
1 
 

TRUTH VALIDATION WITH EVIDENCE 

Papis Wongchaisuwat and Diego Klabjan 

Department of Industrial Engineering and Management Sciences, 

Northwestern University, Evanston, IL 

Abstract 

In the modern era, abundant information is easily accessible from various sources, however only 

a few of these sources are reliable as they mostly contain unverified contents. We develop a system 

to validate the truthfulness of a given statement together with underlying evidence. The proposed 

system provides supporting evidence when the statement is tagged as false. Our work relies on an 

inference method on a knowledge graph (KG) to identify the truthfulness of statements. In order 

to extract the evidence of falseness, the proposed algorithm takes into account combined 

knowledge from KG and ontologies. The system shows very good results as it provides valid and 

concise evidence. The quality of KG plays a role in the performance of the inference method which 

explicitly affects the performance of our evidence-extracting algorithm. 

 

1.INTRODUCTION 

Accessing information online is expanding tremendously in various domains as reported in a study 

by the Pew Internet Project’s research (Anderson and Perrin, 2016). According to the study, offline 
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population in the U.S. has declined significantly since 2000 to the extent that in 2016 only 13% of 

U.S. adults did not use the internet.  Internet usage gives people an opportunity to extensively seek 

information online; however, posted contents available on web pages are not necessarily reliable. 

As online information spreads rapidly, its quality is considerably crucial. Misinformation 

potentially leads to serious consequences significantly affecting internet users. The main 

motivation of our study is to validate the truthfulness of textual information obtained from various 

sources as well as to provide supporting evidence. 

Humans can identify the truthfulness of a statement particularly for common fact cases. 

Nevertheless, manually inspecting statements is a time-consuming process that becomes 

impossible for large-scale data. Determining the truthfulness of each statement in an automated 

fashion is a promising alternative solution. This problem is highly challenging due to the lack of 

an encompassing and comprehensive corpora of all true statements. Despite of its challenges, it 

draws a lot of attention from prior studies to develop truthfulness-validating systems. The 

previously proposed systems mainly rely on web search engines to verify whether statements are 

true or false.  Additional information regarding sources which statements are extracted from is also 

taken into account in most algorithms.   

In comparison to these truthfulness-validating systems, our work relies on knowledge from 

reliable sources rather than web search engines. Statements gathered from reliable sources have 

various length and may be verbose and thus we represent each of these statements as triplets 

consisting of a subject entity, an object entity, and their relation. These triplets capture the main 

contents embedded within statements. A Knowledge Graph (KG) is then constructed from these 

triplets where nodes are entities and arcs represent the relationships between nodes. In our 

algorithm, a relation extraction method is used to extract triplets from the statement we aim to 
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verify the truthfulness of. We call this statement and its corresponding triplets as “a lay statement” 

and “lay triplets.” The truthfulness of each lay triplet is verified based on an inference method 

corresponding to KG constructed from reliable sources.  

After identifying the truthfulness of lay triplets, our algorithm additionally provides 

supporting evidence. Determining evidence for true triplets is relatively straightforward compared 

to identifying the evidence of falseness. Considering a true triplet, a supporting evidence is a set 

of paths between the subject and object entities inferred from KG associated with reliable sources. 

On the other hand, it is unclear how to obtain evidence for false triplets. Reasonable evidence for 

each false triplet should be a collection of relevant triplets extracted from KG under a specific 

condition. We explain our key idea with an example. Consider the false triplet (“property”, 

“has_a”, “space rocket”). We find in KG all triplets (“property”, “has_a”, �̅�). In this case, a set of 

all possible candidates �̅� denoted as �̅� can be {“bedroom,” “kitchen,” “bathroom,” “roof,” 

“garden,” “shed,” “swimming pool”}. A long proof of evidence can be this candidate evidence set 

and the fact that “space rocket” ∉  �̅�. The drawback here is that the size of �̅� can be very large. 

Summarizing the candidate collection into a concise but meaningful evidence set is challenging 

especially when the size of the collection is large.  

In order to overcome this difficulty, we develop a novel algorithm to extract supporting 

evidence from concepts in ontologies. For any false triplet, we rely on the idea of representing 

each candidate with its broader concepts in ontologies given that the false triplet concept is not 

part of these broader concepts. Considering our example, an ontology could provide us with the 

fact that the first four terms in �̅� are related to “house” and the remaining terms correspond to 

“backyard.” Finally, as an evidence we provide (“property”, “has_a”, “house”) and (“property”, 
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“has_a”, “backyard”) and the facts “space rocket” is not “house,” “space rocket” is not “backyard.” 

Given the false triplet and its candidates, matching concepts in ontologies are considered. Then, 

we gather a set of potential evidence which includes candidate concepts and their broader concepts 

(satisfying some conditions). Evidence of various levels of granularity is constructed by a graph 

based algorithm on the subsumption tree of the ontology. We select an optimal collection of 

evidence from the potential evidence set. The optimized set of evidence is the smallest sub-

collection of the potential evidence set under the assumption that all candidates �̅�  have to be 

covered by themselves or their broader concepts which leads to a set covering problem. 

In the rest of the paper, we consider the following running example. Given a false triplet 

(“Google”, “OfficeLocationInUS”, “Minneapolis”), we generate the evidence of falseness based 

on its relevant triplets from KG. The relevant triplets retrieved from KG have the 

“OfficeLocationInUS” relation associated with the “Google” or “Minneapolis” entity. In 

particular, we first find locations of Google’s offices such as “Atlanta,” “Chicago,” “Los Angeles,” 

“Miami,” “Mountain View,” etc. Also, companies whose office is located in Minneapolis such as 

“Target Corporation,” “U.S. Bancorp,” “Xcel Energy” are considered. These retrieved entities are 

used as the falseness evidence as we claim that “Minneapolis” is not part of all retrieved locations 

and similarly “Google” is not part of the set of retrieved companies. We rely on knowledge from 

ontologies to generate a concise set of evidence. For example, an ontology about geography is 

used to state that “Google” has offices in many states across U.S. while “Minneapolis” is located 

in Minnesota which is not one of these states.  

Our main contribution is to provide supporting evidence for a given lay triplet after its 

truthfulness has been identified. If the triplet is true, then paths in KG provide evidence, however 

if false, then it is much more challenging to come up with the concept of evidence. To the best of 
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our knowledge, no prior work provided supporting evidence of any given false lay statement by 

taking into account KG and ontologies. Our proposed system which combines knowledge from 

ontologies with predicate triplets from a KG contributes in this space. We specifically focus on 

selecting a complete set of falseness evidence to be as concise as possible. Also, our system relies 

mainly on both KG and ontologies which are constructed from reliable sources instead of 

knowledge from unverified web pages.   

Our algorithm to provide supporting evidence along with the truthfulness of the lay triplet 

is applicable in various domains such as politics, sciences, news, and health care. Our work focuses 

on the health care domain as a case study mainly because of abundant health-related information 

available online and the importance of information quality. Specifically, a large number of 

medically related web sites are easily accessible online but only half of these sites have content 

reviewed by professionals (Gottleb, 2000). In addition, distorted information related to health 

conditions potentially causes devastating effects.  

We summarize the literature in Section 2. In Section 3, we describe relevant background 

information, problem definitions, and thoroughly discuss our main algorithm. Data preparation 

and results of the algorithm based on our case study are reported in Section 4 while further 

discussions are provided in Section 5. Conclusion and future work are stated in Section 6. 

