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1. Introduction 
Airline business processes related to tactical planning consist of schedule planning, fleeting, 
aircraft rotation, and crew pairing (see e.g. Klabjan [10]). In schedule planning, a set of flights 
with specific departure and arrival times is constructed. Next is fleeting, which assigns an 
equipment type to each individual flight. The objective of the fleet assignment model (FAM) is to 
maximize profit subject to the number of available aircraft and other operational constraints. The 
problems that follow decompose based on the fleeting solution, i.e. there is a problem for every 
equipment type. The aircraft rotation problem is to find a set of generic aircraft routes that 
satisfy maintenance requirements. The crew pairing (CP) optimization follows. In crew pairing a 
set of crew itineraries or pairings is constructed. The goal is to minimize the crew cost and each 
flight must be cover by exactly one pairing. A few weeks before the day of operations, the actual 
tail numbers are assigned to each flight and monthly crew rosters or bidlines are assigned to 
every individual crew member. Throughout tactical planning, revenue management related 
processes match demand with supply, which is the sit capacity of a given equipment type. 
 

At present, each one of these problems is modeled independently of the remaining problems 
even though there is a clear interaction between them. Basically, the output of one stage is the 
input to the next stage. Recently attempts have been made to integrate planning stages. Barnhart 
et al. [1] present a model that to some extent integrates FAM and crew pairing. They consider 
duties and not pairings in long-haul operations. Barnhart et al. [2] propose a model for 
integrating FAM and aircraft rotation. Cordeau et al. [6], Barnhart et al. [3], and Klabjan et al. 
[9] present models for integrated aircraft rotation and crew pairing. Similar integration efforts 
have been undertaken in mass transit scheduling by Huisman et al. [8]. 

We propose a model that considers fleeting, aircraft rotation, and crew pairing 
simultaneously. Pairings are modeled explicitly and the rotation problem is captured by the plane 
count constraints from Klabjan et al. [9]. Thus in absence of maintenance requirements, our 
model completely integrates these three stages. The model is solved by a combination of 
Lagrangian decomposition and column generation. The latter is used to price out favorable 
pairings. The main contributions of our work are in the model itself and the novel solution 
methodology for solving it. The pricing problem is solved by constrained shortest path, where 
additional labels are required to capture different equipment types. In Section 2 we present the 
model. Section 3 outlines the solution methodology. Finally, in Section 4 we present preliminary 
computational experiments.     

 
 

2. The Model 
We start by describing the underlying network required for model description. Consider a station 
o. An activity or event presents either a landing or a takeoff event. For the departure of flight l, 
let tl be the departure time. For the arrival of flight l, let tl be the arrival time plus the minimum 
aircraft turn time mt, called also the ready time. The ready-time-space network (RTN) has a node 
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(o,s) for every station o and every activity s at this station. There is a flight arc between every 
departure event and arrival event of the same flight. For every station o we order the activities 
based on tl, i.e. t1 ≤ t2 ≤ ··· ≤  tn , where n is the number of activities at the station. The network 
has a ground arc g = ((o,si), (o,si+1)) for i=1,2,..,n. There is a wraparound arc between the first 
and the last nodes of the time horizon. The set of all ground arcs is denoted by G. The ground arc 
time interval is the time in between the two activities that define the ground arc. 

 
 

The traditional leg-based FAM is to find an optimum fleeting subject to the assignment 
constraints (each flight assigned to a fleet), flow balance (every aircraft that lands must take off), 
and the plane count constraints (not to use more aircraft than there are available). The traditional 
stand-alone CP problem is modeled as the set partitioning problem, where each binary variable 
corresponds to a pairing p. The idea behind the integrated model is to assign pairings to fleets, 
which requires expanding the crew pairing variables and to link them with the fleet assignment 
variables.   

 

Our model has three types of variables. The FAM related variables are the fleet assignment 
variables x and the ground arc variables z. For each flight arc l and each equipment type f, xfl is 1 
if flight l is assigned the equipment type f. The nonnegative variable zgf counts the number of 
planes on the ground of equipment type f during the ground arc g time interval. Let MD be a 
fixed time, which corresponds to a time with low activity at any station, e.g. 3 am.  

