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Abstract

Operations research models are widely used in the airline industry. By using sophisticated optimiza-
tion models and algorithms many airlines were able to improve profitability. In this paper we review
these models and the underlying solution methodologies. We focus on models involving strategic busi-
ness processes as well as operational processes. The former models include schedule design and fleeting,
aircraft routing, and crew scheduling, while the latter models cope with irregular operations.

1 Introduction

In the United States the Airline Deregulation Act of 1978 gave the airlines much more commercial freedom to
compete. Since then, to leverage demand with capacity or sit inventory, the airlines have pioneered revenue
management. Among other breakthroughs, to offer a variety of itineraries, major airlines have developed the
so-called hub-and-spoke networks. On the other hand, to improve profitability they use sophisticated tools
for reducing cost. In recent years, the raise of low-fare, no-frill airlines such as Southwest in the U.S. and
Ryanair in Europe put additional pressure on the remaining carriers. To keep low fares, the airlines must
maintain low cost per airline-sit-mile. This is commonly achievable through contract renegotiations and by
using enhanced modeling and optimization techniques.

Since the 1950s the airlines are using operations research models in solving their complex planning and
operational problems. These models have become increasingly complex. On the one hand, the airlines have
become larger (through mergers or expending service) resulting into large-scale models. On the other hand,
the continuing pressure to increase profitability resulted into more “accurate” models and better solution
methodologies. For example, an access crew cost of several percent was acceptable a decade ago but it is
not today. In many cases, by using state-of-the-art crew scheduling decision support systems the access
cost has been pushed below one percent. Large-scale models have become computationally tractable due to
algorithm, hardware, and software advances.

On the algorithmic front the most notable advance has been the introduction of column generation. In
column generation, a model is given implicitly and is dynamically updated in order to improve the incumbent
solution. Such an approach enables handling of the entire large-scale problem and at the same time it reduces
the computational burden.

In this paper we review large-scale linear models that are frequently encountered and used in the airline
industry. We also outline in Section 2 the underlying methodologies for solving these models. We start
in Section 3, by explaining business processes in airline planning and operations. In Section 4 we present
models that concern the passenger service. Models for schedule planning and fleeting are given in Section
4.1, then we review aircraft scheduling in Section 4.2, and at the end we discuss crew scheduling in Section
4.3. For every problem we discuss planning and operational models. Recent trends are presented in Section

D.



2 Solution Methodologies for Large-scale Models

Here we briefly overview three most common techniques for solving large-scale linear mixed integer models:
branch-and-price, Lagrangian decomposition, and Benders decomposition. We start with branch-and-price.

Large-scale linear programs are often solved by delayed column generation. In this algorithm, at every
iteration, only a subset of columns is considered. The problem with only a subset of columns is called
the restricted master problem. In every iteration of the algorithm, first the restricted master problem is
solved and let m be the optimal dual vector, which for ease of discuss we assume it exists. Next the so
called subproblem is solved. In subproblem solving we identify a set .S of columns with the lowest reduced
cost with respect to w. If we cannot find a column with negative reduced cost, then we stop since m is an
optimal dual solution to the original problem and together with the optimal primal solution to the restricted
master problem we have an optimal primal/dual pair. Otherwise, we append columns in S to the restricted
master problem and the entire procedure is iterated. When the restricted master problem includes too many
columns after several iterations, columns with large reduced cost are removed from the restricted master
problem.

Frequently the most computationally intensive step in delayed column generation is subproblem solving
since it needs to scan many columns and typically it is a complex task to generate a single one. When
columns correspond to constrained paths in a network, an efficient algorithm known as constrained shortest
path is often employed, ( ), ( ). In this case, the task is to find the
cheapest cost s —t path (reduced cost in delayed column generation framework) among all paths with certain
properties. We explain the algorithm by an example. Assume we want to find a shortest path in a network
subject to the duration and the number of arcs in paths being below a given number. By duration we mean
that every arc has an associated transit time and the duration of a path is the sum of transit times along
the path. We introduce label vectors, which in this case have 3 coordinates. The first one corresponds to the
cost, the second one to the duration, and the last one to the number of arcs. With every node we associate a
set of label vectors. For example, a label vector (—45,134,4) at node ¢ corresponds to an s —i path with cost
-45, duration 134, and 4 arcs. The constrained shortest path algorithm uses the same framework as standard
shortest path algorithms. Suppose the algorithm selects a node 7 for scanning. The constrained shortest
path algorithm next scans all neighbors j of ¢ and all label vectors k = (k1, k2, k3) at i. Each label vector k
is updated by traversing the arc (i, j) and the updated label vector is appended to node j. In our example,
the label update means that the new label vector has k3 4+ 1 as the third component, ko plus the transit
time of arc (i, j) as the second component, and k; plus the cost of arc (4, j) as the first component. The key
observation is that under some realistic assumptions label vectors that are dominated can be discarded. If
we have two label vectors k, k at node jand k < k component-wise, then the s — j path corresponding to k is
not going to be part of the shortest path. The efficiency of the algorithm depends heavily on the frequency
at which dominance occurs. Note that if there is no dominance, the algorithm simply enumerates all paths.
It turns out that dominance occurs often in practice and therefore the algorithm is computationally efficient.
Two alternative algorithms for subproblem solving in presence of constrained shortest paths are sketched in
Section 4.3.