 

2.RELATED WORK 

Our algorithm verifies the truthfulness of any lay statement based on a KG thus we survey prior 

work in truth discovery-related fields. Substantial work exists in truth discovery for determining 
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the veracity of multi-source data. In particular, the truth discovery problem aims to identify 

whether assertions claimed by multiple sources are true or false. Reliability of sources is also 

determined. Waguih and Berti (Waguih and Berti-Equille, 2014) provide an extensive review and 

an in-depth evaluation of 12 truth discovery algorithms. Additional truth discovery methods are 

proposed varying in many aspects to jointly estimate source reliability and truth statements (Li et 

al., 2014; Ma et al., 2015; Meng et al., 2015; Mukherjee et al., 2014; Xiao et al., 2016; Zhao et al., 

2014; Zhi et al., 2015). These methods rely on a common assumption that information provided 

by a reliable source tends to be more trustworthy and the source providing trustworthy information 

is likely to be more reliable.  

TruthOrRumor, a web-based truth judgment system, determines the truth based on results 

from a search engine (Liu et al., 2014). It considers reliability of data sources based on historical 

records and the copying relationship. Also, it implements currency determination techniques to 

take into account out-of-date statements. Wang et al. (2013) propose an algorithm to determine the 

truthfulness of a given statement based on a combination of a support score and credibility ranking 

value. While the support score measures how a web search result supports the statement, the 

credibility ranking computes the reliability of web pages. The t-verifier system (Li et al., 2011) 

requires users to pre-determine specific parts of statements to be verified. These systems take into 

account additional information of a data set or its source when determining the truthfulness of the 

statement.  

 Yin and Tan aim to distinguish true from false statements given a small set of ground truth 

facts (Yin and Tan, 2011). A graph optimization method is used in (Yin and Tan, 2011) where 

each node in the graph represents a statement and each edge connects a pair of relevant statements. 

Statements in the set of ground truth facts are labeled as 1. The algorithm assigns a truthfulness 
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score ranging from -1 to 1 to each unlabeled statement.  The scores of unlabeled statements not 

directly related to any labeled statements are possibly close to 0.  This implies that the truthfulness 

of these statements remains undefined. Yamamoto and Tanaka propose a system to determine the 

credibility of a lay statement and extract aspects necessary to verify the factual validity from web 

pages (Yamamoto and Tanaka, 2009) whenever the statement is true. In order to estimate validity 

of a lay statement, the system collects comparative fact candidates using a web search engine. Fact 

candidates are sentences retrieved from the search engine that match a pattern specified by the lay 

statement. Then the validity of each candidate is computed based on the relation between the 

pattern and the entity contained in the candidate.  

 In comparison to the previous work, a focus of our algorithm is to provide concise but 

reliable supporting evidence in addition to identifying the truthfulness of a lay statement. The 

algorithm proposed by Yamamoto and Tanaka is similar to our system when the statement is true. 

In particular, both (Yamamoto and Tanaka, 2009) and our work use comparative candidate facts 

in order to assess the credibility of any lay statement. Instead of using web search engines, we rely 

on an inference method with respect to a KG to collect candidate triplets. A truthfulness score for 

the lay triplet is computed and compared against scores from those candidate triplets in order to 

determine whether the lay triplet is true or false. None of these works provide evidence of false 

statements which is the main contribution of our work. 

 

3.METHODOLOGY 

Content commonly found in textual documents especially online texts can be unreliable. In this 

study, we aim to identify whether a given lay statement is true or false and provide supporting 
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evidence. We collect lay statements from many web pages publicly available online. We use a 

relation extraction algorithm (Rindflesch and Fiszman, 2003) to extract triplets consisting of 

subject entity 𝑠, object entity 𝑜 and their relation 𝑟(𝑠, 𝑜) embedded within lay statements. Our 

problem is scoped down to identifying the truthfulness of triplets representing the original lay 

statements. Knowledge obtained from reliable sources is an important factor in determining the 

trustworthiness of the lay triplets. We assure that the reliable resources are structured in a form of 

triplets (𝑠, 𝑟, 𝑜) which are used to construct a knowledge graph. Nodes and edges in KG represent 

entities and their relations, respectively. We write (𝑠, 𝑟, 𝑜) ∈ KG to mean that 𝑠, 𝑜 are nodes in KG 

and 𝑟 corresponds to an edge between them. 

An evidence of falseness is obtained based on knowledge from various ontologies in related 

domains. In order to properly discuss falseness evidence and the main algorithm, we first provide 

a brief overview of a knowledge base (KB) or ontology and relevant background information. 

According to terminological knowledge, elementary descriptions are concept names (atomic 

concepts) and role names (atomic roles). Concept descriptions are built from concept and role 

names with concept and role constructors. All concept names and concept descriptions are 

generally considered as concepts. A deeper knowledge of ontologies can be obtained from (Franz 

et al., 2003). 

Let KB = (𝒯, 𝒜) be a knowledge base with 𝒯 being a TBox and 𝒜 an ABox as defined in 

(Franz et al., 2003). An interpretation ℐ = (∆ℐ ,∙ℐ) is a model of KB corresponding to an ontology. 

We assume that KB is consistent. We assume that for each (𝑠, 𝑟, 𝑜) ∈ KG there are concepts 𝐷, 𝐸 in 

KB such that  𝑠 = 𝐷ℐ, 𝑜 = 𝐸ℐ.  We denote 𝑠 = 𝐷ℐ if and only if 𝐷 = 𝐶(𝑠), where 𝐷 is a concept, 

i.e., given entity 𝑠 ∈ KG, 𝐶(𝑠) is the corresponding concept. We define special concepts T and ⊥ 
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as top (universal) and bottom (empty) concepts. Concept constructors such as an intersection ⊓, a 

union ⊔, and a negation ¬ combined with concept names are used to construct other concepts. Let 

𝑉𝐶 be the set of all concept names. We also define 𝑎 ⋢ 𝑏 for concepts 𝑎 and 𝑏 if and only if ∃𝑦, 𝑦 ≠

⊥  where y is a concept such that 𝑦 ⊑ 𝑎 ⊓ ¬𝑏 .  

A KB classification algorithm computes a partial order ≤ on a set of concept names with 

respect to the subsumption relationship, that is, 𝐴 ≤ 𝐵 ⟺ 𝐴 ⊑ 𝐵 (𝐴 sub-concept of 𝐵) for 

concept names 𝐴 and 𝐵. The classification algorithm incrementally constructs a graph 

representation in a form of a direct acyclic graph, called the subsumption tree, of the partial order 

induced by KB (Baader et al., 1994). Note that in this paper we use the term “tree” to use the term 

consistent with past literature. The underlying structure is actually an acyclic graph. Given 𝑋 as a 

set of concepts, computing the representation of this order is equivalent to identifying the 

precedence relation ≺ on 𝑋, i.e., 𝑎 ≺ 𝑏 for 𝑎, 𝑏 ∈ 𝑋 if and only if 𝑎 ⊑ 𝑏 and if there exists 𝑧 ∈

𝑋 such that 𝑎 ⊑ 𝑧 ⊑ 𝑏, then 𝑧 = 𝑎 or 𝑧 = 𝑏.  

