
Data and Trend Extraction from Time Series Graphs

Xiaoyi Liu 1 Diego Klabjan 2 Patrick N Bless 3

Abstract

Time-series graphs are commonly used to present
sequential data and are effective in visualizing
trends. However, it is much more difficult for ma-
chines to extract the trends than humans. Knowl-
edge extraction that extracts textual and numerical
data and trends hidden in numerical values from
time-series graphs is important in knowledge man-
agement. There are many rule-based and machine
learning methods for reverse-engineering differ-
ent data plots. However, they focus only on data
extraction without trend understanding and deal
with only one of the two aspects. In this paper,
we consider single time-series, and propose a new
integrated method that combines conventional im-
age analysis and deep learning techniques that
considers both effectiveness and efficiency. Ex-
periments show that this integrated method ex-
tracts knowledge from time-series graphs both
accurately and efficiently.

1. Introduction
Time-series data is everywhere, such as stock prices or city
temperatures, and time-series graphs can be found from
business reports to academic papers. The main benefit of
a time-series graph is that humans have the ability to un-
derstand the trends in time-series data intuitively. But it is
much more difficult for machines to understand time-series
graphs and their trends only from an image without the raw
data, which is often missing in documents. An automatic
knowledge extraction approach from time-series graphs can
benefit us in data mining from scientific documents, news-
papers, and financial reports.

Many studies have been done in the area of extracting data

1Department of Mechanical Engineering, Northwestern
University, Evanston, USA 2Department of Industrial Engi-
neering and Management Sciences, Northwestern University,
Evanston, USA 3Intel Corporation, Chandler, USA. Correspon-
dence to: Xiaoyi Liu <xiaoyiliu2021@u.northwestern.edu>,
Diego Klabjan <d-klabjan@northwestern.edu>, Patrick N Bless
<patrick.n.bless@intel.com>.

from graphs. The previously mainstream methods for infor-
mation extraction from charts (Savva et al., 2011; Huang &
Tan, 2007) are based on traditional computer vision meth-
ods, which rely on complicated human-defined rules and
thus are not robust. With the development of deep learning,
many models have been proposed to solve the data extrac-
tion problem by neural networks in an end-to-end manner.

However, the challenges of this task, information extraction
from time-series graphs, are far from solved because styles
in graphs have enormous diversity, and time-series lines
lack high-level features that are suitable to neural networks.

In our work, we propose a new integrated framework that
takes advantage of both conventional computer vision tech-
niques and deep learning techniques. The first step in this
framework is to segment the graph area, which is a critical
step. We define a straightforward rule using conventional
computer vision techniques while adopting an auto-encoder
for other edge cases not covered by the rule. As textual
features are most high-level in data graphs, we also design
an approach to segment the graph area with the help of OCR
(optical character recognition). Line detection inside the
graph is also done by a combination of rule-based methods
and neural networks. With the detected line and OCR re-
sults, the data conversion is done by getting the x-y values
of the line, in which every pixel inside the graph is projected
to the detected axes and their tick marks. The last step is to
analyze the time-series trends. Two options are explored,
one is by image classification, and the other is by brute
force search. Image classification is proposed to reduce the
computational time of the brute force search. The fully in-
tegrated method predicts the graph bounding box with IoU
greater than 97.4% on two data sets. The time-series line is
captured with accuracy higher than 95%, and the function
type is classified with an accuracy of 99.8%. After data
conversion, the extracted data is predicted with less than
3.4% error on both data sets. The average inference time for
each image is 12.2 seconds, which means that data mining
within a large volume of time-series graphs is possible.

Our main contributions are as follows.

• We propose a new integrated method that combines
conventional image analyses methods and deep neural
networks. The combination of the two kinds of meth-

Data and Trend Extraction from Time Series Graphs

Figure 1. The framework of the integrated method: The graph area detection takes an image as input and predicts the bounding box of
the graph area; line segmentation then takes the cropped graph area as input and outputs the line pixel locations, which are combined with
the OCR results to provide the x-y values based on the axis tick marks. The final step is to analyze trend based on the x-y values.

ods helps it extract knowledge accurately and quickly.