Branch-and-price is a branch-and-bound algorithm, where LP relaxations at every node are solved by
delayed column generation. Since subproblems are often combinatorial in nature, the standard variable
dichotomy is not appropriate. When columns correspond to constrained paths in a network, the following
branching strategy is frequently used. Let r,s be two adjacent nodes, which are selected based on the
incumbent LP solution. Then in one branch only paths where node s immediately follows node r are
considered. This is easily reflected in the network by removing all arcs from r, except the (r, s) arc. On the
other branch we forbid all paths where s does follow r, which is captured by removing the (r,s) arc. This
branching rule produces more balanced tree. Since LP relaxations tend to be computationally intensive,
only few branch-and-bound nodes are evaluated. For this reason, a common strategy is to use depth-first
search and abort after the first integer solution is obtained. An excellent survey on branch-and-price is given
by ( )-

Another common technique is Lagmngzan decomposztwn ( ), ( ), ( ).
Suppose we can partition constraints into “easy” and “difficult” constraints. The concept behind is that if



the difficult constraints are removed, the resulting problem is easily solvable. In Lagrangian decomposition,
every difficult constraint gets a linear penalty and it is moved to the objective function. The resulting
problem is called the Lagrangian relaxation and it is a function of the penalties. Let us assume that we have
a maximization problem. For any given values of penalties, the Lagrangian relaxation is computationally
easy. It is easy to see that it always provide an upper bound on the optimal solution. The goal now is to
find the best upper bound, i.e. to minimized the Lagrangian relaxation over all possible penalties. This is
the Lagrangian dual problem, which is a nonlinear optimization problem. In practice it is solved by variants
of the subgradient algorithm. One drawback of this approach is that there is no guarantee to find feasible
solutions. They have to be constructed heuristically during the execution of the subgradient algorithm. The
algorithm is very appealing since it is easy to implement and it handles complex side (difficult) constraints.

The Benders decomposition, Benders (1962), Minoux (1986), is well suited for mixed integer programs
with linking integer variables. It requires that for any fixed value of integer variables, the resulting problem
is an LP, where the constraint matrix is often block diagonal. The algorithm at every iteration solves a mixed
integer program (restricted master problem) with a single continuous variable that provides a bound on the
optimal solution. Next the linear program resulting from the original problem by fixing integer variables
to the values from the restricted master problem is solved. The optimal dual vector to this LP provides
a Benders cut, which is added to the restricted master problem and the procedure is repeated. The same
framework can be used for convex problems.

Another technique, called constraint programming, is paving its way to the large-scale linear program-
ming. In this manuscript we do not discuss constraint programming and relevant literature.

3 Airline Planning and Day of Operations

In this section we review typical business processes used by combination airlines, Figure 1. While every airline
has its own processes and its own organization names, most of the airlines follow the depicted processes and
terminology. The time frames can very significantly.
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Figure 1: Business processes

Long term fleet and manpower planning consists of making strategic decisions with respect to the number
of aircraft and the fleet decomposition, and cockpit crew manpower planning. In fleet planning considerations
such as the airline’s mission (e.g., Southwest has a single fleet that allows relatively simple and efficient
operations), aircraft utilization, route structure, cargo/passenger mix, etc., are taken into account.



The schedule development phase typically starts 12 months before the day of operations and it lasts up to
9 months. In the first phase the airline establishes the service plan, which is the set of services to operate in a
given market. The service plan is either daily for domestic operations and weekly for international, long-haul
service. The marketing group considers several factors such as traffic forecasts, status of competing carriers,
internal resources, and marketing initiatives. Marketing initiatives are approved by upper management
and involve decisions such as entering a new market. The designed service plan typically does not divert
substantially from the current schedule. Following the service plan, the scheduling group generates a detailed
flight schedule, i.e. a flight departure and arrival time. The flight schedule has to obey a set of operating
constraints, e.g. maintenance planning, and given generic resources such as the number of aircraft. The
schedule is then published. Next is capacity planning or fleeting. In fleeting an equipment type is assigned to
each flight subject to available resources such as the number of aircraft. The goal of the fleet assignment model
is to maximize profit. The schedule together with the sit capacity is then input to the computer reservation
system (CRS). The produced fleeting solution is then evaluated with a profitability evaluation model and
potential improvements are fed back to the schedule development group for possible minor adjustments. The
schedule development phase and fleeting are discussed in Section 4.1.

Once the equipment types are assigned, aircraft routing and crew scheduling follow. In aircraft routing,
called also maintenance routing, which is discussed in Section 4.2, a specific tail number is assigned to
each flight subject to maintenance constraints. The objectives are usually incentives such as throughs and
robustness. The goal of crew scheduling, see Section 4.3, is to assign crew members to individual flights in
order to minimize the crew cost and maximize various objectives related to contractual obligations, quality
of life, and crew satisfaction. Crew schedules have to satisfy complex regulatory and contractual rules.
Potentially crew planners detect unfavorable connections and give feedback to schedule and fleet planners.
The crew scheduling process typically starts three months before the day of operation and it is constantly
updated until a few weeks before the day of operations.

Only minor changes to fleeting, aircraft routes and crew schedules are made during the last few weeks
before the day of operations. To better match demand with capacity, some airlines perform dynamic fleet
and aircraft swaps, known also as demand driven dispatch or D? for short, ( ),

( ), ( ). If preferential bidding is used, approximately one month before the day of
operations, crews bid for their monthly crew assignments and only minor changes such as two way trip
swaps are performed in the last few weeks.

Throughout the strategic planning processes pricing and yield or revenue management are actively in-
volved. In revenue management, the airline controls the sit inventory by adjusting fare prices, setting
overbooking limits, and making decisions at any given time about selling particular fare classes on a given
passenger itinerary. Since models and solution methodologies in revenue management and pricing are sub-
stantially different than the remaining models resulting from the aforementioned processes, they are not
discussed here (see e.g. ( ) for a survey on revenue management). We also do not
discuss the cargo side of planning and operations.