Given the precedence relation ≺𝑖 for 𝑋𝑖 ⊆ 𝑋, the incremental method defined in (Baader 

et al., 1994) computes ≺𝑖+1 on 𝑋𝑖+1 = 𝑋𝑖 ∪ {c} for some element c ∈ 𝑋 \ 𝑋𝑖. The method consists 

of two main parts which are a top and a bottom search. The top and the bottom search identify sets 

𝑋𝑖 ↓ 𝑐 = {𝑥 ∈ 𝑋𝑖| 𝑐 ⊑ 𝑥  and 𝑐 ⋢ 𝑦  for all 𝑦 ≺𝑖 𝑥, 𝑦 ∈ 𝑋𝑖} and 𝑋𝑖 ↑ 𝑐 = {𝑥 ∈ 𝑋𝑖| 𝑥 ⊑ 𝑐  and 𝑦 ⋢

𝑐  for all 𝑥 ≺𝑖 𝑦, 𝑦 ∈ 𝑋𝑖}. At the 𝑖𝑡ℎ iteration, arcs corresponding to ≺ between 𝑐 and each element 

in 𝑋𝑖 ↓ 𝑐 as well as 𝑐 and each element in 𝑋𝑖 ↑ 𝑐 are added. Also, some existing arcs between 

elements in 𝑋𝑖 ↓ 𝑐 and 𝑋𝑖 ↑ 𝑐 are eliminated. At the end we have 𝑎 ≺ 𝑏 if and only if there is an 

arc in the constructed subsumption tree.  
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Our proposed system is built as a pipeline involving two main steps. We denote by (𝑠, 𝑟, 𝑜) the lay 

statement triplet that requires evidence. 

1. Determining the truthfulness of the triplets: We rely mainly on the inference method 

called the Path Ranking Algorithm (PRA) introduced by Lao et. al. (2011) to verify whether each 

triplet (�̅�, �̅�, �̅�) in KG is true or false. The PRA produces 𝑠𝑐𝑜𝑟𝑒𝑃𝑅𝐴 for every pair of nodes. A PRA 

model is trained at each relation level. Particularly, the PRA model for a relation type �̅� is trained 

to retrieve other nodes which potentially have a relation �̅�(s̅, ∙) given node �̅�. We retrieve �̃� related 

to (s̅, �̅�, �̃�) with 𝑠𝑐𝑜𝑟𝑒𝑃𝑅𝐴(�̃�; s̅) ≥ 𝜀1. All such object candidates �̃� are denoted by  �̅� =   �̅�(s̅).  A 

subject candidate set 𝑆̅ is extracted in a similar way. The triplet (𝑠, 𝑟, 𝑜) is labeled as “True” if 

𝑠𝑐𝑜𝑟𝑒𝑃𝑅𝐴(s; o) ≥ 𝜀2 or 𝑠𝑐𝑜𝑟𝑒𝑃𝑅𝐴(o; s) ≥ 𝜀2, and “False” otherwise. In addition, paths 

corresponding to high PRA scores are provided as supporting evidences of truthfulness if (𝑠, 𝑟, 𝑜) 

is true.  

2. Extracting the evidence of falseness: We now assume that (𝑠, 𝑟, 𝑜) has been labeled as 

False in step 1, and either 𝑠 ∉ 𝑆̅ for extracting a subject evidence of falseness or 𝑜 ∉ �̅� for 

extracting an object evidence of falseness. Set �̅� is the set of all objects that verify 𝑠 and 𝑟. If  

(𝑠, 𝑟, 𝑜) is false, then it has to be the case that 𝑜 ∉ �̅�  as otherwise (𝑠, 𝑟, 𝑜) would be true. Same 

holds for 𝑆̅. We only discuss in detail the object evidence while the subject evidence is defined 

similarly.  

Our validation for false statements do not rely on PRA, i.e. any inference algorithm on KG 

can be used. We found PRA to work best on our data. We next formally define evidence for false 

triplets. Recall that �̅� is the set of all objects �̅� for which (𝑠, 𝑟, �̅�) ∈ KG. It is important that these 

are all. In essence as a proof of falseness we can provide �̅� together with the fact o ∉ �̅�. However, 
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this in many cases would provide a very long evidence since |�̅�| is typically large. Instead we want 

to “aggregate” �̅� into some smaller set 𝛼 and still claim that o ∉ 𝛼.  Wrapping these intuitions in 

the ontology formalism yields the following definition.  

Definition 1: An object evidence of falseness is a collection 𝛼 = {𝛼1  , 𝛼2, … , 𝛼𝑘} of concept names 

in KB such that  

1) for each �̅� ∈ �̅� there exists 𝑖 ∈ {1, … , 𝑘} such that 𝐶(�̅�) ⊑ 𝛼𝑖, 

2) there exists a concept 𝑦, 𝑦 ≠⊥  such that 𝑦 ⊑ 𝐶(𝑜)  ⊓ ¬(∐ 𝛼𝑖𝑖 ) for all 𝑖 = 1, … , 𝑘.  

The second condition can be rewritten as 𝐶(𝑜) ⋢ 𝛼1 ⊔ … ⊔ 𝛼𝑘 which in turn is equivalent to 

𝐶(𝑜) ⋢ 𝛼1 and…and 𝐶(𝑜) ⋢ 𝛼𝑘. In words, the second condition is equivalent to the requirement 

that  𝐶(𝑜) is not part of any element in the evidence set 𝛼. The collection 𝛼 is considered as an 

aggregated set of �̅�. We further define “potential evidence” 𝛼𝑖 if there exist object evidence of 

falseness 𝛼 such that 𝛼𝑖 ∈ 𝛼.  

From the definition, �̅� is a set of object candidates having a relation 𝑟(s, �̅�) for the given 

triplet (𝑠, 𝑟, 𝑜). The first requirement in Definition 1 assures that each candidate 𝐶(�̅�) has to be subsumed 

by at least one potential evidence 𝛼𝑖 (𝛼 is an aggregation of all elements in �̅�). As an example, 

letting 𝛼 = �̅�  satisfies the first requirement as each 𝐶(�̅�) for �̅� ∈ �̅� is always subsumed by itself. 

According to the second requirement, concept 𝐶(𝑜) is not subsumed by any potential evidence 𝛼𝑖. 

This ensures that concept 𝐶(𝑜) obtained from the false triplet (𝑠, 𝑟, 𝑜) does not belong to the 

evidence collection 𝛼 (it mimics o ∉ 𝛼). Among all collections 𝛼 we want to find the smallest one 

which is formalized later.  

Referring to the false triplet example (“Google”, “OfficeLocationInUS”, “Minneapolis”), 

we let �̅�  be all object candidates retrieved from KG which have the relation 
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“OfficeLocationInUS” associated with subject “Google.” Given �̅� = {“Ann Arbor,” “Atlanta,” 

“Austin,” “Birmingham,” “Boulder,” “Cambridge,” “Chapel Hill,” “Chicago,” “Irvine,” 

“Kirkland,” “Los Angeles,” “Miami,” “Mountain View,” “New York,” “Pittsburgh,” “Playa 

Vista,” “Reston,” “San Bruno,” “San Francisco,” “Seattle,” “Sunnyvale,” “Washington DC”}, 

selecting 𝛼 = �̅�  satisfies both requirements in Definition 1. The second requirement is satisfied 

as 𝐶(𝑜) associated with 𝑜 = “Minneapolis” is not subsumed by any element in the evidence 

collection 𝛼.  Moreover, the collection {"West region,” “Northeast region,” “South region,” 

“Michigan,” “Illinois”} is an example of a smaller evidence set which satisfies both requirements.  

