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Abstract

Linear programming duality is well understood and the reduced cost of a column is frequently used
in various algorithms. On the other hand, for integer programs it is not clear how to define a dual
function even though the subadditive dual theory has been developed a long time ago. In this work
we propose a family of computationally tractable subadditive dual functions for integer programs. We
develop a solution methodology that computes an optimal primal solution and an optimal subadditive
dual function. We present computational experiments, which show that the new algorithm is tractable.

Keywords: integer programming, duality, algorithms

1 Introduction

Integer programming (IP) has many practical applications and its importance is well documented. There
are several algorithms that compute an optimal IP solution, with branch-and-cut algorithms outperforming
the field. Most of the algorithms produce an optimal or near optimal IP solution. On the other hand, IP
duality is not well studied and to the best of our knowledge there are no practical algorithms that compute
an optimal dual function for IP. In this paper we address how to compute dual functions and reduced cost,
and use them to perform sensitivity analysis for IP. Frequently in IP we would like to estimate the change
of the objective value if we perturb the right hand side. Sensitivity analysis for IP is typically done either
by considering the dual vector of the LP relaxation or by resolving the problem after changing the right
hand side. Is it possible to compute a vector or a function that would measure the change in the objective
function of an IP after a perturbation of the right hand side? Similarly, when we are given a new variable,
we wonder how the optimal objective value changes if this variable is added to the formulation. In many real
world problems that are modeled as integer programs we would like to obtain alternative optimal solutions.
For example, in airline crew assignment a decision maker, among all optimal solutions, favors solutions that
are robust with respect to disruptions in operations. All optimal solutions can be found among the variables
with zero reduced cost, which requires an optimal dual function.

All of the aforementioned problems are well understood in linear programming (LP). In LP with each
feasible bounded primal problem there is an associated dual problem with the same objective value. Many
algorithms for LP compute both a primal and a dual solution, e.g. simplex and primal-dual algorithms.
The reduced cost of a variable at the lower bound estimates how much the addition of the variable to the
formulation change the objective value. By using duality we can carry out the sensitivity analysis. Column
generation is a technique for solving large-scale LPs efficiently, see e.g. Dantzig et al. (1954), Barnhart et al.
(1998). In a column generation algorithm, we start by solving an initial formulation that contains only a
small subset of the variables of the problem. This formulation is called the restricted master problem. The
algorithm progresses as other variables are introduced to the restricted master problem, which is reoptimized
in every iteration. Variables with low reduced cost are more likely to improve the incumbent solution and
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therefore they are appended to the restricted master problem. The variable selection process is called the
subproblem. A column generation type algorithm for solving large-scale integer programs is of great interest.

Alcaly and Klevorick (1966) and Baumol (1960) give several interpretations of the LP dual vector in
many business related problems. In this case the dual prices measure the change of the objective value, i.e.
cost or revenue, if one of the resources is changed. In many applications the underlying model is an IP and
therefore it would be useful to have such an interpretation. A recent such application is auctioning, Schrage
(2001), Bikhcandani et al. (2001). In auctioning an optimal allocation of bids is sought that maximizes the
seller’s profit. The dual values correspond to a bidder’s marginal value and they can be used to explain to
the losers how much higher should they have bid to win.

For integer programs subadditive duality developed first by Johnson (1973) gives us a partial answer to
these questions.

Definition 1. A function F : Rm → R is subadditive on Z ⊆ Rm if F (x + y) ≤ F (x) + F (y) for all
x ∈ Z, y ∈ Z such that x + y ∈ Z.

If Z is not specified, we assume Z = Rm. Johnson showed that for a feasible IP

min cx

Ax = b

x ∈ Zn
+

=
max F (b)
F (ai) ≤ ci i = 1, . . . , n

F subadditive, F (0) = 0 ,

(1)

where A = (a1, . . . , an) ∈ Zm×n, b ∈ Zm, c ∈ Zn. We refer to the second problem as the subadditive dual
problem. At least theoretically the answer to all of the raised questions is in the optimal subadditive function
(OSF). In other words, the analog to the optimal dual vector in LP is the OSF. Given a subadditive function
F , the reduced cost of a column i can be defined as ci−F (ai) and most of the other properties from LP carry
over to IP, e.g. complementary slackness, F (b) provides a lower bound on the optimal IP value, if F (ai) ≤ ci

for all i = 1, . . . , n, and all optimal solutions can be found only among the columns i with ci = F (ai), if F is
an OSF. However there are still two fundamental issues that need to be addressed; how to encode F and how
to compute F . Theory tells us that an OSF can always be obtained as a composition of C-G inequalities,
see e.g. Nemhauser and Wolsey (1988), pages 304-308, but such a function would be hard to encode and
hard to evaluate. Very little is known about how to compute an OSF. Llewellyn and Ryan (1993) show how
an OSF can be constructed from Gomory cuts. Our work originates from the work done by Burdet and
Johnson (1977), where an algorithm for solving an IP based on subadditivity is presented. Both of these
two works do not present any computational experiments.

Subadditive duality was pioneered by Gomory (1969). He shows strong duality for the group problem
and a characterization of all facet-inducing subadditive functions. This work was later extended to the
mixed integer case, Gomory and Johnson (1972a,b). The treatment in terms of integer programs is given in
Johnson (1980b, 1981, 1987). Araoz (1973) studies the master problem, i.e. the problem where all possible
columns are present, and he extends the results from the group problem to the semi-group problem. An
excellent summary of results on subadditive duality is given by Johnson (1980a). Wolsey (1981a) discusses
separable subadditive functions and the relation of Gomory cuts and subadditive functions. He also shows
how to construct a subadditive function from a branch-and-bound tree but his functions are hard to encode
and compute.

We first give a new family of subadditive functions that is easy to encode and often relatively easy to
evaluate. We present an algorithm that computes an OSF. As part of the algorithm we give several new
theorems that further shed light on OSFs. The contribution of this research goes beyond a novel methodology
for computing an OSF. In addition to sensitivity analysis, new approaches for large-scale integer programs
can be developed (generalized column generation, Benders’ decomposition for IP). We elaborate on these
potential applications in Section 5. Further details on the implementation and the computational results
are presented in the sequel paper Klabjan (2004) and in the extended version of the present manuscript,
Klabjan (2005) .

In Section 2 we present a new family of subadditive functions that is easy to encode. We give several
interesting properties of these functions. In addition we generalize the concept of reduced cost fixing. In
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Section 3 we give a finite family of these functions that suffices to obtain strong duality (1). Section 4 outlines
the algorithm that computes an optimal primal solution to an IP and an OSF. In Section 5 we present possible
applications of subadditive duality. Computational experiments are given in the last section.

Notation

Let Z+ = {0, 1, 2, . . . }. In the rest of the paper we assume that (A, b) ∈ Zm×(n+1)
+ and that c ∈ Zn. A

column i of A is denoted by ai ∈ Zm
+ and a row j of A is denoted by aj ∈ Zn

+. For any E ⊆ N = {1, 2, . . . , n},
we denote by AE ∈ Zm×|E|

+ the submatrix of A consisting of the columns with indices in E and similarly
we define cE . Let 1 be the vector with 1i = 1 for every i and let ei be the ith unit vector. By supp(x) we
denote the support set of x, i.e. supp(x) = {i ∈ N : xi > 0}. For two vectors x, y we write x < y if x ≤ y
and there exists a coordinate i such that xi < yi.

In this paper we address integer programs of the form min{cx : Ax = b, x ∈ Zn
+}. An x ∈ Zn

+ is feasible
to the IP if Ax = b. We say that a subadditive function F with F (0) = 0 is dual feasible or simply feasible
if F (ai) ≤ ci for all i ∈ N . It is easy to see that for every feasible subadditive function we have F (b) ≤ zIP,
where zIP is the optimal value of the IP. We call F (b) the objective value of F . Based on these definitions,
a subadditive function F is an OSF if and only if F is feasible and F (b) = zIP.

Example. We demonstrate some of the results on the following example.

b = (1, 2, 2, 1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

c = ( 10 1 3 5 0 2 −0.5 −2 3 4 −5 −3 −1 3 −1 )

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A =


1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0 0 0 1 0 0 1 0 1 1 0 1 1 1 1


The two rows above c and A show column indices and are given for better readability.

The optimal primal solution to the LP relaxation is x8 = 1.5, x12 = 0.5, x13 = 0.5, the optimal dual
vector of the LP relaxation is y1 = −3, y2 = −2, y4 = 2 and the objective value of the LP relaxation is −5.
The optimal IP solution is x7 = 1, x8 = 2 and zIP = −4.5.