The actual day of operations, called also ezecution scheduling, consists of making final minor adjustments
to the flight schedule (e.g., adjust arrival times based on the daily wind forecast), executing the pre-planned
schedule (e.g., file the flight plan) and rescheduling for irregular operations or disruption management. The
latter is carried out by operations controllers, which are typically located in the airline operations control
center (see e.g. ( )). Most frequent sources of irregular operations are weather, unscheduled
maintenance, congestion, crew unavailability, security problems, etc. Disruption management is composed
of three processes. When an irregular operation occurs, first the aircraft are rerouted, which is called aircraft
recovery. In this stage in addition to rerouting the aircraft, decisions on delaying and canceling flights are
made. Next is the crew recovery process, where crews are assigned new crew itineraries. The controllers
can use original, standby, and reserve crews. At the end is the passenger reaccommodation process, where
passengers are rerouted to alternative itineraries. Clearly the new schedule must conform to all regulatory
and contractual rules. While the airlines often impose more stringent rules in planning, in operations they
typically use precise rules. Contractual rules for operations are usually different from those in planning.



4 Models for Passenger Service

In this section we focus on the passenger side of planning and operations.

4.1 Schedule Planning and Fleeting

For most of the airlines schedule planning is a manual process mostly driven by marketing requirements. On
the other hand, decision support tools for fleeting are common. There are only few manuscripts on schedule
planning but there is vast literature on fleeting. Since research papers that address schedule planning, cover
fleeting as well, we start with fleeting.

The basic fleet assignment model (FAM), called also the leg-based fleet assignment model, is to find an
optimal assignment of equipment types to flights. The input consists of a list of flights, which are given by
the destination/origin station and departure/arrival time, a set of equipment types and the corresponding
number of aircraft for each equipment type. Since each equipment type has its own sit capacity, on a given
flight the equipment type decision can produce low load factor (lost revenue of using too large sit inventory)
or a potential spill of passengers to competitors if the realized demand is higher than the sit capacity of the
assigned equipment type. The typical objective function consists of the variable and fixed cost of operating
a flight by a given equipment type and an estimate of potential revenue.

Next we formally describe the FAM, see e.g. ( ), ( ). First we define the
flight time-space network. The network has a node (u,4) for each time when an arrival or departure of leg
i occurs at station u. If an event corresponds to a departure, then let ¢; be the departure time of flight <.
If it corresponds to an arrival, then ¢; is the arrival time of flight ¢ plus the minimum plane turn time (the
so-called ready time). We assume that the activity times ¢; are ordered in time, i.e. ¢t <t <t3--- < ¢,
where [ is the number of activities at the station. There is a flight arc {(u, i), (v, )} for each leg that departs
at station u at time ¢; and arrives at station v at time ¢;. In addition there are ground arcs {(u,1), (u,i+1)}
for each u and i, where we assume that we have a wraparound arc between the last and first node of the
day. Each station has exactly one wraparound arc.

The model has two types of variables, the fleet assignment variables x and the ground arc variables y.
For each leg ¢ and for each fleet k there is a binary variable x;x, which is 1 if and only if leg 7 is assigned
to fleet k. For each ground arc g and for each fleet k& we define a nonnegative variable y4; that counts the
number of planes in fleet k£ on the ground in the time interval corresponding to g. Let et be a fixed time
typically corresponding to a time with low activity, e.g. 3 am. The FAM model reads

min E CikTik
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where

I(v) : set of flight arcs to node v A :set of all flight arcs

M  :set of flights in the air at et K :set of all fleets

O(v) : set of flight arcs from node v V' :set of nodes

b :number of aircraft in fleet k i(v) : ground arc to node v
W :set of ground arcs containing et o(v) : ground arc from node v

cik : cost of assigning fleet &k to leg 1.

Constraints (1) require that each leg is assigned to exactly one fleet, (2) express the flow conservation of
aircraft, and (3) assure that we do not use more aircraft than there are in a fleet.
This basic FAM model is relatively easily solvable even for large flight networks by commercial integer

programming solvers, ( ). The model can be enhanced by incorporating some aircraft mainte-
nance and crew requirements, ( ), ( ), explicitly modeling
aircraft routes, ( ), and incorporating departure time decisions, ( ),

( ), ( ). The biggest drawback of this model is the revenue component
of the objective function. In a multi-leg passenger itinerary a capacity decision on a flight effects the number
of passengers spilled from the itinerary and therefore the revenue contribution of other flights. ( )

explores several alternatives to compute the cost component ¢ but none of them captures network effects
accurately. Therefore the model has to be augmented to capture multi-leg passenger itineraries.

For ease of discussion we assume that every passenger itinerary has a single fare and we assume that
passengers are not recaptured, i.e. if the booking demand exceeds the sit inventory on a given flight, the
non-booked passengers are not captured on airline’s alternative itineraries. Under these assumptions we next
present the passenger mix model, which decides how many booked passengers to have in any itinerary given
a fixed leg sit inventory. Let P be the set of all itineraries. The fare of itinerary p € P is denoted by f, and
let C; be the available sit inventory of leg i. Let w,,p € P be the decision variable that counts the number
of booked passengers on itinerary p. The model for the optimal number of booked passenger reads

max prwp
peEP
Z wp < Gy for every leg i (4)
1€Ep
wp < D, peP (5)
w integer .

Here i € p represents that leg i is part of itinerary p. For every p € P, the unconstrained demand is
denoted by D, and it can be obtained either by a direct O-D (origin-destination) forecasting method or
by segregating leg based demand forecasts. Constraints (4) impose the sit capacity limits and (5) meet the
forecasted demand. Enhancements and generalizations of this model are given in ( ).