We propose Algorithm 1 to extract the evidence of falseness as defined in Definition 1. It 

is based on the subsumption tree (originally defined only for concept names 𝑉𝐶) which is expanded 

with negation concepts 𝑉𝑁𝐶 and specific concepts 𝑉𝐹.  The set 𝑉𝑁𝐶 is formally defined as 𝑉𝑁𝐶 = { 

¬𝑣 | 𝑣 ∈ 𝑉𝐶}. Recall that we define 𝑎 ⋢ 𝑏 for concepts 𝑎 and 𝑏 if and only if ∃𝑦, 𝑦 ≠⊥  where y 

is a concept such that 𝑦 ⊑ 𝑎 ⊓ ¬𝑏 which involves ¬𝑏 and mandates 𝑉𝑁𝐶. Even though infinitely 

many concepts can be constructed from concept names and concept constructors, we only focus 

on specific concepts  𝑉𝐹  which ensure the second requirement in Definition 1. A concept 𝑓 ∈ 𝑉𝐹 

corresponds to 𝑓 = 𝑥 ⊓ ¬𝑐 for 𝑐 ∈ 𝑉𝐶 , 𝑥 ∈ 𝑉𝐶 and no proper concept name or concept name 

negation between ⊥ and 𝑓. Algorithm 1 extracts potential evidence by considering nodes along 

paths in the tree which satisfy both requirements in Definition 1. In order for Algorithm 1 to check 

the satisfiability of the requirements, not only 𝑉𝐶 but also both 𝑉𝑁𝐶 and  𝑉𝐹 have to be included in 

the subsumption tree. Hence, the standard tree consisting of concept names 𝑉𝐶 only has to be 

expanded. An algorithm to add 𝑉𝑁𝐶 and  𝑉𝐹 to the existing standard tree is provided in Appendix 

A. The subsumption tree used in Algorithm 1 is of the form 𝒢 = (𝑉𝐶 ∪ 𝑉𝑁𝐶 ∪ 𝑉𝐹, 𝐴) where 𝒢 is a 
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directed acyclic graph with root T (top concept). We also define paths and nodes associated with 

the subsumption tree used in Algorithm 1 as follows. 

Definition 2: 𝑃𝑎𝑡ℎ𝑖𝑗 is a set of all possible paths from node 𝑗 to node 𝑖 in the subsumption tree. 

For 𝑝𝑎𝑡ℎ 𝑃 ∈ 𝑃𝑎𝑡ℎ𝑖T we denote by 𝑃𝑚 the 𝑚𝑡ℎ node in 𝑃  starting from T.  Let 𝑁𝑜𝑑𝑒𝑖𝑗 be the set 

of all nodes along all paths in 𝑃𝑎𝑡ℎ𝑖𝑗 .  

Algorithm 1 (𝑜, �̅�) with 𝒢 = (𝑉𝐶 ∪ 𝑉𝑁𝐶 ∪ 𝑉𝐹, 𝐴):  

 

1 Set 𝑠𝑢𝑝𝐶(𝑜) = ∅ 

2 For each �̅� ∈ �̅�: 

3  Set 𝑠𝑢𝑝𝐶(𝑜 ̅) = ∅ 

4  For each  𝑝𝑎𝑡ℎ 𝑃 ∈ 𝑃𝑎𝑡ℎ𝐶(�̅�)T :   

5   For 𝑚 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃) to 1: 

6    If 𝑃𝑚 ∈ 𝑉𝐶: 

7     Ω𝑚,𝑃 = {𝑦 ∈ 𝑉𝐶 ∪ 𝑉𝑁𝐶| 𝑦 ∈ 𝑁𝑜𝑑𝑒⊥𝐶(𝑜) ∩ 𝑁𝑜𝑑𝑒⊥¬𝑃𝑚
, 𝑦 ≠⊥} 

8     If  Ω𝑚,𝑃 ≠ ∅:    

9      Add 𝑃𝑚 to 𝑠𝑢𝑝𝐶(�̅�) 

10     Else: 

11      Break 

12  𝑠𝑢𝑝𝐶(𝑜) =  𝑠𝑢𝑝𝐶(𝑜) ∪  𝑠𝑢𝑝𝐶(�̅�) 

13 Remove duplicate nodes in 𝑠𝑢𝑝𝐶(𝑜) 

14 Return 𝛼 = SetCover (𝑠𝑢𝑝𝐶(𝑜)) 

 

In Algorithm1, we assume that  ∃𝑦 ∈ 𝑉𝐶 ∪ 𝑉𝑁𝐶 , 𝑦 ≠⊥ such that 𝑦 ⊑ 𝐶(𝑜) ⊓ ¬𝐶(�̅�) for all 

�̅� ∈ �̅� and 𝑜 in KB. This assumption implies that 𝐶(𝑜) cannot be part of 𝐶(�̅�) for an element in 
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�̅�. If 𝐶(𝑜) ⊑ 𝐶(�̅�) for an �̅� ∈ �̅�, then the statement is true. It assures that 𝑠𝑢𝑝𝐶(�̅�) incremented in 

step 9 for each �̅� ∈ �̅� is not empty.  

Algorithm 1 repeats steps 3-11 to compute potential evidence 𝛼i′𝑠 for each �̅� ∈ �̅� and stores 

them in 𝑠𝑢𝑝𝐶(𝑜). All 𝑠𝑢𝑝𝐶(�̅�)′𝑠 are combined in 𝑠𝑢𝑝𝐶(o) according to step 12. The set  𝑠𝑢𝑝𝐶(o) is 

equivalent to the set of all potential evidences. Note that for every 𝑎 ∈ 𝑠𝑢𝑝𝐶(𝑜) there is �̅� such that 

𝑃 ∈ 𝑃𝑎𝑡ℎ𝐶(�̅�)T   contains 𝑎 due to steps 2-12. Algorithm 1 is specifically constructed to ensure that 

every element in 𝑠𝑢𝑝𝐶(o) is one of nodes along at least one path from 𝐶(�̅�) to the root. This implies 

that elements in 𝑠𝑢𝑝𝐶(o) can be considered as broader concepts of candidate evidence �̅� ∈ �̅�. 

The first requirement in Definition 1 requires that any �̅� ∈ �̅� has at least one 

corresponding 𝛼i that subsumes 𝐶(�̅�). Hence, the algorithm considers nodes along all possible 

paths from 𝐶(�̅�) to the root (top concept T) for every �̅� ∈ �̅� in order to extract potential evidence 

 𝛼i. The second requirement in Definition 1 is directly associated with Ω computed and verified in 

steps 7 and 8. Both 𝑉𝑁𝐶 and 𝑉𝐹 in the subsumption tree used in Algorithm 1 are necessary to 

compute Ω, i.e., 𝑉𝑁𝐶 and 𝑉𝐹 guarantee that 𝑦 ∈ 𝑉𝐶 ∪  𝑉𝑁𝐶 ∪  𝑉𝐹. Particularly, Ω𝑚,𝑃 ≠ ∅ implies that 

𝐶(𝑜) ⋢ 𝑃m; therefore, 𝑃m in this case can be considered as potential evidence  𝛼i.  Algorithm 1 

then computes Ω𝑚,𝑃 for each node 𝑃𝑚 ∈  𝑉𝐶  in path 𝑃 ∈ 𝑃𝑎𝑡ℎ𝐶(�̅�)T  corresponding to each �̅� ∈ �̅�. If 

Ω𝑚,𝑃 is not empty, 𝑃𝑚  (considered as potential evidence  𝛼i) is added to 𝑠𝑢𝑝𝐶(�̅�)  in step 9. 

Elements in  𝑠𝑢𝑝𝐶(�̅�)  correspond to nodes in 𝑉𝐶  and thus to concept names. They also correspond 

to potential evidence 𝛼i′𝑠.  Each Ω𝑚,𝑃 computed in Algorithm 1 considers concept names and 

negation of concept names but Definition 1 considers any concept. Algorithm 1 consequently 

provides an approximate evidence set while an exact algorithm is discussed later.  
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Figure 1 illustrates Algorithm 1. The path from 𝐶(𝑜) to the root T is highlighted in blue. 

Nodes along red paths are collected as potential evidence 𝛼i′𝑠  as 𝐶(𝑜) is not subsumed by these 

nodes (Ω corresponding to these nodes are not empty).  