• In time-series graph area segmentation, the huge diver-
sity of time-series graphs prevents conventional rule-
based methods from extracting the lines well. We train
a neural network to segment a time-series graph, which
can be generalized to time-series graphs with arbitrary
plotting styles.

• We implement an OCR-based graph area segmentation
method, which is the first one to utilize textual features
to segment the graph area in data plots.

• We treat the trend analysis as an image classification
problem and demonstrate that regression with the guid-
ance of trend classification performs better than with-
out guidance.

In Section 2, related work and methods for data extraction
from graphs are reviewed. We show all components of our
framework and data generation methods in Section 3. The
computational results are discussed in Section 4.

2. Literature Review
2.1. Rule-based Data Plot Knowledge Extraction

Traditional computer vision techniques based on features
and rules were mainstream for chart component extraction
before the wave of deep learning. Zhou & Tan (2000) com-
bine the Hough transform and boundary tracing to detect
bars. Huang & Tan (2007) employ rules to detect chart
components using edge maps. Savva et al. (2011) propose
Revision, in which bars or pies are detected by their shapes
and color information in pixels. These color searching and
edge detection methods are efficient but rely on specific

features engineered by experts. An advantage of these meth-
ods is that the accuracy is guaranteed if the rules apply to
the graphs well. However, there cannot be fixed rules that
apply to all of the time-series graphs. Due to the enormous
diversity of the time-series graphs, many edge cases can not
be solved by human-defined rules.

2.2. Deep Learning-based Data Plot Knowledge
Extraction

Deep learning provides end-to-end solutions for many com-
puter vision problems. In the area of data extraction from
plots, some matured neural networks that were firstly pro-
posed for other computer vision tasks are used to detect
graph components, text and recognize them. With the help
of deep learning techniques, all the text and chart compo-
nents can be automatically detected in a model. Cliche
& Yee (2017) train three separate object detection models
(Stewart & Ng, 2016) to detect tick marks, tick labels, and
points in different resolutions, which are finally combined
to extract data from a scatter plot. Poco & Heer (2017)
employ a CNN to classify each pixel as text or not in a chart
and then remove all non-text pixels. The incredible power
of neural networks eliminates the complicated procedure
of defining rules, but compared to the rule-based methods,
neural networks are hard to interpret and lose accuracy since
the graphs consist of lower-level features.

However, there is no existing model taking advantage of
both rule-based and deep learning-based methods. We pro-
pose an integration method that combines the accurate rule-
based results and general appliable deep-learning results.

Data and Trend Extraction from Time Series Graphs

Figure 2. Diversity of time-series graphs: The line of time-series can be in one color, or black, or two colors; the outlines of time-series
graph can be rectangles, or one or two lines, or missing; the grid lines can be both vertical and horizontal, or only horizontal.

2.3. Image segmentation

Image segmentation is one of the critical problems in the
field of computer vision. In image segmentation, every
pixel is classified as the class of its enclosing object or back-
ground. The most commonly used neural network architec-
ture for image segmentation is auto-encoder. The encoder is
usually a pre-trained classification network like ResNet (He
et al., 2016), or VGG (Simonyan & Zisserman, 2012) with-
out the last fully connected layer. The decoder is usually a
sequence of transposed convolutional layers for upsampling.
FCN (Fully convolutional network) (Noh et al., 2015) is
one of the earliest image segmentation models following the
auto-encoder architecture. U-Net (Ronneberger et al., 2015)
is then proposed for biomedical image segmentation, which
modifies the original FCN and performs better with fewer
training samples. We treat the graph area as a special object
in the time-series graphs, so the extraction of the graph area
is a segmentation problem.

3. Methodology
The overall framework of our proposed method is presented
in Figure 1. The framework consists of five modules: graph
area segmentation, line detection, OCR, data conversion,
and trend analysis. There are both conventional and deep-
learning-based methods for the graph area segmentation,
line detection, and trend analysis modules. In the following
sections, we first introduce the detailed approaches for these
five modules. This is followed by the details of training data

and annotation generation.

