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ABSTRACT
The problem of missing values in multivariable time series is a
key challenge in many applications such as clinical data mining.
Although many imputation methods show their effectiveness in
many applications, few of them are designed to accommodate clin-
ical multivariable time series. In this work, we propose multiple
imputation models that capture both cross-sectional information
and temporal correlations. We integrate Gaussian processes with
mixture models and introduce individualized mixing weights to
handle the variance of predictive confidence of Gaussian process
models. The proposed models are compared with several state-of-
the-art imputation algorithms on both real-world and synthetic
datasets. Experiments show that our best model can provide more
accurate imputation than the benchmarks on all of our datasets.

CCS CONCEPTS
• Information systems → Data mining; • Theory of compu-
tation → Mathematical optimization; • Applied computing
→ Health informatics.
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1 INTRODUCTION
The computational modeling in clinical applications attracts grow-
ing interest with the realization that the quantitative understanding
of patient pathophysiologic progression is crucial to clinical studies
[45]. With a comprehensive and precise modeling, we can have a
better understanding of a patient’s state, offer more precise diag-
nosis and provide better individualized therapies [22]. Researchers
∗Ye Xue is the corresponding author.
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are increasingly motivated to build more accurate computational
models from various kinds of clinical data. However, missing values
in clinical data challenge researchers using analytic techniques for
modeling, as many of the techniques are designed for complete
data.

Traditional strategies used in clinical studies to handle missing
values include deleting records with missing values and imputing
missing entries by mean values. However, deleting records with
missing values and some other filtering strategies can introduce
biases [44] that can impact modeling in many ways, such as limiting
its generalizability. Mean imputation is widely used by researchers
to handle missing values. However, it is shown to yield less effective
estimates than many other modern imputation techniques [1, 4, 43,
46], such as maximum likelihood (ML) approaches and multiple
imputation (MI) methods (e.g. multivariable imputation by chained
equations (MICE) [5]). The ML and MI methods are based on solid
statistical foundations and become standard in the last few decades
[13, 34].

In recent years, additional imputation methods are proposed.
Although many imputation methods [5, 8, 14, 18, 23, 26, 27, 31,
32, 37, 38, 41–43, 50] show their effectiveness in many applica-
tions, few of them are designed for time series-based clinical data.
These clinical data are usually multivariable time series, where pa-
tients have measurements of multiple laboratory tests at different
times. Many methods are designed for cross-sectional imputation
(measurements taken at the same time point) and do not consider
temporal information that is useful in making predictions or imput-
ing missing values. Ignoring informative temporal correlations and
only capturing cross-sectional information may yield less effective
imputation.

In order to address the limitations mentioned above, we present
mixture-based multiple imputation models for clinical time series.
Our models capture both cross-sectional information and temporal
correlations to estimate missing values using mixture models. We
model the distribution of measurements using a mixture model. The
mixture is composed of linear regression to model cross-sectional
correlations and Gaussian processes (GPs) to capture temporal cor-
relations. The problem of integrating GP within a standard mixture
model is that GP models in all patient cases get the same mixing
weights, while the confidence of predictions by GP models can vary
largely across different patient cases. We overcome this problem by
introducing individualized mixing weights for each patient cases,
instead of assigning a fixed weight. We train our models using
the Expectation-Maximization (EM) algorithm. We demonstrate
the effectiveness of our models by comparing them with several
state-of-the-art imputation algorithms on multiple clinical datasets.

Our main contributions are summarized as follows.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference, nnnn, nnnn Ye Xue, Diego Klabjan, and Yuan Luo

1. To the best of our knowledge, we are the first to build im-
putation models for time series by integrating GP within mixture
models. We overcome the problem that all GP models in all pa-
tient cases get a fixed mixing weight by introducing individualized
mixing weights.

2. We test the performance of our models on two real-world
clinical datasets and several synthetic datasets. Our best model
outperforms all comparison models including several state-of-the-
art imputationmodels. Using synthetic datasets, we also explore and
discover the properties of the data that benefit our models and/or
comparisonmodels. Experiments show that our best model is robust
to the variation of these properties and outperforms comparison
models on all synthetic datasets.

The remainder of this paper is structured as follows. Section 2
discusses related work while in Section 3, the proposed method is
described. The experimental setup, including dataset collection and
evaluation procedure, is described in Section 4. Section 5 discusses
the computational results and underlying analyses. The conclusions
are drawn in Section 6.

2 RELATEDWORK
Research in designing imputation methods for multivariable time
series attracts growing interest in recent decades. Previous studies
generally fall into two categories. One comes from methods using
linear or other simple parametric functions to estimate missing val-
ues. The other is the methods treating time series as smooth curves
and estimating missing values using GP or other nonparametric
methods.

In the first category, multivariable time series are modeled based
on either linear models [36], linear mixed models [24, 35] or autore-
gressive models [3, 16]. However, in these methods, the potential
trajectories of variables are only limited to linear or other simple
parametric functions. Alternatively, many authors choose GPs or
other nonparametric functions to model time series. Compared to
linear models, GPs only have locality constraints in which close
time points in a time series usually have close values. Therefore,
GPs bring in more flexibility in capturing temporal trajectories of
variables.

The straightforward way of applying GPs to the imputation on
multivariable time series is to fit a single GP model on each time
series and then make predictions for missing entries separately.
However, without taking into account similarities and correlations
across multiple time series, only fitting a single GP model on each
time series may yield less effective imputation. Many researchers
attempt to extend GP-based methods to multivariable settings. Hori
et al. [17] apply Multi-Task Gaussian Processes (MTGP), a multiple-
outcome modeling approach in the context of GPs, to impute miss-
ing values in longitudinal data. However, the quality of estimating
missing values relies on the estimation of covariance structure
among variables when using MTGP or other multi-task functional
approaches [7, 15, 21]. To make a confident estimation of the co-
variance, a large amount of time points with shared observations
of these variables are required by these multi-task approaches. Due
to the fact that many patients only have records with a limited
number of time points, time series of inpatient clinical laboratory

tests fall short of such a requirement. Therefore, these multi-task
approaches are not applicable to inpatient clinical data.