A fleet assignment model that captures O-D itineraries, called the origin-destination fleet assignment
model, is obtained by combining the leg based FAM and the passenger mix model. The only required
modification is to replace the right-hand side of (4) by >, . - Ckir, where Cy, is the sit capacity of equipment
type k. While the leg based FAM is relatively easily solvable, this is not the case for the O-D fleeting model.
The number of variables and therefore constraints in this model can be as high as 200,000. (Note that in
the presence of multiple fare classes per itinerary, (5) are no longer the simple upper bound constraints.)

( ), ( ) solve the model by branch-and-price. The pricing step is not
computationally intensive and it is done my a simple scan routine, i.e. there is no need for constrained
shortest path. They report computational times of several hours just to find the first integer solution.
Indeed, even solving the LP relaxation of the model takes 2 hours and half for a realistic model consisting of
70,000 itineraries and approximately 2,000 legs. The authors enhance the solution methodology by employing
sophisticated preprocessing techniques and valid inequalities. In order to improve tractability,



( ) develop an alternative model. Instead of having decision variables that assign single legs to a fleet,
the new model requires decision variables that assign a subset of legs to a fleet. Thus the assignment flight
leg variables are grouped together. Clearly considering all possible subsets of legs is not tractable, however,
the authors show that by carefully selecting subsets, the resulting model is tractable. Another alternative
formulation to O-D fleeting is presented in ( ), where the underlying model is solved by
Benders decomposition.

Next we discuss models that incorporate schedule design decisions. Until recently, algorithms for schedule
design and fleeting were mostly iterative in nature, ( ), ( ),

( ). Given a schedule, first demands are estimated by a schedule evaluation model. Next the

FAM is solved by using the computed demands and the resulting solution is evaluated. In order to modify
the schedule, flights for addition or deletion are identified. The profit resulting from addition or deletion
of these flights is then estimated and based on the resulting profit a subset of these flights is selected for
addition and deletion. These flights are then added to the schedule and the procedure is repeated.

Recently models that consider fleeting or aircraft routes, and schedule design decisions simultaneously
emerged. Most of them are still iterative as they dynamically generate passenger itineraries and evaluate
schedules, however, given a subset of itineraries, the decision of which flights to use and the fleeting decision
are made simultaneously. ( ) give a model that can construct a schedule from scratch.
As part of the input are service frequencies, origin-point of presence, and demand information. The model
then generates a schedule that maximizes revenue subject to basic operational constraints. Their objective
function is nonlinear since they use a logit-based market-share model. They solve the model by Benders
decomposition (no details are given in their publication). ( ) present a linear
model that given a set of mandatory and optional flights, selects a subset of optional flights that maximizes
total revenue. They use the O-D fleeting model and augment it with optional flights. The nonlinear relation
in flight demands is taken into account by solving several models iteratively and adjusting demands based

on the incumbent solution. In each iteration the model is solved by branch-and-price. ( )
and ( ) present a similar model but they solve it by Lagrangian decomposition. They
relax all constraints except flow conservation constraints of passenger and aircraft. ( )

present an approach for scheduling flights of charter carriers. They go a step further since they explicitly
model aircraft routes. They solve the model by branch-and-price.

( ) presents common business processes used by the airlines in schedule planning. ( )
gives an excellent review on nuts-and-bolts of route generation. These two manuscripts do not present
mathematical models.

4.2 Aircraft Routing
4.2.1 The Planning Stage

In tactical planning after each flight has an assigned equipment type, the aircraft routing problem follows.
In this stage each individual aircraft or tail number is assigned to each flight in a given time period. Note
that the fleeting solution decomposes the flight schedule and therefore there is an aircraft routing problem
for every fleet (e.g. Boeing 737-300 and 737-400 fleets yield two separate routing problems).

In addition to the assignment requirement that each flight must be assigned a unique tail number,
the routes should not use more than the available number of aircraft and they must meet maintenance
requirements. In the U.S., the FAA requires four types of checks. The A-checks or line maintenance are
routine checks (visual inspection of major systems), which have to be performed approximately every 65
block hours and a certain number of take-offs. Durations of A-checks are typically from 3 to 10 hours and
they are usually performed during the night. B-checks are typically done once in several months and they
require detailed visual inspection. For C- and D-checks an aircraft is taken out of service for a month and
they are done once every one to four years. Since these two check are spaced at large intervals, they do
not pose scheduling difficulties. For this reason aircraft routing solutions consider only A- and B-checks.
Maintenance checks can only be performed at specific maintenance stations, which are typically separate
for each fleet. In order to decrease unscheduled maintenance events, many airlines impose more stringent



maintenance requirements, e.g. A-checks every 40 block hours and even frequent more stringent checks. In
addition to these regulatory maintenance rules, some airlines impose equal utilization of aircraft, called also
the big cycle constraint.

It is extremely difficult to assign a single cost attribute to an aircraft routing solution. Some airlines
consider the routing problem as a pure feasibility problem. Often a value of a routing solution is a weighted
sum of several attributes such as the contribution from throughs (the benefit of offering certain non-stop
connections) and robustness measures to possibly decrease occurrences of unexpected events.

In the planning stage, typically several weeks or months in advance, first generic aircraft routes are
constructed during a rolling time horizon. This is the aircraft rotation problem. These generic routes satisfy
short maintenance requirements such as A-checks but do not consider, for example, B-checks and aircraft
positions at the beginning of the time horizon. Only a few weeks or even days before the day of operations, the
actual tail numbers are assigned to each flights, i.e. the aircraft assignment problem is solved. The assignment
follows generic routes as much as possible but it takes into account longer maintenance requirements and
the actual aircraft position at the beginning of the horizon.

Both problems are modeled either as a multicommodity flow problem or a partitioning/packing problem.
Next we present a partitioning formulation from ( ) for the rotation problem, which
assumes a rolling time horizon and only checks that have to be done periodically and the period is shorter
than the time horizon.