2 The Generator Subadditive Functions

We start by defining a new family of subadditive functions.

Definition 2. Given a vector α ∈ Rm, we define a generator subadditive function Fα : Rm
+ → R as

Fα(d) = αd−max
∑
i∈E

(αai − ci)xi

AEx ≤ d

x ∈ Z|E|+ ,

where
E = {i ∈ N : αai > ci} (2)

is the generator set. Similarly, given a vector β ∈ Rm, we define a ray generator subadditive function
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F̄β : Rm
+ → R as

F̄β(d) = βd−max
∑
i∈E

(βai)xi

AEx ≤ d

x ∈ Z|E|+ ,

where E = {i ∈ N : βai > 0}.

The generator set E depends on α but for simplicity of notation we do not show this dependence in our
notation. Whenever an ambiguity can occur, we write E(α). In addition, for simplicity of notation we write
H = N \ E.

Lemma 1. For any α we have

1. Fα is subadditive and Fα(0) = 0,

2. Fα(ai) ≤ αai ≤ ci for all i ∈ H,

3. Fα(ai) ≤ ci for all i ∈ E.

Proof. 1. Let d1, d2 ∈ Rm
+ . The statement Fα(d1 + d2) ≤ Fα(d1) + Fα(d2) is equivalent to

max{(αAE − cE)x : AEx ≤ d1, x ∈ Z|E|+ }+ max{(αAE − cE)x : AEx ≤ d2, x ∈ Z|E|+ }

≤ max{(αAE − cE)x : AEx ≤ d1 + d2, x ∈ Z|E|+ } .
(3)

If x∗1, x
∗
2 are optimal solutions to the two maximums on the left hand side of (3), then x∗1 + x∗2 is a feasible

solution to the optimization problem on the right hand side, which shows the claim.

2. x = 0 is feasible to max{(αAE − cE)x : AEx ≤ ai, x ∈ Z|E|+ } and it yields 0 objective value. By definition
of Fα, Fα(ai) ≤ αai and since i ∈ H, the statement follows.

3. For i ∈ E we consider x = ei in max{(αAE − cE)x : AEx ≤ ai, x ∈ Z|E|+ }. This yields that in this case
Fα(ai) ≤ ci.

Lemma 1 shows that Fα is a feasible subadditive function and therefore Fα(b) provides a lower bound on
zIP. The vector α is a generalization of dual vectors of the LP relaxation. Every dual feasible vector α to
the LP relaxation has to satisfy αai ≤ ci for all i ∈ N , however α in the definition of Fα can violate some of
these constraints. Indeed, if y∗ is an optimal solution to the dual of the LP relaxation of the IP, then E = ∅
and Fy∗ gives the value of the LP relaxation.
Remark 1. Generator subadditive functions can also be derived via Lagrangian duality. To this end, let us
rewrite the IP as min{cx : Ax ≤ b, Ax ≥ b, x ∈ Zn

+} and for any multipliers α ∈ Rm
+ with respect to Ax ≥ b

consider the Lagrangian relaxation

LR(α) = min{cx− α(Ax− b) : Ax ≤ b, x ∈ Zn
+} .

From Lagrangian theory, see e.g. Nemhauser and Wolsey (1988), page 324, it follows that LR(α) ≤ zIP.
Since (A, b) ∈ Zm×(n+1)

+ , it follows that LR(α) = αb −max{
∑

i∈E(αai − ci)xi : AEx ≤ b, x ∈ Z|E|+ }, where
E is defined as in (2). Therefore LR(α) = Fα(b).

The ray generator subadditive function is clearly dual feasible to the IP min{0x : Ax = b, x ∈ Zn
+}. We

show later that these functions assist us in detecting IP infeasibility.
From the computational point of view, note that to describe Fα we only need to specify α and therefore

encoding Fα is easy. To evaluate Fα we need to solve an IP with |E| integer variables, which in general is
NP-hard. It is desirable that |E| is small since it makes the evaluation of Fα easier. The computational
results for set partitioning instances, Klabjan (2004), show that in practice this is indeed the case; even
problems with 100,000 columns have only up to 300 columns in E.
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Example (continued). Consider α = (−3.2,−1.75, 0.25, 2.75). For this α we have αa7 − c7 = 0.05, αa8 −
c8 = 0.5, αa12 − c12 = 0.8, αa13 − c13 = 0.8 and all other columns are in H. Fα is defined as

Fα((d1, d2, d3, d4)) = −3.2d1 − 1.75d2 + 0.25d3 + 2.75d4 −max 0.05x1 + 0.5x2 + 0.8x3 + 0.8x4

x1 + x3 + x4 ≤ d1

x2 + x3 ≤ d2

x2 + x4 ≤ d3

x1 + x3 + x4 ≤ d4

x ∈ Z4
+ .

It is easy to check that Fα(b) = Fα((1, 2, 2, 1)) = −4.75. Therefore Fα is not an OSF but it does provide a
better lower bound than the optimal dual vector of the LP relaxation.

Strong duality (1) states that among all the subadditive dual functions there is one that attains the
equality, however, it does not guarantee equality for specially structured subadditive functions like the
generator subadditive functions.

Theorem 1. If the IP is feasible, then there exists an α such that Fα is a generator OSF, i.e. Fα(b) = zIP.
If the IP is infeasible, then there exists a ray generator subadditive function F̄β such that F̄β(b) > 0.

Both statements follow from Lagrangian duality discussed in Remark 1 and the standard convexification
argument, Nemhauser and Wolsey (1988), page 327. Here we show a different argument, which is used later
on several occasions.

Proposition 1. Let the IP be feasible and let πjx ≤ πj
0, j ∈ J be valid inequalities for {Ax ≤ b, x ∈ Zn

+}.
Let

z∗ = min cx

Ax = b (4)

πjx ≤ πj
0 j ∈ J

x ≥ 0

and let (α, γ) be an optimal dual vector, where α corresponds to constraints (4). Then Fα(b) ≥ z∗.

Proof. The dual of the LP stated in the proposition reads

max bα−
∑
j∈J

πj
0γj

aiα−
∑
j∈J

πj
i γj ≤ ci i ∈ N (5)

α unrestricted, γ ≥ 0 .

The optimal value of this LP is z∗ and let (α, γ) be an optimal vector. The statement Fα(b) ≥ z∗ is equivalent
to

max{(αAE − cE)x : AEx ≤ b, x nonnegative integer} ≤ bα− z∗ . (6)

Let x be a nonnegative integer vector such that AEx ≤ b. We have

(αAE − cE)x ≤
∑
i∈E

∑
j∈J

xiπ
j
i γj (7)

=
∑
j∈J

γj

∑
i∈E

πj
i xi ≤

∑
j∈J

γjπ
j
0 = bα− z∗ , (8)

where (7) follows from (5), and the inequality in (8) holds since πjx ≤ πj
0, j ∈ J are valid inequalities for

{AEx ≤ b, x nonnegative integer} and γ ≥ 0. This shows (6) and it proves the claim.
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Proof of Theorem 1. If the IP is feasible, then the first statement follows either by using Lagrangian duality
or by using Proposition 1.

Assume now that the IP is infeasible. Consider z = min{1u : Ax + u = b, x ∈ Zn
+, u ∈ Zm

+}. Since
the original IP is infeasible, z > 0. By the above case, there exists β such that z = bβ − max{βAE x̄ +∑

i∈Ẽ(βi − 1)x̃i : (AE x̄)i ≤ bi for all i 6= Ẽ, (AE x̄)i + x̃i ≤ bi for all i ∈ Ẽ, x̄ ∈ Z|E|+ , x̃ ∈ Z|Ẽ|+ }, where
E = {i ∈ N : βai > 0} and Ẽ = {i : βi > 1}. But then we have 0 < z ≤ bβ−max{βAE x̄ : AE x̄ ≤ b, x̄ ∈ Zn

+},
which shows that F̄β has the desired property.

Note that a ray generator subadditive function shows that the subadditive dual problem is unbounded
from above. Theorem 1 states that if the IP is infeasible, then there exists a ray generator subadditive dual
function and therefore the subadditive dual problem is unbounded. Clearly the opposite holds as well, i.e.
if the subadditive dual problem is unbounded, then the IP is infeasible.