Recently, Luo et al. [28] explore the application of GPs in clinical
data and propose an algorithm, 3-dimensional multiple imputation
with chained equations (3D-MICE), that combines the imputation
from GP and traditional MICE based on weighting equations. How-
ever, the weighting equations are calculated only based on the
standard deviations of GP and MICE predictions for missing values.
The weighting strategy is static and not optimized. We postulate
that calculating weights through an optimization problem can help
to improve the imputation quality. In our work, instead of the pre-
dictive mean matching used in [28], we choose linear regression
as one component of our model. Our model is also grounded by a
statistical model and thus statistically justified which is not the case
for [28]. Additionally, in order to effectively model the interaction
between different aspects, we represent the data as a tensor with
each aspect being one mode. For that reason, our method is also
considered as a tensor completion approach.

Tensor completion problems are extensively studied. However,
the classic tensor completion methods [9, 25, 40] focus on general
tensors and usually do not consider temporal aspects. In recent
years, many studies explore the application of temporal augmented
tensor completion on imputingmissing values in time series [2, 6, 11,
39, 49]. These methods discretize time into evenly sampled intervals.
However, due to the fact that inpatient clinical laboratory tests are
usually measured at varying intervals, assembling clinical data over
regularly sampled time periods might have several drawbacks, such
as leading to sparse tensors if discretizing time at fine granularity
(e.g. every minute) while some laboratory tests are measured less
frequently (e.g. daily). Furthermore, extending these methods to
the case, where time is not regularly sampled, is not easy and
straightforward, requiring changing design details and the objective
functions to be optimized. Recently, Yang et al. [48] propose a tensor
completion method that can deal with irregularly sampled times.
They extend the PACIFIER imputation framework [52] and propose
a time-aware matrix decomposition method to estimate missing
values in predicting septic shock. However, most components of
this approach are tailored to the characteristics of septic patients.
In this work, we implement the imputation approach proposed in
[48] with only the time-aware mechanism, which is general and
applicable to our experimental settings. However, this approach
is not so effective in our experiments and thus it is not included
as a benchmark in this paper. Lately, Zhe et al. [51] propose a
Bayesian nonparametric tensor decomposition model that captures
temporal correlations between interacting events. However, this
approach is not directly applicable to continuous multivariable time
series because it focuses on discrete events and captures temporal
correlations between the occurrences of events.

3 METHODOLOGY
3.1 Imputation Framework
In many predictive tasks on temporal clinical data, time series
are oftern aligned into the same-length sequences to derive more
robust patient phenotypes through matrix decomposition or dis-
cover feature groups by applying sequence/graph mining tech-
niques [29, 47, 48]. We model this assumption. In this work, we use
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tensor representation, in which patients have the same number of
time points. We represent the data collected from P patients withV
laboratory tests and B time points as two 3D tensors X ∈ RP×V×B

and T ∈ RP×V×B , shown in Figure 1. Each laboratory test mea-
surement xp,v,b is stored in the measurement tensor X. Each time
tp,v,b , when xp,v,b is measured, is stored in the time tensor T .

Table 1 lists main symbols we use throughout the paper. Missing
values in the measurement tensor are denoted as xmis

p,v,b , showing
that the value of test v at time index b for patient p is missing.
Correspondingly, xobsp,v,b denotes an observed value. The time tensor
T is complete, sincewe only collect patient records at the timewhen
at least one laboratory test measurement is available. We assume
we know the “prescribed” time a missing measurement should have
been taken. In the matrix x:, :,b at time index b, the measurement
time tp,v,b and tq,v,b can be different when p , q, whereas for a
given patient p, we have tp,v,b = tp,u,b for v,u ∈ [1 : V ]. That is,
all tests for a particular patient are taken at the same time.

Figure 1: Measurement and time tensor. An example of the
inputs and output of the mixture model MixV ,B is shown
as the colorful fiber and matrices. In MixV ,B , the target out-
put is x:,V ,B shown in purple and the inputs are x:,−V ,B and
x:,V ,−B shown in red and blue matrices, respectively, exclud-
ing the purple fiber. We model the output with a mixture
model, where we train a linear regression on the red matrix
and train GPs or/and another linear regression on the blue
matrix.

Disregarding the temporal dimension, the imputation problem is
well studied. If one dimension is time, in order to apply imputation
methods that are not designed for time series, we need to disre-
gard the temporal aspect or ignore temporal correlations of the
data. However, temporal trajectories can reveal patient’s underlying
pathophysiological evolution, modeling which can help to better
estimate missing values. For the reason that both cross-sectional
information and temporal aspects can impact the estimation of
missing measurements, we explore mixture models, which are com-
posed of several base models through either a cross-sectional or
temporal view. We introduce these base models in Section 3.2.

In our imputation framework, a mixture model is trained for
each variable and time index. We use Mixv,b to denote the mix-
ture model to impute missing values of variable v at time index
b. The missing values xmis

:,v,b in the fiber x:,v,b are imputed by the
optimizedMixv,b . In each iteration of the algorithm, it is assumed

Table 1: Main symbols and definitions

Symbol Definition

X, T Measurement and time tensor
xp,v,−b Measurements in fiber xp,v, : excluding xp,v,b
tp,v,−b Times in fiber tp,v, : excluding tp,v,b
Mixv,b Mixture model for v and b.
Vv,b Concatenation of x:,−v,b and x:,v,−b
N (µ(k )v,b ,Σ

(k)
v,b ) The kth prior multivariate normal distribution

inMixv,b
mG (·), ΣG (·) Predictive mean and variance of a GP model
γv,b The set of all trainable parameters ofMixv,b

that all other values are known and only xmis
:,v,b is imputed. This is

wrapped in an outer loop. We call this procedure simple-pass tensor
imputation, i.e., one pass through all v,b. Since several simple-pass
tensor imputations are conducted, our approach is also considered
as an iterative imputation [12], which can also be regarded as a
sampling-based approach where a Gibbs sampler is used to ap-
proximate convergence. The convergence of iterative imputation
methods can be quite fast with a few iterations [5].

