Nonetheless, it still largely depends on n and can
be prohibitive when ∆ is small.

In order to reduce the dependence on ∆ or n, the follow-
ing variants of power iteration have been developed. To
reduce the dependence on ∆, Xu et al. (2018) propose
power iteration with momentum (Power+M) utilizing
the momentum idea of Polyak (1964). With the op-
timal choice of the momentum parameter β = λ2

2/4,
the total runtime improves to O

(
nd 1√

∆
log 1

ε

)
. Also, a

stochastic algorithm utilizing the stochastic gradient
aita

T
it
wt rather than a full gradient Cwt is introduced

in Oja (1982). Since it requires just one data vector
at a time, the computational cost per iteration is sig-
nificantly reduced. However, due to the variance of
stochastic gradients, a sequence of diminishing step
sizes needs to be adopted, making its progress slow
near the optimum.

Built on the recent stochastic variance-reduced gradient
(SVRG) technique (Johnson and Zhang, 2013), Shamir
(2015, 2016) present a stochastic variance-reduced ver-
sion of Oja’s algorithm (VR-PCA) and its extension to
find k ≥ 1 principal components. Utilizing stochastic
variance-reduced gradients, VR-PCA works with a con-
stant step size and converges at an exponential rate,
reducing the total runtime to O(d(n+ 1

∆2 )log 1
ε ). The

analysis of VR-PCA considers a mini-batch of size one,
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Table 1: Comparison of stochastic variance-reduced methods for PCA and their convergence analyses. Types
of convergence and complexity results are summarized. “Local” means that there is a restriction on the angle
between an initial iterate and the first eigenvector u1 and “global” implies no such restriction. For VR Power
and VR HB Power, µ ≥ 0 is a parameter which controls the progress of the algorithms through step size η = ∆µ

depending on batch size.

Algorithm Convergence Iteration Batch Size Total Runtime Reference

VR-PCA Local O
(

1
∆2 log 1

ε

)
O(1) O

(
d
(
n + 1

∆2

)
log 1

ε

)
(Shamir, 2015)

VR Power+M Local O
(

1

∆1/2 log 1
ε

)
O

( √
d

∆3/2

)
O

(
d
(
n +

√
d

∆2

)
log 1

ε

)
(Xu et al., 2018)

Fast PCA Global O
(

1
∆2 poly

(
log 1

ε

))
O(1) O

(
d
(
n + 1

∆2

)
poly

(
log 1

ε

))
(Garber and Hazan, 2015)

VR Power Global O
(

1
∆1+µ log 1

ε

)
O

(
1

∆1−µ

)
O

(
d
(
n + 1

∆2

)
log 1

ε

)
[This Paper]

VR HB Power Global O
(

1

∆1/2+µ log 1
ε

)
O

(
1

∆3/2−µ

)
O

(
d
(
n + 1

∆2

)
log 1

ε

)
[This Paper]

which implies that it works with any size of mini-batch.
However, conditions for the step size and the epoch
size are not precisely given, making it hard to attain
the theoretically optimal runtime in practice.

A stochastic variance-reduced version of Power+M (VR
Power+M) is introduced by Xu et al. (2018). Due to the
momentum term, the iteration complexity is improved

to O
(

1
∆1/2 log 1

ε

)
. However, a batch size of O

( √
d

∆3/2

)
is

required to achieve such iteration complexity, leading

to the total runtime of O
(
d
(
n+

√
d

∆2

)
log 1

ε

)
. Note that

the runtime of VR Power+M is worse than that of VR-
PCA due to the extra dependency on

√
d. Moreover,

unless the batch size is sufficiently large, VR Power+M
may diverge, which makes it hard to use.

On other other hand, Garber and Hazan (2015) reduce
the PCA problem to inexactly solving a sequence of
convex optimization problems. Each convex optimiza-
tion problem has the form of the least square problem
and amounts to one step of inverse power iteration
(Golub and Van Loan, 2012). Due to the finite sum
structure of the objective function, the SVRG algo-
rithm (Johnson and Zhang, 2013) can be used to solve
it. However, solving this strongly convex optimization
problem can be as hard as the original PCA problem
since the objective function is (λ1 − λ2)-stronly convex
and (2λ1−λ2−λd)-smooth in the accurate regime. By
inexactly solving these problems, an ε-optimal solution
can be obtained after a poly-logarithmic number of
iterations.

The shifted-and-inverted approach is also introduced for
the leading eigenvector problem (Garber et al., 2016)
and a number of solvers such as coordinate-descent
(Wang et al., 2018), SVRG (Garber et al., 2016), accel-
erated gradient descent, accelerated SVRG (Allen-Zhu
and Li, 2016) and Riemannian gradient descent (Xu,
2018) have been developed to solve the least square
problem. Other works on power iteration include the
noisy (Hardt and Price, 2014) and coordinate-wise (Lei
et al., 2016) power methods. The noisy power method
considers the power method in a noise setting, which

Balcan et al. (2016) extend to provide an improved gap-
dependency analysis. Also, power iteration has been
analyzed for incremental or online PCA in many works
(Allen-Zhu and Li, 2017; Li et al., 2018; Balsubramani
et al., 2013; Arora et al., 2012; Boutsidis et al., 2015;
Jain et al., 2016; Mitliagkas et al., 2013).

In this paper, we present two mini-batch stochastic
variance-reduced algorithms for PCA (VR Power, VR
HB Power) and their convergence analyses. They are
mini-batch versions of stochastic variance-reduced al-
gorithms for power (Golub and Van Loan, 2012) and
power with momentum (Xu et al., 2018) iteration meth-
ods. While VR-PCA (Shamir, 2015) takes a data vector
at a time, VR Power works with any batch size and
the accompanying analysis reveals that whatever the
batch size is, VR Power can always achieve the optimal
runtime by appropriately choosing the step size and
epoch length. Explicit conditions for the step size, the
epoch length and the batch size to ensure the opti-
mal runtime are derived for VR Power. On the other
hand, VR HB Power is an enhanced algorithm of VR
Power+M. By adding the step size, VR HB Power
can work with any batch size while VR Power+M can
fail if the batch size is not sufficiently large. In the
analysis of VR HB Power, we prove that for any batch
size, VR HB Power can achieve the optimal runtime by
appropriately choosing the step size, the epoch length
and the momentum parameter. Explicit expressions
for theses parameters are provided. In addition, our
analysis removes the dependency on

√
d for the batch

size, which improves the analysis of VR Power+M. For
the comparison of stochastic variance-reduced PCA
algorithms and their convergence analyses see Table 1.

In the convergence analyses, we introduce a novel frame-
work of analyzing stochastic variance-reduced PCA
algorithms. For an inner-loop iterate wt, we decom-
pose E[(uTkwt)

2] with uk an eigenvector with respect
to λk into two parts where the first one is the ex-
pectation term and the second one is the variance
term. To obtain tight bounds for the variance term,
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we analyze its growth over an epoch rather than fo-
cusing on iteration-by-iteration behavior. Using the
Binomial expansion of matrices, we come up with com-
pact bounds of the variance term. Based on the com-
pact representation of the variance term, we establish
a bound for (E[‖wt‖2] − E[(uT1 wt)

2])/E[(uT1 wt)
2] =∑d

k=2E[(uTkwt)
2]/E[(uT1 wt)

2] and derive conditions for
the step size, epoch length and batch size to ensure its
sufficient decrease.

The concept of representing the optimality gap as the
ratio of two expectations has been never used for ana-
lyzing stochastic PCA algorithms. However, it results
in much simpler convergence statements than proba-
bilistic statements appearing in Shamir (2015) and Xu
et al. (2018). Note that probabilistic statements can
be easily derived from expectation bounds using the
Chebyshev inequality. With the expectation bounds,
we can establish global convergence of stochastic PCA
algorithms. Although stochastic PCA algorithms have
been observed to work well with random initialization
(Shamir, 2015), an initial condition of |uT1 w̃0| ≥ 1/2
is required in previous probabilistic analyses. In our
framework, such condition is not necessary and the
rate of convergence does not depend on how far an
iterate is from u1 but is kept the same across iterations,
as in the case of deterministic power iteration. The
framework introduced in this work is not specific to the
presented algorithms; it can be easily applied to ana-
lyze other stochastic variance-reduced PCA algorithms
such as VR-PCA or VR Power+M, deriving expecta-
tion bounds for them and resolving their initialization
issues.

Our work has the following contributions.

1. We present two mini-batch stochastic variance-
reduced PCA algorithms. For any batch size, our
algorithms achieve the optimal runtime by appro-
priately choosing algorithm parameters. Explicit
expressions for these parameters are provided.

2. We provide novel convergence analyses for the al-
gorithms where we establish global convergence by
deriving a bound for the ratio of two expectation
terms. The framework in our convergence analyses
is general, therefore can be used to analyze other
stochastic variance-reduced PCA algorithms. To
this end, we are the first to establish convergence of
VR-PCA and VR Power+M for any initial vector
and in expectation.

3. We introduce practical implementations of the al-
gorithms and report numerical experiments on di-
verse datasets. Experimental results show that our
algorithms outperform other stochastic variance-
reduced algorithms for any batch size.

The paper is organized as follows. We introduce the
algorithms in Section 2 and the convergence analyses
in Section 3. Some practical considerations regarding
the implementations of the algorithms are discussed in
Section 4 and the experimental results are followed in
Section 5.

2 Stochastic Variance-Reduced
Algorithms for PCA

We consider two mini-batch stochastic variance-reduced
algorithms for PCA. The first one is a mini-batch ver-
sion of VR-PCA (Shamir, 2015) and the second one is
an enhanced version of VR Power+M (Xu et al., 2018)
with a step size incorporated. For eigenpairs (λk, uk)
of C = 1

n

∑n
i=1 aia

T
i , we assume that the eigenvalues

λ1, λ2, . . . , λd satisfy λ1 > λ2 ≥ . . . ≥ λd ≥ 0 and
the eigenvectors u1, u2, . . . , ud form an orthonormal
basis. Since a symmetric matrix is orthogonally diago-
nalizable, we can assume that such eigenvectors exist
without loss of generality. We assume that all norms
are L2 for vectors and spectral for matrices.

Variance reduction algorithms have an outer loop and
an inner loop. They periodically compute exact gradi-
ents at each outer iteration and use it in inner iterations
to reduce the variance of stochastic gradients. Let w̃s
and wt denote an outer-loop and inner-loop iterate,
respectively. To get a stochastic variance-reduced gra-
dient of an inner loop iterate wt, we first decompose
the inner loop iterate wt it into two parts as

wt =
(w̃Ts wt)

‖w̃s‖2
w̃s +

(
I − w̃sw̃

T
s

‖w̃s‖2

)
wt

using the outer loop iterate w̃s. In the above decompo-
sition, the former term represents the projection of wt
on w̃s while the latter term represents the remaining
vector. Utilizing the exact gradient g̃s at w̃s, the exact
gradient at the first term can be computed as

∇f
(

(w̃Ts wt)

‖w̃s‖2
w̃s

)
=

(w̃Ts wt)

‖w̃s‖2
Cw̃s =

(w̃Ts wt)

‖w̃s‖2
g̃s.

On the other hand, a stochastic sample St is used to
compute a stochastic gradient at the second term as

1

|St|
∑
l∈St

ala
T
l

(
I − w̃sw̃

T
s

‖w̃s‖2

)
wt.

