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The airline crew scheduling problem is to find a set of crew itineraries or pairings that 
minimize the crew cost. The problem is modeled as the set partitioning problem max{cx:Ax=1, x 
binary}, where cj is the cost of pairing j and aij is 1 if pairing j covers flight i. The problem is 
computationally hard due to the large number of variables, complex pairing feasibility rules and 
nonlinear costs. All existing approaches to airline crew scheduling use the planned cost of a 
pairing, which is a nonlinear function of the sequence of legs flown by the pairing. These models 
assume that any crew schedule may be flown as planned, and that the operational cost of a crew 
schedule is its planned cost.  In fact, delays and disruptions are pervasive, and airlines are rarely 
able to operate all the flight legs. The operational cost of a crew schedule depends on these 
stochastic events since a flight delay results in an increased pairing cost and potentially into 
calling on duty a reserve crew. For large fleets the operational cost may be eight to ten times 
larger than the planning cost. Current solutions produce low planning cost by using many short 
connections that are vulnerable to disruptions. This fact clearly calls for solutions in the planning 
stage that are more robust, i.e. solutions that can produce lower cost in operations. The robust 
airline crew scheduling problem is to find crew schedules that are not necessarily optimal in 
planning, but perform well in operations. . 

The airline industry is currently under pressure to improve its on-time performance. The 
number of delayed and cancelled flights has dramatically increased since 1995, e.g. the number 
of delayed flights has increased by 11%. The situation got even worse during Summer 2000 
when no U.S. airline had an on-time performance better than 75%.  These facts call for robust 
solutions and for a divergence from the traditional thinking that an airline will operate as 
planned. We believe that our research is one of the first attempts in this direction.   

Solving the crew scheduling problem in planning is an involved and time consuming 
process. Finding a crew schedule that minimizes the expected operational cost is even harder, 
since it would involve solving a multi-stage stochastic optimization problem with an enormous 
state and action space. We give two, possibly complementary, heuristic approaches for finding 



robust crew schedules. In the first one [2] we find an approximate expected cost of each pairing, 
and then we solve the traditional crew scheduling problem by using these costs. The second 
approach considers crews that can be swapped in operations. This approach also gives the airline 
flexibility in canceling flights since it produces several crews that can in operations cover the 
same flight. 

In studying robust crew scheduling, it is necessary to evaluate schedules by simulation. We 
use SimAir [1] to evaluate the operational performance of various crew schedules.  Recovery is 
the procedure in operations that reschedules aircraft and crews, and it reroutes passengers. 
SimAir takes as input a recovery procedure, a flight schedule, a crew schedule and delay 
distributions, and simulates many days of airline operations. It calculates the average operational 
crew cost, average on-time performance, the number of passengers who miss connections, etc. 

The first approach relies on the underlying recovery procedure when evaluating the expected 
cost of a pairing. The recovery procedure affects the operational cost and therefore it should be 
taken into account in robust crew schedules. In operations crews share resources such as planes, 
gates, passengers and flight attendants.  Furthermore, some recovery techniques allow crews to 
fly legs to which they were not originally assigned.  Such recovery methods create interactions 
between pairings and therefore it is extremely difficult to compute an exact expected cost of a 
pairing. We make two assumptions in estimating the expected pairing cost. The first one is that 
planes, passengers and flight attendants are always available, and the second assumption requires 
that in response to a disruption, a flight is delayed until the scheduled departure time has passed 
and the crew is available.  In other words, we ignore the crew costs that arise from the interaction 
among pairings and we also prescribe a recovery method that pushes back the departure of any 
flight if its scheduled crew is not available. These two assumptions related to the recovery 
procedure are not satisfied in practice. The expected cost of each pairing under these 
assumptions is estimated through a simulation. In contrast to SimAir, this simulation considers 
only the pairing in question. This procedure simulates at least some minimum number of days of 
daily operations, and terminates when either a maximum number of days is considered or the 
confidence interval is sufficiently small.   

Let c'j be the expected cost of pairing j from the simulation. Next we solve max{c'x:Ax=1, x 
binary} to obtain our crew scheduling solution. For three fleets from a major domestic carrier, 
we considered the crew schedule obtained using the expected cost of each pairing and the crew 
schedule found using the planned cost of each pairing, and then we computed their respective 
operational cost with SimAir. We found that the schedules obtained by using the expected 
pairing cost have lower operational costs than the crew schedules found using the planned 
pairing cost. To measure the impact of the two assumptions we determined how much of the 
operational cost increase was due to the interaction among pairings.  For all six crew schedules, 
the cost due to these interactions ranged from 4% to 11 % of the total operational cost increase. 
In other words, our assumptions left only a small portion of the operational cost increase 
unexplained. 

In our second approach we present a model that addresses robustness by considering crews 
that can be swapped in operations. There is a minimum required connection time between any 
two flights in the same pairing. We add to the traditional crew scheduling model the second 
objective of maximizing the number of move-up crews. Given a crew c2 covering a flight i, a 
move-up crew c1 is a crew that is ready to fly at the departure time of flight i, see Figure 1. Such 



a crew can, in case of a delay of the inbound flight i� of crew c2, cover flight i. The two crews 
can be swapped in operations. In addition, move-up crews give the airline the flexibility to 
choose either to cancel flight i or the flight j� of the move-up crew since the move-up crew c1 can 
cover either of the two flights. To capture the objective of maximizing the number of move-up 
crews the traditional set partitioning model has to be extended with additional variables and 
constraints. Since it is desirable that a move-up crew c1 originates from the same crew base as 
crew c2 and that it has the same number of days till the end of the pairing, we must record the 
crew base of the pairing covering flight i and we must have information on the number of days 
till the end of the pairing. These two facts lead to additional variables and constraints. However a 
large portion of the model has the same number of nonzeros as the traditional set partitioning 
model and therefore it should not be substantially more difficult to solve.  

The computational results on a small fleet have shown that solutions from such a model 
yield a much larger number of move-up crews and are more robust. Larger fleets have to be 
solved with a Lagrangian decomposition or resource decomposition approach. In a Lagrangian 
decomposition approach we relax the constraints that count the number of move-up crews and 
the resulting problem is a variant of set partitioning. The resource decomposition approach 
solves the problem by assuming that the crew base of the pairing covering each leg is known and 
the number of days till the end of the pairing is known as well. It then iteratively changes this 
given information in such a way that we get solutions with better objective values. Branch-and-
price heuristics are also an alternative since we have developed a column generation scheme that 
is not more complicated than the one for the traditional crew scheduling problem. These three 
methodologies are currently under investigation.  
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