In detail, the iterative imputation approaches start by replacing
all missing data with values from simple guesses; we fill in all
missing values with initial estimates by taking random draws from
observed values. This procedure is called an initial imputation. Then
we perform iterative tensor imputation on each copy separately.
The training procedure and imputation for fibers are introduced
in Section 3. We also rely on the concept of multiple imputations,
where several iterative imputations are performed and the imputed
values are averaged at the end. Each iterative imputation starts
with a different iterative imputation tensor and/or uses a different
order of v ,b.

In summary, the algorithm createsM different copiesX1, . . . ,XM

of X, each one filled with different random Xmis . For each i =
1, . . . ,M , we then perform K simple-pass tensor imputations. Each
simple-pass has a loop over all v ,b, which uses Mixv,b to adjust
Xi,mis . At the end of theM imputations,Xi,mis are averaged across
all i to yield the final imputed tensor.

The whole imputation process involvesM×K×V ×B imputation
models. We next first focus on the base models behindMixv,b and
then on the actual mixture model.

3.2 Base Models
Our mixture models are composed of three components that are
derived from two base models, linear regression and Gaussian pro-
cesses. One component consists of GP models and the other two
components are linear models through two different views of the
measurement tensor. Through a cross-sectional view, the tensor can
be considered as a vector of patient-by-variable matrices at different
time indices. Through a temporal view, we can view the tensor as
a vector of patient-by-time matrices for different variables.

3.2.1 Linear model through cross-sectional view. We can view the
measurement tensor X as a vector of patient-by-variable matrices.
On the slice x:, :,b , we use a linear regression model to fit the target
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variable v as a function of the other variables except v . The target
values x:,v,b are modeled as

x:,v,b = x:,−v,bβ
(1)
v,b + ϵ

(1)
v,b , ϵ

(1)
v,b ∼ N(0,σ (1)

v,b
2
I ) (1)

where β
(1)
v,b is the column vector of coefficients and σ

(1)
v,b is the

standard deviation of the error ϵ (1)v,b , regarding to the regression
model through cross-sectional view for variable v and time index
b.

The likelihood distribution of x:,v,b is then given by

x:,v,b |x:,−v,b , β
(1)
v,b ,σ

(1)
v,b

2
∼ N(x:,−v,bβ

(1)
v,b ,σ

(1)
v,b

2
I ). (2)

The training data consists of observed target values (xp,v,b )p∈P trv,b
and input data (xp,−v,b )p∈P trv,b , where P

tr
v,b is the training patient

set and includes p only if xp,v,b is observed.

3.2.2 Linear model through temporal view. In addition to the cross-
sectional view, we can also view the measurement tensor X as a
vector of patient-by-time matrices. On matrix x:,v, :, we use linear
regression to model the measurements at time index b against those
at other indices.

The target values x:,v,b are modeled as

x:,v,b = x:,v,−bβ
(2)
v,b + ϵ

(2)
v,b , ϵ

(2)
v,b ∼ N(0,σ (2)

v,b
2
I ) (3)

where β
(2)
v,b is the column vector of coefficients and σ

(2)
v,b is the

standard deviation of the error ϵ (2)v,b , regarding the linear regression
model though temporal view for variable v and time index b.

The likelihood distribution of x:,v,b is given by

x:,v,b |x:,v,−b , β
(2)
v,b ,σ

(2)
v,b

2
∼ N(x:,v,−bβ

(2)
v,b ,σ

(2)
v,b

2
I ). (4)

The training data consists of observed target values (xp,v,b )p∈P trv,b
and input data (xp,v,−b )p∈P trv,b .

3.2.3 Gaussian processes through temporal view. Gaussian pro-
cesses are commonly used to capture trajectories of variables, thus
used in ourmixturemodel to capture temporal correlations. Through
the same temporal view as introduced above, on matrix x:,v, :, we
fit GPs on time series for each patient.

The target value xp,v,b is modeled as

xp,v,b = µp,v,b + f (tp,v,b ),

f (tp,v,b ) ∼ GP(0,K(tp,v,b , tp,v,b′))
(5)

where µp,v,b is the overall mean of the model, f (·) is a Gaussian
process with mean of 0 and a covariance matrix K(t , t ′) of time
pairs (t ,t ′). Then the likelihood distribution of xp,v,b is written as

xp,v,b |αp,v,b ∼ N(mG (αp,v,b ), Σ
G (αp,v,b ))

αp,v,b = (θv,b ,xp,v,−b , tp,v,−b )
(6)

where θv,b are the kernel parameters of the GP models, and the
predictive mean and variance are given bymG (·) and ΣG (·); see
more details in Appendix B. For a certain v and b, all GP models
share the same kernel parameters θv,b .