3.1. Graph Area Segmentation

The first task in this problem is to identify the graph area
in a time-series graph image. Accurate segmentation of the
graph area is essential for all of the following procedures.
The most direct approach is to locate the outlines of the
graph area since most time-series graphs have the outlines
(see Figure 2 (b,c)). However, the outlines can be vague
or even missing in some graphs (see Figure 2 (a)). In
such cases, the segmentation module must rely on other
clues like texts and legends, or it can be a neural network
without human-designed rules. All three kinds of methods

Data and Trend Extraction from Time Series Graphs

are investigated and implemented in our work.

Algorithm 1: Straight line-based graph segmenta-
tion

Input: Raw Image I
Output: Bounding box of graph

B = {h1, h2, w1, w2}
Parameter :σ = standard deviation bound
Function Main:
{h1, h2, w1, w2}, s← GetBBoxStd(I)
Let B = {h1, h2, w1, w2}
I ← I[h1 = +1, h2 = −1, w1 = +1, w2 =
−1]

while s > σ and h1 < h2 and w1 < w2 do
B, s← GetBBoxStd(I)
I ← I[h1 = +1, h2 = −1, w1 =
+1, w2 = −1]

return B
Function GetBBoxStd(I):

L← set of straight vertical or horizontal lines
in I
B = {h1, h2, w1, w2} ← bounding box of L
for w ∈ [w1, w2] do

for h ∈ [h1, h2 − 1] do
dif(h,w)←∑3

i=1[M(h,w, i)−M(h+ 1, w, i)]

dw ←
∑

h dif(h,w)

s← std
w

(dw)

return B, s

3.1.1. OUTLINES DETECTION

In many time-series graphs, there are outlines of the graph
area. The outlines become the most critical features to
segment the graph area. The outlines are determined by
the bounding boxes of the straight lines in the time-series
images. In Algorithm 1, the function GetBBoxStd of an
RGB image or region of an image I ∈ RH×W×3 is to find
the bounding box of all the straight lines inside I . The
straight lines to find include any vertical and horizontal
lines in the image. Value dif(h,w) of each pixel is the
RGB value difference between itself and the pixel below
it. Summing up dif in the vertical direction, dw provides
the total color changes of column w. For a column in the
bounding box, the ideal case is that the column only changes
color around the time-series lines and grid lines.

Assuming that the time-series and grid lines are continuous,
the standard deviation of dw should be moderate. We set
the value for σ empirically to stop iterative bounding box
localization. Otherwise, the algorithm would keep shrinking
the bounding box until the standard deviation is small. This
iterative procedure is designed to address many time-series
images consisting of outlines of the whole image.

3.1.2. OCR AND LEGEND CLASSIFICATION

In time-series graphs, texts are the components with the
most high-level features. The state-of-the-art OCR tools
show great power in detecting and recognizing these printed
texts. We use Tesseract 3.05 to recognize all the texts
and their locations. The locations of the tick marks along
the x-axis and y-axis can be employed as clues to locate
the graph area without any additional computation. The
disadvantage is also apparent: missing detections of tick
marks would lead to a reduced graph area; some x-axis or
y-axis are a bit longer than the range of tick marks. We
make the assumption that the x-axis is always on the bottom
of the graph, and the y-axis is always on the left.

Algorithm 2 first utilizes OCR models to recognize all texts
and their locations in the image. If the algorithm finds more
than two bounding boxes sharing the same right bound,
these bounding boxes are determined as the y-ticks. x-ticks
bounding boxes are determined by finding the most frequent
top bounds. Then the graph area is determined by these x-
and y-ticks. The left bound of the graph area is the same
as the right bound of the y-ticks and the bottom bound of
the graph area is determined by the upper bounds of x-ticks.
The most right x-tick shares the same right bound as the
graph area and the top y-tick shares the same top bound.