 

Figure 1: Illustration of Algorithm 1 

 

Regarding the run time analysis, the proposed algorithm consists of nested loops in steps 

2, 4 and 5. Let 𝑁 be the number of nodes in 𝒢 and 𝑀 the maximum number of paths between any 

node and the root T. The most outer loop in step 2 considers each element �̅� ∈ �̅� which is O(𝑁) 

while the middle loop in step 4 processes each path 𝑃 ∈ 𝑃𝑎𝑡ℎ𝐶(�̅�)T  corresponding to �̅� in step 2, 

i.e., O(𝑀). Also, each node along all paths from 𝐶(�̅�) to the root is considered in the most inner 

loop in step 5, which is O(𝑁). Computing Ω𝑚,𝑃 for each node 𝑃𝑚 requires O(𝑁2). Hence, the 

computational complexity of Algorithm 1 is O(𝑁4 ∙ 𝑀). Algorithm 1 can be sped up by using 

bisection. The more efficient version is provided in Appendix B. 

Referring to the running example, we let 𝑜 = “Minneapolis” and consider �̅� = “Mountain 

View.” We consider paths from 𝐶(“Mountain View”) to the root as well as all nodes along these 
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paths. Node 𝑃𝑚 =  𝐶(“Mountain View”) is added to 𝑠𝑢𝑝𝐶(�̅�) as 𝑁𝑜𝑑𝑒⊥𝐶("Minneapolis") ∩ 

𝑁𝑜𝑑𝑒⊥¬𝐶("Mountain View")
 is not empty. Particularly, there exists a node which belongs to both sets, 

i.e., 𝐶("Minneapolis") ∈ 𝑁𝑜𝑑𝑒⊥𝐶("Minneapolis") and 𝐶("Minneapolis") ∈ 𝑁𝑜𝑑𝑒⊥¬𝐶("Mountain View")
. 

According to a natural geography ontology associated with the example, 𝑠𝑢𝑝𝐶(�̅�) = {𝐶(“Mountain 

View”), 𝐶(“Santa Clara”), 𝐶(“California”), 𝐶(“West region”)} is retrieved. Note that 𝐶(“USA”) 

is not in 𝑠𝑢𝑝𝐶(�̅�) since 𝑁𝑜𝑑𝑒⊥𝐶("Minneapolis") ∩ 𝑁𝑜𝑑𝑒⊥¬𝐶("USA")
is empty. Intuitively, “Minneapolis” 

is a location in “USA” (“Minneapolis” is part of “USA”) and therefore, “USA” cannot be counted 

as an evidence of falseness.  

After obtaining the set of all potential 𝛼 across all possible evidences, we aim to compute 

an optimal set of evidence with the smallest cardinality. We formally define the object evidence 

of falseness problem 𝐸𝑃 as 𝑍𝐸𝑃 = min
𝛼 object evidence of falseness

|𝛼|. A set covering problem is proposed 

to find an optimal set of evidence. We later give a condition when it solves it optimally. The set 

covering problem is formulated as follows. 

SetCover(𝑠𝑢𝑝𝐶(𝑜)): 

 Universe 𝑈 = {�̅�1, �̅�2,…, �̅�|�̅�|}  

 For any node 𝑎 ∈ 𝑠𝑢𝑝𝐶(𝑜), we define 𝑇𝑎 = {�̅� ∈ 𝑈|𝑎 ∈ 𝑃 where 𝑃 ∈ 𝑃𝑎𝑡ℎ𝐶(�̅�)T}    

The set covering problem 𝑆𝐶 reads 𝑍𝑆𝐶 = min |𝐼| subject to ⋃ 𝑇𝑖𝑖∈𝐼 = 𝑈. For any node 𝑎 ∈

𝑠𝑢𝑝𝐶(𝑜), we know that 𝑇𝑎 ⊆ 𝑈 which is necessary for the feasibility of 𝑆𝐶. The set covering 

problem aims to find a minimum number of set 𝑇𝑎′𝑠 for 𝑎 ∈ 𝑠𝑢𝑝𝐶(𝑜) so that selected sets contain 

all elements in the universe 𝑈, i.e. they cover �̅�. A feasible solution to the set covering problem 

satisfies the first requirement of Definition 1. The set 𝑇𝑎 for each 𝑎 ∈ 𝑠𝑢𝑝𝐶(𝑜)  is specifically 
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constructed based on 𝑠𝑢𝑝𝐶(𝑜). Note that the set 𝑇𝑎 ≠ ∅ because of the fact that for every 𝑎 ∈

𝑠𝑢𝑝𝐶(𝑜) there is �̅� such that 𝑃 ∈ 𝑃𝑎𝑡ℎ𝐶(�̅�)T   contains 𝑎 and the construction of  𝑇𝑎. All elements in 

𝑠𝑢𝑝𝐶(𝑜) added in Algorithm 1 are guaranteed to satisfy the second requirement of Definition 1.   

 According to the false triplet (“Google”, “OfficeLocationInUS”, “Minneapolis”) example, 

we consider 𝑜 = “Minneapolis” and the set �̅� given previously. A set of generated 𝑇𝑎′𝑠 which 

yields a feasible solution to the set covering problem is given in Table 1. The left column lists 5 

elements from 𝑠𝑢𝑝𝐶(𝑜). 

 

Table 1. An example of feasible 𝑇𝑎′𝑠 sets for the set covering problem 

𝑇𝐶("West region") “Boulder,” “Irvine,” “Kirkland,” “Los Angeles,” “Mountain View,” “Playa 

Vista,” “San Bruno,” “San Francisco,” “Seattle,” “Sunnyvale” 

𝑇𝐶("Northeast region") “Cambridge,” “New York,” “Pittsburgh” 

𝑇𝐶("South region") “Atlanta,” “Austin,” “Chapel Hill,” “Miami,” “Reston,” “Washington DC” 

𝑇𝐶("Michigan") “Ann Arbor,” “Birmingham” 

𝑇𝐶("Illinois") “Chicago” 

 

Propositions 1 and 2 stated next establish the relationship between 𝐸𝑃 and 𝑆𝐶. Proofs of 

Propositions 1 and 2 are provided in Appendix C. 

 

Proposition 1:  𝑆𝐶 is feasible and a feasible solution to 𝑆𝐶 yields a feasible solution to 𝐸𝑃 of 

same or smaller cardinality.  
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This implies that 𝑍𝑆𝐶 ≥ 𝑍𝐸𝑃. Due to Proposition 1, a solution to 𝑆𝐶 is always a feasible 

solution to 𝐸𝑃 and thus an object evidence of falseness obtained from 𝑆𝐶 can be used as a 

representative of the evidence set from 𝐸𝑃.  

We consider either concept names or negation of concept names when  Ω𝑚,𝑃 is computed 

in Algorithm 1. An exact algorithm replaces Ω𝑚,𝑃 defined in step 7 of Algorithm 1 with Ω′𝑚,𝑃 =

{concept 𝑦 |𝑦 ⊑ 𝐶(𝑜)  ⊓ ¬𝑃𝑖  , 𝑦 ≠⊥}. All concepts constructed from concept names and concept 

constructors are considered in Ω′𝑚,𝑃. We also observe that checking Ω′𝑚,𝑃 ≠ ∅ is equivalent to 

checking satisfiability of the concept 𝐶(𝑜)  ⊓ ¬𝑃𝑚, i.e. if 𝐶(𝑜)  ⊓ ¬𝑃𝑚 is satisfiable, then Ω′𝑚,𝑃 ≠

∅ as stated in (Baader, 2003). 

 

Proposition 2:  If Ω𝑚,𝑃 in step 7 of Algorithm 1 is substituted with  Ω′𝑚,𝑃, then 𝑍𝑆𝐶 = 𝑍𝐸𝑃. 