3.3 The Mixture Model
Given the likelihood distribution of all three components, we model
the joint mixture distribution, regarding the variable v and time
index b, in the following way
p(x:,v,b ,Vv,b )

=π
(1)
v,bN(Vv,b |µ

(1)
v,b , Σ

(1)
v,b )N(x:,v,b |x:,−v,bβ

(1)
v,b ,σ

(1)
v,b

2
I )

+π
(2)
v,bN(Vv,b |µ

(2)
v,b , Σ

(2)
v,b )N(x:,v,b |x:,v,−bβ

(2)
v,b ,σ

(2)
v,b

2
I )

+π
(3)
v,bN(Vv,b |µ

(3)
v,b , Σ

(3)
v,b )N(x:,v,b |m

G (αv,b ), diag(ΣG (αv,b )))

(7)

where we define Vv,b = [x:,−v,b x:,v,−b ] and αv,b = (αp,v,b )p∈P .
This model can be interpreted as the joint distribution between ob-
served data Vv,b and missing values x:,v,b , consisting of a mixture
of three distributions. The first one p1(x:,v,b ,Vv,b ) is modeled as

p1(x:,v,b ,Vv,b )

= p(x:,v,b |Vv,b )p(Vv,b )

= N(x:,v,b |µ1(Vv,b ),σ1(Vv,b ))N(Vv,b |µ
(1)
v,b , Σ

(1)
v,b )

= N(x:,v,b |x:,−v,bβ
(1)
v,b ,σ

(1)
v,b

2
I )N(Vv,b |µ

(1)
v,b , Σ

(1)
v,b )

(8)

the remaining two follow the same logic.
By marginalizing over x:,v,b , the prior probability distribution

p(Vv,b ) is written as

p(Vv,b ) =
3∑

k=1
π
(k )
v,bN(Vv,b |µ

(k)
v,b , Σ

(k )
v,b ) (9)

which is a mixture of Gaussians. It also follows that
p(x:,v,b |Vv,b )

=
p(x:,v,b ,Vv,b )

p(Vv,b )

=
π
(1)
v,bN(Vv,b |δ

(1)
v,b )∑3

j=1 π
(j)
v,bN(Vv,b |δ

(j)
v,b )

N(x:,v,b |x:,−v,bβ
(1)
v,b ,σ

(1)
v,b

2
I )

+
π
(2)
v,bN(Vv,b |δ

(2)
v,b )∑3

j=1 π
(j)
v,bN(Vv,b |δ

(j)
v,b )

N(x:,v,b |x:,v,−bβ
(2)
v,b ,σ

(2)
v,b

2
I )

+
π
(3)
v,bN(Vv,b |δ

(3)
v,b )∑3

j=1 π
(j)
v,bN(Vv,b |δ

(j)
v,b )

N(x:,v,b |m
G (αv,b ), diag(ΣG (αv,b )))

(10)

where we define δ (k)v,b = (µ(k )v,b , Σ
(k )
v,b ).

We train our mixture model on observed target values by maxi-
mizing the log likelihood of the joint mixture distribution

γ̂v,b = arg max
γv,b

lnp(xobs:,v,b ,V
tr
v,b ;γv,b )

where V tr
v,b is the training input data and defined as the concatena-

tion of (xp,−v,b )p∈P trv,b and (xp,v,−b )p∈P trv,b
, and γv,b is the set of

all trainable parameters

β
(1)
v,b ,σ

(1)
v,b

2
, β

(2)
v,b ,σ

(2)
v,b

2
,θv,b and π (k )

v,b , µ
(k )
v,b , Σ

(k)
v,b for k = 1, 2, 3.
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After training, the missing values are imputed using individual-
ized mixing weights that are derived from the conditional distribu-
tion. The missing value xmis

p,v,b is imputed by

Π
(1)
p,v,bxp,−v,b β̂

(1)
v,b + Π

(2)
p,v,bxp,v,−b β̂

(2)
v,b + Π

(3)
p,v,bm

G (α̂p,v,b )

where the individualized mixing weight of the kth component for
patient p, variable v and time index b is defined as

Π
(k )
p,v,b =

π̂
(k )
v,bN(Vp,v,b |µ̂

(k )
v,b , Σ̂

(k )
v,b )∑3

j=1 π̂
(j)
v,bN(Vp,v,b |µ̂

(j)
v,b , Σ̂

(j)
v,b )
,k = 1, 2, 3 (11)

whereVp,v,b is the observed data and defined as the concatenation
of xp,−v,b and xp,v,−b .

3.4 Mixture Parameter Estimation
Let ℓ(γv,b ) be the log likelihood lnp(xobs:,v,b ,V

tr
v,b ;γv,b ). Explicitly

maximizing ℓ(γv,b ) is hard. Instead, we use the EM algorithm to
repeatedly construct a lower-bound on ℓ(γv,b ) and then optimize
that lower-boundL(γv,b ). We first define a latent indicator variable
qv,b ∈ {1, 2, 3} that specifies which mixing component that data
points come from. Then we use Jensen’s inequality to get the lower-
bound L(γv,b ), which is given by

L(γv,b )

=
∑

p∈P trv,b

∑
qv,b

Qp (qv,b ) ln
p(xp,v,b ,Vp,v,b ,qv,b ;γv,b )

Qp (qv,b )

≤
∑

p∈P trv,b

ln
3∑

k=1
p(qv,b = k)p(xp,v,b ,Vp,v,b ;γv,b |qv,b = k)

= ℓ(γv,b )
(12)

where

Qp (qv,b = k) =
p(qv,b = k)p(xp,v,b ,Vp,v,b |qv,b = k)∑3
j=1 p(qv,b = j)p(xp,v,b ,Vp,v,b |qv,b = j)

. (13)

In (12) and (13), the marginal distribution p(qv,b = k) over qv,b
is specified by the mixing coefficients π (k )

v,b = p(qv,b = k). We
can view Qp (qv,b = k) as the responsibility that component k of
the mixture model Mixv,b takes to “explain” xp,v,b . We use the
standard EM algorithm to maximize the lower-bound L(γv,b ); see
more details about the estimation of the parameters in Appendix A.

3.5 Special Cases and An Ensemble Model
Our imputation model provides flexibility in changing base models.
The mixture model mentioned above consists of three base models.
Two of them are applied through the same temporal view of the
measurement tensor. We can drop one of the models through tem-
poral view to yield a new mixture model. For example, if the GP
model through temporal view is removed from the mixture model
for variable v and time point b, the new mixture model is now a
mixture of two linear models.