Algorithm 2: OCR-based graph segmentation
Input: Raw Image I
Output: Bounding box of graph

B = {h1, h2, w1, w2}
{Bi} = {hi1, hi2, wi

1, w
i
2} ← OCR(I)

Sw = {wi
2}i – a multiset

Sh = {hi2}j – a multiset
Cw = set of all distinct (w̄, n̄) with w̄ ∈ Sw and n̄

is its multiplicity
Ch = set of all distinct (h̄, m̄) with h̄ ∈ Sh and m̄

is its multiplicity
if max

i
(n̄i) = 1 or max

j
(m̄j) = 1 then

Algorithm fails
else

(w̄∗, n̄∗) = argmax
(w̄,n̄)∈Cw

n̄

Iyticks = {i|wi
2 = w̄∗}

(h̄∗, m̄∗) = argmax
(h̄,m̄)∈Ch

m̄

Ixticks = {i|hi2 = h̄∗}
w1 = w̄∗

h1 = h̄∗

w2 = max
i∈Ixticks

(wi
2)

h2 = max
i∈Iyticks

(hi2)

return {h1, h2, w1, w2}

Data and Trend Extraction from Time Series Graphs

Figure 3. Segmentation cases: The red rectangles are generated by
the straight lines-based method, which miss part of the time-series
lines, while the yellow rectangles are generated by the U-Net-based
method.

3.1.3. AUTO-ENCODER-BASED SEGMENTATION

Although the above two methods have the ability to handle
most of the time-series graphs, there are cases not covered by
them. Another neural network-based approach is necessary
to improve coverage: a U-Net to segment the time-series
graph image at the pixel level. The task of segmentation
is to detect the graph area, but it could be more flexible
since the final target is to include the time-series line in this
segment. The training details are covered in Section 4.2.
Figure 3 shows a real example of the performance of the
two methods. The final box is the larger of the two.

Figure 4. Line detection cases: These two images consist of time-
series and grid lines all in black, thus the color-based method fails
but the CNN-based method predicts reasonable results, with the
lower example more challenging.

3.2. Line Detection

The second task following graph area segmentation is to
detect the line inside the graph. This detection procedure
is critical to the accuracy of data extraction. In many time-

series graphs, the colors of the time-series lines are different
from the colors of the background or grid lines. However,
there are also some challenging cases such as 1) one single
time-series line has more than one color (Figure 2 (h, i));
2) time-series lines are in the same (black) color as the
grid lines (Figure 4). We design two methods to handle the
simple cases and general cases.

3.2.1. COLOR-BASED CLUSTERING

The color is the most distinctive feature for time-series lines
in many time-series images. Assuming the time-series lines
are in different colors from other components, the pixels
inside the graph area are clustered by K-Means (MacQueen,
1967) using the RGB values.

The graph area is cropped from the input image and a K-
Means clustering is conducted on all the pixels with respect
to their colors (3 feature clustering). Due to the rendering
of images, there can be some pixels around the time-series
lines, so the selection from clusters is made by counting the
number of consecutive pixel sequences in each column in a
cluster.

Algorithm 3 exhibits the strategy. For a given clustering with
k clusters and a cluster, we find the number of consecutive
pixels in the cluster for each column in the box. If the mean
of the numbers is close to 1 and their standard deviation is
low, the cluster is a candidate. Among all candidate clusters,
we select those pertaining to the smallest number of clusters.
If there are still many candidates, we select one uniformly
at random. When Algorithm 3 does not find a single cluster,
then this process fails.

Based on this cluster for each column we designate the line
pixel as the average of all y-values of the pixels in the cluster
in a column. The values of columns with no pixels in the
cluster are interpolated.

3.2.2. CNN-BASED SEQUENTIAL DATA PREDICTION

As stated before, black grid lines can prevent the color-
based methods from detecting the time-series line (Figure
4). We design a CNN to convert the graph area image
I ∈ RH×W×3 to a sequential value O ∈ [0, 1]W directly.
The sequential value O is the relative position of the time-
series pixel in each column. This procedure is only triggered
if color-based clustering fails.