This results in the following stochastic variance-reduced
gradient gt at wt as

gt =
(w̃Ts wt)

‖w̃s‖2
g̃s +

1

|St|
∑
l∈St

ala
T
l

(
I − w̃sw̃

T
s

‖w̃s‖2

)
wt. (2)
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2.1 VR Power

Using the stochastic variance-reduced gradient gt, we
obtain a stochastic variance reduced version of Power
iteration as

wt+1 ← (1− η)wt + ηgt. (3)

This update rule has a similar form as the one in VR-
PCA, which repeats

wt+1 ← wt + η̄
(
ait(a

T
itwt − a

T
itw̃s) + g̃s

)
. (4)

Note that (3) generalizes (4) in the following two senses.
First, we can obtain an update rule of (4) by letting
η = (1 + η̄)/η̄ in (3). Second, with the choice of η = 1,
we can recover deterministic power iteration from (3)
while (4) does not. Using update rule (3), we have VR
Power exhibited in Algorithm 1.

Algorithm 1 VR Power

Parameters: step size η, mini-batch size |S|, epoch
length m
Input: data vectors ai, i = 1, . . . , n
randomly initialize outer iterate w̃0

for s = 0, 1, . . . do
g̃ ← Cw̃s
w0 ← w̃s
w1 ← (1− η)w0 + ηg̃
for t = 1, 2, . . . ,m− 1 do

sample a mini-batch St ⊂ {1, · · · , n} of size |S|
uniformly at random

gt ←
1

|St|
∑
l∈St

ala
T
l

(
I − w0w

T
0

‖w0‖2

)
wt+

(wTt w0)

‖w0‖2
g̃

wt+1 ← (1− η)wt + ηgt
end for
w̃s+1 ← wm

end for

When per sample cost is as expensive as per iteration
cost, VR Power is an efficient algorithm since it attains
the optimal sample complexity. However, if per sample
cost is cheap, it might not be effective since its iteration
complexity does not improve beyond O( 1

∆ log( 1
ε )). For

this reason, we introduce VR HB Power which works
better in the latter setting.

2.2 VR HB Power

Using gt, we obtain a stochastic variance-reduced heavy
ball power iteration as

wt+1 ← 2
(
(1− η)wt + ηgt

)
− βwt−1 (5)

where η ∈ (0, 1] is the step size and β is the momentum
parameter. Note that we can recover the deterministic
heavy ball power iteration from (5) when the step size η

is set to 1 and the exact gradient gt = Cwt is used. The
mechanism of controlling the progress of the algorithm
using the step size η is not present in VR Power+M
(Xu et al., 2018). As a result, it fails to converge unless
the mini-batch size |S| is sufficiently large. To the
contrary, our algorithm works with any mini-batch size
|S| due to the presence of the step size η. By selecting
an appropriate value of η depending on the size of |S|
and m, we can always ensure that the variance terms do
not grow faster than expectation terms. Having update
rule (5), VR HB Power is described in Algorithm 2.

Algorithm 2 VR HB Power

Parameters: step size η, momentum β, mini-batch
size |S|, epoch length m
Input: data vectors ai, i = 1, . . . , n
randomly initialize outer iterate w̃0

for s = 0, 1, . . . do
g̃ ← Cw̃s
w0 ← w̃s
w1 ← (1− η)w0 + ηg̃
for t = 1, 2, . . . ,m− 1 do

sample a mini-batch St ⊂ {1, · · · , n} of size |S|
uniformly at random

gt ←
1

|St|
∑
l∈St

ala
T
l

(
I − w0w

T
0

‖w0‖2

)
wt+

(wTt w0)

‖w0‖2
g̃

wt+1 ← 2
(
(1− η)wt + ηgt

)
− βwt−1

end for
w̃s+1 ← wm

end for

3 Convergence Analyses

In this section, we provide convergence analyses for
VR Power and VR HB Power. Before presenting the
convergence analyses, we first introduce some notation.

3.1 Notation

Let Ct and P be the sample covariance matrix at in-
ner iteration t and the projection matrix to the space
orthogonal to the outer iterate w0 = w̃s as

Ct =
1

|St|
∑
l∈St

ala
T
l , P = I − w0w

T
0

‖w0‖2
. (6)

Using (6), we can write gt as gt = ηCwt+η(Ct−C)Pwt.
Next, we characterize the variance of sample covariance
matrix Ct as

K = E[‖(Ct − C)2‖], σ2 = E[‖aitaTit − C‖
2].

Then, for Mk = E[(Ct − C)uku
T
k (Ct − C)], we have

‖Mk‖ ≤ K =
σ2

|S|
. (7)
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For the analysis of VR HB Power, we define

αk(η) = 4(1− η + ηλk)2, β(η) = (1− η + ηλ2)2. (8)

Also, we let pt(α, β) and qt(α, β) be the Chebyshev
polynomials of the first and the second kind (Mason
and Handscomb, 2002) respectively such that

pt(α, β) = (α− β)pt−1(α, β)− β(α− β)pt−2(α, β)

+ β3pt−3(α, β), (9)

qt(α, β) = (α− β)qt−1(α, β)− β(α− β)qt−2(α, β)

+ β3qt−3(α, β) (10)

for t ≥ 3 and

p0(α, β) = 1, p1(α, β) =
α

4
, p2(α, β) =

(α
2
− β

)2

,

(11)

q0(α, β) = 1, q1(α, β) = α, q2(α, β) = (α− β)2. (12)

Since the first eigenvector u1 of the covariance matrix
C is an optimal solution to (1), the optimality gap is

measured as
∑d
k=2(uTkwt)

2/(uT1 wt)
2, representing how

closely wt is aligned with u1. Note that this ratio is zero
if wt = u1. Our analysis studies it in expectation, pro-
viding a bound for θt =

∑d
k=2E[(uTkwt)

2]/E[(uT1 wt)
2]

given fixed s and θ̃s =
∑d
k=2E[(uTk w̃s)

2]/E[(uT1 w̃s)
2]

for an inner loop iterate wt and an outer loop iterate
w̃s, respectively.

3.2 VR Power

In Lemmas 3.1, 3.2 and 3.3, we consider a single epoch,
which corresponds to one inner loop iteration starting
with w0.

Lemma 3.1. For any η ∈ (0, 1], 1 ≤ k ≤ d and
1 ≤ t ≤ m, we have

E[(uTkwt)
2] = (1− η + ηλk)2tE[(uTkw0)2]

+η2
t−1∑
i=1

(1− η + ηλk)2(t−i−1)E[wTi PMkPwi].

Lemma 3.1 decomposes E[(uTkwt)
2] into two parts. The

first part represents the expectation term which grows
at a rate of (1− η + ηλk)2 and the second part is the
variance term which increases as wt strides away from
w0 as captured by E[wTt PMkPwt].

Lemma 3.2. For any η ∈ (0, 1], 1 ≤ k ≤ d and
1 ≤ t ≤ m, we have

d∑
k=2

E[wTt PMkPwt] ≤ 2K ·
d∑
k=2

E[(uTkw0)2]

·
(
(1− η + ηλ1)2 + η2K

)t
.

Moreover, if 0 <
η2Km

(1− η + ηλ1)2
< 1, then we have

θm ≤

[(
1− η + ηλ2

1− η + ηλ1

)2m

+
4η2Km

(1− η + ηλ1)2

]
· θ0.

Lemma 3.2 provides a bound for
∑d
k=2E[wTt PMkPwt],

which grows at a rate not greater than (1− η+ ηλ1)2 +
η2K. Using this bound and assuming some condition
on η, K, and m, a bound on θm is derived as a function
of θ0, η, m, and K. In Lemma 3.3, we present explicit
conditions for η, m, and |S| to ensure a sufficient de-
crease of θm.

Lemma 3.3. Let η = ∆µ for some µ ≥ 0. If m and
|S| satisfy

m =

⌈
(1− η + ηλ1) log 2

2ηλ1∆

⌉
(13)

and

|S| ≥ 16η2σ2m

(1− η + ηλ1)2
, (14)

then we have θm ≤ 3/4 · θ0.

For any µ ≥ 0 such that η = ∆µ, Lemma 3.3 provides
explicit values of m and |S| to ensure a sufficient de-
crease of θm. In the analysis of VR-PCA, exact values
of η and m to ensure the optimal runtime have not been
provided. Instead, only the orders of η and m have
been provided such that η = c1∆ and m = c2/∆

2, mak-
ing it hard to obtain the optimal runtime in practice.
Contrary to it, our analysis provides explicit expres-
sions for m and |S|, being more practical. Moreover,
since the term on the right-hand side of (14) goes to
zero as µ increases, it can be also stated that for any
|S| ≥ 1, there exists some µ ≥ 0 and thus η = ∆µ

and m (see (14)) such that θm ≤ 3/4 · θ0 holds. This
implies that VR Power can always attain a sufficient
decrease of θm no matter what |S| is used. We next
give the main result.

Theorem 3.4. Suppose that an initial vector w̃0 satis-
fies uT1 w̃0 6= 0 and let θ̃0 = (1− (uT1 w̃0)2)/(uT1 w̃0)2 ≥ ε
for some ε > 0. If η = ∆µ and m and |S| satisfy (13)
and (14), after τ = dlog(θ̃0/ε)/ log(4/3)e epochs of VR
Power, we have θ̃τ ≤ ε.

Theorem 3.4 present a convergence result for τ epochs.
Note that our result requires only a trivial assumption
on θ̃0 and thus establishes global convergence. Also,
since τ = O(log( 1

ε )), only a logarithmic number of inner
loops is needed to be performed to obtain ε-accuracy.

3.3 VR HB Power

The following Lemmas 3.5, 3.6 and 3.7 are counterparts
of Lemmas 3.1, 3.2 and 3.3 for VR HB Power. For
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the momentum parameter β, we let β = β(η) which
is defined in (8). As in the analysis of VR Power, we
first consider a single epoch with an initial inner loop
iterate w0.

Lemma 3.5. For any η ∈ (0, 1], 1 ≤ k ≤ d and
1 ≤ t ≤ m, we have

E[(uTkwt)
2] = pt(αk(η), β(η))E[(uTkw0)2]

+ 4η2
t−1∑
r=1

qt−r−1(αk(η), β(η))E[wTr PMkPwr].

Lemma 3.5 breaks E[(uTkwt)
2] into the sum of expec-

tation part and variance part. While the expectation
term is a function of the Chebyshev polynomial of
the first kind, the variance part is a function of the
Chebyshev polynomials of the second kind. That being
said, the variance term grows faster and thus we need
a careful analysis for it.

Lemma 3.6. For any η ∈ (0, 1], 1 ≤ k ≤ d, and
1 ≤ t ≤ m, we have

d∑
k=2

E[wTt PMkPwt] ≤ 4K ·
(

1 +
4η2K

α1(η)− 4β(η)

)t−1

·

(√
α1(η)

2
+

√
α1(η)− 4β(η)

2

)2t

·
d∑
k=2

E[(uTkw0)2].

Moreover, if 0 <
4η2Km

α1(η)− 4β(η)
< 1, then we have

θm ≤
(
pm(α2(η), β(η))

pm(α1(η), β(η))
+

128η2Km

α1(η)− 4β(η)

)
· θ0.

Lemma 3.6 provides a bound for
∑d
k=2E[wTt PMkPwt].

Note that it depends on ∆ and blows up as ∆ goes to
zero due to the term involving 1/(α1(η)− 4β(η)). Due
to this dependency, VR HB Power tends to require a
larger batch size than VR Power given the same values
of η and m. Lemma 3.6 also establishes a bound for θm
as a function of θ0, η, m and K under some assumption.