 In the proof for Proposition 2, we show that a feasible solution to 𝐸𝑃 is also a feasible 

solution to 𝑆𝐶 when replacing Ω𝑚,𝑃 with Ω′𝑚,𝑃. This implies that 𝑍𝐸𝑃 ≥ 𝑍𝑆𝐶 and combined with 

Proposition 1 it yields 𝑍𝑆𝐶 = 𝑍𝐸𝑃.  

 

We define a subject evidence 𝛽 = {𝛽1  , 𝛽2, … , 𝛽𝑘} in the same way. In order to identify the 

subject evidence of falseness 𝛽, Algorithm 1 is applied where all definitions and propositions are 

defined similarly with respect to (�̅�, 𝑟, o).  A domain under consideration can have multiple 

ontologies. In such a case, we implement the proposed algorithms to identify the evidence of 

falseness for each ontology. The minimum cardinality of subject/object evidence is selected across 

all ontologies. Finally, the problem to identify the evidence of falseness for each triplet  (𝑠, 𝑟, 𝑜) is 
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formulated by considering both subject and object evidence sets as 

min { min
𝑜𝑛𝑡 ∈ ontologies

( min
𝛼 object evidence in 𝑜𝑛𝑡

 |𝛼|)
𝑜𝑛𝑡

, min
𝑜𝑛𝑡 ∈ ontologies

( min
𝛽 subject evidence in o𝑛𝑡

|𝛽|)
𝑜𝑛𝑡

 } .   

 

4. CASE STUDY 

We apply the proposed algorithm to the health care domain as a case study. A reliable source in 

our case is obtained from biomedical publications stored in the MEDLINE database. In order to 

construct KG, SemRep (Rindflesch and Fiszman, 2003) is used to extract semantic predicate 

triplets from biomedical texts. SemRep matches subject and object entities in triplets with concepts 

from the UMLS Metathesaurus and matches relationship with respect to the UMLS Semantic 

Network. It also takes into account a syntactic analysis, a structured domain knowledge, and 

hypernymic propositions extensively. The data contains both the extracted triplet and the 

corresponding sentence from MEDLINE.  

We first train the PRA model based on KG constructed from SemRep. We further compare 

its performance with the evaluation metrics reported in (Lao et al., 2011) where PRA has been 

trained on the NELL data set. The average mean reciprocal rank (MRR) across different relation 

types reported in (Lao et al., 2011) is 0.516 while the average MRR of PRA on SemRep is 0.25. 

The MRR is computed based on the rank of the first correctly retrieved triplet; however we aim to 

correctly retrieve all triplets that are in KG. As a result, we additionally compute the mean average 

precision (MAP) which considers the rank position of each triplet in KG.  The MAP based on our 

trained PRA model is 0.1. This implies that on average every 10th retrieved result is correct. We 

then manually inspect the original statements and their corresponding predicate triplets extracted 

from SemRep. Even though a preliminary evaluation of SemRep reported in (Rindflesch and 



20 
 

Fiszman, 2003) states 83% precision, extracted predicate triplets in KG contain many errors based 

on our manual observation. Examples of predicate triplets incorrectly extracted from original 

statements are provided in Appendix D. The issue is that the sentences are clearly correct but the 

extracted triplets are often wrong.  

Hence, we pre-process KG by verifying each extracted predicate triplet with the PRA 

model and additional relation extraction systems. Detailed explanations are provided in the 

following data preparation section. 

4.1 Data Preparation 

We aim to re-construct KG containing only triplets with high precision. After manually observing 

results from the trained PRA model, triplets with high PRA scores tend to be more accurate than 

those with low PRA scores. Hence, PRA is one of models used to verify triplets in KG. We further 

employ other relation extraction systems to filter out incorrect triplets from the original KG. Ollie 

(Mausam et al., 2012) is an open information extraction software which aims to extract binary 

relationships from sentences. According to open information extraction, a schema of relations does 

not need to be pre-specified. In addition, we train a recurrent neural network model called LSTM-

ER proposed by Miwa and Bansal (Miwa and Bansal, 2016) on a publicly available training data 

set having gold standard labels. Each instance in the training data consists of a statement and its 

predicate triplet. The training data set used to train the LSTM-ER model includes the ADE corpus 

(Gurulingappa et al., 2012), SemEval-2010 (Hendrickx et al., 2010), BioNLP (Kim et al., 2011), 

and the SemRep Gold standard annotation (Kilicoglu et al., 2011).  
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In order to pre-process the original KG, we propose a strategy to combine triplets with high 

PRA scores and triplets matching with the Ollie or LSTM-ER models. A flow diagram of the 

proposed strategy in order to construct an adjusted KG is depicted in Figure 2. 

 

Figure 2: The flow diagram of the strategy to pre-process KG 

According to the proposed strategy, we infer the trained PRA model on KG and rank the 

results from high to low PRA scores. The triplets positioned in the top 10 percent of the ranked 

PRA scores are retrieved. Additionally, we collect all possible matches between triplets in KG and 

results from Ollie. We also use the trained LSTM-ER model to infer possible relations from 

statements associated with triplets in the original KG. Each triplet from KG is collected if its 

relation matches with the relation inferred from the LSTM-ER model. We conduct a preliminary 

experiment by extracting matched triplets using Ollie, and the LSTM-ER model based on 10,000 

randomly selected triplets. Based on the experiment, we observe a small proportion of matching 
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triplets among different relation extraction models. A detailed discussion of the experiment is 

provided in Appendix E.  

Additionally, we observe that many statements in the original KG involve studies with non-

human subjects such as “Effects of acetylcholine, histamine, and serotonin infusion on venous 

return in dogs.” In order to filter out these statements, we consider the UMLS semantic type, a 

categorization of concepts represented in the UMLS Metathesaurus, tagged in the statements. In 

particular, we eliminate statements which contain “Amphibian,” “Animal,” “Bird,” “Fish,” 

“Mammal,” “Reptile,” and “Vertebrate” semantic types. We provide the number of nodes and 

edges in the original KG and in the adjusted KG in Table 2. The average MRR and the average 

MAP based on the PRA model on the adjusted KG are 0.44 and 0.29, respectively 

 

Table 2: Number of nodes and edges in the original KG and the adjusted KG 

 The original KG The adjusted KG 

Number of nodes 229,063 161,930 

Number of edges 15,700,435 4,107,296 

 

4.2 Results 

We run the whole pipeline of Algorithm 1 to validate the truthfulness and provide 

supporting evidence of lay triplets with the adjusted KG. Based on 2,084 lay triplets consisting of 

20 relation types collected from health-related web pages, we identify the truthfulness of each 

triplet and extract evidence candidates as summarized in Appendix F. Across all relation types, 

there are 501 false triplets which account for 24 percent of all lay triplets.  
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Instead of directly specifying thresholds 𝜀1 and 𝜀2 in step 1 of the process, we identify the 

rank threshold 𝑟𝑎𝑛𝑘𝜀1
 and 𝑟𝑎𝑛𝑘𝜀2

 based on the ordered PRA scores. To identify 𝑟𝑎𝑛𝑘𝜀1
 

corresponding to subject entity 𝑠 and relation type 𝑟, we retrieve a set of all object entities which 

have relation 𝑟(s,∙) identified by the PRA model. This set is denoted as 𝑂𝑎𝑙𝑙 .  The set 𝑂𝐾𝐺 =

{�̃� |(𝑠, 𝑟, �̃�) ∈ 𝐾𝐺} is also retrieved. A parameter 𝑥 which is defined as 𝑥 =

𝟏|𝑂𝐾𝐺|>0
|𝑂𝐾𝐺|

𝑚𝑒𝑑𝑖𝑎𝑛(𝑃𝑅𝐴 𝑠𝑐𝑜𝑟𝑒𝑠 𝑜𝑓 𝑂𝐾𝐺) 
  is used to specify the rank threshold 𝑟𝑎𝑛𝑘𝜀1

as follows: 

𝑟𝑎𝑛𝑘𝜀1
= {

5 if 𝑥 ≤ 0.25
10 if 0.25 < 𝑥 ≤ 0.5
15 if 0.5 < 𝑥 ≤ 0.75
20 if 𝑥 > 0.75

} + 5 −
|𝑂𝑎𝑙𝑙|

10000
 . 