3.3. Data Conversion

After the generation of the time-series line by the color-
based method if it succeeds, the coordinates of pixels are
calculated based on the position of the graph area. If CNN-
based sequential data prediction is triggered, the predicted
relative position O is combined with the bounding box of
the graph area to compute the x-y coordinates for the time-

Data and Trend Extraction from Time Series Graphs

Algorithm 3: Clustering-based line detection
Input: Bounding box B
Output: A cluster of pixels
Parameter :K = maximum number of clusters

τ = tolerance of mean
σ = standard deviation bound

for k=1,...,K do
Run K-Means with k clusters by clustering the
pixels in B
u = ∅
for each cluster c do

for each column w in B do
Mc,w= number of seqeunces of pixels

in c in column w
m̄c = mean

w
Mc,w

¯stdc = std
w
Mc,w

if m̄c ∈ [2− τ, 2 + τ] and ¯stdc ≤ σ then
u = u ∪ {c}

if u 6= ∅ then
Randomly return a cluster from u

The algorithm fails.

series line.

The x-y coordinates are then converted to the actual x-
y values by projecting the coordinate space to the real
value space, generated by the OCR results of tick marks.
RANSAC interpolation (Fischler & Bolles, 1981) is em-
ployed to generate the x-y value of each coordinate.

3.4. Trend Analysis

Trend analysis is the last step in the framework. Most of the
previous works in data extraction from plots stop with the
step of data conversion. However, the trend is the unique
characteristic of time-series graphs and is complicated for
machines to understand.

The simplest way to recognize the trend is to test any candi-
date function by brute force. However, this does not scale
with the size of candidate functions. It would be faster if a
neural network can determine a function type. The function
types of time-series graphs are classified by a lightweight
CNN, SqueezeNet (Iandola et al., 2016). The network se-
lects a function type (such as Polynomial, Logarithmic, Ex-
ponential, Sine) and then we use MSE fitting to determine
the function parameters. For example, the network might se-
lect Sine and fitting then determines a, b, c in a sin(b∗x+c).

3.5. Data Generation

We generate data by using the Matplotlib Python library.

All titles and labels are assumed to have less than three
words from a vocabulary size of 25,000. The font type can
be any one of the 35 commonly used ones. Possible font
size ranges for each type of text (titles and legend labels)
and color choices for time-series lines are arbitrary. Note
that in the simulation code, we output all of the necessary
ground truth information, e.g., segmentation for the graph
area, pixel coordinates of the time-series lines.

The x-y data of the time-series lines are not fully random-
ized. We use Sine, Logarithm, Exponential, and Polynomial
functions with random parameters as the base functions,
adding by different levels of noises. The polynomial func-
tions can be of order at most 4.

Twenty thousand simulated time-series images are generated
by the above strategy. These images are split into 18,000
training samples, 1,000 validation samples, and 1,000 test-
ing samples. This dataset is referred to as SIMUL in the
following sections.

We also manually annotate 20 images downloaded from
Google Image, which are used as testing samples to show
the generalization of our model. This dataset is referred to
as ANNOT in the following sections. For each image in
ANNOT, the x-y data is annotated as a sequence consisting
of 20 points.

4. Experiments and Results
4.1. Implementation details of conventional methods

In outlines detection, a horizontal straight line must be
longer than 0.6 times the width, and a vertical straight line
must be longer than 0.6 times the height. Otherwise, short
straight lines are not likely to be outlines.

The threshold for terminating Algorithm 1 is set as 1.5.
Higher values could result in bigger bounding boxes, while
smaller values could shrink into a small rectangle con-
structed by grid lines.

Another hyper-parameter is the value of K in Algorithm 2,
which is set to be 10. There are other parameters including
the tolerance of mean τ and standard deviation bound σ,
which are set as 0.5 and 1.5, respectively.

4.2. Neural network details

There are three deep-learning models to train in the frame-
work: 1. graph area segmentation U-Net; 2. line detection
CNN; and 3. function type classification SqueezeNet. The
U-Net follows the same architecture as in the original paper
(Ronneberger et al., 2015), and is trained with L2 loss,

Lseg =
∑
x∈Ω

L2(lx, px)

Data and Trend Extraction from Time Series Graphs

where l is the ground truth for each pixel and p is the pre-
diction of the pixel class generated by the U-Net.