Lemma 3.7. For some µ ≥ 0, let η = ∆µ and

m =

⌈(
1− η + ηλ1

ηλ1∆ +
√
ηλ1∆(2(1− η) + η(λ1 + λ2))

+

√
ηλ1∆(2(1− η) + η(λ1 + λ2))

ηλ1∆ +
√
ηλ1∆(2(1− η) + η(λ1 + λ2))

)
log 8

2

⌉
(15)

and

|S| ≥ 128ησ2m

λ1∆ [2(1− η) + η(λ1 + λ2)]
. (16)

Then, we have θm ≤ 3/4 · θ0.

Lemma 3.7 provides explicit conditions for m and |S|
to ensure a sufficient decrease of θm. Note that when
µ = 0, we have |S| ≥ O( 1

∆3/2 ), which improves the
analysis of VR Power+M in Xu et al. (2018) by re-
moving the dependency on

√
d. Also, for any |S| ≥ 1,

there exists some η and m satisfying the conditions in
Lemma 3.7. This implies that VR HB Power works
with any batch size while VR Power+M does not. The
overall convergence is established next.

Theorem 3.8. Suppose that an initial vector w̃0 satis-
fies uT1 w̃0 6= 0 and let θ̃0 = (1− (uT1 w̃0)2)/(uT1 w̃0)2 ≥ ε
for some ε > 0. If η = ∆µ and m and |S| satisfy (15)
and (16), after τ = dlog(θ̃0/ε)/ log(4/3)e epochs of VR
HB Power, we have θ̃τ ≤ ε.

The global convergence result in Theorem 3.8 is based
on the single epoch result in Lemma 3.7. Since τ =
O(log( 1

ε )), the iteration complexity of VR HB Power
is τm = O( 1

∆1/2+µ/2 log( 1
ε )). On the other hand, from

|S| = O( 1
∆3/2−µ/2 ), the sample complexity amounts to

O((n+ 1
∆2 ) log( 1

ε )). Note that VR HB Power has the
same sample complexity as VR Power but may have
small iteration complexity. Therefore, if per sample
cost is cheaper than per iteration cost, VR HB Power
can be more efficient than VR Power.

4 Practical Considerations

In this section, we discuss some practical aspects im-
plementing the proposed algorithms. First, to ensure
that the algorithms are numerically stable, we con-
sider normalizations as introduced in Shamir (2015)
and Xu et al. (2018). After updating wt+1, we nor-
malize wt+1 as wt+1 ← wt+1/‖wt+1‖2 in VR Power
and update wt and wt+1 as wt ← wt/‖wt+1‖2 and
wt+1 ← wt+1/‖wt+1‖2 in VR HB Power. Since these
scaling schemes do not impact the sample paths of
wt/‖wt‖, we can obtain the same results with numeri-
cal stability.

Another practical issue with the implementations of
VR Power and VR HB Power is to estimate λ1 and λ2.
As appearing in Lemma 3.3 and Lemma 3.7, accurate
values of λ1 and λ2 are essential to determine the values
of η, m, and β (for VR HB Power). In the experiments,
the mini-batch size |S| is given as some percentage of
n, so no estimation is required for |S|. In order to
estimate λ1 and λ2 at a regular interval (at the start
of each inner-loop), we use the exact gradients of two
consecutive outer-loop iterates w̃s−1 and w̃s. Since we
expect that w̃s approaches u1 as the iterations advance,
using the Rayleigh quotient, we estimate λ1 as

λ̂1 =
(w̃s)

TC(w̃s)

(w̃s)T w̃s
. (17)
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To estimate λ2 in the same way, we need an estimate
of u2. In Power iteration, an iterate first approaches
the subspace spanned by u1 and u2 before converging
to u1. That being said, after a number of iterations,
we can approximate it by a linear combination of u1

and u2. Based on this observation, we estimate u2 as

û2 = w̃s−1 − (w̃Ts−1w̃s)w̃s. (18)

The idea of the above estimation is to project w̃s−1 to
the space orthogonal to w̃s. If w̃s ≈ u1 and w̃s−1 ≈
α1u1 + α2u2 for some α1, α2( 6= 0), we have û2 ≈ u2.
Using the Rayleigh quotient of û2, we estimate λ2 as

λ̂2 =
w̃Ts−1Cw̃s−1 − 2θsw̃

T
s Cw̃s−1 + θ2

sw̃
T
s Cw̃s

1− θ2
s

(19)

where θs = w̃Ts−1w̃s. While two matrix-vector multipli-
cations, Cw̃s−1 and Cw̃s, are involved in computing
(17) and (19), they incur no extra computation since
they are the exact gradients of w̃s−1 and w̃s, which are
computed regardless of the estimation. As a result, we
can obtain λ̂1 and λ̂2 by only computing some inner
products. For initial estimation of λ̂1 and λ̂2, we run
Power iteration five times and use the last two iter-
ates. Note that the exact gradient of the last iterate
is computed at the start of the very first outer-loop
iteration.

Given |S| and estimates of λ1 and λ2, we use bisection
search to find η ∈ (0, 1] such that the terms on the
right-hand sides of (14) and (16) are almost equal to
|S|. After η is found, we use (13) and (15) to determine
m.

5 Numerical Experiments

In this section, we test the performance of VR Power
and VR HB Power with that of (i) VR-PCA (Shamir,
2015), (ii) VR Power+M (Xu et al., 2018) and (iii) Fast
PCA (Garber and Hazan, 2015) for finding the first
eigenvector u1 of the covariance matrix C constructed
by data vectors ai, i = 1, . . . , n from real world datasets.
Note that all present stochastic variance-reduced PCA
algorithms are compared in this experiment.

5.1 Datasets

The datasets include ijcnn (Prokhorov, 2001), cover-
type (Blackard and Dean, 1999), YearPredictionMSD
(Bertin-Mahieux et al., 2011) and MNIST (LeCun et al.,
1998) as summarized in Tabel 2. All of them are ob-
tained either from the UCI repository (Dheeru and
Karra Taniskidou, 2017) or the LIBSVM library (Chang
and Lin, 2011). They are carefully chosen to incorpo-
rate a variety of datasets in terms of size and eigen-gap.
The first three datasets are standardized with a mean

Table 2: A summary of datasets

dataset n d ∆

icjnn(test) 91,701 22 0.0079
cov 581,012 54 0.2106
MSD 463,715 90 0.3224
MNIST 70,000 764 0.8851

of zero and standard deviation of one while the last
one is scaled to the range between 0 and 1 to preserve
its sparsity.

5.2 Settings

In order to report a comprehensive comparison of the
algorithms, we consider two settings for selecting hyper-
parameters. In the first setting, we use hyper-parameter
tuning. Specifically, we use a grid search to find the
best values of η, m and |S| = ρ% of each algorithm and
dataset where η ∈ {0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0},
m ∈ {25, 50, 100, 200} and ρ ∈ {1, 2, 5, 10}.

In the second setting, we use the following theoretically
derived or recommended hyper-parameter values.

• VR-PCA: η =
√
n/
∑n
i=1 ‖ai‖2, m = n, |S| = 1.

• VR Power+M: β = λ2
2/4, σ2 =

∑n
i=1 ‖ai‖2/n,

|S| = λ2 log 16√
λ2

1 − λ2
2

, T =
512 log 16λ2σ

2
√
d√

λ2
1 − λ2

2

.

• Fast PCA: δ = λ1 − λ2. We only consider the
accurate regime. In order to solve each problem,
we use SVRG (Johnson and Zhang, 2013) with
ε̃ = 10−6,

η =
λ1 − λ2

7(2λ1 + λ2)2
, m =

⌈
1

2η2(2λ1 + λ2)2

⌉
.

• VR Power, VR HB Power: |S| = ρ% · n for ρ ∈
{1, 2} and σ2 =

∑n
i=1 ‖ai‖2/n. For η and m, we

use bisection search explained in Section 4. Also,
the scaling schemes in Section 4 are used to ensure
numerical stability. The exact values of λ1 and λ2

are used to find η and m.

• PF VR Power, PF VR HB Power: As opposed to
VR Power and VR HB Power, adaptive estimates
of λ̂1 and λ̂2 obtained by the procedure in Section 4
are used to find η and m.

5.3 Results

Figure 1 displays the experimental result with hyper-
parameter tuning. In the figure, the x-axis represents
time in seconds and the y-axis represents the optimality
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Figure 1: The comparison of stochastic variance-reduced PCA algorithms with hyper-parameters tuned
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Figure 2: The comparison of stochastic variance-reduced PCA algorithms with recommended hyper-parameters
and parameter-free algorithms

gap, 1− (w̃Ts u1)2, in the log-scale. Since VR-PCA and
VR Power are related algorithms, their performances
are similar except for cov where the step size of VR-
PCA is tuned to the largest possible value of 1.0. If
some larger values are included in the grid, VR-PCA
would have a similar performance to VR Power even for
cov. On the other hand, VR HB Power always performs
better than VR Power+M due to its additional control
through the step size. VR HB Power works particularly
well for ijcnn which has the smallest eigen-gap. If the
eigen-gap is large, the performance of VR HB Power
is not much different from the performances of VR
Power+M, VR-PCA and VR Power. We were not able
to find good hyperparameters for Fast PCA.

Figure 2 shows the experimental result without param-
eter tuning. In the figure, regardless of the batch size,
VR Power and VR HB Power outperform VR-PCA,
VR Power+M and Fast PCA. Although VR Power and
VR-PCA are similar algorithms, the performance of VR
Power is much better than that of VR-PCA due to the
choice of η and m. While VR Power precisely choose
the values of η and m depending on the values of λ1, λ2

and |S|, VR-PCA does not utilize such information and
let them depend only on n. As a result, the step size
is too small and the epoch length is too large, leading
to slow convergence. On the other hand, due to the
extra dependency on

√
d, VR Power+M requires too

large samples and thus it is slower than VR Power even
for ijcnn which has the smallest eigen-gap. The epoch

length m of SVRG in Fast PCA is of the order of 1/∆2.
Therefore, Fast PCA takes a significant amount of time
to solve each convex sub-problem and therefore it does
not appear in the figures of ijcnn, cov, and MSD. While
it appears in the figure of mnist, its optimality gap
does not decrease as sharply as other algorithms. On
the other hand, PF VR HB Power takes more than 50
seconds than VR HB Power while the performance of
PF VR Power looks very similar to that of VR Power.
This is because VR HB Power has the additional mo-
mentum parameter β, which makes its performance
more affected by estimation errors. Nevertheless, both
parameter-free algorithms work very well compared to
other algorithms.

6 Conclusion

In this paper, we present two mini-batch stochastic
variance-reduced algorithms for PCA and derive exact
forms of their parameters to attain the optimal runtime.
Our results show that for any batch size, the optimal
runtime can be achieved by appropriately choosing the
step size and epoch length. We also introduce practical
implementations which automatically find such values
depending on batch sizes. The framework used in our
analysis is not specific to the proposed algorithms but
can be applied to analyze other stochastic variance-
reduced PCA algorithms and improve their results. In
our framework, the optimality gap is measured as the
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ratio of two expectation terms and this enables us to
develop global convergence statements. Experimental
results show that the proposed algorithms work well
for arbitrary batch sizes.
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A Supplementary Material

In the proofs below, for α, β ≥ 0, we let Yt(A, β) and Zt(A, β) be matrix polynomials such that

Yt(A, β) = 2AYt−1(A, β)− βYt−2(A, β), t ≥ 2, Y1(A, β) = A, Y0(A, β) = I, (20)

Zt(A, β) = 2AZt−1(A, β)− βZt−2(A, β), t ≥ 2, Z1(A, β) = 2A, Z0(A, β) = I. (21)

and let yt(α, β) and zt(α, β) be recurrence polynomials such that

yt(α, β) =
√
αyt−1(α, β)− βyt−2(α, β), t ≥ 2, y1(α, β) =

√
α

2
, y0(α, β) = 1, (22)

zt(α, β) =
√
αzt−1(α, β)− βzt−2(α, β), t ≥ 2, z1(α, β) =

√
α, z0(α, β) = 1. (23)

For a sequence of matrices B0, B1, B2, · · · , let

k∏
i=j

Bi =

{
BjBj−1 · · ·Bk if j ≥ k
I, otherwise

.