Suppose we are given a flight schedule (of a single equipment type) in a time horizon. A string is an
ordered sequence of flights that originates and terminates at a maintenance station. The arrival station of a
flight in a string is equal to the departure station of the next flight in the string and the connection times are
longer than or equal to the minimum plane turn time. In addition, a string is maintenance feasible, e.g. the
sum of the block times of the flights in the string is less than the one imposed by A-checks and the number
of flights in a string is less than the maximum number of takeoffs between two A-checks. An augmented
string is a string with the maintenance time interval attached to the end of it. The maintenance is assumed
to start as soon as possible and it lasts for the duration of the required check. For example, if an aircraft
arrives at 4pm local time and the maintenance cannot start before 8pm, it is assumed that the maintenance
indeed starts at 8pm and lasts for the required period. Let S be the set of all augmented strings. A decision
variable zs is 1 if augmented string s € S is in an aircraft route and 0 otherwise. To combine augmented
strings together, we need ground arc variables at maintenance stations M.S, which is similar to the FAM.
As in Section 4.1, we define ground arcs y;(y), Yo(v) for v € V. V' corresponds to activities at stations in M'S
and ready time is defined based on the termination time of augmented strings. The model reads

min Z CsTg
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Here ¢, is the cost of augmented string s, b is the number of aircraft in the fleet, and r; counts how many
times augmented string s crosses time et, where et is defined as in the FAM. Constraints (6) require that each
flight be assigned to a string, flow balance at maintenance stations is guaranteed by (7), and (8) is the plane
count constraint. Note that due to the flow balance constraints, strings can always be concatenated into
an aircraft rotation. The big cycle constraint can be modeled in the similar way as the subtour elimination
constraints in the traveling salesman problem (see ( ) for details). Additional constraints
such as capacities at the maintenance stations can easily be embedded. ( ) solve this
model by branch-and-price. The subproblem is solved by the constrained shortest path algorithm. For every



maintenance requirement there is a label, i.e. we must maintain a label for block hours and number of
takeoffs, and we must use labels for any nonlinear cost component. If the big cycle constraint is imposed,
then row generation is required as well since this implies an exponential number of additional constraints.

( ) and ( ) model the aircraft assignment problem as a multicommod-
ity network flow with nonlinear resource constraints. The resource constraints model maintenance require-
ments. The model is solved by a combination of Benders decomposition and branch-and-price. The pricing
problem is solved by the constrained shortest path algorithm. ( ) use the multi-
commodity formulation as well. They model maintenance requirements as linear constraints and therefore
their formulation is very complex. The solution methodology is a heuristic based on local search.

( ) consider the aircraft rotation problem. They modeled it as an Eulerian tour with
side constraints. The side constraints capture maintenance requirements. Since the Eulerian tour problem
is equivalent to the traveling salesman problem on the line graph, they actually solve the traveling salesman
problem. This transformation enables them to capture the big cycle constraint as the subtour elimina-
tion constraints. The model is solved by Lagrangian decomposition, where the maintenance and subtour
constraints are relax. The underlying master problem then becomes a simple assignment problem.

( ) and ( ) model the assignment problem as the set
partitioning problem. In such a formulation each aircraft route corresponds to a column in the formulation.
The former work solves the underlying model heuristically. They first generate a set of routes for each
aircraft independently. Next they solve the resulting partitioning problem by a greedy heuristic to obtain
the solution. ( ) rewrite the formulation as a set packing model. One family
of constraints require that each flight is in a route and the other one that each route is selected at most ones.
They solve the model by Lagrangian decomposition, where the latter constraints are relaxed.

( ) give details on aircraft rotation and assignment at Alitalia. The rotation problem
is solved as an assignment problem, where maintenance requirements are not considered. They maximize
the throughs value and the aircraft turn times. The assignment problem is solved a day before the day of
operations and is considerably more complex. It tries to follow the solution from the assignment problem
as much as possible. Their model is string based but it has several additional operational constraints. They
employ a constraint programming approach.

A completely different framework is given by ( ) and ( ). They
approach the rotation problem from a combinatorial point of view. They model the problem as the Eulerian
tour problem. The former work considers 3 day maintenance checks and they show that if only these checks
are required, the problem is polynomially solvable. The 4 day checks are addressed in the latter manuscript.
In this case the problem becomes NP-hard and they propose several heuristics. In both cases the maintenance
requirement means that an Eulerian tour must visit certain nodes (maintenance stations) every 3 or 4 arcs
since their arcs correspond to lines of flying (day’s activity of an aircraft).

4.2.2 Day of Operations

In this section we cover the execution part of aircraft routing. In a day of operations, due to unexpected
events such as inclement weather or unscheduled maintenance, new aircraft routes have to be found.

As is the case in the planning stage, two types of models are found: the multicommodity ones and set
partitioning models. The solution methodologies are either local search techniques or integer programming
heuristics.

Early work on aircraft recovery is presented in ( ). They model the recovery problem on
a time-space network. They consider cancellations and delays separately, i.e. for each one of them they have
a different model. The underlying network is a pure minimum cost network optimization model and thus
it does not include any side constraints. ( ) and ( ) consider delays,
cancellations, and aircraft ferrying in a single multicommodity flow model with side constraints. They solve
the model by Lagrangian decomposition. A quadratic programming formulation is presented by

( ,b). The underlying model is a multicommodity flow model with side constraints, however
side constraints are moved to the objective function with quadratic penalty terms. ( ,
) present a multicommodity network flow model with side constraints. In the former, they solve the



model with a commercial integer programming software while in the second they apply the bundle algorithm
after relaxing the flight covering constraints. The former work introduces a new objective of deviation from
the original schedule and they consider only minor disruptions. In most of the instances the LP relaxation
gives an integer solution and if this were not the case, they use rounding to obtain a feasible solution. The
delays are modeled by introducing several copies of a single flight, each one with a different departure time.