The bounding box of the graph area is determined by

x1, x2, y1, y2 = argmax
x1,x2,y1,y2

[mean
x∈[x1,x2],y∈[y1,y2]

p(x, y)+

λ · sum
x∈[x1,x2],y∈[y1,y2]

p(x, y)].

(1)

During inference, the bounding box of the graph area is
selected by the maximum area of the three different methods.
The reason is that we do not want to lose any part of the
time-series line in the following steps, while it is tolerable
that some additional components are included.

The line detection CNN takes input image I and resizes it
to a fixed scale Iresize ∈ R256,256,3. The CNN follows the
same architecture as ResNet-18 (He et al., 2016) while it
consists of filters only with size of [3,1] in every layer and
generates a vector O ∈ [0, 1]256, trained with L2 loss,

Lline =

256∑
i=1

L2(O∗i , Oi) (2)

where O∗i is the ground truth of the relative height for each
column in the resized image.

SqueezeNet is trained as a four-class image classification
problem with cross-entropy as loss. We consider 4 function
types: Polynomial, Logarithmic, Exponential, Sine.

All the implementations are in PyTorch. Because graphs
are very different from natural images, we initialize the
weights and biases of all three models by Xavier uniform
initialization (Glorot & Bengio, 2010).

The three models are trained separately, with the same batch
size of 16 and maximum epochs of 50. The initial learning
rates are set as 3 · 10−5 for the Adam algorithm (Kingma &
Ba, 2014) in the first two models, while the third model has
the initial learning rate of 1 · 10−3.

4.3. Metrics

We have tested the framework on both SIMUL and ANNOT
datasets. There are four metrics designed to measure the
model performance. “Graph IoU” is the average IoU be-
tween the predicted graph area and the ground truth. “Line
Inclusive” is the percentage of the images that the line is
entirely inside the predicted graph area. These two metrics
are designed to measure the graph area segmentation mod-
ules. The accuracy of line detection is measured by “Line
L2” defined in (2). Another metric is “MAPEy,” which is
MAPE between the extracted values and real data values
after data conversion. “L2” and “MAPEy” take into account
every point of the time-series line for the SIMUL data set

while they are computed based on 20 points annotated in
ANNOT.

4.4. Generalization for Segmentation Model

In order to test the generalization capability of the segmenta-
tion model, we generated three more training and validation
data sets with fewer varieties in time-series graphs.

The first data set S1 reduces the varieties of fonts and colors:
the font type is fixed as Times Roman, font size kept as 12
pixels, and the color for time-series lines can only be red,
blue, green, or black. The second data set S2 reduces the
varieties of graph styles: there are always border frames
bounding the graph area while there is no gridline, and the
line width is set as 1 point. The third data set S3 has none
of all the above varieties.

Each of these data sets has 18,000 training samples and
1,000 validation samples. Three segmentation models are
trained with the same settings as the SIMUL data set, and
the trained models are tested on the SIMUL and ANNOT
data sets.

4.5. Results

This section summarizes and analyzes the results for gen-
eralization experiments and model training, following a
computational cost analysis. In the end, we run an inference
test on a multi-line time-series graph.

4.5.1. GRAPH AREA SEGMENTATION

In Table 1, we summarize the three metrics for the fully
integrated model and ablation of each module in Section 3.1
and Section 3.2. Training and validation sets are based on
SIMUL (but are clearly disjoint from test used in Table 1).

Ablation of straight line-based and OCR-based outlines de-
creases the graph IoU significantly for the ANNOT data
set, which means the straight line-based and OCR-based
outlines detection is critical. However, the OCR-based out-
lines detection is not helpful for the SIMUL data set. This
implies that our simulated data set can be fully handled by
the other two methods, which is not as challenging as the
ANNOT data set.

Omission of Auto-Encoder only brings a minor performance
loss in the SIMUL dataset but a more significant loss in the
ANNOT dataset. This implies that each method does not
perform ideally on the ANNOT dataset, but the integrated
method performs much better.

The L2 loss also shows a big difference between the fully
integrated model and the models without any graph area
segmentation, which is the side effect of inaccurate graph
area segmentation.