Since the eigenvectors u1, u2, . . . , ud form an orthogonal basis, we frequently use the fact that for w ∈ Rd, we
have ‖w‖2 =

∑d
k=1(uTkw)2.

A.1 Main Results

Lemma A.1. For w ∈ Rd such that ‖w‖ = 1 and t ≥ 0, we have

‖P [(1− η)I + ηC]
t
w‖2 ≤ 2(1− η + ηλ1)2t(1− (uT1 w)2), (24a)

‖PYt((1− η)I + ηC, β(η))w‖2 ≤ 4(1− (uT1 w)2)pt(α1(η), β(η)), (24b)

‖Zt((1− η)I + ηC, β(η))‖2 ≤ qt(α1(η), β(η)). (24c)

Proof. Since u1, u2, · · · , ud forms an orthogonal basis in Rd, we can write w =
∑d
k=1(uTkw)uk. From that (λk, uk)

are eigenpairs of C, we have

[(1− η)I + ηC]
t
w =

d∑
k=1

(uTkw)(1− η + ηλk)tuk. (25)

Since

‖P [(1− η)I + ηC]
t
w‖2 = wT [(1− η)I + ηC]

t
P 2 [(1− η)I + ηC]

t
w

= wT [(1− η)I + ηC]
t
P [(1− η)I + ηC]

t
w

= wT [(1− η)I + ηC]
t
(I − wwT ) [(1− η)I + ηC]

t
w

= ‖ [(1− η)I + ηC]
t
w‖2 −

(
wT [(1− η)I + ηC]

t
w
)2
,

using (25), we have

‖P [(1− η)I + ηC]
t
w‖2 =

d∑
k=1

(uTkw)2(1− η + ηλk)2t −
( d∑
k=1

(uTkw)2(1− η + ηλk)t
)2

≤ (1− η + ηλ1)2t − (uT1 w)4(1− η + ηλ1)2t

≤ 2(1− (uT1 w)2)(1− η + ηλ1)2t

where the last inequality follows from

1− (uT1 w)4 =
(
1 + (uT1 w)2

)(
1− (uT1 w)2

)
≤ 2
(
1− (uT1 w)2

)
. (26)
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To prove (24b), we first show that

Yt((1− η)I + ηC, β(η))uk = yt(αk(η), β(η))uk. (27)

First, consider the cases when t = 0 and t = 1. For t = 0, we have Y0((1− η)I + ηC, β(η))uk = y0(αk(η), β(η))uk.
For t = 1, it follows that

Y1((1− η)I + ηC, β(η))uk = ((1− η)I + ηC)uk = (1− η + ηλk)uk =

√
αk(η)

2
uk = y1(αk(η), β(η))uk.

Suppose that (27) holds for t− 1 and t− 2. Using the definition of Yt in (20), we have

Yt((1− η)I + ηC, β(η))uk = [2((1− η)I + ηC)Yt−1((1− η)I + ηC, β(η))− β(η)Yt−2((1− η)I + ηC, β(η))]uk

= [2(1− η + ηλk)yt−1(αk(η), β(η))− β(η)yt−2(αk(η), β(η))]uk

=
[√

αk(η)yt−1(αk(η), β(η))− β(η)yt−2(αk(η), β(η))
]
uk

= yt(αk(η), β(η))uk.

This completes the proof of (27).

Next, we show that
(yt(αk(η), β(η))2 = pt(αk(η), β(η)). (28)

For the base cases, we have

(y0(αk(η), β(η))2 = 1 = p0(αk(η), β(η)), (y1(αk(η), β(η))2 =
αk
4

= p1(αk(η), β(η))

and

(y2(αk(η), β(η))2 =
(√

αk(η)y1(αk(η), β(η))− β(η)y0(αk(η), β(η))
)2

=

(
α(η)

2
− β(η)

)2

= p2(αk(η), β(η)).

Using the definition of yt in (22) for t and t− 1, we have

(yt(αk(η), β(η)))2 = (
√
αk(η)yt−1(αk(η), β(η))− β(η)yt−2(αk(η), β(η)))2

= αk(η)(yt−1(αk(η), β(η)))2 − 2
√
αk(η)β(η)yt−1(αk(η), β(η))yt−2(αk(η), β(η))

+ β(η)2(yt−2(αk(η), β(η)))2

and

(yt−1(αk(η), β(η)))2 = αk(η)(yt−2(αk(η), β(η)))2 − 2
√
αk(η)β(η)yt−2(αk(η), β(η))yt−3(αk(η), β(η))

+ β(η)2(yt−3(αk(η), β(η)))2.

Moreover, since

yt−1(αk(η), β(η))yt−2(αk(η), β(η)) =
√
αk(η)(yt−2(αk(η), β(η)))2 − β(η)yt−2(αk(η), β(η))yt−3(αk(η), β(η)),

we have

(yt(αk(η), β(η)))2 = αk(η)(yt−1(αk(η), β(η)))2 − 2αk(η)β(η)(yt−2(αk(η), β(η)))2 + β(η)2(yt−2(αk(η), β(η)))2

+ 2
√
αk(η)β(η)2yt−2(αk(η), β(η))yt−3(αk(η), β(η))

= αk(η)(yt−1(αk(η), β(η)))2 − 2αk(η)β(η)(yt−2(αk(η), β(η)))2 + β(η)2(yt−2(αk(η), β(η)))2

+ β(η)
(
αk(η)(yt−2(αk(η), β(η)))2 + β(η)2(yt−3(αk(η), β(η)))2 − (yt−1(αk(η), β(η)))2

)
= (αk(η)− β(η))(yt−1(αk(η), β(η)))2 − β(η)(αk(η)− β(η))(yt−2(αk(η), β(η)))2

+ β(η)3(yt−3(αk(η), β(η)))2.

This proves (28).
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Now, using (27), we have

Yt((1− η)I + ηC, β(η))w =

d∑
k=1

yt(αk(η), β(η))(uTkw)uk. (29)

Since u1, u2, · · · , ud form an orthogonal basis in Rd, we have

‖Yt((1− η)I + ηC, β(η))w‖2 =

d∑
k=1

(yt(αk(η), β(η)))2(uTkw)2 =

d∑
k=1

pt(αk(η), β(η))(uTkw)2.

Using (90) and (92) in Lemma A.4, for k ≥ 2, we have

pt(αk(η), β(η)) ≤ pt(α1(η), β(η)) (30)

Since
∑d
k=1(uTkw)2 = 1, we have

‖Yt((1− η)I + ηC, β(η))w‖2 ≤ pt(α1(η), β(η)).

Moreover, using (uT1 w)2 ≤ 1 and (29), we obtain

(
wTYt((1− η)I + ηC, β(η))w

)2
=
(
yt(α1(η), β(η))(uT1 w)2 +

d∑
k=2

yt(αk(η), β(η))(uTkw)2
)2

≥ (yt(α1(η), β(η)))2(uT1 w)4 − 2yt(α1(η), β(η))

d∑
k=2

|yt(αk(η), β(η))|(uTkw)2

≥ (yt(α1(η), β(η)))2(uT1 w)4 − 2(yt(α1(η), β(η)))2(1− (uTkw)2)

Therefore,

‖PYt((1− η)I + ηC, β(η))w‖2 = ‖Yt((1− η)I + ηC, β(η))w‖2 −
(
wTYt((1− η)I + ηC, β(η))w

)2
≤ (yt(α1(η), β(η)))2(1− (uT1 w)4) + 2(yt(α1(η), β(η)))2(1− (uTkw)2)

≤ 4(yt(α1(η), β(η)))2(1− (uTkw)2)

where the last inequality follows from (26).

Lastly, we prove (24c). In the same way we prove (27) and (28), we can show that

Zt((1− η)I + ηC, β(η))uk = zt(αk(η), β(η))uk, (zt(αk(η), β(η))2 = qt(αk(η), β(η)). (31)

Using (91) and (92) in Lemma A.4, for k ≥ 2, we have

qt(αk(η), β(η)) ≤ qt(α1(η), β(η)). (32)

Using (31), we have

wTZt((1− η)I + ηC, β(η))w =

d∑
k=1

zt(αk(η), β(η))(uTkw)2 ≤
d∑
k=1

|zt(αk(η), β(η))|(uTkw)2.

Moreover, using (32) and the fact that
∑d
k=1(uTkw)2 = 1, we have

d∑
k=1

|zt(αk(η), β(η))|(uTkw)2 ≤ |zt(α1(η), β(η))|
d∑
k=1

(uTkw)2 = |zt(α1(η), β(η))|.

This results in

wTZt((1− η)I + ηC, β(η))w ≤ |zt(α1(η), β(η))|,

leading to

‖Zt((1− η)I + ηC, β(η))‖2 ≤ |zt(α1(η), β(η))|2 = qt(α1(η), β(η)).

This complets the proof.
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A.1.1 VR Power

Proof of Lemma 3.1. Since Pw0 =
(
I − w0w

T
0

)
w0 = 0, we have

uTkw1 = (1− η)uTkw0 + ηuTkCw0 + ηuTk (C0 − C)Pw0 = (1− η + ηλk)uTkw0. (33)

Taking the expectation of the square of (33), we obtain

E[(uTkw1)2] = (1− η + ηλk)2E[(uTkw0)2]. (34)

For t ≥ 2, we have
uTkwt = (1− η + ηλk)uTkwt−1 + ηuTk (Ct−1 − C)Pwt−1. (35)

Since St is sampled uniformly at random, Ct is independent of S1, . . . , St−1 and w0 with E[Ct] = C, leading to

E[uTkwt−1u
T
k (Ct−1 − C)Pwt] = E[E[uTkwt−1u

T
k (Ct−1 − C)Pwt|w0, S1, . . . , St−2]]

= E[uTkwt−1u
T
kE[Ct−1 − C]Pwt] = 0.

Therefore, taking the expectation of the square of (35), we have

E[(uTkwt)
2] = (1− η + ηλk)2E[(uTkwt−1)2] + η2E[wTt−1P (Ct−1 − C)uku

T
k (Ct−1 − C)Pwt−1]

= (1− η + ηλk)2E[(uTkwt−1)2] + η2E[wTt−1PMkPwt−1]
(36)

where the last equality follows from

E[wTt−1P (Ct−1 − C)uku
T
k (Ct−1 − C)Pwt−1] = E[E[wTt−1P (Ct−1 − C)uku

T
k (Ct−1 − C)Pwt−1|w0, S1, . . . , St−2]]

= E[wTt−1PE[(Ct−1 − C)uku
T
k (Ct−1 − C)]Pwt−1]

= E[wTt−1PMkPwt−1].

Repeatedly applying (36) and using (34), we obtain

E[(uTkwt)
2] = (1− η + ηλk)2tE[(uTkw0)2] + η2

t−1∑
i=1

(1− η + ηλk)2(t−i−1)E[wTi PMkPwi].