Each mixture model can be a mixture of all three base models
(the Linear-Linear-GP [LLG] model), a mixture of two linear models
(the Linear-Linear [LL] model) or a mixture of linear and GPmodels.

To further improve the imputation quality, we build an ensemble
model (En-LLG) by allowing each mixture model to be a mixture of
either two linear models or all three base models.

In En-LLG, for each variable and time index, we train the mixture
model with two linear models and the mixture model with all three
base models, and then select the one with less training error as
the final mixture model, which is used to do imputation. Although
we train our mixture models by maximizing the likelihood, we
use the absolute training error as the selection criteria because the
likelihood of the mixture model with two linear models is not in
the same scale as the mixture model with three base models.

4 EXPERIMENTAL SETUP
4.1 Real-world Datasets
We collect two real-world datasets from the Medical Information
Mart for Intensive Care (MIMIC-III) database [20] and the North-
western Medicine Enterprise Data Warehouse (NMEDW). Each
dataset contains inpatient test results from 13 laboratory tests.
These tests are quantitative and frequently measured on hospi-
tal inpatients. They are the same as those used in [28] in their
imputation study. We organize the data by unique admissions. We
distinguish multiple admissions of the same patient. Each admission
consists of time series of the 13 laboratory tests.

In both MIMIC-III and NMEDW datasets, the length of time
series varies across admissions. To apply our imputation models on
these datasets, we truncate time series so that they have the same
length. The length is the average number of time points across all
admissions. Before truncating, the average number of time points in
MIMIC-III dataset is 11. We first exclude admissions that have less
than 11 time points, and then we truncate time series by removing
measurements taken after the 11-th time point. We also exclude
admissions that contain time series that have no observed values.
Our MIMIC-III dataset includes 26,154 unique admissions and the
missing rate is about 28.71%. The same data collection procedure
is applied on the NMEDW dataset where we end up with 13,892
unique admissions that have 7 time points, as the average number
of time points of patients in NMEDW is 7. The missing rate of the
NMEDW dataset is 24.22%.

4.2 Synthetic Datasets
We create synthetic datasets to explore and discover the properties
of the data that might benefit our models and/or comparisonmodels.
In synthetic datasets, we augment the correlation between mea-
surements and times. We do not augment correlations by imposing
strong constraints on time series where closer measurements have
closer values. Instead, we generate synthetic times by altering real
times so that the constraints in synthetic data are “slightly” stronger
than real-world data. We also introduce a scaling factor d to control
the strength of the constraints in synthetic data.

The synthetic datasets are generated based on the real-world
MIMIC-III dataset. We move two consecutive times of a time series
closer, if the relative difference ∆x̃ in two consecutive measure-
ments is smaller than the relative difference ∆t̃ in two consecutive
times. The relative differences ∆x̃ and ∆t̃ of a time series are given
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Table 2: Overall MASE by dataset and imputation model. The bold numbers are the significantly best values among all impu-
tation models.

Dataset MICE GP 3D-MICE LL En-LLG

Real-world MIMIC (d=0) 0.11763 0.13072 0.11186 0.09304 0.09285
Synthetic MIMIC (d=0.5) 0.11573 0.10466 0.09087 0.08612 0.08448
Synthetic MIMIC (d=1) 0.11561 0.09220 0.07715 0.08427 0.07538

NMEDW 0.13718 0.18353 0.13624 0.11600 0.11589

Table 3: MASE on the real-world MIMIC dataset by variable and imputation model. The bold numbers are the best values
among all imputation models.

Variable MICE GP 3D-MICE LL En-LLG

Chloride 0.10575 0.12993 0.10836 0.08664 0.08603
Potassium 0.10997 0.11533 0.10822 0.09453 0.09442
Bicarbonate 0.12275 0.13196 0.11984 0.10302 0.10254
Sodium 0.10138 0.12525 0.10727 0.08787 0.08807

Hematocrit 0.06558 0.11436 0.06726 0.05486 0.05482
Hemoglobin 0.05772 0.14168 0.06301 0.05117 0.05103

MCV 0.13474 0.14215 0.13340 0.11634 0.11657
Platelets 0.14236 0.13855 0.12815 0.10090 0.10070

WBC count 0.14068 0.13963 0.13060 0.10934 0.10913
RDW 0.15836 0.14592 0.13897 0.11340 0.11340

Blood urea nitrogen 0.15189 0.12358 0.11814 0.09479 0.09410
Creatinie 0.13212 0.13341 0.12217 0.10067 0.10014
Glucose 0.11794 0.12491 0.11921 0.10493 0.10501

by

∆x̃i =
|xi − xi−1 |∑B
i=2 |xi − xi−1 |

∆t̃i =
|ti − ti−1 |∑B
i=2 |ti − ti−1 |

.

The scaling factor d ∈ (0, 1) controls how farther/closer we move
times. If d = 0, we do not move times. In other words, the synthetic
dataset at d = 0 is the same as the real-world MIMIC-III dataset. As
d increases, stronger constraints are introduced to synthetic data.
The synthetic time t ′ for a time series is generated as follows:

t ′i =

{
t1, if i = 1
ti +

∑i
j=2[d(∆x̃ j − ∆t̃j )S], otherwise

S =
B∑
j=2

(|tj − tj−1 |).

If a time series has missing values, we first calculate the syn-
thetic times for the observed measurements. Then we perform a
linear interpolation between real times and synthetic times for
observed measurements to generate synthetic times for missing
measurements.

4.3 Evaluation of Imputation Quality
We randomly mask 20% observed measurements in a data set as
missing and treat the masked values as the test set. The remaining
observed values are used in training. We impute originally missing

and masked values together, and compare the imputed values with
the ground truth for masked data to evaluate imputation perfor-
mance.