Example (continued). Consider α = (−4,−1.5, 0.5, 3.5). We have E = {8, 12, 13} and αa8 − c8 = αa12 −
c12 = αa13−c13 = 1. It is easy to check that αb = −2.5 and that max{(αAE−cE)x : AEx ≤ b, x ∈ Z3

+} = 2.
Therefore Fα(b) = −4.5 and this is a generator OSF.

If we add valid inequalities x8 + x11 + x12 ≤ 2, x8 + x12 + x13 ≤ 2 to the LP relaxation, we obtain an
objective value of −4.5 and the corresponding optimal dual vector is indeed (−4,−1.5, 0.5, 3.5). Therefore
we can establish Fα(b) = −4.5 also directly from Proposition 1.

Consider now the set Q = {Ax = (1, 2, 2, 1), xi = 0 for all i /∈ R, x ∈ Z15
+ }, where R = {8, 9, 10, 12, 13, 14}.

In other words, we consider only columns in R. The LP relaxation is nonempty since x8 = 1.5, x12 =
0.5, x13 = 0.5 is primal feasible. Let β = (3, 1, 1,−2). We have βa8 = βa12 = βa13 = 2 and for all other
columns i ∈ R we have βai ≤ 0. F̄β is defined as

F̄β((d1, d2, d3, d4)) = 3d1 + 1d2 + 1d3 − 2d4 −max 2x1 + 2x2 + 2x3

x2 + x3 ≤ d1

x1 + x2 ≤ d2

x1 + x3 ≤ d3

x2 + x3 ≤ d4

x ∈ Z4
+ .

It is easy to see that F̄β(b) = 1 > 0. Therefore this is a ray generator subadditive function with F̄β(b) = 1 > 0.
By Theorem 1 we have that Q = ∅, which we can also easily check by hand.

Next we give two theorems that have a counterpart in LP and are used in our algorithm.

Theorem 2 (Complementary slackness). Let x∗ be an optimal IP solution. If x∗i > 0, then αai ≥ ci in any
generator OSF.

Proof. Let i be such that x∗i > 0. The complementary slackness condition says that for any OSF we have
x∗i (ci − F (ai)) = 0, see e.g. Nemhauser and Wolsey (1988), page 305. This means that F (ai) = ci in any
OSF. If F is a generator OSF Fα, then if i ∈ H it follows that ci = Fα(ai) ≤ αai and if i ∈ E it follows by
definition αai > ci.

In IP reduced cost fixing based on solutions to LP relaxations is a commonly used technique for fixing
variables to 0, see e.g. Wolsey (1998), page 109, and similarly variable fixing based on Lagrangian multipliers
is known. The next theorem establishes an equivalent property based on subadditive dual functions (not
necessarily those derived from a Lagrangian relaxation).

Theorem 3 (Reduced cost fixing). Let F be a feasible subadditive dual function and let ẑIP be an upper
bound on zIP. If ck − F (ak) > 0 and

v =
⌈

ẑIP − F (b)
ck − F (ak)

⌉
> 0 (9)

for a column k ∈ N , then there is an optimal IP solution x∗ with x∗k ≤ v − 1.
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Proof. Let k be an index such that ck − F (ak) > 0 and v > 0. Then by definition of v it follows that
F (b) + (ck − F (ak))l ≥ ẑIP for every l ≥ v, l integer. Consider the IP min{cx : Ax = b, xk = l, x ∈ Zn

+} for
an l ≥ v. We show that the optimal value of this IP is greater or equal to ẑIP.

The subadditive dual problem of this IP reads

max G(b, l)
G(ai, 0) ≤ ci i ∈ N − {k}
G(ak, 1) ≤ ck

G subadditive ,

(10)

where the extra coordinate in columns corresponds to the constraint xk = l. Consider the feasible subadditive
function Ḡ(d, s) = F (d)+(ck−F (ak))s to (10). The objective value of this function is Ḡ(b, l) = F (b)+(ck−
F (ak))l ≥ ẑIP and therefore the objective value of the subadditive dual problem (10) is at least ẑIP. This in
turn implies that the objective value of the IP with xk = l is at least ẑIP, which concludes the proof.

If F is a subadditive function, then ∑
i∈N

F (ai)xi ≥ F (b) (11)

is a valid inequality for {Ax = b, x ∈ Zn
+}, see e.g. Nemhauser and Wolsey (1988), page 229. Therefore for

any α by considering F = Fα we get that∑
i∈E

cixi +
∑
i∈H

(αai)xi ≥ Fα(b) (12)

is a valid inequality. These inequalities are used in the computational experiments, Klabjan (2004).

Example (continued). For α = (−3.2,−1.75, 0.25, 2.75) and α = (−4,−1.5, 0.5, 3.5) valid inequality (12)
reads

−3.2x1 − 1.75x2 + 0.25x3 + 2.75x4 − 4.95x5 − 2.95x6 − 0.5x7 − 2x8+
x9 + 3x10 − 4.7x11 − 3x12 − x13 + 1.25x14 − 1.95x15 ≥ −4.75

−4x1 − 1.5x2 + 0.5x3 + 3.5x4 − 5.5x5 − 3.5x6 − 0.5x7 − 2x8

+2x9 + 4x10 − 5x11 − 3x12 − x13 + 2.5x14 − 1.5x15 ≥ −4.5 ,

respectively.

3 Basic Generator Subadditive Functions

Here we show that the set of all generator subadditive functions is convex and we give a finite subset
of generator subadditive functions that yield strong duality. In addition, we discuss minimal generator
subadditive functions.

Proposition 2. If Fα and Fβ are generator subadditive functions and 0 ≤ λ ≤ 1, then λFα+(1−λ)Fβ ≤ Fγ ,
where γ = λα + (1− λ)β and E(γ) ⊆ E(α) ∪ E(β).

Proof. First note that E(γ) ⊆ E(α) ∪ E(β). Let d ∈ Rm
+ and let

z̄ = max{(γAE(γ) − cE(γ))x : AE(γ)x ≤ d, x ∈ Z|E(γ)|
+ }

z̃ = max{(αAE(α) − cE(α))x : AE(α)x ≤ d, x ∈ Z|E(α)|
+ }

ẑ = max{(βAE(β) − cE(β))x : AE(β)x ≤ d, x ∈ Z|E(β)|
+ } .
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We show that z̄ ≤ λz̃ + (1 − λ)ẑ. Let x̄ be the optimal solution to z̄. Let us define the vector x̃ for each
i ∈ E(α) as x̃i = x̄i for all i ∈ E(α) ∩E(γ) and 0 otherwise. Similarly let the vector x̂ for each i ∈ E(β) be
defined as x̂i = x̄i for all i ∈ E(β) ∩ E(γ) and 0 otherwise. Since AE(α)x̃ ≤ d and AE(β)x̂ ≤ d, we have

z̄ = (γAE(γ) − cE(γ))x̄ = λ(αAE(γ) − cE(γ))x̄ + (1− λ)(βAE(γ) − cE(γ))x̄

≤ λ(αAE(α) − cE(α))x̃ + (1− λ)(βAE(β) − cE(β))x̂ ≤ λz̃ + (1− λ)ẑ .

The claim now easily follows by definition.

We denote

S = {F : Rm
+ → R|F feasible subadditive function and there exists an α such that F ≤ Fα} .

Clearly the set of all generator subadditive functions is a subset of S. Next we show that S is convex and
we give some of the extreme directions.

Corollary 1. S is convex.

Proof. Let F1 ∈ S and F2 ∈ S. By Proposition 2 we have λF1 +(1−λ)F2 ≤ λFα +(1−λ)Fβ ≤ Fλα+(1−λ)β ,
where F1 ≤ Fα and F2 ≤ Fβ .

The asymptotic cone of S is the set of all functions F̃ such that F + λF̃ ∈ S for all λ > 0 and for an
F ∈ S, see e.g. Hiriart-Urruty and Lemaréchal (1993), page 109.

Corollary 2. Every ray generator subadditive function is in the asymptotic cone of S.

Proof. Let F̄β be a ray generator subadditive function, let F ∈ S and let λ > 0. Then F +λF̄β ≤ Fα +λF̄β ≤
Fα+λβ , where the first inequality follows since F ∈ S and the second inequality can easily be proven by using
the technique from the proof of Proposition 2.