In our integrated model, we use the aforementioned FAM constraints. In order to capture 
pairings within fleeting, we modify the pairing variables to yfp, where p is a pairing covering any 
subset of flights among all the flights in the schedule and f is a fleet index. yfp is 1 if pairing p is 
assigned to fleet f. The fleet-pairing linking constraints must model that a pairing p assigned to 
fleet f covers flight l only if l is assigned to the same fleet f (determined by the corresponding x 
variable).   

 

So far we have neglected the aircraft rotation issue. In traditional crew pairing, pairings are 
generated based on the minimum sit connection time ms, unless the crew follows the aircraft turn 
(see Barnhart et al. [4] for details on crew scheduling). It has been shown by Klabjan et al. [9] 
that by reducing ms, additional pairings become feasible, which results into lower crew cost. We 
use the approach from Klabjan et al. [9] to incorporate routing constraints. In the absence of 
maintenance constraints, they show that to integrate aircraft rotation and crew pairing it suffices 
to add the plane count constraints to the set partitioning formulation of crew pairing. Suppose we 
consider pairings with the minimum sit time equal to mt. Pairings from a solution with a 
connection shorter than ms imply a plane turn. Such connections are called forced turns. A set of 
forced turns can be extended into a plane count feasible rotation if and only if the number of 
planes on the ground at any time imposed by the forced turns does not exceed the plane count 
obtained from the corresponding ground arc value in the FAM solution. The plane count 
constraints model this relationship. In order to embed this into our integrated model, we have to 
observe that the ground arc value now corresponds to a decision variable and is not a fixed value. 
A technical difficulty is the fact that the RTN uses ready times however pairings are based on the 
actual arrival times.  

 

Let the actual-time-space network (ATN) be defined in the same way as RTN except that for 
each arrival of flight l, tl is the actual arrival time la of leg l. The set of all ground arcs in ATN is 
denoted by G' and the ground arcs are denoted by g'. Essential ground arcs are those ground 
arcs, which are defined by a departure followed by an arrival. Plane count constraints associated 
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with non-essential ground arcs are redundant (for proof see Klabjan et al. [9]). Let E(G') ⊂ G' be 
the set of essential ground arcs.  

 

Let P be the set of all pairings covering any subset of legs in the flight schedule and with the 
minimum sit connection time equal to mt. Let Pg' be the set of pairings, which have a forced turn 
that includes g'. The plane count constraints from Klabjan et al. [9] read 

),(GEgby g
Pp

p
g

′∈′≤ ′
∈
∑

′

 

where, bg' is the number of aircraft on the ground in the time interval defined by ground arc g'.  
 

It remains to be seen how to convert these constraints into a fleet based setting, i.e. we have 
to link bg' with the ground arc variables z. For each g' ∈ E(G'), there exists a corresponding 
ground arc mg' in RTN. Note that g' is defined by the arrival of a leg l. This ground arc mg' is 
defined by the arrival leg l’s ready time and an earlier activity, see Figure 1. Let dep(g') be the 
set of all flights that depart in the time interval [la , la + mt). We replace the right hand side of the 
plane count constraints by 
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This expression states that the value of the ground arc corresponding to an arrival event of leg l 
in ATN is equal to the ground arc value of the same flight in RTN plus the number of departures 
in the set dep(g'). 
 

The integrated model reads  
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Constraints (1), (2) and (3) are the standard FAM constraints, (4) assures that a pairing is 
assigned to a fleet if and only if all the legs in the pairing are assigned to the same fleet and (5) 
are the plane count constraints.  
 

In our implementation we have also modeled constraints to prevent crew double overnights 
(Clarke et al. [5]). We add constraints to FAM using legal rest arcs and mid-day breakouts such 
that the fleeting obtained is more “crew friendly”.  

 

3. Solution Methodology  
Our approach to solve the model is by a combination of Lagrangian decomposition and column 
generation. First we approximate the model by changing the partitioning requirement (4) into 
covering constraints. Instead of considering all pairings at once, we generate a subset of pairings. 
The corresponding restricted master problem is then solved by Lagrangian decomposition after 
relaxing constraints (4) and (5). The obtained Lagrangian multipliers are then used to find new 
pairings, which are added to the restricted master problem.  
 