( ) present a similar model but they focus more on airport closures or reduced slot capacity
(e.g., when the ground delay program is in effect).

Multicommodity flow models are not appropriate for capturing maintenance requirements and therefore
they are suitable for small to medium disruptions. In large disruptions it takes longer to return back to
normal operations and therefore maintenance constraints become an issue. Partitioning formulations, where
variables correspond to complete routes, are used instead. ( ) present a local search heuristic
approach for solving the problem. They minimize total delay, number of cancellations, and the number of
aircraft swaps. ( ,b) present the underlying set partitioning formulation, which is then
solved by the greedy randomized adaptive search procedure. ( ) give a similar set
partitioning formulation. Their decision variables correspond to flight cancellations and they have binary
variables that assign an aircraft route to a specific tail number. The basic constraints are to assign each
aircraft to a route (ferrying, diversions, and over-flying are allowed) and that each flight must be either
covered by a route or cancelled. They model slot availability as well. The solution methodology consists
of first selecting a subset of routes and then finding a solution over these routes by means of a commercial
integer programming solver.

4.3 Crew Scheduling
4.3.1 The Planning Stage

In tactical planning, after the aircraft routes are obtained, crew scheduling is next. Crew scheduling itself is
decomposed into two processes.

In the crew pairing phase crew pairings or itineraries are obtained. A pairing is a sequence of flights,
where the destination station of a flight in the sequence corresponds to the origin station of the next flight.
In addition, the origin station of the first flight and the destination station of the last flight must correspond
to the same crew base. In the crew pairing stage, a pairing is not assigned to a particular crew member.
The crew pairing problem is to find a least cost subset of pairings that partition all flights.

After pairings are obtained for a given time period (typically a month), individual crew members are
assigned to these pairings. Rostering is a common process outside of North America. Given crew preferences
for individual pairings and patterns, an assignment of pairings to crew members is sought in rostering. The
objective consists of meeting as many preferences as possible and to minimize potential costs. Preferential
bidding is commonly used by North American carriers. This process consists of first generating bidlines
(generic monthly assignments) and then crew members based on seniority bid for bidlines.

Crew Pairing

A duty is a subsequence of a pairing that comprises a working day of a crew. Connection times within a
duty, called sit connections, are short (35 minutes to a few hours) whereas connection times between duties,
called layovers or rests, are much longer (10 hours and more). A pairing must satisfy many regulatory rules.
To name just a few of them, there is a minimum sit and rest time, the elapsed time and the flying time
of a duty is upper bounded, and there is the complicated 8-in-24 rule imposed by the FAA. In addition to
these rules, union rules complicate pairing structure even further (maximum number of days in a pairing,
more complex duty elapsed times). On top of all this, the cost of a pairing is complex. Often the cost of
a pairing is the maximum of tree quantities: a fraction of the pairing elapsed time, sum of duty costs in
the pairing, and the number of duties times the minimum guaranteed pay. Linear terms capture hotel and
meal expenses. The cost of a duty is the maximum of three terms as well: a fraction of the flying time, a
fraction of the elapsed time, and the minimum guaranteed pay. Some airlines offer a fixed salary to crews
and therefore their objective is to minimize the number of crews.
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Most often the problem is modeled as the set partition problem with side constraints. Let P be the set
of all pairings and for a p € P let ¢, be the cost of pairing p. The model reads

min E CpTp
pEP
E zp =1 for every leg i
i€p
x binary,

where x,, is 1 if pairing p is selected and O otherwise. In practice side constraints are added, which most
often model equal use of resources. For example, if at crew base cb there are only a given number of crews,

then
lcb S Z Tp S Uch
PESch

is added, where S, is the set of all pairings starting at crew base ¢b and [, ucp are the lower, upper bound
on the number of available crews at cb, respectively. Other typical side constraints are to balance pairings
across crew bases with respect to cost, the number of days of pairings, or the number of duties.

This problem is computationally challenging for the following two reasons. Each pairing has complex
feasibility rules and cost structure. In addition, the number of pairings even for a medium size problem is
enormous. Fleets with 200 flights can have billions of pairings. For this reason, whenever there is a repetition
of flights in the time horizon, the crew pairing optimization is performed in three steps. In the first step
the so called daily problem is solved. This is the crew problem solved over a single day time horizon and
it is assumed that every flight is operated every day. Once a daily solution is repeated over the real time
horizon, some pairings become infeasible (called broken pairings). The operational legs of these pairings are
then considered in the weekly exceptions problem, ( ). The final solution then consists
of daily pairings without the broken pairings and the pairings from the weekly exceptions problem. The
weekly exceptions problem is a special case of the so called weekly problem, where pairings from the end of
the horizon wrap around to the beginning of the horizon. The main distinction between a daily problem and
a weekly problem is that in the former problem a pairing cannot cover the same leg more than once while
this is allowed in the latter problem. When transitioning from one (monthly) work schedule to another, the
dated problem needs to be solved to account for pairings that span both months. In the dated problem,
flights on specific dates are given and they have to be partitioned by pairings.