So far we have studied the generator subadditive functions as functions of α and given α we defined E.
However we can also reverse this view. Suppose we are given a subset E of N . We would like to find a
generator subadditive function Fα∗ with the best objective value and such that E(α∗) ⊆ E. It is easy to see
that the objective value η∗ and α∗ have to be an optimal solution to the LP

max{η : (η, α) ∈ Qb(E)} , (13)

where

Qb(E) = {η + α(AEx− b) ≤ cEx x ∈ Z|E|+ , AEx ≤ b (14)
αai ≤ ci i ∈ H (15)

(η, α) ∈ R× Rm} .

Constraints (14) express that η is a lower bound on Fα(b) and (15) guarantee that Fα(ai) ≤ ci for all i ∈ H.
If (η∗, α∗) is an optimal solution to (13), then Fα∗(b) = η∗ and clearly E(α∗) ⊆ E. The LP (13) forms
the basis of our algorithm. Note that Qb(E) might have a large number of constraints and therefore row
generation is needed to solve (13). The details on solving (13) are described in Klabjan (2004).

Definition 3. A generator subadditive function Fα is called a basic generator subadditive function, or a BG
function, if (Fα(b), α) is an extreme point of the polyhedron Qb(E(α)).

A ray generator subadditive function F̄β is called a basic ray generator subadditive function, or a DG
function, if (F̄β(b), β) is an extreme ray of the polyhedron Qb(E(β)).

Note that since there is only a finitely many choices for E and for each E the polyhedron Qb(E) has only
a finite number of extreme points and extreme rays, there is only a finite number of BG and DG functions.
Let Fαk

, k ∈ K(b) be all the BG functions and let F̄βj
, j ∈ J(b) be all the DG functions. The sets K and J

here depend on b but in LP duality this is not the case. Next we show that these finite subsets of generator
subadditive functions suffice for solving the IP or showing infeasibility.
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Theorem 4. If the IP is feasible, then in (1) it suffices to consider only BG functions Fαk
, k ∈ K(b). If the

IP is infeasible, then there is a DG function F̄βj
for a j ∈ J(b) such that F̄βj

(b) > 0.

Proof. If the IP is feasible, then the first statement follows from Theorem 1 and the Minkowski’s theorem.
Let now the IP be infeasible. Then there is a ray generator subadditive function F̄β̂ with F̄β̂(b) > 0.

This function shows that max{η : (η, α) ∈ Qb(E(β̂))} is unbounded and therefore there exists an extreme
ray (η̃, β̃) of Qb(E(β̂)) with F̄β̃(b) ≥ η̃ > 0. By definition, F̄β̃ is a DG function.

Next we show that only BG functions yield facet-defining (12) and that BG functions suffice to solve the
IP as an LP.

Proposition 3. If (12) is facet-defining, then Fα is a BG function.

Proof. Suppose that Fα is not a BG function. Then (Fα(b), α) =
∑

i∈I λi(Fαi(b), αi), where (Fαi(b), αi) ∈
Q(E(α)) and

∑
i∈I λi = 1, λi > 0 for every i ∈ I. By Proposition 2 it is easy to see that

∑
j∈N Fα(aj)xj ≥

Fα(b) is dominated by the convex combination of valid inequalities
∑

j∈N Fαi
(aj)xj ≥ Fαi

(b), i ∈ I and
therefore clearly cannot be a facet.

Proposition 4.

zIP = min cx

Ax = b∑
i∈N

Fαk
(ai)xi ≥ Fαk

(b) k ∈ K(b)

x ≥ 0 .

Proof. Let z∗ be the optimal value and x∗ the optimal solution of the LP given in the proposition. Since∑
i∈N Fαk

(ai)xi ≥ Fαk
(b), k ∈ K(b) are valid inequalities for {Ax = b, x ∈ Zn

+}, it follows that z∗ ≤ zIP. On
the other hand for an optimal BG function Fαk̄

, k̄ ∈ K(b) we have

z∗ = cx∗ ≥
∑
i∈N

Fαk̄
(ai)x∗i ≥ Fαk̄

(b) = zIP ,

where the first inequality follows by dual feasibility of Fαk̄
and the second one by primal feasibility of x∗. It

follows that z∗ = zIP.

3.1 Minimal Generator Subadditive Functions

Generator subadditive functions yield valid inequalities (12). Clearly the inequalities that are dominated by
other inequalities are redundant.

Definition 4. A subadditive function F is minimal if there does not exist a subadditive function G such
that F (ai) ≥ G(ai) for all i ∈ N , F (b) ≤ G(b), and at least one inequality is strict.

From the definition it follows that F is minimal if and only if there exists a nonnegative integral vector
x such that Ax = b and

∑
i∈N F (ai)xi = F (b). Minimal subadditive functions for master problems, i.e. the

problems where A consists of all the columns ai with ai ≤ b, have been studied extensively by Araoz (1973).
Note also that every minimal subadditive function defines a face of {Ax = b, x ∈ Zn

+}. Next we characterize
minimal generator subadditive functions.

Theorem 5. Assume that A does not have dominated columns, i.e. {Ax ≤ ai, xi = 0, x 6= 0, x ∈ Zn
+} = ∅

for every i ∈ N . Then Fα is minimal if and only if there exists an optimal solution x∗ to max{(αAE−cE)x :
AEx ≤ b, x nonnegative integer} such that {AHx = b−AEx∗, x nonnegative integer} 6= ∅.
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Proof. Since by assumption A does not have dominated columns, it follows that Fα(ai) equals to αai for all
i ∈ H and it equals to ci for all i ∈ E. Let us denote z = max{(αAE−cE)x : AEx ≤ b, x nonnegative integer}.

Assume first that Fα is minimal. Then there is a nonnegative integral vector x such that Ax = b and∑
i∈N Fα(ai)xi = Fα(b). Denote x = (x∗, x̃), where x∗ corresponds to the coordinates in E. Then we have

Fα(b) = αb− z = α(AEx∗ + AH x̃)− z = αAEx∗ + αAH x̃− z , (16)∑
i∈N

Fα(ai)xi =
∑
i∈E

cixi +
∑
i∈H

αaixi = cEx∗ + αAH x̃ . (17)

Since
∑

i∈N Fα(ai)xi = Fα(b) and because of (16) and (17), we get z = (αAE − cE)x∗, which shows the
claim.

Suppose now that we have an x∗ that attains the maximum in max{(αAE − cE)x : AEx ≤ b, x ∈ Z|E|+ }
and AH x̃ + AEx∗ = b for a nonnegative integral vector x̃. If we denote x = (x∗, x̃) it follows∑

i∈N

Fα(ai)xi = αAH x̃ + cEx∗ = αb− (αAE − cE)x∗ = Fα(b) ,

which completes the proof.

Theorem 5 essentially shows that if Fα is minimal, then there is an optimal solution to max{(αAE−cE)x :
AEx ≤ b, x nonnegative integer} that can be ‘extended’ to a feasible IP solution. Next we give another
sufficient condition for minimal generator subadditive functions that reveals further structure on the optimal
solutions to max{(αAE − cE)x : AEx ≤ b, x nonnegative integer}.

Lemma 2. Let F be a minimal subadditive function. Then for every k ∈ N such that {Ax = b, x ∈ Zn
+, xk ≥

1} 6= ∅, there exists an integer l = l(k) > 1 such that lF (ak) + F (b− lak) = F (b).

Proof. Let l be a nonnegative integer. Then lF (ak) + F (b − lak) ≥ F (lak) + F (b − lak) ≥ F (b) since
F is subadditive. We show the claim by contradiction. Suppose that for every integer l, l ≥ 1 we have
lF (ak) + F (b− lak) > F (b). Let

t = max
s≥1,s integer

{F (b)− F (b− sak)
s

: there exists x̄ ∈ Zn
+ such that x̄k = 0, Ax̄ + sak = b} .

By assumption t is well defined. We define a new inequality πx ≥ π0 as πi = F (ai) for all i ∈ N \{k}, πk = t,
and π0 = F (b). Next we show that πx ≥ π0 is a valid inequality for {Ax = b, x ∈ Zn

+} that dominates (11).
Let x ∈ {Ax = b, x ∈ Zn

+}. If xk = 0, then πx ≥ π0 since (11) is valid. Let us assume now that xk ≥ 1.
Then ∑

i∈N

πixi =
∑

i∈N\{k}

πixi + πkxk =
∑

i∈N\{k}

F (ai)xi + txk

≥ F (
∑

i∈N\{k}

aixi) + txk = F (b− akxk) + txk (18)

≥ F (b) = π0 , (19)

where (18) follows from subadditivity of F and (19) from the definition of t. This shows validity.
From lF (ak) + F (b− lak) > F (b) for all integer l, l ≥ 1 it follows that (F (b)−F (b− lak))/l < F (ak) and

therefore πk = t < F (ak). Since every valid inequality can be written in the form (11), it follows that there
exists a subadditive function G that dominates F . This is a contradiction to minimality of F .