The solution methodology is next detailed step-wise. 
1. Initialization: Solve FAM, aircraft rotation and CP using the traditional approach. We use the 

fleeting obtained from FAM and the aircraft routes to solve the CP problem. The pairings 
obtained from CP are used as the initial set of columns in the restricted master problem. 

2. Computing Lagrangian multipliers (major iteration): Solve the Lagrangian dual problem with 
the current set of columns. This gives us a set of Lagrangian multipliers. Note that after 
relaxing (4) and (5), the resulting model is the traditional FAM model. 

3. Pricing: Use the Lagrangian multipliers to price out favorable pairings using the constrained 
shortest path algorithm (see e.g. Desaulniers et al. [7]). Formally, we have to solve 

where λ’s are obtained from (4) and µ’s from (5). It is easy to see that this can be reduced to 
the constrained shortest path problem, where for each fleet we have to introduce a new label 
to capture the dependency of λ’s and µ’s on fleet type. Thus the number of required labels 
becomes k+|F|, where k is the number of all required labels to capture pairing cost and 
feasibility rules. In addition, connection arcs in the pairing timeline network (see e.g. 
Barnhart et al. [4]) get a weight, Figure 2.   
 
 
 
 
 
 

 
 

                

 

                 Figure 1: Timeline conversion                Figure 2: Connection arc weights for |F| = 2                
4. Iterate: Add the obtained pairings and go to step 2. If no additional pairings are generated, go 

to step 5. 
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5. Obtaining the final solution: The final solution is obtained by using the produced fleeting.  
66..  Aircraft routes and crew pairings are obtained using the traditional approach.  
 

4. Computational Experiments 
The computing environment consists of a cluster of 27 dual 900 Mhz Itanium 2 processors 
running Linux operating system and g++ development environment. We tested the integrated 
model on four data sets. Real world data from a major US carrier were used. The carrier has a 
heavy hub-and-spoke network structure with five crew bases. Crew feasibility rules and cost 
function comply with airline rules. We consider daily problems and the presented computational 
results do not include the plane count constraints. For discretionary purposes, the real profit 
numbers are fudged but the presented numbers show correct proportions and magnitudes.  
 

We control tractability in the following way. First FAM is solved over all fleets and flights. 
Next we pick a subset of 2 or 3 fleets and the corresponding flights. The integrated model is then 
solved on this subset of fleets and flights. In other words, instead of considering all fleets at once, 
we can consider subsets of fleets. 

 

The profits obtained from the sequential versus the integrated approach are shown in Table 
1. Profit here is defined as the combined profit resulting from FAM and CP, i.e. for the 
integrated approach it corresponds to the objective value.  

 
 

Test Case Traditional Approach Integrated Approach  
Fleets Flights Profit ($) Profit ($) Increase in Profit ($)

3 250 598,940 637,367 38,427 

2 215 640,276 681,258 40,982 

2 205 551,412 561,932 10,520 

2 145 232,814 265,725 32,911 
 

Table 1: Profits 
In the last column we show the increase in profit obtained by using the integrated approach 

instead of the sequential method. It is worth noting that most of the increased profit does not 
come from diminishing revenue in FAM but it mostly comes from the reduced crew cost. The 
increased profits shown are for a daily activity of the airline. For an entire year, these additional 
profits are in the range of several millions. 

For the instance with 3 fleets, Figure 3 shows the improvement in the objective value after 
every major iteration. The computation times for each major iteration were approximately one 
hour, where about half of that time is spent in subgradient optimization and the rest in pricing. 

 

5. Future Directions 
 

First we need to embed the plane count constraints in our implementation. This would make our 
computational experiments much more realistic. We see potential improvement in the running 
time by using the bundle algorithms instead of the vanilla subgradient optimization.  

On the algorithmic front, we plan to test two alternative methodologies. The first one is 
Benders decomposition, where we relax integrality of pairing variables. Based on the incumbent 
fleeting solutions, for each fleet we solve the crew pairing LP relaxation and add Benders cuts to 
fleeting. Another algorithm is aligned with the existing one. We propose to directly solve the 
Lagrangian dual. In every subgradient or bundle iteration, we price out all pairings to adjust the 
current iterate. 
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       Figure 3: Objective value improvements   
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