A standard approach is to view pairings as constrained paths in either the flight network, ( ),
( ), or the duty period network, ( ), ( ),
( ). The flight network has a node associated with each departure and arrival. There is a flight arc

connecting each departure node of a flight with the arrival node of the same flight. In addition, there are
connection arcs between any two arrival and departure nodes with the arrival station of the first flight being
equal to the departure station of the second flight and the connection time is within legal limits, i.e. the time
is either between the minimum and maximum sit connection time or between the minimum and maximum
rest time. In addition, the network has two artificial nodes s and ¢. Node s is connected to every departure
node of a flight that can start a pairing. Similarly, every arrival node of a flight that can end a pairing is
connected to node t. Every pairing is an s — ¢ path in the flight network. Due to various pairing feasibility
rules that cannot be embedded in the flight network, every s — ¢ path is not necessarily a pairing. The
duty period network is constructed in a similar way except that flight arcs are replaced by duty periods and
connection arcs correspond to legal rest connections. It is assumed that duties are enumerated beforehand.
The duty period network captures more feasibility rules since all duty legality rules are embedded in the
network, however, it requires much more storage.

The literature on crew pairing optimization is abundant with ( ) providing more
details and surveying the literature. Here we focus only on branch-and-price related aspects and we survey
only branch-and-price related literature. In branch-and-price type algorithms subproblem solving is done
on either of the two networks. There are three approaches to find a low reduced cost pairing (subproblem
solving). The first one, pioneered by ( ), is by constrained shortest path,
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( ), ( ), ( ). In this approach a label is maintained for every feasibility
rule that is not embedded in the network, e.g. 8-in-24 rule, elapsed time rules, etc. In addition, if the cost
of a pairing is nonlinear, then each component in the maximum needs to have a separate label. If the duty
period network is used, fewer labels are needed. For U.S. domestic carriers, the number of labels on the
flight network can be as high as 20. A second approach is used in the commercial crew pairing solver from
( ). Their approach is based on finding the kth shortest path.
They find a shortest path on the current network. If the path is not feasible, they modify the network so
that the obtained path is no longer a path in the network. Once a feasible path is found, it corresponds to
a kth shortest path in the original network for a k. The third approach is to perform a depth-first search
enumeration of pairings on a network, ( ), ( ), ( ),

( ). Since there are too many pairings, the search has to be truncated by, for example, not
considering all the duties and all connection arcs. Another enhancement is by prunning the search earlier
due to some lower bounds on the reduced cost, ( ), ( ).

Crew pairing branch-and-price algorithms employed tailored branching rules, which are based on the
branching rule designed for set partitioning, ( ). The most widely used rule is to branch
on follow-ons. In this branching rule, two flights r, s are selected and branching follows the scheme presented
in Section 2. Follow-on branching is used in ( ), ( ), ( ),
and ( ). An alternative branching rule, called timeline branching is proposed in

( ). In timeline branching two flights r, s are selected and a connection time ¢. In one branch the
rule requires that only pairings with the connection time between r and s less than ¢ are considered and the
other branch considers only pairings with the connection time larger than or equal to ¢.

Reserve crew planning and training scheduling is discussed in ( ,b), and

( ). ( ) present a model and solution methodology to solve the weekly crew
pairing problem that is not based on the traditional daily /weekly exceptions paradigm. All of the related
material presented so far relates to scheduling of cockpit crews. The flight attendant problem,

( ), ( ), is similar except that several flight attendants are required to cover a flight.
These problems tend to be larger since the flight attendants are cross qualified but, on the other hand, the
feasibility rules are computationally easier.

Rostering and Preferential Bidding

Once a set of pairings is obtained that covers all flights in a month, these pairings and additional tasks such
as reserve crew duties and flight training, are next assigned to individual crews. The problem decomposes
further, not only based on the equipment type, but also based by the crew member rank (such as Captain,
First Officer).

Feasibility rules in rostering are even more complicated than the pairing feasibility rules. The rules are
imposed either by a regulatory agency such as the FAA, the airline itself, and there are contractual rules.
Some of the basic requirements are: limits on the rest time between two tasks, limits on a working period
(working week) between 4 to 8 days, limits on the number of monthly and yearly block hours. Then there
are restrictions with respect to task coverage, e.g. one captain and one first officer for a given task, two
captains and one first officer for simulator training, etc. Rules involving several rosters are common as well,
e.g. some crew members prefer to fly together (married couples) and language restrictions.

In rostering several objectives are possible. From the airline perspective, minimizing open time or unas-
signed activities is important. Open time consists of tasks that are not assigned to regular crews but they
are covered either by reserve crews or overtime is used. Clearly these two options are costly to the airline. If
the number of block hours of a crew member is larger than a certain limit, the airline has to additionally pay
the crew member for the overtime. Therefore the airline’s interest is in minimizing the overtime pay. The
third objective of the airline is to optimize assignments to training on simulators. These type of training
is mandatory and very expensive. The airline also tries to produce rosters that are equitable across crew
members, e.g. the crew members should have equal flying time and the number of off days. On the other
hand, crew members have their own goals and preferences. Each member has its own preferences such as
starting duties early in the morning, favoring certain pairings, etc. A quality roster must meet as many
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preferences as possible. Additional details on rostering rules and examples are given in
(2003).
The rostering problem can be modeled in the following way, ( ),

( ) ( ). Let the decision variable 2* be one if roster s is selected for crew member
k. The model reads

min c¥zk (9a)

Z 8 >, for every task ¢ (9b)
kEK
[ASE]

Z k=1 for every crew member k (9¢)

2 binary, (9d)

where c¥ is the cost of assigning roster s to crew member k, and n; is the number of crew members that are
required for task i. (9b) guarantee task coverage and (9c) assign a roster to every crew member. Rules that
involve several rosters have to be explicitly modeled by adding side constraints.