Theorem 6. If Fα is minimal and AE does not have dominated columns, then for every k ∈ E with
{Ax = b, x ∈ Zn

+, xk ≥ 1} 6= ∅ there exists an optimal solution x̃ to max{(αAE − cE)x : AEx ≤
b, x nonnegative integer} with x̃k > 0.
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Proof. Let Fα be minimal and k ∈ E. By Lemma 2 there is an integer l, l ≥ 1 such that lFα(ak)+Fα(b−lak) =
Fα(b). Since AE does not have dominated columns, this condition is equivalent to

f(b) = f(b− lak) + l(αak − ck),

where we denote f(d) = max{(αAE − cE)x : AEx ≤ d, x nonnegative integer}.
Let x̄ be an optimal solution to f(b− lak) and let us denote x̃ = x̄ + lek. Then

f(b− lak) = (αAE − cE)x̄ = (αAE − cE)x̃− l(αak − ck) ≤ f(b)− l(αak − ck) = f(b− lak) ,

where the inequality follows from AE x̃ ≤ b. This shows that x̃ is an optimal solution to f(b) and clearly
x̃k > 0.

Note that the extra condition {Ax = b, x ∈ Zn
+, xk ≥ 1} only states that xk is not 0 in any feasible

solution. Theorem 6 reveals a peculiar structure of max{(αAE − cE)x : AEx ≤ b, x nonnegative integer}.
Namely, for every column k ∈ E there is an optimal solution with the positive kth coordinate. The condition
that AE does not have dominated columns can be replaced with a weaker statement that Fα(ai) = ci for all
i ∈ E.

Example (continued). We cannot use Theorem 5 since A has dominated columns.
For α = (−3.2,−1.75, 0.25, 2.75) we have E = {7, 8, 12, 13}, which has dominated columns, however,

it is easy to check that Fα(ai) = ci for all i ∈ E and we can use Theorem 6. The optimal solutions to
max{(αAE − cE)x : AEx ≤ b, x ∈ Z4

+} are x2 = x4 = 1 and x2 = x3 = 1, and therefore by Theorem 6 Fα is
not minimal.

For α = (−4,−1.5, 0.5, 3.5), we have E = {8, 12, 13} and Fα is minimal since x = e7 + 2e8 satisfied the
inequality at equality. We can verify Theorem 6 since the optimal solutions to max{(αAE − cE)x : AEx ≤
b, x ∈ Z4

+} are x1 = 2 and x1 = x2 = 1, and x1 = x3 = 1.

4 Solution Methodology

In order to prove optimality we need a primal feasible solution and a dual feasible solution with the same
value. We try to find a better primal solution and to improve the objective value of the generator function
simultaneously.

The main idea of the algorithm is as follows. Given incumbent E, we compute α by solving (13). If
Fα(b) = cx for a nonnegative integer vector x with Ax = b, then we stop. Otherwise, we find a variable i ∈ H
with small ci − Fα(ai) and we set E = E ∪ {i}. Since computing ci − Fα(ai) is expensive, we approximate
it by ci − αai. The procedure is then repeated.

4.1 Preliminaries

Computational experiments have shown that it is difficult to solve (13) due a large number of constraints (14)
and therefore this framework needs to be enhanced. Instead of dealing with the entire set of constraints, we
consider only a carefully selected subset. A set U ⊆ Rn is subinclusive if for every x ∈ U and y ≤ x it follows
y ∈ U . Instead of solving (13), we keep a subinclusive subset U ⊆ Zn

+ such that U ⊆ {x ∈ Zn
+ : AEx ≤ b},

where
E = ∪x∈U supp(x) . (20)

By definition for every x ∈ U we have AEx ≤ b but if AEx ≤ b, then x is not necessarily in U . If |U | is
much smaller than |{x ∈ Zn

+ : AEx ≤ b}|, then it should be easier to solve (13), where we include only
those constraints (14) that correspond to U . However, now subadditivity of the resulting Fα∗ , where α∗ is
the optimal solution to (13) solved over columns corresponding to U , is no longer automatic. In order to
maintain subadditivity, we use ideas from Burdet and Johnson (1977).
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Let S(x) = {y ∈ Zn
+ : y ≤ x}. Given a subinclusive U ⊆ Zn

+ and a vector α we define

π(x) = αAx− max
y∈U

y∈S(x)

{(αA− c)y} . (21)

Note that π is a function from Rn to R and thus we need to modify some basic definitions. We say that π is
dual feasible if π(ei) ≤ ci for every i ∈ N . If π is dual feasible and subadditive, and x is feasible to the IP,
then

π(x) ≤
∑
i∈N

π(ei)xi ≤ cx . (22)

Therefore π provides a lower bound. By Theorem 1 there is a generator OSF Fα and consider U = {x ∈
Z|E|+ , AEx ≤ b}, where E is defined based on α. It follows that there is a π that attains equality in (22). If
|U | is much smaller than |{x ∈ Zn

+ : AEx ≤ b}|, then π has the advantage over the generator functions since
it is easier to evaluate. On the other hand it is harder to encode π since we need to store α and U . Vector
π does solve the IP but however it does not serve the purpose of the generator subadditive functions since
it is defined on Rn. Computational experiments have shown that in many instances π can be converted to
a generator OSF without much effort by using relation (20).

We have relaxed our problem to the problem of solving

max
π

max
x∈Zn

+
Ax=b

π(x)

π(ei) ≤ ci i ∈ N (23)
π subadditive .

We solve this problem by using the same framework outlined earlier. We start with U = ∅ and we gradually
enlarge it. After every expansion we recompute α so as to maximize the objective value of π. Given U , we
define V = {x ∈ Zn

+ : x /∈ U, S(x) \ {x} ⊆ U} (see Figure 1). Subadditivity of π is achieved by using the
following proposition.

Proposition 5. If αAx ≤ cx for every x ∈ V , then π is subadditive.

In a more general context the proof is given in Burdet and Johnson (1977). For completeness we next
give a very simple proof.

Proof. Let x, z ∈ Zn
+. We need to show that

max
y∈U

y∈S(x)

(αA− c)y + max
y∈U

y∈S(z)

(αA− c)y ≤ max
y∈U

y∈S(x+z)

(αA− c)y . (24)

Let y1 ∈ U, y2 ∈ U, y1 ≤ x, y2 ≤ z be optimal solutions of the two terms on the left hand side of (24).
Consider the set W of all nonnegative integer combinations of vectors in V . Let s ≤ y1 + y2 be the

maximal element in W ∩S(y1 + y2). Then y1 + y2 = y1 + y2− s+ s. It is easy to see that t = y1 + y2− s ∈ U
and by definition s ∈ W . Since t ∈ U and z + x ≥ y1 + y2 ≥ t, we have

max
y∈U

y∈S(x+z)

(αA− c)y ≥ (αA− c)t .

By definition s ∈ W and therefore s =
∑l

i=1 λiw
i with λi ∈ Z+, wi ∈ V . By assumption we have αAwi ≤ cwi

for every i = 1, 2, . . . , l.
The left hand side of (24) equals to (αA− c)(y1 + y2). We have

(αA− c)(y1 + y2) = (αA− c)(t + s) = (αA− c)t +
l∑

i=1

λi(αA− c)wi ≤ (αA− c)t , (25)

which shows the claim.
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(0,0)

vectors in U vectors in V

Figure 1: Definition of V : Every rectangle with x ∈ V in the north-east corner must have all vectors in U
except x.

Given U and V , α that gives the largest dual objective value is the optimal solution to

max π0

D(U, V ) π0 + α(Ay − b) ≤ cy y ∈ U (26)
αAx ≤ cx x ∈ V (27)

α unrestricted, π0 unrestricted .

(26) capture the objective value and (27) assure that π stays subadditive. In other words, we maximize
the dual objective value while maintaining subadditivity. Note that it suffices π be subadditive on the set
{Ax = b, x ∈ Zn

+} and therefore constraints (26) impose π0 ≤ π(y) only for y ∈ U and Ay = b.

4.2 Algorithm

The overall algorithm has two main stages. In the first stage we find an approximation to Fα by means of
π and in addition we find an optimal primal solution. In the second stage we then find the final optimal
generator OSF.