Data and Trend Extraction from Time Series Graphs

Table 1. Experiment results and Ablation study
DATASET METHODS GRAPH IOU LINE INCLUSIVE LINE L2 MAPEy

SIMUL FULLY INTEGRATED 100 100 0.00012 0.4
W/O STRAIGHT-LINE DETECTION 98.2 100 0.00012 0.4
W/O OCR-BASED SEGMENTATION 100 100 0.00012 0.4

W/O AUTO-ENCODER SEGMENTATION 99.5 100 0.00012 0.4
W/O COLOR-BASED LINE CLUSTERING 100 100 0.00109 1.8

W/O CNN-BASED SEQUENTAIL DATA PREDICTION 100 100 0.00045 1.1
ANNOT FULLY INTEGRATED 98.3 100 0.00117 3.4

W/O STRAIGHT-LINE DETECTION 94.2 95 0.00172 4.9
W/O OCR-BASED SEGMENTATION 95.6 100 0.00117 3.4

W/O AUTO-ENCODER SEGMENTATION 88.7 95 0.00201 6.5
W/O COLOR-BASED LINE CLUSTERING 98.3 100 0.00398 10.7

W/O CNN-BASED SEQUENTAIL DATA PREDICTION 98.3 100 0.00275 8.2

Table 2. Graph area segmentation results for generalization experi-
ments

DATASET IOU FOR SIMUL IOU FOR ANNOT

S1 97.8 91.2
S2 93.6 85.7
S3 93.9 85.4
SIMUL 98.2 92.0

In Fig 5, we show two problematic samples that either fail
on straight-line based or U-Net based segmentation. The
first sample has no vertical straight lines, so the straight-line-
based method fails, while the U-Net successfully segments
the graph area. The second sample shows that the U-Net
misses the left part of the time-series line and the straight-
line-based method also makes a wrong prediction by taking
the outlines of the whole image. However, the time-series
lines in both images are captured accurately. This also
implies great robustness of the integrated method.

4.5.2. GENERALIZATION

The “Graph IoU” results for different training data sets with
different levels of varieties are shown in Table 2. The similar
performance between trained models for S1 and SIMUL,
and S2 and S3 demonstrates that the font styles and time-
series colors do not augment the data set a lot. However,
there is a big difference between S2 and SIMUL, which
shows that the varieties of border frames, gridlines, and line
width are essential to improve generalization capability.

4.5.3. LINE DETECTION

The significant L2 loss difference on both datasets between
the fully integrated method and the method without color-
based line clustering shows that CNN-based sequential data
prediction is a good supplement. The integrated frame-
work performs much better than any single method. The
annotation errors also lead “LINE L2” being higher for the

ANNOT data set.

4.5.4. DATA CONVERSION

There are also significant performance differences of each
method on “MAPEy.” Besides the error of line detection,
“MAPEy” includes the error of tick marks alignment, OCR,
and interpolation. The fully integrated method predicts the
real y-value with 0.4% error for the SIMUL and 3.4% error
for the ANNOT data set.

4.5.5. FUNCTION TYPE CLASSIFICATION

The function type classification model achieves 99.8% ac-
curacy on the SIMUL data set, which means most function
types are predicted the same as brute force searching. We
run the classification model on ANNOT data set although
there are no labeled function types for these images. The
model makes reasonable fittings as shown in Fig 5.

4.5.6. COMPUTATIONAL COST AND TEST ON
MULTI-LINE TIME-SERIES GRAPH

Another advantage of this integrated method is its efficiency.
We run an inference experiment on a desktop PC with an
Intel i5-10400 CPU and a Geforce RTX 3060 GPU. The
GPU is used to run the three neural networks, and all other
steps are done within the CPU. The average inference time
for each image in ANNOT is 12.2 seconds. The most time-
consuming step is color-based clustering for line detection,
which takes 9.4 seconds on average. Each of the other steps
takes less than a half-second.

The results in Fig 6 show that the model has the capacity to
be expanded although it is designed to detect a single time-
series line. Our method detects the graph area accurately
and captures one of the three lines with its legend.