Proof of Lemma 3.2. By Lemma A.2, we have

d∑
k=2

E[wTt PMkPwt] =

d∑
k=2

E[wTt PMkPwt] = E[wTt P

d∑
k=2

MkPwt] ≤ ‖
d∑
k=2

Mk‖ · E[‖Pwt‖2]. (37)

Using the Jensen’s inequality and the fact that ‖
∑d
k=2 uku

T
k ‖ = 1, we have

‖
d∑
k=2

Mk‖ = ‖
d∑
k=2

E[(Ct − C)uku
T
k (Ct − C)]‖ ≤ E[‖Ct − C‖2] = E[‖(Ct − C)2‖] = K,

resulting in
d∑
k=2

E[wTt PMkPwt] ≤ KE[‖Pwt‖2]. (38)

Let
Bi = (1− η)I + ηC + η(Ci − C)P.

Since Pw0 = 0 and

0∏
i=t−1

Bi =

1∏
i=t−1

Biη(C0 − C)P +

1∏
i=t−1

Bi ((1− η)I + ηC)

=

1∏
i=t−1

Biη(C0 − C)P +

t−1∑
j=1

j+1∏
i=t−1

Biη(Cj − C)P [(1− η)I + ηC]
j

+ [(1− η)I + ηC]
t
,
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which can be seen by elementary manipulation, we have

wt =

0∏
i=t−1

Biw0 =

t−1∑
j=1

j+1∏
i=t−1

Biη(Cj − C)P [(1− η)I + ηC]
j

+ [(1− η)I + ηC]
t

w0,

resulting in

Pwt = P

0∏
i=t−1

Biw0 =

t−1∑
j=1

P

j+1∏
i=t−1

Biη(Cj − C)P [(1− η)I + ηC]
j

+ P [(1− η)I + ηC]
t

w0. (39)

Since C0, · · · , Ct−1 are independent with E[Ci] = C for all 1 ≤ i ≤ t− 1, we obtain

E
[
wT0 [(1− η)I + ηC]

t
P 2

j+1∏
i=t−1

Biη(Cj − C)P [(1− η)I + ηC]
j
w0

]
= 0 (40)

E
[
wT0 [(1− η)I + ηC]

j1 P (Cj1 − C)η

t−1∏
i=j1+1

BiP
2

j2+1∏
i=t−1

Biη(Cj2 − C)P [(1− η)I + ηC]
j2 w0

]
= 0 (41)

where 1 ≤ j, j1, j2 ≤ t− 1 and j1 6= j2. Therefore, we have

E[‖Pwt‖2] =

t−1∑
j=1

E
[∥∥P j+1∏

i=t−1

Biη(Cj − C)P [(1− η)I + ηC]
j
w0

∥∥2]
+ E[‖P [(1− η)I + ηC]

t
w0‖2] (42)

due to cross-terms being 0 from (40) and (41) when “squaring” (39). Using Lemma A.1 with w = w0/‖w0‖ and

the fact that ‖w0‖2(1− (uT1 w0)2/‖w0‖2) =
∑d
k=2(uTkw0)2, we have

E[‖P [(1− η)I + ηC]tw0‖2] ≤ 2(1− η + ηλ1)2t
d∑
k=2

E[(uTkw0)2]. (43)

By Lemma A.2 and ‖P‖ = 1, we have

∥∥P j+1∏
i=t−1

Biη(Cj − C)P [(1− η)I + ηC]
j
w0

∥∥2 ≤ η2
∥∥ j+1∏
i=t−1

Bi(Cj − C)P [(1− η)I + ηC]
j
w0

∥∥2
. (44)

Moreover, by repeatedly using first the property that Bi is independent of w0, Cj , Bj+1, · · · , Bi−1 and Lemma A.2,
we have

E
[∥∥ j+1∏

i=t−1

Bi(Cj − C)P
[
(1− η)I + ηC

]j
w0

∥∥2]
= E[wT0 [(1− η)I + ηC]jP (Cj − C)

( j+1∏
i=t−2

Bi

)T
BTt−1Bt−1

j+1∏
i=t−2

BiP (Cj − C)[(1− η)I + ηC]jw0]

= E[wT0 [(1− η)I + ηC]jP (Cj − C)
( j+1∏
i=t−2

Bi

)T
E[BTt−1Bt−1]

j+1∏
i=t−2

BiP (Cj − C)[(1− η)I + ηC]jw0]

≤ ‖E[BTt−1Bt−1]‖ · E
[∥∥ j+1∏

i=t−2

Bi(Cj − C)P
[
(1− η)I + ηC

]j
w0

∥∥2]
≤

j+1∏
i=t−1

∥∥E[BTi Bi]
∥∥ · E[‖(Cj − C)P [(1− η)I + ηC]

j
w0‖2].

In the same way, using the fact that Cj is independent of w0 and Lemma A.2, we have

E[‖(Cj − C)P [(1− η)I + ηC]
j
w0‖2] ≤ ‖E[(Cj − C)2]‖ · E[‖P [(1− η)I + ηC]

j
w0‖2],
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resulting in

E
[∥∥ j+1∏

i=t−1

Bi(Cj − C)P [(1− η)I + ηC]jw0

∥∥2] ≤ j+1∏
i=t−1

‖E[BTi Bi]‖ · ‖E[(Cj − C)2]‖ · E[‖P [(1− η)I + ηC]
j
w0‖2].

(45)

Since Ci is independent of w0 and E[Ci] = C, we have

‖E[BTi Bi]‖ ≤ ‖ [(1− η)I + ηC]
2 ‖+ η2‖E[P (Ci − C)2P ]‖.

Since all induced norms are convex, using the Jensen’s inequality, we have

‖E[P (Ci − C)2P ]‖] ≤ E[‖P (Ci − C)2P‖] ≤ E[‖(Ci − C)2‖] = K,

leading to

‖E[BTi Bi]‖ ≤ ‖ [(1− η)I + ηC]
2 ‖+ η2‖E[P (Ci − C)2P ]‖ ≤ (1− η + ηλ1)2 + η2K. (46)

In the same way, we obtain
‖E[(Cj − C)2]‖ ≤ E[‖(Cj − C)2‖] = K. (47)

Using (46), (47) and (43) for (45), we have

E
[∥∥ j+1∏

i=t−1

Bi(Cj − C)P [(1− η)I + ηC]jw0

∥∥2] ≤ K [(1− η + ηλ1)2 + η2K
]t−j−1

(1− η + ηλ1)2j
d∑
k=2

E[(uTkw0)2].

(48)

From (42), (43), (44) and (48), we finally have

E[‖Pwt‖2] ≤ 2

t−1∑
j=1

η2K
[
(1− η + ηλ1)2 + η2K

]t−j−1
(1− η + ηλ1)2j + (1− η + ηλ1)2t

 · d∑
k=2

E[(uTkw0)2]

≤ 2
[
(1− η + ηλ1)2 + η2K

]t · d∑
k=2

E[(uTkw0)2],

where the last inequality can be checked by elementary manipulation. This results in

d∑
k=2

E[wTt PMkPwt] ≤ 2K
[
(1− η + ηλ1)2 + η2K

]t · d∑
k=2

E[(uTkw0)2]. (49)

This proves the first part of the proof.

Next, we have

d∑
k=2

t−1∑
i=1

(1− η + ηλk)2(t−i−1)E[wTi PMkPwi] ≤ (1− η + ηλ1)2t ·
t−1∑
i=1

(1− η + ηλ1)−2(i+1)
d∑
k=2

E[wTi PMkPwi]

and

t−1∑
i=1

(1− η + ηλ1)−2(i+1)
[
(1− η + ηλ1)2 + η2K

]i ≤ 1

(1− η + ηλ1)2

t−1∑
i=1

(
(1− η + ηλ1)2 + η2K

(1− η + ηλ1)2

)i

≤ 1

η2K

[(
1 +

η2K

(1− η + ηλ1)2

)t−1

− 1

](
1 +

η2K

(1− η + ηλ1)2

)
≤ 1

η2K

[
exp

(
η2Kt

(1− η + ηλ1)2

)
− 1

]
.
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Using the condition that

0 <
η2Km

(1− η + ηλ1)2
< 1

and the fact exp(x)− 1 ≤ 2x for all x ∈ (0, 1), we further obtain

t−1∑
i=1

(1− η + ηλ1)−2(i+1)
[
(1− η + ηλ1)2 + η2K

]i ≤ 2t

(1− η + ηλ1)2
.

Combined with (49), this results in

η2
d∑
k=2

m−1∑
i=1

(1− η + ηλk)2(m−i−1)E[wTi PMkPwi] ≤ η2
m−1∑
i=1

(1− η + ηλk)2(m−i−1)
d∑
k=2

E[wTi PMkPwi]

≤ 4η2Km(1− η + ηλ1)2(m−1) ·
d∑
k=2

E[(uTkw0)2].

Using Lemma 3.1 for t = m and the fact that (1− η + ηλk)2m ≤ (1− η + ηλ2)2m for k ≥ 2, we finally have

d∑
k=2

E[(uTkwm)2] =

d∑
k=2

(1− η + ηλk)2mE[(uTkw0)2] + η2
d∑
k=2

m−1∑
i=1

(1− η + ηλk)2(m−i−1)E[wTi PMkPwi]

≤
(

(1− η + ηλ2)2m + 4η2Km(1− η + ηλ1)2(m−1)
)
·
d∑
k=2

E[(uTkw0)2]. (50)

On the other hand, by Lemma 3.1 and the fact that PMkP is positive semi-definite, we have

(1− η + ηλ1)2mE[(uT1 w0)2] ≤ E[(uT1 wm)2]. (51)

Combining (51) with (50), we obtain∑d
k=2E[(uTkwm)2]

E[(uT1 wm)2]
≤

[(
1− η + ηλ2

1− η + ηλ1

)2m

+
4η2Km

(1− η + ηλ1)2

]
·
∑d
k=2E[(uTkw0)2]

E[(uT1 w0)2]
.

Proof of Lemma 3.3. From the conditions on η, m and |S|, we have

0 <
η2Km

(1− η + ηλ1)2
<

1

16
.

Therefore, using Lemma 3.2, we have∑d
k=2E[(uTkwm)2]

E[(uT1 wm)2]
≤

[(
1− η + ηλ2

1− η + ηλ1

)2m

+
4η2Km

(1− η + ηλ1)2

]
·
∑d
k=2E[(uTkw0)2]

E[(uT1 w0)2]
.

By the choice of η and m, we have(
1− η + ηλ2

1− η + ηλ1

)2m

=

(
1− η(λ1 − λ2)

1− η + ηλ1

)2m

≤ exp

(
−2η(λ1 − λ2)m

1− η + ηλ1

)
≤ exp(− log 2) =

1

2
.

Also, by the choice of η, m and |S|, we have

4η2Km

(1− η + ηλ1)2
=

4σ2η2m

|S|(1− η + ηλ1)2
≤ 1

4
.

Therefore, we have ∑d
k=2E[(uTkwm)2]

E[(uT1 wm)2]
≤ 3

4
·
∑d
k=2E[(uTkw0)2]

E[(uT1 w0)2]
.
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Proof of Theorem 3.4. By repeatedly applying Lemma 3.3, we have∑d
k=2E[(uTk w̃τ )2]

E[(uT1 w̃τ )2]
≤
(

3

4

)τ ∑d
k=2E[(uTk w̃0)2]

E[(uT1 w̃0)2]
=

(
3

4

)τ
θ̃0.