The parameter 𝑥 captures how well the PRA model gives high ranks to triplets in KG. The 

higher the value of 𝑥 is, the better the PRA model performs. This implies that 𝑟𝑎𝑛𝑘𝜀1
should vary 

proportionally to 𝑥. The middle term is a hyper parameter calibrated in the experiment in order to 

obtain the best performance. The last term in the 𝑟𝑎𝑛𝑘𝜀1
formula takes into account how 

|𝑂𝑎𝑙𝑙| affects 𝑟𝑎𝑛𝑘𝜀1
. Having high |𝑂𝑎𝑙𝑙| indicates that many object entities are predicted to have 

𝑟(s,∙) with respect to subject s. Therefore, it is more challenging for the PRA model to correctly 

rank retrieved object entities. This implies that high |𝑂𝑎𝑙𝑙| leads to low value of the threshold 

𝑟𝑎𝑛𝑘𝜀1
as expressed in the formula. We extract entity �̅� whose rank based on PRA score is higher 

than 𝑟𝑎𝑛𝑘𝜀1
as candidates in �̅�. Moreover, we specify 𝑟𝑎𝑛𝑘𝜀2

as max( 𝑟𝑎𝑛𝑘𝜀1
,  0.005 ∗ 𝑂𝑎𝑙𝑙) to 

identify the truthfulness of (𝑠, 𝑟, 𝑜). If the rank of 𝑠𝑐𝑜𝑟𝑒𝑃𝑅𝐴(o; s) is higher than 𝑟𝑎𝑛𝑘𝜀2
, we 

specify (𝑠, 𝑟, 𝑜) as true.  

Among 501 false lay triplets, we first eliminate triplets whose object 𝑜 does not match with 

concepts in ontologies. Candidates are then used to compute the evidence set based on the 

remaining 395 triplets by using Algorithm 1. We only perform evaluations on object candidates 
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while subject candidates can be done similarly. The average cardinality of object candidates 

|�̅�| and the average cardinality of their corresponding evidence sets |𝛼| across all relation types 

are 11.65 and 2.24, respectively. A histogram of the produced object evidence |𝛼| of all relation 

types based on candidates �̅� is provided in Figure 3.  

 

 

Figure 3: A histogram of object evidence |𝛼| 

 

 In order to evaluate the performance of the proposed algorithm, we choose 3 relation types 

representing high, medium and low MAP computed from the PRA model which are “TREATS,” 

“DIAGNOSES,” and “CAUSES,” respectively. For each relation type, we select 5 cases to 

compare the evidence sets resulting from the algorithm (denoted as “Al”) against the evidence sets 

constructed manually (denoted as “Ma”) as illustrated in Table 3. A complete comparison of 

elements in evidence sets “Al” and “Ma” is provided in Appendix G. 
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Table 3: Evidence sets obtained from the algorithm and the evidence sets constructed manually 

False triplets |Al| |Ma| |Al ∩ Ma| |Al\Ma| |Ma\Al| 

Relation type: TREATS 

Heparin TREATS Fever 1 1 1 0 0 

Amiodarone TREATS Hepatitis C 1 1 1 0 0 

Stress management TREATS Mitral 

Valve Prolapse 

1 1 1 0 0 

Capoten TREATS Coughing 1 1 1 0 0 

Losartan TREATS Varicose Ulcer 3 2 1 2 1 

Average of TREATS 1.4 1.2 1.0 0.4 0.2 

Relation type: DIAGNOSES 

Echocardiography DIAGNOSES 

Hyperlipidemia 

1 1 1 0 0 

Platelet Size DIAGNOSES Anemia 1 2 1 0 1 

Esophageal pH Monitoring 

DIAGNOSES Malignant breast 

neoplasm 

5 3 3 2 0 

Cholesterol measurement test 

DIANOSES Malignant breast 

neoplasm 

5 2 2 3 0 

Electrocardiogram DIAGNOSES 

Muscle strain 

1 1 1 0 0 

Average of DIAGNOSES  2.6 1.8 1.6 1.0 0.2 

Relation type: CAUSES 

Caffeine CAUSES Gout 1 3 1 0 2 

hypercholesterolemia CAUSES 

Neuropathy 

2 2 2 0 0 

Leukemia CAUSES Gout 2 2 2 0 0 

Harpin CAUSES Cardiomegaly 2 1 1 1 0 
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Ascorbic Acid CAUSES Senile 

Plaques 

2 2 1 1 1 

Average of CAUSES 1.8 2.0 1.4 0.4 0.6 

Average across 3 relation types 1.9 1.7 1.3 0.6 0.3 

 

5.CONCLUSIONS AND FUTURE WORK 

In this work, we develop a system to validate the truthfulness of lay triplets and provide supporting 

evidence.  Our system employs the PRA algorithm inferred on KG re-constructed from reliable 

sources to identify whether a lay triplet is true or false.  In our experiment, we train the PRA model 

based on KG constructed from biomedical literature. The original KG contains incorrect triplets 

due to the relation extraction process. We attempt to re-construct KG consisting of more accurate 

triplets by verifying each triplet in the original KG with additional relation extraction algorithms. 

The trained PRA model on the adjusted KG yields 0.44 MRR and 0.29 MAP averaged across all 

relation types. The performance of the PRA model based on the adjusted KG is improved. 

However, the adjusted KG still contains errors due to the challenge of complicated biomedical text 

and limited resources in training additional relation extraction algorithms. 

We use a combination of knowledge from ontologies and triplets in the adjusted KG to 

extract a concise supporting evidence set. Specifically, Algorithm 1 aims to find the supporting 

evidence set which does not overlap with an entity in a lay triplet. The evidence set is aggregated 

from candidates obtained from triplets in the adjust KG by using knowledge of ontologies. We 

apply Algorithm 1 to extract evidence sets based on each ontology and repeatedly consider all 

possible ontologies. It is reasonable to select the ontology which yields the minimum cardinality 

of evidence sets. According to our algorithm, we first match object (subject) entity in a lay triplet 
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with concepts within all ontologies. Non-matching ontologies are not taken into a consideration 

when object (subject) candidates are paired with concepts in ontologies. We assume that 

candidates that cannot be matched with concepts in the same ontology as the lay triplet’s are 

disregarded.   

We consider the number of candidates |�̅�| extracted from the PRA model and compare it 

against the cardinality of the evidence set |𝛼| resulted from the algorithm. The average of |�̅�| is 

larger than the average of |𝛼| by a factor of 5 across all relation types. This implies that our 

proposed algorithm provides valid and concise evidence sets. To evaluate the performance of our 

algorithm, we compare the evidence set extracted from our proposed algorithm with a manually-

constructed evidence set. The average number of overlap between the evidence set from the 

algorithm and the manually constructed set is 74% across the 3 relation types. Our proposed 

algorithm performs very well especially with some specific relation types such as “TREATS” with 

the overlap of 87%. 