We use Mean Absolute Scaled Error (MASE) [19] to measure the
quality of imputation on the test set. MASE is a scale-free measure
of the accuracy of predictions and recommended by Hyndman et
al [10, 19] to measure the accuracy of predictions for series. In
this work, we calculate MASE for all tests (variables) and take a
weighted average, according to the number of masked values of a
variable, to get an overall MASE per dataset.

Letmaskp,v be the set of cardinality Ip,v of all time indices that
have been masked for patient p and variable v . Also let Yp,v =
(xobsp,v, j )j be the sequence of length Jp,v of all observed values for
patient p and variable v , and let x̃p,v,i represent the imputed value.
The MASE for variable v is defined as

MASE(v) =
1∑

p̄ Ip̄,v

∑
p

∑
i ∈maskp,v |x̃p,v,i − xobsp,v,i |

Jp,v
Jp,v−1

∑Jp,v
j=2 |Yp,v, j − Yp,v, j−1 |

.

To show the effectiveness of our imputation models, we compare
the MASE scores of our models (LL and En-LLG) with other three
imputation methods: (a) MICE with 100 imputations, where the
average of all imputations are used for evaluation; (b) the pure
Gaussian processes, where a GP model is fitted to the observed
data of each time series using GPfit [30] in R and missing values
are replaced with the predictions from the fitted GP models; (c)
3D-MICE, a state-of-the-art imputation model [28] for which we
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obtain their code and adapt it to account for our use of the tensor
representation. To tune hyperparameters if any in these models,
we mask out 20% observed measurements in the training set as a
validation set and tune hyperparameters on the validation set.

We run our En-LLG model forM = 3 multiple imputations with
K = 2 iterations and run the LL model with more multiple impu-
tations (M=5) and more iterations (K=5). We run more iterations
of the LL model, because the LL model takes less time than the
En-LLG model. For 3D-MICE, we set the number of multiple impu-
tation to 40, instead of 100 that is suggested in [28], to balance the
performance and running time.

5 RESULTS
5.1 Performance Comparison
Table 2 and Figure 2 compare the 5 imputation models on 4 datasets
using MASE. Table 2 shows the overall MASE score of each impu-
tation model on all datasets. Figure 2 provides a comparison for all
imputation models in the MASE score over 3D-MICE by showing
the percentage deviation against 3D-MICE. We select 3D-MICE
since it is the best benchmark model. We observe that our En-LLG
model outperforms all comparison models on all 4 datasets. The LL
model outperforms MICE and GP on all datasets, and outperforms
3D-MICE on all but the synthetic MIMIC (d=1) dataset. The En-LLG
model is significantly better than the second best model (p=.001,
permutation test with 1000 replicates) on all 4 datasets.

Figure 2: Percentage deviation of MASE score against 3D-
MICE

Table 3 shows a variable-wise comparison of the imputation
models on the real-world MIMIC (d=0) dataset. Our two imputation
models outperform three comparison models on all variables. The
En-LLG model is better than the LL model on most variables. All
models except GP achieve a much lower error on Hematocrit and
Hemoglobin than on other variables. The reason is that these two
variables are highly correlated. Those methods that capture the cor-
relation between variables can reasonably infer missing values for
Hematocrit from observed measurements of Hemoglobin, and vice
versa. Compared to MICE, our models achieve even lower errors
on these two variables, which indicates that temporal correlations
captured by our models help to make better estimation of miss-
ing values, even when there is a more dominant cross-sectional
correlation.

(a) Chloride, t1, d=0 (b) Chloride, t6, d=0

(c) Chloride, t1, d=0.5 (d) Chloride, t6, d=0.5

Figure 3: A comparison between the individualized mix-
ing weights Π and the optimized responsibilities Q that the
GP component should take to “explain” observed measure-
ments. The plots are from the real-world MIMIC (d=0) and
syntehtic MIMIC (d=0.5) dataset, and for the mixture mod-
els of Chloride at time point 1 and 6. The distributions of
the optimized responsibilities are shown in blue and the dis-
tributions of individualized mixing weights are in yellow.

As shown in Table 2, all models benefit from the increment
of d , the scaling factor when generating synthetic data. The rea-
son is that all models take into account temporal aspects and the
measurements in the synthetic time series have stronger temporal
correlations as d increases. The reason that MICE also benefits from
the temporal correlations is that we include time as a feature in
addition to variable features. We also try to exclude times in MICE,
however, experiments show that MICE performs better when times
are included. As shown in Table 2, GP and 3D-MICE benefit themost
as d increases from 0 to 1, MICE benefits the least and our models
(LL and En-LLG) are in the middle. The LL model is outperformed
by 3D-MICE when d increases to 1. However, En-LLG shows its
robustness to the variation of d in our current experimental settings.

5.2 Individualized Weights
By introducing individualized mixing weights Π defined in (11), we
improve the performance of our En-LLG model in the MASE score
from 0.08351 to 0.07538, an improvement of 9.73% compared against
the model where each mixture component has a fixed weight for
all patient cases. The reason individualized weights are better than
fixed weights in our model might be that they better approximate
the responsibilities.

In training, we can optimize the responsibility a component
should take to “explain” an observed target valuexp,v,b forp ∈ P trv,b .
These correspond to Q in (13). However, when making inference,
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we can not calculate the responsibility each component should
take to “explain” missing values, because responsibilities depend
on observed target values, according to (13). We have to use Π in
(11), individualized mixing weights. In a standard mixture model,
we could use π (k )

v,b , which is the average of responsibilities of the
kth component across all training patients, as a fixed weight that
the kth component should contribute to impute missing values
xmis

:,v,b for all test patients. However, patient time series can be very
different and the confidence of predictions by the GP component
can vary largely across different patient cases. In our mixture model,
therefore, a fixed weight can not reflect such variation in prediction
confidence.

We shall view an individualized mixing weight as an approxima-
tion of howmuch responsibility a component should take to impute
the missing value for a particular patient case. It is tailored for each
patient. As defined in (11), the individualized mixing weights only
depend on the inputs, therefore, we can calculate them when mak-
ing inferences on the test set.