Data and Trend Extraction from Time Series Graphs

Figure 5. Results for two sample images from ANNOT: The first column shows each image; the second column shows U-Net seg-
mentation (yellow) and the corresponding box (red); the third column is the detected line (white); and the fourth column is the fitting
result.

5. Conclusion
In this work, a new integrated framework that takes advan-
tage of both conventional computer vision techniques and
deep-learning techniques is proposed for the consideration
of efficiency and generalization purposes. The experiments
show the potential of integrating conventional methods and
deep-learning techniques in computer vision, especially for
data extraction from graphs. Complexity and diversity of
scientific graphs make the task challenging for conventional
computer vision techniques, with lower-level features more
suitable to be understood by conventional techniques than
deep neural networks.

Our model is also efficient by using simple rules and
lightweight neural networks, which is much faster than any
data extraction tool that needs user interactions.

In future work, it will be interesting to extend our framework
to cover multiple time-series, and to include more graph
styles in the training data set.

References
Matplotlib: Python Plotting. https://matplotlib.
org.

Tesseract-OCR 3.05.02. https://github.com/
tesseract-ocr/tesseract/releases/tag/
3.05.02.

Cliche, M., Rosenberg D. Madeka D. and Yee, C. Scatter-
act: Automated extraction of data from scatter plots. In
Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 135–150, 2017.

Fischler, M.A. and Bolles, R.C.J. Random sample consen-

Figure 6. Inference results for multi-line time-series graphs.

sus: a paradigm for model fitting with applications to
image analysis and automated cartography. In Communi-
cations of the ACM, pp. 381–395, 1981.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 249–256, 2010.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual

https://matplotlib.org
https://matplotlib.org
https://github.com/tesseract-ocr/tesseract/releases/tag/3.05.02
https://github.com/tesseract-ocr/tesseract/releases/tag/3.05.02
https://github.com/tesseract-ocr/tesseract/releases/tag/3.05.02

Data and Trend Extraction from Time Series Graphs

learning for image recognition. In Computer Vision and
Pattern Recognition, pp. 770–778, 2016.

Huang, W. and Tan, C.L. A system for understanding im-
aged infographics and its applications. In ACM Sympo-
sium on Document Engineering, pp. 9–18, 2007.

Iandola, F.N., Han, S., Moskewicz M.W., Ashraf, K., Dally,
W.J., and Keutzer, K. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and < 0.5 MB model size. In
arXiv preprint arXiv:1602.07360, 2016.

Kingma, D.P. and Ba, J. Adam: A method for stochastic
optimization. In arXiv preprint arXiv:1412.6980, 2014.

MacQueen, J. Some methods for classification and analy-
sis of multivariate observations. In Proceedings of the
fifth Berkeley symposium on Mathematical Statistics and
Probability, pp. 281–297, 1967.

Noh, H., Hong, S., and Han, B. Learning deconvolution
network for semantic segmentation. In Proceedings of
the IEEE International Conference on Computer Vision,
pp. 1520–1528, 2015.

Poco, J. and Heer, J. Reverse engineering visualizations:
Recovering visual encodings from chart images. In Com-
puter Graphics Forum, pp. 353–363, 2017.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu-
tional networks for biomedical image segmentation. In
International Conference on Medical Image Computing
and Computer-assisted Intervention, pp. 234–241, 2015.

Savva, M., Kong, N., Chhajta, A., Fei-Fei, L., Agrawala, M.,
and Heer, J. Revision: Automated classification, analysis
and redesign of chart images. In Proceedings of the 24th
Annual ACM Symposium on User Interface Software and
Technology, pp. 393–402, 2011.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In Interna-
tional Conference on Learning Representations, 2012.

Stewart, R., Andriluka M. and Ng, A.Y. End-to-end people
detection in crowded scenes. In Computer Vision and
Pattern Recognition, pp. 2325–2333, 2016.

Zhou, Y. and Tan, C.L. Hough-based model for recognizing
bar charts in document images. In Document Recognition
and Retrieval VIII, pp. 333–341, 2000.