The first stage is given in Algorithm 1 and it finds an optimal π and zIP. We basically solve (23) by
repeatedly adjusting α and expanding U . Steps 3 and 4 expand U and update V . It is easy to check that
V satisfies its definition and that U stays subinclusive. In step 5 we update α and steps 6 and 7 update the
dual and the primal value, respectively.

1: U = {0}, V = {ei : i ∈ N}, α = optimal dual vector of the LP relaxation, zIP = −∞.
2: loop
3: Choose a vector x̄ ∈ V .
4: U = U ∪ {x̄}, V = V ∪ {x̄ + ei : i ∈ N, y ∈ U for every y ≤ x̄ + ei, y ∈ Zn

+}
5: Update α by solving D(U, V ). Let π∗0 be the optimal value.
6: zIP = max{zIP, π∗0}
7: If zIP = min{cx : x ∈ V,Ax = b}, then we have solved the IP and we exit.
8: end loop

Algorithm 1: The initial stage of the algorithm
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We next describe the second stage, which starts by considering α from Algorithm 1. We say that a
generator subadditive function is optimal over S ⊆ N if it is an optimal subadditive dual function for the
IP min{cSx : ASx = b, x nonnegative integer}.

Instead of trying to find an optimal OSF over N in one attempt, we start with a smaller subset S that is
gradually increased. Let E be defined with respect to α and we start by selecting H as a subset with given
small cardinality of columns i with the lowest and negative αai − ci. We set S = E ∪H. The choice of H is
based on the fact that columns i with low αai − ci, i.e. the approximate reduced cost, are likely candidates
for H in the final optimal OSF. Based on the selected E and S we find a generator OSF over S by solving
(13) with E := S, i.e. all columns are candidates for inclusion in E. If |E| is small, then this problem should
be relatively easy to solve. Next we redefine E to comply with (2). Note that by complementary slackness
(over S) the optimal primal solution is within E. Since Fα is a generator OSF over S, by definition Fα is a
generator OSF over

S = S ∪ {i ∈ N \ S : αai ≤ ci} . (28)

In majority of the instances the obtained S equals N and thus we obtain a generator OSF.
The complete second stage of the algorithm is given in Algorithm 2. We expand S until it equals N . In

every iteration of the loop we either

• greedily expand S by a new column from N \ S, if we have obtained a generator OSF over S, or

• do not change S but instead expand E by a new column from S \H, otherwise.

It is easy to see that the algorithm always terminates in a finite number of steps and that it finds a generator
OSF.

As stated the algorithm needs several enhancements before being practical. Next we outline these en-
hancements. The details are given in Klabjan (2005). Optimization problem (13) is solved by row generation
whose details are given Klabjan (2004).

1: Let j be the column where max{αai − ci : i ∈ N \ S} is attained and set S = S ∪ {j}, E = E ∪ {j}.
2: loop
3: Solve (13) with A = AS , S = E ∪H, and let α be the optimal solution and η∗ the objective value.
4: if η∗ = zIP then
5: if S = N then
6: Fα is a generator OSF and exit.
7: else
8: // α is optimal over S, expand S.
9: Let j be the column where max{αai − ci : i ∈ N \ S} is attained.

10: S = S ∪ {j}, E = E ∪ {j}.
11: end if
12: else
13: // Expand E.
14: Select a subset Ẽ of columns from S \ E and set E = E ∪ Ẽ.
15: S = S ∪ {i ∈ N \ S : αai ≤ ci},H = S \ E
16: end if
17: end loop

Algorithm 2: The second stage of the algorithm

4.3 Enhancements

The basic enhancement to the first stage is to observe that it suffices that π be subadditive on {x ∈ Zn
+, Ax =

b}. Furthermore, if we know that xi = 0 in an optimal solution for all i ∈ G ⊆ N (e.g. by using Theorem 3),
then it suffices that π is subadditive on {x ∈ Z|N\G|

+ , AN\Gx = b}. In addition, if we have an IP solution
with value zIP, then it is enough that π is subadditive on {x ∈ Z|N\G|

+ , AN\Gx = b, cN\Gx ≤ zIP}.
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We next elaborate on the observation that it suffices to have subadditivity on {Ax = b, cx ≤ zIP, x ∈ Zn
+}.

This means that we can remove from V and U all the elements that yield an objective value larger than zIP.
We call this operation pruning. If x̄ ∈ V and t(x̄)+ cx̄ is greater or equal to zIP, then we can remove x̄ from
V , where

P (x̄)

t(x̄) = min cx

Ax = b−Ax̄

x ≥ 0 .

Ideally we would like to solve P (x̄) over all nonnegative integer vectors x however this is computationally
intractable and we consider the LP relaxation P (x̄). Note that the cardinality of V can increase by n in
each iteration (see step 4 of Algorithm 1) and therefore solving this LP relaxation at every iteration for each
x ∈ V is too time consuming. Instead, in step 3 of Algorithm 1, after we select an element x̄ from V that
is moved to U , we compute P (x̄). If the element is pruned, then it is removed from V and the selection
process is repeated.

The second major enhancement we employ is the selection of an element from V that is added to U . In
step 3 of Algorithm 1 we have to select an element from V that is appended to U . We choose an element
from V judiciously based on the ideas of pseudocosts, see e.g. Linderoth and Savelsbergh (1999).

Given a generator set U , vector α that gives the largest dual objective value is the optimal solution to
D(U, V ). It is clear that if we select an arbitrary element from V , append it to U , update V and U , and we
compute α from D(U, V ), we obtain a feasible subadditive dual function with the objective value that equals
to the objective value of this LP. Given an α̃ from the previous iteration, next we describe our approach to
selecting a vector from V .

After moving an element to U , the candidate set V is expanded. Note that for y = 0, which is always
in U , (26) reads π0 − αb ≤ 0. The new D(U, V ) differs from the previous one by relaxing αAx̄ ≤ cx̄ to
π0 + α(Ax̄ − b) ≤ cx̄ for x̄ that is moved from V to U , and by introducing additional constraints (27)
corresponding to the new elements in V . For the former, we would like to move the most binding constraint
(27) and therefore the candidate elements are all x̄ ∈ H with cx̄− α̃Ax̄ below a given small number κ. For
simplicity of notation, let H̃ = {x̄ ∈ V : cx̄− α̃Ax̄ < κ}.

The optimality is achieved if the objective value of a feasible subadditive function equals to the value of
an IP feasible solution and therefore it is also important to obtain good IP solutions. Given x̄ ∈ H̃, there
exists x̂ ∈ Zn

+ with x̂ ≥ x̄ and Ax̂ = b if and only if there exists a nonnegative integer vector x satisfying
Ax = b − Ax̄. We would like to obtain a vector x that yields the smallest overall cost. Since this requires
solving integer programs, we relax the integrality of x to x ≥ 0. However in this case the reduced cost
ci − α̃ai is a better measure of improvement than the cost (see discussions in Section 5). To each x̄ ∈ H̃ we
assign a score

s(x̄) = min(c−α̃A)x
Ax = b−Ax̄

x ≥ 0 .

If we select the element as min{s(x̄) : x̄ ∈ H̃}, then we move an element that minimizes the slack of the newly
introduced constraints (27) since the new constraints read αA(x̄ + ei) = αAx̄ + αai ≤ c(x̄ + ei) = cx̄ + ci.
On the other hand, if we select the element as max{s(x̄) : x̄ ∈ H̃}, then we increase the chance that the
selected element is pruned and therefore permanently removed from consideration in stage 1. Computational
experiments have shown that the latter strategy performs substantially better.