Since τ = dlog(θ̃0/ε)/ log(4/3)e, we have

τ log

(
3

4

)
≤ log

(
ε

θ̃0

)
,

resulting in ∑d
k=2E[(uTk w̃τ )2]

E[(uT1 w̃τ )2]
≤ ε.
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A.1.2 VR HB Power

Proof of Lemma 3.5. From

w1 = (1− η)w0 + ηg̃

= (1− η)w0 + ηCw0,

we have

uTkw1 = (1− η)uTkw0 + ηuTkCw0

= (1− η)uTkw0 + ηλku
T
kw0

= (1− η + ηλk)uTkw0. (52)

Taking the expectation of the square of (52), we obtain

E[(uTkw1)2] = (1− η + ηλk)2E[(uTkw0)2] =
αk(η)

4
E[(uTkw0)2]. (53)

Next, from (5), we have

wt+1 = 2

(
(1− η)wt + η

1

|St|
∑
it∈St

aita
T
it

(
wt −

(wTt w0)

‖w0‖2
w0

)
+

(wTt w0)

‖w0‖2
g̃

)
− β(η)wt−1

= 2

(
(1− η)wt + η

1

|St|
∑
it∈St

aita
T
it

(
I − w0w

T
0

‖w0‖2
)
wt + C

w0w
T
0

‖w0‖2
wt

)
− β(η)wt−1

= 2

(
(1− η)wt + ηCwt + η

1

|St|
∑
it∈St

(aita
T
it − C)

(
I − w0w

T
0

‖w0‖2
)
wt

)
− β(η)wt−1

= 2
(
(1− η)wt + ηCwt + η(Ct − C)Pwt

)
− β(η)wt−1, (54)

leading to

uTkwt+1 = 2
(
(1− η + ηλk)uTkwt + ηuTk (Ct − C)Pwt

)
− β(η)uTkwt−1. (55)

Taking the square of (55), we have

(uTkwt+1)2 = 4(1− η + ηλk)2(uTkwt)
2 + 4η2wTt P (Ct − C)uku

T
k (Ct − C)Pwt + (β(η))2(uTkwt−1)2

+ 8η(1− η + ηλk)uTkwtu
T
k (Ct − C)Pwt − 4(1− η + ηλk)β(η)uTkwtu

T
kwt−1

− 4ηβ(η)uTk (Ct − C)Pwtu
T
kwt−1. (56)

Since St is sampled uniformly at random, Ct is independent of S1, . . . , St−1 and identically distributed with
E[Ct] = C. Therefore,

E[uTkwtu
T
k (Ct − C)Pwt] = E[E[uTkwtu

T
k (Ct − C)Pwt|w0, S1, . . . , St−1]] = E[uTkwtu

T
kE[Ct − C]Pwt] = 0.

Similarly, we have

E[uTk (Ct − C)Pwtu
T
kwt−1] = 0. (57)

As a result, we obtain

E[(uTkwt+1)2] = αk(η)E[(uTkwt)
2]− 2

√
αk(η)β(η)E[(uTkwt)(u

T
kwt−1)] + (β(η))2E[(uTkwt−1)2]

+ 4η2E[wTt PMkPwt]. (58)

Using (52) and (53) in (58) for t = 1, we have

E[(uTkw2)2] =
(αk(η)

2
− β(η)

)2

E[(uTkw0)2] + 4η2E[wT1 PMkPw1]. (59)
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Moreover, by using (55) with t− 1, multiplying it with uTkwt−1, taking expectation and using (57) with wt being
wt−1 (which can be derived in the same way as (57)) , we have

E[(uTkwt)(u
T
kwt−1)] =

√
αk(η)E[(uTkwt−1)2]− β(η)E[(uTkwt−1)(uTkwt−2)]. (60)

Using (60), we can further write (58) as

E[(uTkwt+1)2] = αk(η)E[(ukwt)
2]− β(η)(2αk(η)− β(η))E[(uTkwt−1)2]

+ 2
√
αk(η)(β(η))2E[(uTkwt−1)(uTkwt−2)] + 4η2E[wTt PMkPwt]. (61)

With t− 1 in (58), we have

E[(uTkwt)
2] = αk(η)E[(uTkwt−1)2]− 2

√
αk(η)β(η)E[(uTkwt−1)(uTkwt−2)] + (β(η))2E[(uTkwt−2)2]

+ 4η2E[wTt−1PMkPwt−1]. (62)

Adding (62) multiplied by β(η) to (61), we obtain

E[(uTkwt+1)2] = (αk(η)− β(η))E[(uTkwt)
2]− β(η)(αk(η)− β(η))E[(uTkwt−1)2] + (β(η))3E[(uTkwt−2)2]

+ 4η2E[wTt PMkPwt] + 4η2β(η)E[wTt−1PMkPwt−1]. (63)

With t− 1 in (63), we finally have

E[(uTkwt)
2] = (αk(η)− β(η))E[(uTkwt−1)2]− β(η)(αk(η)− β(η))E[(uTkwt−2)2] + (β(η))3E[(uTkwt−3)2]

+ 4η2E[wTt−1PMkPwt−1] + 4η2β(η)E[wTt−2PMkPwt−2] (64)

for t ≥ 3.

Using Lemma A.4 for E[(uTkwt)
2] defined by (53), (59), and (64) with

α = αk(η), β = β(η), L0 = E[(uTkw0)2], Lt = 4η2E[wTt PMkPwt],

we have

E[(uTkwt)
2] = pt(αk(η), β(η))E[(uTkw0)2] + 4η2

t−1∑
r=1

qt−r−1(αk(η), β(η))E[wTr PMkPwr].

Proof of Lemma 3.6. Since ‖
∑d
k=2 uku

T
k ‖ ≤ 1, we have

‖
d∑
k=2

Mk‖ = ‖
d∑
k=2

E[(Ct − C)uku
T
k (Ct − C)]‖ ≤ E[‖Ct − C‖2] = E[‖(Ct − C)2‖] = K.

By Lemma A.2, this leads to

d∑
k=2

E[wTt PMkPwt] = E[wTt P

d∑
k=2

MkPwt] ≤ ‖
d∑
k=2

Mk‖E[‖Pwt‖2] ≤ KE[‖Pwt‖2]. (65)

Let

F =

[
I
0

]
, G =

[
2 [(1− η)I + ηC] −β(η)I

I 0

]
, G0 =

[
(1− η)I + ηC −β(η)I

I 0

]
, Ht = 2η

[
(Ct − C)P 0

0 0

]
.

From the update rule in Algorithm 2 expressed in (54), we can write

wt = FT (G+Ht−1)(G+Ht−2) · · · (G+H1)(G0 +H0)Fw0.
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Using Lemma A.3 for the expansion of (G+Ht−1)(G+Ht−2) · · · (G+H1)(G0 +H0) , we have

Pwt = PFT

Gt−1G0 +

t−1∑
i=1

 i+1∏
j=t−1

(G+Hj)HiG
i−1G0

+

1∏
j=t−1

(G+Hj)H0

Fw0. (66)

Since C0, C1, · · · , Ct−1 are independent and identically distributed with mean C, so are H0, H1, · · · , Ht−1 with
mean 0. Therefore, the expectation of all cross-terms in the “square” of (66) are zero. Using the fact that
H0Fw0 = 0, we have

E[‖Pwt‖2] = E[‖PFTGt−1G0Fw0‖2] +

t−1∑
i=1

E
[∥∥PFT i+1∏

j=t−1

(G+Hj)HiG
i−1G0Fw0

∥∥2
]
. (67)

Note that this result is analogous to (42) in the analysis of VR Power. From FTGt−1G0F = Yt((1−η)I+ηC, β(η))
(see (20) for the definition of Yt) and (24b) in Lemma A.1 with w = w0/‖w0‖ and the fact that ‖w0‖2(1 −
(uT1 w0)2/‖w0‖2) =

∑d
k=2(uTkw0)2, we have

E
[
‖PFTGt−1G0Fw0‖2

]
= 4pt(α1(η), β(η)) ·

d∑
k=2

E[(uTkw0)2]. (68)

Using Lemma A.2, ‖P‖ = 1, Ht = 2ηF (Ct − C)PFT , we have

E
[∥∥PFT i+1∏

j=t−1

(G+Hj)HiG
i−1G0Fw0

∥∥2] ≤ 4η2‖P‖2 · E
[∥∥FT i+1∏

j=t−1

(G+Hj)F (Ci − C)PFTGi−1G0Fw0

∥∥2]
≤
∥∥E[FT [ i+1∏

j=t−1

(G+Hj)
]T
FFT

i+1∏
j=t−1

(G+Hj)F
]∥∥

· 4η2E
[∥∥(Ci − C)PFTGi−1G0Fw0

∥∥2]
. (69)

Using mathematical induction on i, we prove that

E
[[ i+1∏
j=t−1

(G+Hj)
]T
FFT

i+1∏
j=t−1

(G+Hj)
]

=
∑

(vi+1,··· ,vt−1)

∈{0,1}t−i−1

E
[[ i+1∏
j=t−1

H
1−vj
j Gvj

]T
FFT

i+1∏
j=t−1

H
1−vj
j Gvj

]
(70)

for any i ≤ t− 2 and fixed t ≥ 2. Since E[Ht−1] = 0, we have

E[(GT +HT
t−1)FFT (G+Ht−1)] = GTFFTG+ E[HT

t−1FF
THt−1].

This proves the base case for i = t− 2.

Suppose that (70) holds for i = k. Then, since Hk is independent from Hk+1, · · · , Ht−1 and E[Hk] = 0, we have

E
[[ k∏
j=t−1

(G+Hj)
]T
FFT

k∏
j=t−1

(G+Hj)
]

= GTE
[[ k+1∏
j=t−1

(G+Hj)
]T
FFT

k+1∏
j=t−1

(G+Hj)
]
G

+ E
[
HT
k

[ k+1∏
j=t−1

(G+Hj)
]T
FFT

k+1∏
j=t−1

(G+Hj)Hk

]
.

From (70), we have

GTE
[[ k+1∏
j=t−1

(G+Hj)
]T
FFT

k+1∏
j=t−1

(G+Hj)
]
G

=
∑

(vk+1,··· ,vt−1)

∈{0,1}t−k−1

E
[[( k+1∏

j=t−1

H
1−vj
j Gvj

)
G
]T
FFT

( k+1∏
j=t−1

H
1−vj
j Gvj

)
G
]
.
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Also, by the independence of Hk from Hk+1, · · · , Ht−1 and (70), we have

E
[
HT
k

[ k+1∏
j=t−1

(G+Hj)
]T
FFT

k+1∏
j=t−1

(G+Hj)Hk

]
= E

[
HT
k E
[[ k+1∏
j=t−1

(G+Hj)
]T
FFT

k+1∏
j=t−1

(G+Hj)
]
Hk

]
= E

[
HT
k

∑
(vk+1,··· ,vt−1)

∈{0,1}t−i−1

E
[[ k+1∏
j=t−1

H
1−vj
j Gvj

]T
FFT

k+1∏
j=t−1

H
1−vj
j Gvj

]
Hk

]

=
∑

(vk+1,··· ,vt−1)

∈{0,1}t−k−1

E
[[( k+1∏

j=t−1

H
1−vj
j Gvj

)
Hk

]T
FFT

( k+1∏
j=t−1

H
1−vj
j Gvj

)
Hk

]
.

Therefore, we have

E
[[ k∏
j=t−1

(G+Hj)
]T
FFT

k∏
j=t−1

(G+Hj)
]

=
∑

(vk,··· ,vt−1)

∈{0,1}t−k

E
[[ k∏
j=t−1

H
1−vj
j Gvj

]T
FFT

k∏
j=t−1

H
1−vj
j Gvj

]
,

which completes the proof of (70).