In Figure 3, we plot the distribution of the individualized weights
Π of the GP component in the training set and compare it with the
distribution of the optimized responsibility values Q . The responsi-
bilities the GP component should take can vary a lot in different
patient cases, especially on the synthetic dataset, which implies
that it is more reasonable for patients to get individualized mixing
weights than a fixed weight. We also observe that the individualized
mixing weights reasonably mimic the distribution of the optimized
responsibilities on the training set. The improvement of our model
on the test set attests that the individualized weights approximate
the responsibilities better than fixed weights.

In addition, 3D-MICE also assigns individualized weights at the
same level of granularity as our models, however, weights in 3D-
MICE are calculated only based on the deviations of the cross-
sectional imputation and the temporal imputation, and are not
optimized. As shown in Table 3, the improvement of our models
over 3D-MICE implies that our models provide a more accurate
weighting solution when combining the cross-sectional and tempo-
ral imputation.

5.3 Time Complexity
We compare the running times of our proposed models and all
comparison models on the real-world MIMIC dataset. All models
ran on the same Linux server and each ran in parallel with 20 cores.
The LL model (taking 4.2 hours) and GP (1.1 hours) are the two
fastest models, the En-LLG model (109.5 hours) and 3D-MICE (156.1
hours) are the two slowest models and MICE (77.5 hours) is in the
middle.

The LL model is much faster than the En-LLG model because we
can explicitly calculate the estimates of parameters for the mixture
model with only linear components. However, it is hard to directly
calculate the parameter estimates of the GP component. In En-LLG,
we use the Adam optimizer to update the parameter estimates of
the GP component in each EM iteration. In our experiments, the
EM algorithm and the Adam optimization procedure converge in
a few iterations. As shown in Figure 4(a), the increment speed
of optimizing the log likelihood of the mixture model decreases
dramatically after a few EM iterations. Figure 4(b) shows that the

(a) EM

(b) Adam

Figure 4: Log likelihood of the whole mixture model in EM
and log likelihood of the GP component in Adam for Chlo-
ride at time point 1.

log likelihood with respect to the GP component converges within
10 Adam iterations. We observe a similar convergence property in
other mixture models.

We notice that our models can have an overfitting problem due
to the large amount of trainable parameters. We observe that, in
many mixture models, the log likelihood keeps increasing, however,
the imputation error stops decreasing after a few EM iterations.
We alleviate the overfitting problem by terminating the EM algo-
rithm earlier. We terminate it when the mean absolute error on the
training set stops decreasing. In our experiment, this strategy is bet-
ter than a vanilla ridge regularization for handling the overfitting
problems. In addition to the improvement of imputation quality,
this strategy also helps to reduce the running time of our model,
as the EM algorithm stops earlier with this strategy. Although we
alleviate the overfitting problem, we expect further improvements
in the performance of our imputation model with better strategies
for handling overfitting.

6 CONCLUSIONS
We present and demonstrate mixture-based imputation models for
multivariable clinical time series. Our models can capture both
cross-sectional and temporal correlations in time series. We inte-
grate Gaussian processes with mixture models and introduce indi-
vidualized mixing weights to further improve imputation accuracy.
We show that our best model can provide more accurate imputa-
tion than MICE, GP and 3D-MICE, a state-of-the-art imputation
model that integrates cross-sectional and longitudinal imputation.
Although in this work our models are tested on inpatient clinical
data, they can also be applied to other multivariable time series
data in healthcare and other domains with necessary adaptation.
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A PRAMETER ESTIMATION IN EM
In the E (Expectation) step, we calculate the responsibilitiesw(k )

p,v,b =

Qp (qv,b = k) for p ∈ P trv,b using the current values of the parame-
ters in iteration j:
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Let Zv,b = (xp,−v,b )p∈P trv,b
and Yv,b = (xp,v,−b )p∈P trv,b

. In the
M (Maximization) step, we re-estimate the parameters in iteration
(j + 1) using the jth responsibilities:
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(k )
p,v,b ]

(j)

[Σ(k )v,b ]
(j+1) =

1∑
p∈P trv,b

[w
(k )
p,v,b ]

(j)

∑
p∈P trv,b

[w
(k )
p,v,b ]

(j)[U
(k )
p,v,b ]

(j+1)

[U
(k)
p,v,b ]

(j+1) = {Vp,v,b − [µ(k )v,b ]
(j+1)}{Vp,v,b − [µ(k )v,b ]

(j+1)}′

[β
(1)
v,b ]

(j+1) = {{Z ′
v,b [w

(1)
v,b ]

(j)Zv,b }
−1Z ′

v,b [w
(1)
v,b ]

(j)xobs:,v,b }
′

[σ
(1)
v,b

2
](j+1) =

1∑
p∈P trv,b

[w
(1)
p,v,b ]

(j)
[S

(1)
v,b ]

(j+1)

[S
(1)
v,b ]

(j+1) =
∑

p∈P trv,b

[w
(1)
p,v,b ]

(j){xp,v,b − xp,−v,b [β
(1)
v,b ]

(j+1)}2

[β
(2)
v,b ]

(j+1) = {{Y ′
v,b [w

(2)
v,b ]

(j)Yv,b }
−1Y ′

v,b [w
(2)
v,b ]

(j)xobs:,v,b }
′

[σ
(2)
v,b

2
](j+1) =

1∑
p∈P trv,b

[w
(2)
p,v,b ]

(j)
[S

(2)
v,b ]

(j+1)

[S
(2)
v,b ]

(j+1) =
∑

p∈P trv,b

[w
(2)
p,v,b ]

(j){xp,v,b − xp,v,−b [β
(2)
v,b ]

(j+1)}2

[θv,b ]
(j+1) = G([w(3)

v,b ]
(j), [θv,b ]

(j),xobs:,v,b ,Yv,b , t:,v, :)

where [w(k )
v,b ]

(j) is the vector of [w(k )
p,v,b ]

(j) for p ∈ P trv,b in itera-
tion j. The kernel parameters θv,b of GP models are evaluated by
functionG , a gradient descent method that calculates the estimates
of [θv,b ](j+1) to maximize Lv,b (γ ), using [θv,b ]

(j) as the starting

point. The first order derivatives of Lv,b (γ ) with respect to θv,b
that are used in G are given in Appendix C.