Computing s(x̄) for every x̄ ∈ H̃ is computationally too expensive and therefore we use the idea of
pseudocosts. First we rewrite the objective function as (c−α̃A)x = cx−α̃Ax = cx−α̃(b−Ax̄) = cx+α̃Ax̄−α̃b
and therefore s(x̄) = t(x̄)+ α̃Ax̄− α̃b. Let Di, i ∈ N approximate the per unit change of t(x̄) if xi is fixed at
x̄i + 1. In Linderoth and Savelsbergh (1999) Di is called the up pseudocost. Note that in our case based on
the definition of the candidate set in the iterations that follow we are only interested in t(x̂) for x̂ ≥ x̄ and
therefore we only need to consider up pseudocosts. If x̄i ≥ 1, then we estimate t(x̄) ≈ t(x̄− ei) + (1− fi)Di,
where fi is the fractional part of variable i in the optimal LP solution to t(x̄− ei).
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The up pseudocosts are averaged over all the observed values. Whenever we solve t(x̄), we compute

ui =
t(x̄)− t(x̄− ei)

1− fi
,

if variable i is fractional in t(x̄− ei). Di is then updated by taking the average of the observed values so far
and ui. The up pseudocosts are initialized as suggested in Linderoth and Savelsbergh (1999). They suggest
a lazy evaluation by initializing them only when needed for the first time. Each time a pseudocost Di is
needed, a given number of simplex iterations is carried out on P (ei). Observe that P (x̄) can be rewritten as
min{cx : Ax = b, x ≥ x̄, x ≥ 0} and therefore only lower bound changes on variables are needed. It means
that we can efficiently compute t(x̄) by using the dual simplex algorithm.

In (28) we enlarge S “for free”. We can improve this step by using the following proposition.

Proposition 6. Let Fα be a generator OSF over S and let C ⊆ N \ S be such that the objective value of
the LP

min
∑
i∈E

(ci − Fα(ai))xi +
∑
i∈H

(ci − αai)xi +
∑
i∈C

(ci − αai)yi

ASx + ACy = b

0 ≤ x, 0 ≤ y

(ELP)

is greater or equal to 0. Let γ be the optimal dual vector to this LP. Then Fα+γ is a generator OSF over
S ∪ C.

Proof. First note that the objective value of ELP is 0 since the optimal IP solution gives the objective value
0. Therefore γb = 0. For all i ∈ H ∪ C clearly (α + γ)ai ≤ ci since γ is dual feasible to ELP. This implies
that E(α + γ) ⊆ E.

It suffices to show that

max{((α + γ)AE − cE)x : AEx ≤ b, x ∈ Z|E|+ } ≤ (α + γ)b− Fα(b) = αb− Fα(b) . (29)

Let x be a nonnegative integer vector with AEx ≤ b. For every i ∈ E let Fα(ai) = αai − (αAE − cE)zi,
where AEzi ≤ ai, z

i ∈ Z|E|+ . Then we have∑
i∈E

(γai + αai − ci)xi ≤
∑
i∈E

(αAE − cE)zixi = (αAE − cE)
∑
i∈E

zixi

≤ max{(αAE − cE)x : AEx ≤ b, x ∈ Z|E|+ } = αb− Fα(b) ,

where the first inequality follows from dual feasibility to ELP of γ and the second one from

AE(
∑
i∈E

zixi) =
∑
i∈E

(AEzi)xi ≤
∑
i∈E

aixi ≤ b .

The last equality holds by optimality of Fα over S. This shows (29) and therefore the claim.

Note that in ELP all the objective coefficients of the variables in S are nonnegative and the optimal IP
solution yields an objective value 0. Therefore if yi = 0 for all i ∈ C, then the objective value of ELP is 0.
The objective coefficients of variables in C are negative and therefore these variables can push the objective
value below 0.

To further expand S, before starting Algorithm 2, we employ the following heuristic, called the LP based
expansion heuristic. We start with C = N \ S and we repeat the following steps. We solve ELP and
let (x∗, y∗) be an optimal solution. If the objective value of ELP is negative, we set C = C \ C̄, where
C̄ = {i ∈ C : y∗i > 0}, and we repeat the procedure. Otherwise we abort the loop. At the end the objective
value of ELP is 0 and therefore by Proposition 6 we have a readily available generator OSF over S ∪ C.
The heuristic essentially ‘kills’ all the y variables that are positive in the optimal solution and therefore such
variables contribute toward the negative objective value. The proposed heuristic does not necessarily find
the maximum cardinality set C but it performs well in practice. After applying the LP based expansion
heuristic, we have a generator OSF over S = S ∪ C.
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5 Applications of the Generator OSF

In this section we present two potential applications of the generator OSF.

5.1 Integral SPRINT or Sifting

Suppose we want to solve a large-scale IP with a large number of variables, which are given explicitly. A
computationally efficient methodology for solving the LP relaxations resulting from such large-scale problems
is by SPRINT or sifting. Sifting is essentially column generation except that the columns are given explicitly
(an underlying combinatorial structure is not assumed). When solving integer programs, we can solve the
restricted master problem by computing an OSF F . In the subproblem we find columns with low reduced
cost ci − Fα(ai), which are then appended to restricted master problem. As long as the columns are given
explicitly, finding low reduced cost columns should be tractable.

5.2 An all Integer Benders Decomposition

Suppose we want to solve zIP = min{cx + dy : Ax + By = b, x ∈ Zp
+, y ∈ Zq

+}. Decomposition approaches
based on Benders decomposition and subadditive duality are given in Wolsey (1981b) and Burkard et al.
(1985). Here we show how to reformulate this problem as a nonlinear problem with p integer variables and a
single continuous variable by using generator subadditive dual functions. We also give an algorithm to solve
this nonlinear mixed integer program.

Proposition 7. If {Ax + By = b, x ∈ Zp
+, y ∈ Zq

+} 6= ∅, then the optimal value of the nonlinear mixed
integer program

min η (30a)
−η + cx + Fαk

(b−Ax) ≤ 0 k ∈ K (30b)
F̄βj

(b−Ax) ≤ 0 j ∈ J (30c)
Ax ≤ b (30d)

x ∈ Zp
+,η unrestricted , (30e)

where
K = ∪x∈Zp

+,Ax≤bK(b−Ax), J = ∪x∈Zp
+,Ax≤bJ(b−Ax),

equals to zIP.

Proof. Let (x∗, η∗) be an optimal solution to (30).
We first show that there is a y ∈ Zq

+ such that Ax∗+By = b. If not, then the IP min{dy : By = b−Ax∗, y ∈
Zq

+} is infeasible. Therefore by Theorem 4 there exists a βj , j ∈ J(b − Ax∗) such that F̄βj
(b − Ax∗) > 0,

which contradicts that x∗ satisfies (30c).
Let y∗ be an optimal solution to min{dy : By = b − Ax∗, y ∈ Zq

+} and let Fαk̃
, k̃ ∈ K(b − Ax∗) be a

generator OSF for this problem. We claim that (x∗, y∗) is an optimal solution to min{cx + dy : Ax + By =
b, x ∈ Zp

+, y ∈ Zq
+}.

First we show that η∗ = cx∗ + dy∗. Suppose that η∗ < cx∗ + dy∗. Then from (30b) we obtain that
Fαk

(b − Ax∗) < dy∗ for every k ∈ K. For k = k̃ this is a contradiction since by choice of k̃ we have
dy∗ = Fαk̃

(b−Ax∗).
Suppose that there is an optimal solution (x̄, ȳ) to the IP such that cx̄ + dȳ < cx∗ + dy∗. Since min{dy :

By = b− Ax̄, y ∈ Zq
+} is feasible, it follows that F̄βj

(b− Ax̄) ≤ 0 for all j ∈ J . For all k ∈ K we also have
that Fαk

(b − Ax̄) ≤ min{dy : By = b − Ax̄, y ∈ Zq
+} = dy∗, which implies that (x̄, cx̄ + dȳ) is a feasible

solution to (30). The value of this solution is cx̄ + dȳ < cx∗ + dy∗ = η∗, which is a contradiction to the
optimality of (x∗, η∗).
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Based on Proposition 7 we can design an all integer Benders decomposition algorithm that is given in
Algorithm 3. The algorithm is clearly finite. The algorithm is suitable for problems, where the subproblem
decomposes. For example, in two stage linear recourse stochastic integer programs, see e.g. Birge and
Louveaux (1997), the subproblem decomposes into l smaller subproblems, where l is the number of scenarios.
In addition, each subproblem in the decomposition has the same constraint matrix.