Using the Jensen’s inequality and the norm property of a symmetric matrix, we have

‖E
[
FT
[ i+1∏
j=t−1

[H
1−vj
j Gvj ]

]T
FFT

i+1∏
j=t−1

[H
1−vj
j Gvj ]F

]
‖ ≤ E

[
‖FT

i+1∏
j=t−1

[H
1−vj
j Gvj ]F‖2

]
. (71)

For (vi+1, · · · , vt−1) ∈ {0, 1}t−i−1, let J = {j1, j2, · · · , jk̄} be a set of indices such that j1 < j2 < · · · < jk̄ and
vj = 0 if j ∈ J and vj = 1 otherwise. Also, let j0 = i. Using that Hj = FFTHjFF

T , we have

E
[
‖FT

i+1∏
j=t−1

[H
1−vj
j Gvj ]F‖2

]
= E

[
‖FTGt−jk̄−1F

1∏
l=k̄

(
FTHjlFF

TGjl−jl−1−1F
)
‖2
]

≤ E
[
‖FTGt−jk̄−1F‖2

1∏
l=k̄

‖FTHjlF‖2‖FTGjl−jl−1−1F‖2
]
. (72)

Since FTGtF = Zt((1− η)I + ηC, β(η)), using (24c) in Lemma A.1, we have

‖FTGtF‖2 ≤ qt(α1(η), β(η)). (73)

Also, from that FTHtF = 2η(Ct − C)P , we have

E
[
‖FTHtF‖2

]
≤ 4η2E

[
‖(Ct − C)P‖2

]
≤ 4η2E

[
‖(Ct − C)‖2

]
= 4η2E

[
‖(Ct − C)2‖

]
= 4η2K. (74)

where the last inequality follows from ‖P‖ = 1 and the second last equality follows from the symmetry of Ct −C.
Using (73) and Lemma A.5, we have

‖FTGt−jk̄−1F‖2
1∏
l=k̄

‖FTGjl−jl−1−1F‖2 ≤
(

1

α1(η)− 4β(η)

)k̄
qt−i−1(α1(η), β(η)). (75)

Note that there are k̄+ 1 terms of the form ‖FTGtF‖2 for some t ≥ 0 on the left-hand side of the above inequality
and we use Lemma A.5 k̄ times to obtain the term on the right-hand side.

Using (71), (72), (75), and the independence of C0, C1, · · · , Ct−1, we obtain

‖E
[
FT
[ i+1∏
j=t−1

[H
1−vj
j Gvj ]

]T
FFT

i+1∏
j=t−1

[H
1−vj
j Gvj ]F

]
‖ ≤

(
4η2K

α1(η)− 4β(η)

)k̄
qt−i−1(α1(η), β(η)).
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Combined with (70), this results in

‖E
[
FT
[ i+1∏
j=t−1

(G+Hj)
]T
FFT

i+1∏
j=t−1

(G+Hj)F
]
‖

=
∥∥ ∑

(vi+1,··· ,vt−1)

∈{0,1}t−i−1

E
[
FT
[ i+1∏
j=t−1

[H
1−vj
j Gvj ]

]T
FFT

i+1∏
j=t−1

[H
1−vj
j Gvj ]F

]∥∥

≤
∑

(vi+1,··· ,vt−1)

∈{0,1}t−i−1

∥∥E[FT [ i+1∏
j=t−1

[H
1−vj
j Gvj ]

]T
FFT

i+1∏
j=t−1

[H
1−vj
j Gvj ]F

]∥∥

≤
t−i−1∑
k̄=0

(
t− i− 1

k̄

)(
4η2K

α1(η)− 4β(η)

)k̄
qt−i−1(α1(η), β(η))

= qt−i−1(α1(η), β(η))

(
1 +

4η2K

α1(η)− 4β(η)

)t−i−1

.

(76)

On the other hand, using Lemma A.2 and (68) for t = i, we have

η2E
[∥∥(Ci − C)PFTGi−1G0Fw0

∥∥2]
= η2E[w0F

TGT0 (Gi−1)TFPTE[(Ci − C)2]PFTGi−1G0Fw0]

≤ η2‖E[(Ci − C)2]‖E[‖PFTGi−1G0Fw0‖2]

≤ 4η2K · pi(α1(η), β(η)) ·
d∑
k=2

E[(uTkw0)2]. (77)

Using (76) and (77) to bound (69), we have

E
[∥∥PFT i+1∏

j=t−1

(G+Hj)HiG
i−1G0Fw0

∥∥2]
≤ 16η2K · pi(α1(η), β(η)) · qt−i−1(α1(η), β(η))

(
1 +

4η2K

α1(η)− 4β(η)

)t−i−1

·
d∑
k=2

E[(uTkw0)2]

(78)

Using (68) and (78) for (67), we finally have

E[‖Pwt‖2] ≤

[
4pt(α1(η), β(η)) + 16η2K

t−1∑
i=1

pi(α1(η), β(η)) · qt−i−1(α1(η), β(η))

(
1 +

4η2K

α1(η)− 4β(η)

)t−i−1
]

·
d∑
k=2

E[(uTkw0)2].

By (90) and (91) in Lemma A.4, we have

pt(α1(η), β(η)) ≤

(√
α1(η)

2
+

√
α1(η)− 4β(η)

2

)2t

,

qt(α1(η), β(η)) ≤
(

1

α1(η)− β(η)

)(√
α1(η)

2
+

√
α1(η)− 4β(η)

2

)2(t+1)

.
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Therefore, we obtain[
4pt(α1(η), β(η)) + 16η2K

t−1∑
i=1

pi(α1(η), β(η)) · qt−i−1(α1(η), β(η))

(
1 +

4η2K

α1(η)− 4β(η)

)t−i−1
]

≤ 4

[
1 +

4η2K

α1(η)− 4β(η)

t−1∑
i=1

(
1 +

4η2K

α1(η)− 4β(η)

)t−i−1
]
·

(√
α1(η)

2
+

√
α1(η)− 4β(η)

2

)2t

= 4

(
1 +

4η2K

α1(η)− 4β(η)

)t−1

·

(√
α1(η)

2
+

√
α1(η)− 4β(η)

2

)2t

,

which results in

E[‖Pwt‖2] ≤ 4

(
1 +

4η2K

α1(η)− 4β(η)

)t−1

·

(√
α1(η)

2
+

√
α1(η)− 4β(η)

2

)2t

·
d∑
k=2

E[(uTkw0)2].

Finally, from (65), we have

d∑
k=2

E[wTt PMkPwt] ≤ 4K

(
1 +

4η2K

α1(η)− 4β(η)

)t−1

·

(√
α1(η)

2
+

√
α1(η)− 4β(η)

2

)2t

·
d∑
k=2

E[(uTkw0)2]. (79)

This completes the proof of the first statement.

Next, from α2(η) = 4β(η) ≥ αk(η) for k ≥ 2 and (92) in Lemma A.4,

d∑
k=2

pm(αk(η), β(η))E[(uTkw0)2] ≤ pm(α2(η), β(η)) ·
d∑
k=2

E[(uTkw0)2]. (80)

Also, using (91) and (92) in Lemma A.4 and (79), we have

4η2
d∑
k=2

m−1∑
r=1

qm−r−1(αk(η), β(η))E[wTr PMkPwr]

≤ 16η2K

α1(η)− 4β(η)

m−1∑
r=1

(
1 +

4η2K

α1(η)− 4β(η)

)r−1

·

(√
α1(η)

2
+

√
α1(η)− 4β(η)

2

)2m

·
d∑
k=2

E[(uTkw0)2]

≤ 4

[(
1 +

4η2K

α1(η)− 4β(η)

)m−1

− 1

]
·

(√
α1(η)

2
+

√
α1(η)− 4β(η)

2

)2m

·
d∑
k=2

E[(uTkw0)2].

Since 0 <
4η2Km

α1(η)− β(η)
< 1, using that exp(x) ≤ 1 + 2x for x ∈ [0, 1] we have

(
1 +

4η2K

α1(η)− 4β(η)

)m−1

− 1 ≤
(

1 +
4η2K

α1(η)− 4β(η)

)m
− 1 ≤ exp

(
4η2Km

α1(η)− 4β(η)

)
− 1 ≤ 8η2Km

α1(η)− 4β(η)
,

leading to

4η2
d∑
k=2

m−1∑
r=1

qm−r−1(αk(η), β(η))E[wTr PMkPwr] ≤
32η2Km

α1(η)− 4β(η)
·

(√
α1(η)

2
+

√
α1(η)− 4β(η)

2

)2m

·
d∑
k=2

E[(uTkw0)2]. (81)

Using (80), (81) for Lemma 3.5, we finally have

d∑
k=2

E[(uTkwm)2] ≤

pm(α2(η), β(η)) +
32η2Km

α1(η)− 4β(η)
·

(√
α1(η)

2
+

√
α1(η)− 4β(η)

2

)2m
 · d∑

k=2

E[(uTkw0)2].

(82)
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Lastly, using Lemma 3.5 for k = 1, we have

E[(uT1 wm)2] = pm(α1(η), β(η))E[(uT1 w0)2] + 4η2
m−1∑
r=1

qm−r−1(α1(η), β(η))E[wTr PM1Pwr].

Since PMkP is positive semi-definite and qt(α1(η), β(η)) ≥ 0 for 1 ≤ t < m by (91) in Lemma A.4, we have

E[(uT1 wm)2] ≥ pm(α1(η), β(η))E[(uT1 w0)2]. (83)

Also, from α1(η) > α2(η) = 4β(η) and (90) in Lemma A.4, we have

pm(α1(η), β(η)) ≥ 1

4

(√
α1(η)

2
+

√
α1(η)− 4β(η)

2

)2m

. (84)

Using (82), (83) and (84), we eventually obtain∑d
k=2E[(uTkwm)2]

E[(uT1 wm)2
≤
[
pm(α2(η), β(η))

pm(α1(η), β(η))
+

128η2Km

α1(η)− 4β(η)

]
·
∑d
k=2E[(uTkw0)2]

E[(uT1 w0)2
,

which completes the proof.

Proof of Lemma 3.7. Using the conditions on m and |S|, we have

0 ≤ 4η2Km

α1(η)− 4β(η)
≤ 1

128
. (85)

Also, from

pm(α2(η), β(η)) = (β(η))m, pm(α1(η), β(η)) ≥ 1

4

(√
α1(η)

2
+

√
α1(η)− 4β(η)

2

)2m

.

and the choice of and m, we have

pm(α2(η), β(η))

pm(α1(η), β(η))
≤ 4 ·

( √
4β(η)√

α1(η) +
√
α1(η)− 4β(η)

)2m

= 4 ·

(
1−

√
α1(η)−

√
4β(η) +

√
α1(η)− 4β(η)√

α1(η) +
√
α1(η)− 4β(η)

)2m

= 4 ·

(
1−

ηλ1∆ +
√
ηλ1∆(2(1− η) + η(λ1 + λ2))

1− η + ηλ1 +
√
ηλ1∆(2(1− η) + η(λ1 + λ2))

)2m

≤ 4 · exp

(
−2

ηλ1∆ +
√
ηλ1∆(2(1− η) + η(λ1 + λ2))

1− η + ηλ1 +
√
ηλ1∆(2(1− η) + η(λ1 + λ2))

m

)

≤ 1

2
.