Similarly to the crew pairing approach, there exists an underlying network such that a roster is a path

in this network but not necessarily the other way around, ( ). To exploit individual
preferences, it is actually convenient to construct a network for every individual crew member. This leads
to branch-and-price approaches. ( ) and ( ) are the first ones

to describe a branch-and-price algorithm. An important observation from their work is that it is beneficial
to construct crew rosters for individual crew members that are disjoint with respect to tasks. Subproblem
solving is performed by constrained shortest path. ( ), and ( ) use
kth shortest path in subproblem solving and they present a general modeling language to capture feasibility
rules and objectives. The same modeling language is used also in their crew pairing optimizer,

( ). To warm start the algorithm, they construct rosters heuristically. ( )
describe cabin crew rostering at Air New Zealand in their short-haul operations. The problem is solved by
first assigning off days and it is followed by assigning pairings and other tasks. This two phase approach
simplifies the problem but it can lead to suboptimal solutions. In each phase they employ branch-and-price.

Many pure heuristic approaches to rostering have been developed by various airlines. They can be found
in various proceedings of
meetings. A detailed description of a simulated annealing heuristic approach is given in
(1999).
There are two approaches to preferential bidding. The first one is essentially identical to rostering except
that personal preferences of crew members are not considered. A different approach is given in
( ). Their methodology consists of producing individual rosters sequentially one by one in a given
order (e.g. seniority). Suppose rosters for the first £ — 1 crew members have already been obtained. The
roster for the kth crew members is obtained by solving (9) with the following changes. The objective function
considers only rosters of crew member k. (9b) are included only for those tasks that are not covered by
the first k — 1 crew members. There is (9¢) constraint for every non assigned crew member. Clearly only
rosters feasible to unassigned crew members are considered. The model produces an optimal roster for crew
member k and at the same time it guarantees a feasible solution for the remaining unassigned members. If
there are m crew members, then m models are solved. To improve the execution time, each model is relaxed

to allowing fractional solutions to rosters of crew members k + 1,k 4+ 2,...,m. They further improve the
algorithm by adding cuts. ( ) enhance this work by combining branching decisions and
cuts.

( ) present a heuristic approach to preferential bidding. A crew planner sets

parameters, e.g. the length of a working period, number of off days. If the parameters are restrictive
enough, there are not many rosters to consider and the resulting set partitioning model is solved by explicitly
enumerating all rosters. If there are too many rosters to consider, they employ a local search heuristic. A
simulated annealing heuristic to preferential bidding is given in ( ).
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4.3.2 Day of Operations

In disruption management, the crew recovery problem follows aircraft recovery. The input to the problem
are the new aircraft routes together with the new departure times and flight cancellations. In crew recovery
new crew assignments have to obtained. Depending on the airline, non disrupted crew members can be
involved in the reassignment or not. But clearly the number of such crew member should be minimized.
Another objective is to return back to the original crew schedule as soon as possible. Then there is the
objective of minimizing the cost, which can consist of the direct salary based cost, uncovered flight cost,
crew deadheading, etc. In crew recovery standby and reserve crews can be used but the latter are costly.

( ) develop a sequential approach based on a dynamic programming algo-
rithm, using the first-in-first-out principle to minimize the crews’ ground time. ( ) present a
heuristic-based framework for crew recovery. ( ) present a multicommodity integer network
flow model and a heuristic search algorithm to solve it. ( ) present a column generation
approach similar to the one used for crew pairing problems. ( ) and ( )
base their column generation approach on the rostering model. They give details on how to quickly generate
promising pairings. ( ) incorporate flight scheduling decisions into the crew recov-

ery nonlinear multicommodity flow model. Together with new crew assignments, their model produces new
departure times. The model is solved by branch-and-price, where the subproblem is solved by constrained
shortest path. ( ) expand this model by allowing crews to split, i.e., if a first officer
and a captain in planning are assigned to cover a given flight, the recovered schedule might keep the first
officer at the same flight but is assigns a different captain.

5 Recent Advances

In recent years models and optimization based methodologies that integrate the three planning areas started

to emerge. Integration of aircraft routing and crew pairing is discussed in ( ),
( ), ( ), ( ). Solving the combined fleeting and aircraft routing
model, ( ), has already been discussed in this manuscript. ( ) take

the first step towards a model for integrating fleeting and crew pairing. All of this integration efforts are in
an early stage and most of the methodologies are not yet suited for large-scale problems. Another obstacle
in adopting these models by the airlines is that they require changes in business processes. Legacy carriers
are notorious for their unwillingness to change their internal processes. On the other hand, smaller, mostly
low-cost carriers are more flexible and open to business process reengineering, ( ). This fact goes
hand in hand with the current inability of solving large-scale integrated models. Clearly the airlines have to
follow and embrace the advances in modeling and algorithms, and the researchers have to improve decision
support systems to be more tractable.

The other emerging trend is in robustness. It is well documented that customer complaints, delays,
and flight cancellations were on a rise every year from 1996 untill 2000. They reached the top in summer
2000, where it even caught attention by the Congress. In early 2001 tactical models that embed robustness
emerged. These models do not necessarily produce a cost/profit optimal solution but a suboptimal solution
that fares better in operations under uncertainty. On the crew pairing side, approaches by

( ), ( ), ( ), and ( ) provide robust
solutions. Robust fleeting solutions are discussed in ( ), ( ), and

( ). ( ) presents an approach to robust airline routing. A robust approach
to passengers rerouting in disruption management is given by ( ). While many sources of frequent

disruptions (congestion being the dominant one) have abated since the events of September 11, new ones
are popping up (increased security measures). Nevertheless, delays have been drastically reduced due to
a substantially lower demand and therefore the airlines have lost poise for robust solutions. However, the
airline industry is recovering and not far in the future the demand will be at the pre September 11 level. So
even though robust solutions have lost appeal in the industry, the researchers are seeing this direction as the
next big step in improving profitability and customer satisfaction.
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