1: K = J = ∅
2: loop
3: Solve the master problem min{η : −η + cx+Fαk

(b−Ax) ≤ 0 for all k ∈ K, Fβj
(b−Ax) ≤ 0 for all j ∈

J, x ∈ Zp
+, η unrestricted}. If the problem is infeasible, then the IP is infeasible and exit. Otherwise

let (x∗, η∗) be an optimal solution.
4: Solve the subproblem min{dy : By = b−Ax∗, y ∈ Zq

+} and its subadditive dual.
5: if the subproblem is infeasible then
6: Set J = J ∪ {j}, where F̄βj is a DG function with F̄βj (b−Ax∗) > 0.
7: else
8: Let Fαk

be a BG OSF.
9: if η∗ + cx∗ + Fαk

(b−Ax∗) > 0 then
10: K = K ∪ {k}
11: else
12: (x∗, y∗) is an optimal IP solution, where y∗ is an optimal solution to the subproblem. Exit.
13: end if
14: end if
15: end loop

Algorithm 3: The all integer Benders decomposition algorithm

Unfortunately in Algorithm 3 the master problem is a nonlinear mixed integer program. We suggest to
solve it iteratively as follows. Suppose that for each k ∈ K we have a nonnegative integer vector wk such
that BE(αk)wk ≤ b and for each j ∈ J we have a nonnegative integer vector uk such that BE(βj)uk ≤ b. At
each iteration we solve

min η

−η + (c− αkA)x ≤ −αkb + (αkBE(αk) − cE(αk))wk k ∈ K

−βjAx ≤ −βjb + βjB
E(βJ )uj j ∈ J

x ∈ Zp
+,η unrestricted

and let (x̄, η̄) be an optimal solution. For all k ∈ K let w̄k be an optimal solution to max{(αkBE(αk) −
cE(αk))w : BE(αk)w ≤ b − Ax̄, w nonnegative integer} and for all j ∈ J let ūj be an optimal solution to
max{βjB

E(βj)u : BE(βj)u ≤ b − Ax̄, u nonnegative integer} for all j ∈ J . If (αkBE(αk) − cE(αk))w̄k =
(αkBE(αk) − cE(αk))wk for all k ∈ K and (βkBE(βj) − cE(βj))ūj = (βkBE(βj) − cE(βj))uj for all j ∈ J , then
(η̄, x̄) is an optimal solution to the master problem. Otherwise for all k ∈ K that do not satisfy the first
equality we set wk = w̄k, for all j ∈ J that violate the second equality we set uj = ūj , and we repeat the
procedure.

6 Computational Experiments

The computational experiments were carried out on the set partitioning instances used by Hoffman and
Padberg (1993) and Eso (1999). ILOG CPLEX 6.5 is used as a linear and integer programming solver.

The first set of experiments was performed on an IBM Thinkpad 570 with a 333 MHz Pentium processor
and 196 MBytes of main memory. The results are presented in Table 1. Instances with an integral solution
at the root node are left out. All the times are CPU execution times in seconds. The column ’|N \ S|’
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shows the size of N \ S before running Algorithm 2. We observe that there are only a few instances where
the second stage is needed, however, stage 2 is computationally intensive. It is important to note that the
cardinality of E is always small and therefore evaluating Fα(d) should not be computationally hard, which
makes approaches such as the integer SPRINT algorithm potentially computationally tractable. In the last
two instances we have exceeded the maximum execution time of 2 hours in stage 2. The instance denoted
by † is infeasible and our algorithm establishes this by finding a ray generator subadditive function.

size time (secs) CPLEX
rows cols stage 1 stage 2 total | E | |N \ S| time (secs)
825 8627 32 164 196 142 0 88
55 7479 75 523 598 93 13 14
59 43749 29 0 29 19 0 48
50 6774 10 0 10 58 0 8

124 10757 100 0 100 292 0 13
22 685 1 0 1 13 0 0
19 711 4 0 4 52 0 2
19 1366 1 0 1 52 0 0
18 2540 8 14 22 50 4 0
26 2653 1 0 1 27 0 0
26 2662 1 0 1 13 0 0
19 294 2 0 2 28 0 0
23 3068 4 3 7 16 1 0
20 1783 5 14 19 67 12 0
23 1079 1 0 1 30 0 0

100 13635 247 0 247 287 0 17
163 28016 3 0 3 25 0 68
†104 2775 438 0 438 53 0 240
173 3686 39 0 39 223 0 5
111 1668 3 0 3 97 0 18
801 8308 125 ? 125 ? 1 97
646 7292 75 ? 75 ? 5 39

Table 1: Computational Results of the Subadditive Dual Algorithm

In order to assess the usefulness of stage 1, we have designed the following algorithm, called the mixed
branch-and-bound subadditive dual algorithm. By branch-and-bound we find the primal optimal solution x∗.
In addition, let y be the dual optimal solution to the LP relaxation at the root node. Instead of applying
stage 1 to warm start stage 2, we use x∗ and y as follows. Let H be a small subset of columns with the
largest reduced cost ci − aiy. Let S = H ∪ {i : x∗i = 1} and next we obtain an OSF over S. Stage 2 is
then executed based on the algorithm. In Table 2 we compare this algorithm with our subadditive dual
algorithm. These computational experiments were conducted on an SGI Origin200 workstation with a RISC
12000 processor running at the clock speed of 270 MHz. The operating system is IRIX, version 6.5, and the
workstation is equipped with 512 MB of main memory. The algorithms are implemented in C++ by using
the MIPSpro, version 7.3, development environment.

As above |N \ S| shows the number of infeasible columns at the beginning of stage 2 and the remaining
two columns for each algorithm break down the execution time. We imposed a time limit of 7200 seconds on
the execution time of each phase. For the remaining instances that are not presented, both algorithms either
require only few seconds or do not find an OSF within the time limit. While the branch-and-bound CPLEX
algorithm is faster in finding the primal solution, finding the OSF starting from it is a time consuming
process. The reason is the relatively large number of dual infeasible columns at the beginning of stage 2.
It is clear from Table 1 that stage 2 is computationally intensive and therefore since the subadditive dual
algorithm is better warm started, it is a more efficient algorithm for computing an OSF. The only exception
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is the instance denoted by ∗, where the mixed algorithms outperforms the subadditive dual algorithm. This
table clearly indicates that using an algorithm that finds simultaneously a primal and an “approximate”
dual solution is a better strategy to warm start stage 2.

size b&b/subadditive dual algorithm subadditive dual algorithm
rows cols |N \ S| b&b time phase 2 time |N \ S| phase 1 time phase 2 time

18 2540 575 1 7200 1 1 1
19 771 169 1 7200 3 1 1
23 619 18 1 575 3 1 2

∗163 28016 1 57 45 2 81 61
124 10757 1238 10 7200 36 92 1231
51 16043 6362 19 7200 1 36 5
59 43749 3747 36 7200 2 70 267

Table 2: Comparison with the Mixed Branch-and-bound Subadditive Dual Algorithm

The overall computational times are acceptable for a methodology that reveals much more information
about an IP instance, e.g. we can perform sensitivity analysis, alternative optimal solutions can be found only
among the columns with Fα(ai) = ci. Additional computational experiments are given in Klabjan (2004). It
is unreasonable to expect that the computational times would be lower than branch-and-cut computational
times since the latter algorithm finds only a primal optimal solution. Nevertheless this computational results
show that obtaining an optimal subadditive dual function is doable.

7 Conclusions

We present a new family of subadditive functions that is easy to encode and in most practical set partitioning
instances also easy to evaluate. We give several properties of these functions. We show several applications
and we also present an algorithm to compute an optimal subadditive function. Further enhancements, e.g.
an extended Proposition 6, how to efficiently solve (13), and implementation details for the set partitioning
problem are given in Klabjan (2004). This work, which is a sequel article to the presented one, also provides
extensive computational results.

In linear programming the dual vector shows that linear programming is in co-NP. If we attempt to show
that integer programming is in co-NP, we might guess an α and an optimal solution x∗ to max{(αAE−cE)x :
AEx ≤ b, x nonnegative integer}. Now we can easily check that Fα(b) ≥ K, which would show that the
optimal IP value is greater or equal to K. However to complete the proof, we must also verify in polynomial
time that x∗ is an optimal solution to max{(αAE − cE)x : AEx ≤ b, x nonnegative integer}. Clearly we
do not know how to do this verification in polynomial time and if NP 6= co − NP, we cannot verify this
statement in polynomial time. From this discussion we also conclude that if NP 6= co−NP, then |E| grows
with n (since otherwise by Lenstra’s result, Lenstra (1983), on polynomial solvability of integer programs
with fixed number of variables we have NP = co−NP).

We hope that this research spawns other approaches to computing the subadditive dual function. We
have given just a few applications of having an optimal subadditive function. We wonder if subadditive dual
functions other than those arising from rounding procedures can be efficiently used in LP based branch-and-
bound algorithms. They can be used to provide lower bounds and cuts. The bottleneck of our algorithm
is stage 2 and therefore it is important to improve the LP based expansion heuristic or design a completely
different algorithm to compute a generator OSF.
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