(86)

Therefore, using (85) and (86) in Lemma 3.6, we finally have∑d
k=2E[(uTkwm)2]

E[(uT1 wm)2]
≤
(
pm(α2(η), β(η))

pm(α1(η), β(η))
+

128η2Km

α1(η)− 4β(η)

)(∑d
k=2E[(uTkw0)2]

E[(uT1 w0)2]

)
≤ 3

4

(∑d
k=2E[(uTkw0)2]

E[(uT1 w0)2]

)
,

which completes the proof.
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Proof of Theorem 3.8. By repeatedly applying Lemma 3.7, we have∑d
k=2E[(uTk w̃τ )2]

E[(uT1 w̃τ )2]
≤
(

3

4

)τ ∑d
k=2E[(uTk w̃0)2]

E[(uT1 w̃0)2]
=

(
3

4

)τ
θ̃0.

Since τ = dlog(θ̃0/ε)/ log(4/3)e, we have

τ log

(
3

4

)
≤ log

(
ε

θ̃0

)
,

resulting in ∑d
k=2E[(uTk w̃τ )2]

E[(uT1 w̃τ )2]
≤ ε.
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A.2 Technical Lemmas

Lemma A.2. Let w be a vector in Rd and let M be a d× d symmetric matrix. Then, we have

wTMw ≤ ‖M‖‖w‖2.

Proof. By the cyclic property of the trace, we have

wTMw = Tr[wTMw] = Tr[MwwT ].

Since wwT is positive semi-definite, we have

Tr[MwwT ] ≤ ‖M‖Tr[wwT ].

Again, by the cyclic property of the trace, we finally have

wTMw ≤ ‖M‖Tr[wwT ] = ‖M‖Tr[wTw] = ‖M‖‖w‖2.

Lemma A.3. Let Ai and Bi be d× d matrices for i = 0, · · · , t− 1. Then, we have

0∏
i=t−1

(Ai+Bi) = (At−1 +Bt−1)(At−2 +Bt−2) · · · (A0 +B0) =

0∏
i=t−1

Ai+

t−1∑
i=0

 i+1∏
j=t−1

(Aj +Bj)Bi

0∏
k=i−1

Ak

 . (87)

Proof. We prove the statement by induction. For t = 1, we have

0∏
i=0

Ai +

0∑
i=0

i+1∏
j=0

(Aj +Bj)Bi

0∏
k=i−1

Ak

 = A0 +

 1∏
j=0

(Aj +Bj)B0

0∏
k=−1

Ak

 = A0 +B0,

which proves the base case. Next, suppose that we have (87) for t− 2. Then, we have

0∏
i=t−1

(Ai +Bi) = (At−1 +Bt−1)

0∏
i=t−2

(Ai +Bi)

= (At−1 +Bt−1)

 0∏
i=t−2

Ai +

t−2∑
i=0

 i+1∏
j=t−2

(Aj +Bj)Bi

0∏
k=i−1

Ak


=

0∏
i=t−1

Ai +Bt−1

0∏
i=t−2

Ai +

t−2∑
i=0

 i+1∏
j=t−1

(Aj +Bj)Bi

0∏
k=i−1

Ak


=

0∏
i=t−1

Ai +

t−1∑
i=0

 i+1∏
j=t−1

(Aj +Bj)Bi

0∏
k=i−1

Ak

 .
This completes the proof.

Lemma A.4. Let xt be a sequence of real numbers such that

xt = (α− β)xt−1 − β(α− β)xt−2 + β3xt−3 + Lt−1 + βLt−2

for t ≥ 3 and x0 = L0, x1 = α
4L0, x2 =

(
α
2 − β

)2
L0 + L1. Then, we have

xt = pt(α, β)L0 +

t−1∑
r=1

qt−r−1(α, β)Lr. (88)

Moreover, for t ≥ 0, we have
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• if 0 ≤ α = 4β,

pt(4β, β) = βt ≥ 0, qt(4β, β) = (t+ 1)2βt ≥ 0, (89)

• if 0 ≤ 4β < α,

pt(α, β) =

[
1

2

(√
α

2
+

√
α− 4β

2

)t
+

1

2

(√
α

2
−
√
α− 4β

2

)t]2

> pt(4β, β) ≥ 0, (90)

qt(α, β) =
1

α− 4β

[(√
α

2
+

√
α− 4β

2

)t+1

−
(√

α

2
−
√
α− 4β

2

)t+1]2

> qt(4β, β) ≥ 0, (91)

• if 0 ≤ α < 4β,

pt(α, β) ≤ pt(4β, β), qt(α, β) ≤ qt(4β, β). (92)

Proof. It is easy to check that x0, x1, and x2 satisfy (88). Suppose that (88) holds for t− 1, t− 2, t− 3. Then,
we have

xt = (α− β)xt−1 − β(α− β)xt−2 + β3xt−3 + Lt−1 + βLt−2

= pt(α, β)L0 + Lt−1 + αLt−2 + (α− β)2Lt−3 +

t−4∑
r=1

qt−r−1(α, β)Lr

= pt(α, β)L0 +

t−1∑
r=1

qt−r−1(α, β)Lr.

Therefore, (88) holds by induction.

Next, we prove (89), (90), (91) and (92). The characteristic equation of (9) is

r3 − (α− β)r2 + β(α− β)r − β3 = 0. (93)

If 0 ≤ α = 4β, (93) has a cube root of r = β. From initial conditions (11) and (12), we obtain

pt(4β, β) = βt ≥ 0, qt(4β, β) = (t+ 1)2βt ≥ 0. (94)

If 0 ≤ 4β < α, the roots of (93) are

r = β,
α− 2β

2
+

√
α2 − 4αβ

2
,
α− 2β

2
−
√
α2 − 4αβ

2
.

With initial conditions (11), we obtain

pt(α, β) =
1

4

(
α− 2β

2
+

√
α2 − 4αβ

2

)t
+

1

4

(
α− 2β

2
−
√
α2 − 4αβ

2

)t
+

1

2
βt

Using the fact that α > 4β and the arithmetic-geometric mean inequality, we have

pt(α, β) > βt ≥ 0.

Moreover, we can further write pt(α, β) as

pt(α, β) =

[
1

2

(√
α

2
+

√
α− 4β

2

)t
+

1

2

(√
α

2
−
√
α− 4β

2

)t]2

by expanding this expression.
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On the other hand, using (12), we have

qt(α, β) =
1

α− 4β

[(
α− 2β

2
+

√
α2 − 4αβ

2

)t+1

+

(
α− 2β

2
−
√
α2 − 4αβ

2

)t+1

− 2βt+1

]
=

1

α− 4β

[(√
α

2
+

√
α− 4β

2

)t+1

−
(√

α

2
−
√
α− 4β

2

)t+1]2

≥ 0.

Using the fact that At+1 −Bt+1 = (A−B)(At +At−1B + · · ·+Bt) for any A,B ∈ R, we have

qt(α, β) =

[ t∑
i=0

(√
α

2
+

√
α− 4β

2

)i(√
α

2
−
√
α− 4β

2

)t−i]2

.

Again, using the arithmetic-geometric mean inequality and the fact that α > 4β, we have

qt(α, β) ≥
[
(t+ 1)

(√
α

2
+

√
α− 4β

2

)t/2(√
α

2
−
√
α− 4β

2

)t/2]2

= (t+ 1)2βt = qt(4β, β).

If 0 ≤ α < 4β, the roots of (93) are

r = β,
α− 2β

2
+

√
4αβ − α2

2
i,
α− 2β

2
−
√

4αβ − α2

2
i.

Setting

cos θp =
α− 2β

2β
, sin θp =

√
4αβ − α2

2β

it is easy to verify that

pt(α, β) =
1

4
βt
[
cos θp + i sin θp

]t
+

1

4
βt
[
cos θp − i sin θp

]t
+

1

2
βt

=
1

4
(eiθt + e−iθt)βt +

1

2
βt

=
1

4
|eiθt + e−iθt|βt +

1

2
βt

≤ 1

4
(|eiθt|+ |e−iθt|)βt +

1

2
βt

= βt.

Moreover, with

cos θq =
α− 2β

2β
, sin θq =

√
4αβ − α2

2β
, cos φq = 1− α

2β
, sin φq = −

√
4αβ − α2

2β
,

it can be seen by using elementary calculus that

qt(α, β) =

[
2β

4β − α
+

2β

4β − α
cos(φq + tθq)

]
βt. (95)

Let

Q(t) =
qt(4β, β)− qt(α, β)

βt
.

Then, from (9) and (11), we have

Q(0) = 0, Q(1) =
4β − α
β

, Q(2) =
(4β − α)(2β + α)

β2
, Q(3) =

(α2 + 4β2)(4β − α)

β3
(96)
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resulting in

Q(2)−Q(0) =
(4β − α)(2β + α)

β2
≥ 0, Q(3)−Q(1) =

(α2 + 3β2)(4β − α)

β3
≥ 0. (97)

In order to show Q(t) ≥ 0 for t ≥ 0, we prove Q(t + 2) − Q(t) ≥ 0 for t ≥ 0. Using (94), (95) and standard
trigonometric equalities, it follows that

Q(t+ 2)− 2Q(t) +Q(t− 2) = 8 +
2α

β
cos(φq + tθq).

In turn, we have

Q(t+ 2)−Q(t) = Q(t)−Q(t− 2) + 8 +
2α

β
cos(φq + tθq)

≥ Q(t)−Q(t− 2) + 8− 2α

β

= Q(t)−Q(t− 2) +
2(4β − α)

β

≥ Q(t)−Q(t− 2). (98)

From (96), (97), and (98), for t ≥ 0, we obtain Q(t) ≥ 0 implying

qt(α, β) ≤ qt(4β, β).

Lemma A.5. If α > 4β ≥ 0, then for 0 ≤ t1 < t2, we have

qt1(α, β) · qt2(α, β) ≤
(

1

α− 4β

)
qt1+t2+1(α, β).

Proof. From (91) in Lemma A.4, we have

qt1(α, β) · qt2(α, β) =

(
1

α− 4β

)2 [(√
α

2
+

√
α− 4β

2

)t1+1

−
(√

α

2
−
√
α− 4β

2

)t1+1]2

·
[(√

α

2
+

√
α− 4β

2

)t2+1

−
(√

α

2
−
√
α− 4β

2

)t2+1]2

.

Since

0 ≤
√
α

2
−
√
α− 4β

2
<

√
α

2
+

√
α− 4β

2
,

we have[(√
α

2
+

√
α− 4β

2

)t1+1

−
(√

α

2
−
√
α− 4β

2

)t1+1][(√
α

2
+

√
α− 4β

2

)t2+1

−
(√

α

2
−
√
α− 4β

2

)t2+1]
=

(√
α

2
+

√
α− 4β

2

)t1+t2+2

−
(√

α

2
−
√
α− 4β

2

)t1+1(√
α

2
+

√
α− 4β

2

)t2+1

−
(√

α

2
+

√
α− 4β

2

)t1+1(√
α

2
−
√
α− 4β

2

)t2+1

+

(√
α

2
−
√
α− 4β

2

)t1+t2+2

≤
(√

α

2
+

√
α− 4β

2

)t1+t2+2

−
(√

α

2
−
√
α− 4β

2

)t1+t2+2

.

Therefore, we have

qt1(α, β) · qt2(α, β) ≤
(

1

α− 4β

)2 [(√
α

2
+

√
α− 4β

2

)t1+t2+2

−
(√

α

2
−
√
α− 4β

2

)t1+t2+2]2

=

(
1

α− 4β

)
qt1+t2+1(α, β).

This completes the proof.