B GP MODEL
We assume the GP model discussed here in a mixture model for a
certain variable and time, and thus we exclude the subscripts v and
b. We use xp,t to denote a measurement of the time series xp at
time t for patient p of a certain variable. We use xp,−t to denote a
time series without the measurement at time t . The GP model is
given by

xp,t = µp,t + f (t),

f (t) ∼ GP(0,K(t , t ′))

where µp,t is the overall mean of the model and f (t) is a Gaussian
process with mean of 0 and covariance of K(t , t ′). Following the
maximum likelihood approach, the best linear unbiased predictor
(BLUP) [33] at t and the mean squared error are

mG (θ ,xp,−t , t̄) = (
1 − rT R−11n

1TnR−11n
1Tn + r

T )R−1xp,−t

ΣG (θ ,xp,−t , t̄) = σ 2
f [1 − rT R−1r +

(1 − 1TnR−1r )2

1nR−11n
]

where rt (t ′) = corr (f (t), f (t ′)), r is the vector of rt (t ′) for all possi-
ble t , t̄ is a vector of time except for time t , R is the (B − 1) × (B − 1)
correlation matrix and the correlation function is given by

Rt,t ′ = exp(−θ |t − t ′ |2).

The estimator σ 2 is given by

σ 2
f =

CT R−1C

n
,C = xp,−t − 1n (1TnR

−11n )−1(1TnR
−1xp,−t )

where 1n is a vector with length (B − 1) of all ones.

C PARTIAL DERIVATIVES IN GP
To simplify the notations, we assume that the likelihood function L
under consideration is for a mixture model for a certain variable
and time. The partial derivative with respect to Gaussian process
parameters θ is

∂L

∂θ
=

|ptr |∑
p=1

wp
∂

∂θ
lnN(xp,t ;mG (θ ,xp,−t , t̄), Σ

G (θ ,xp,−t , t̄)).
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Letting дp (θ ) = mG (θ ,xp,−t , t̄) and hp (θ ) = ΣG (θ ,xp,−t , t̄), we
have

∂L

∂θ
=

|ptr |∑
p=1

wp
∂

∂θ
lnN(xp,t ;дp (θ ),hp (θ ))

=

|ptr |∑
p=1

wp
∂

∂θ
{ln

1√
2πhp (θ )

−
[xp,t − дp (θ )]

2

2hp (θ )
}

=

|ptr |∑
p=1

wp {−
1

2hp (θ )
∂hp (θ )

∂θ
−
∂

∂θ

[xp,t − дp (θ )]
2

2hp (θ )
}

=

|ptr |∑
p=1

wp {−
1

2hp (θ )
∂hp (θ )

∂θ

−
1

2h2
p (θ )

{2[xp,t − дp (θ )][−
∂дp (θ )

∂θ
]hp (θ )

−
∂hp (θ )

∂θ
[xp,t − дp (θ )]

2}}

=

|ptr |∑
p=1

wp {−
1

2hp (θ )
∂hp (θ )

∂θ

+
[xp,t − дp (θ )]

∂дp (θ )
∂θ

hp (θ )
+

∂hp (θ )
∂θ [xp,t − дp (θ )]

2

2h2
p (θ )

}.

Then ∂дp (θ )
∂θ and ∂hp (θ )

∂θ are given by

∂дp (θ )

∂θ
= (
∂H1
∂θ

R−1 + H1
∂R−1

∂θ
)xp,−t

∂hp (θ )

∂θ
= σ 2

f
∂H3
∂θ
+
∂σ 2

f

∂θ
H3

where H1, ∂H1
∂θ , H3 and ∂H3

∂θ are given as follows:

H1 =
[1 − (rR−11n )]

1TnR−11n
1Tn + r

∂H1
∂θ
=

−( ∂r
∂θ R

−1 + r ∂R−1

∂θ )1n (1TnR−11n )

1TnR−112
n

−
(1Tn ∂R−1

∂θ 1n )[1 − (rR−11n )]

1TnR−112
n

1Tn +
∂r

∂θ

f c = (1 − 1TnR
−1rT )2

дc = 1TnR
−11n

∂ f c

∂θ
= 2(1 − 1TnR

−1rT )[−1Tn (
∂R−1

∂θ
rT + R−1 ∂r

T

∂θ
)]

∂дc

∂θ
= 1Tn

∂R−1

∂θ
1n

H2 =
(1 − 1TnR−1rT )2

1TnR−11n

∂H2
∂θ
=

∂f c
∂θ дc −

∂дc
∂θ f c

дc2

H3 = 1 − (rR−1rT ) + H2

∂H3
∂θ
= −(

∂r

∂θ
R−1rT + r

∂R−1

∂θ
rT + rR−1 ∂r

T

∂θ
) +
∂H2
∂θ

H4 = xp,−t − 1n
(1TnR−1xp,−t )

1TnR−11n
∂H4
∂θ
= −1n

1
(1TnR−11n )2

[(1Tn
∂R−1

∂θ
xp,−t )(1TnR

−11n )

− (1Tn
∂R−1

∂θ
1n )(1TnR

−1xp,−t )]

∂σ 2
f

∂θ
=

1
n
[(
∂H4
∂θ

)T R−1H4 + H
T
4
∂R−1

∂θ
H4 + H

T
4 R

−1 ∂H4
∂θ

].
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