 The problem is challenging due to limited resources to construct a complete and accurate 

KG. An imperfect KG plays a significant role in the inferior performance of the PRA model which 

directly impacts the performance of Algorithm 1 to extract evidence sets. A better quality of KG 

would lead to a higher performance of the proposed system. Hence, future work should focus on 

improving relation extraction algorithms to construct KG. We believe that this is of utmost 

importance, not just for our work, but all systems that rely on SemRep.  
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Appendix A 

Algorithm A1 presented next adds negation nodes 𝑉𝑁𝐶  to the existing subsumption tree by 

implementing the incremental methods defined in (Baader et al., 1994). An augmented tree is of 

the form  𝒢 = (𝑉𝐶 ∪ 𝑉𝑁𝐶 ∪ 𝑉𝐹 , 𝐴) where nodes 𝑣 ∈ 𝑉𝐶 are concept names, nodes 𝑣 ∈ 𝑉𝑁𝐶 are 



32 
 

negation concepts of concept names and nodes 𝑣 ∈ 𝑉𝐹 are specific concepts which ensure the 

second requirement in Definition 1. Arc (𝑏, 𝑎) ∈ 𝐴 between node 𝑎 and 𝑏 has the following 

properties. 

1.  𝑎 ∈ 𝑉𝐶 ∪ 𝑉𝑁𝐶 and 𝑏 ∈ 𝑉𝐶 ∪ 𝑉𝑁𝐶 =>  𝑎 ≺ 𝑏, i.e. 𝑎 ≤ 𝑏  and if there exists 

 𝑧 ∈ 𝑉𝐶 ∪ 𝑉𝑁𝐶 such that 𝑎 ≤ 𝑧 ≤ 𝑏, then 𝑧 = 𝑎 or 𝑧 = 𝑏 

2.  𝑎 ∈ 𝑉𝐹 and 𝑏 ∈ 𝑉𝐶 ∪ 𝑉𝑁𝐶 => 𝑎 ≤ 𝑏   

Concept names and concept constructors are combined in order to construct concepts. This 

consequently yields a significant number of concepts. Nodes in 𝑉𝐹 may have ≤ relation with many 

concepts which are not added to the subsumption tree. Note that we only add necessary concepts 

required for Algorithm 1. Therefore, the first property only takes 𝑉𝐶 ∪ 𝑉𝑁𝐶 into a consideration, 

i.e., we are not able to assume ≺ relation between nodes in 𝑉𝐶 ∪ 𝑉𝑁𝐶  and nodes in 𝑉𝐹. 

 

Algorithm A1 to generate  𝒢 = (𝑉𝐶 ∪ 𝑉𝑁𝐶 ∪ 𝑉𝐹, 𝐴):  

 

1 Initially set 𝑋 = 𝑉𝐶 

2 For each concept name  𝑣 ∈ 𝑉𝐶: 

3  create node 𝑐 = ¬𝑣 

4  compute set 𝑋 ↓ 𝑐 = {𝑥 ∈ 𝑋| 𝑐 ≤ 𝑥  and 𝑐 ≰ 𝑦  for all 𝑦 ≺ 𝑥, 𝑦 ∈ 𝑋}  

5  compute set 𝑋 ↑ 𝑐 = {𝑥 ∈ 𝑋| 𝑥 ≤ 𝑐  and 𝑦 ≰ 𝑐  for all 𝑥 ≺ 𝑦, 𝑦 ∈ 𝑋} 

6  add arcs between 𝑐 and each element of  𝑋 ↓ 𝑐, and between 𝑐 and each element of 𝑋 ↑ 𝑐 

7  remove all arcs between elements of 𝑋 ↑ 𝑐 and 𝑋 ↓ 𝑐 

8  compute set 𝑋𝑉𝐶 ∥ 𝑐 = {𝑥 ∈ 𝑋, 𝒙 ∈ 𝑉𝐶  | ⊥ ≤ 𝑐 ⊓ 𝑥 }    

9  For each element 𝑑 ∈  𝑋𝑉𝐶 ∥ 𝑐 ∶ 

10   create artificial node 𝑎𝑑 = 𝑐 ⊓ 𝑑 and add an arc (𝑎𝑑 , ⊥) connecting ⊥ to 𝑎𝑑 
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11   add an arc (𝑑, 𝑎𝑑) connecting 𝑎𝑑 to 𝑑 and (𝑐, 𝑎𝑑) connecting 𝑎𝑑 to 𝑐 

12  𝑋 =  𝑋 ⋃  {𝑐} 

 

To extract the evidence set, Algorithm 1 computes Ω′s in order to ensure the second 

requirement in Definition 1. Any set Ω𝑚,𝑃  depends on an overlap between two set of nodes 

corresponding to  𝐶(𝑜) and ¬𝑃𝑚. To verify the overlap of these two sets, both 𝑉𝑁𝐶  and 𝑉𝐹 are 

necessary. Algorithm A1 adds 𝑉𝑁𝐶  and 𝑉𝐹 to the standard subsumption tree which only includes 

concept names 𝑉𝐶. It relies mainly on an incremental method involving the top and bottom search 

computed in steps 4 and 5. As arcs in the tree only represent the subsumption relationship, steps 

8-11 further take into account an overlap case which involves nodes in 𝑉𝐹.  

 

Appendix B  

As a more efficient version of Algorithm 1, we propose Algorithm B1 using a bisection method 

based on Ω𝑚,𝑃 as of follows. 

Algorithm B1 (𝑜, �̅�) with 𝒢 = (𝑉𝐶 ∪ 𝑉𝑁𝐶 ∪ 𝑉𝐹, 𝐴):  

 

1 Set 𝑠𝑢𝑝𝐶(𝑜) = ∅ 

2 For each �̅� ∈ �̅�: 

3  Set 𝑠𝑢𝑝𝐶(𝑜 ̅) = ∅ 

4  For each  𝑝𝑎𝑡ℎ 𝑃 ∈ 𝑃𝑎𝑡ℎ𝐶(�̅�)T :   

5   𝑚 = ⌊
𝑙𝑒𝑛𝑔𝑡ℎ(𝑃)

2
⌋   

6   While True:  

7    Ω𝑚,𝑃 = {𝑦 ∈ 𝑉𝐶 ∪ 𝑉𝑁𝐶| 𝑦 ∈ 𝑁𝑜𝑑𝑒⊥𝐶(𝑜) ∩ 𝑁𝑜𝑑𝑒⊥¬𝑃𝑚
, 𝑦 ≠⊥}   



34 
 

8    If  Ω𝑚,𝑃 ≠ ∅: 

9               Ω𝑚−1,𝑃 = {𝑦 ∈ 𝑉𝐶 ∪ 𝑉𝑁𝐶| 𝑦 ∈ 𝑁𝑜𝑑𝑒⊥𝐶(𝑜) ∩ 𝑁𝑜𝑑𝑒⊥¬𝑃𝑚−1
, 𝑦 ≠⊥} 

10               If  Ω𝑚−1,𝑃 = ∅: 

11      For 𝑚′ = 𝑚 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃): 

12       Add 𝑃𝑚′ to 𝑠𝑢𝑝𝐶(�̅�)  

13      Break 

14     Else:  

15      𝑚 = ⌊
𝑚

2
⌋   

16    Else: 

17     𝑚 = 𝑚 + ⌊
𝑚

2
⌋      

18  𝑠𝑢𝑝𝐶(𝑜) =  𝑠𝑢𝑝𝐶(𝑜) ∪  𝑠𝑢𝑝𝐶(�̅�) 

19 Remove duplicate nodes in 𝑠𝑢𝑝𝐶(𝑜) 

20 Return 𝛼 = SetCover(𝑠𝑢𝑝𝐶(𝑜)) 

 

Note that as in Algorithm 1 ∀𝑎 ∈ 𝑠𝑢𝑝𝐶(𝑜) there is �̅� such that 𝑃 ∈ 𝑃𝑎𝑡ℎ𝐶(�̅�)T  contains 𝑎 

due to steps 2-18. For any �̅�𝑖 ∈ �̅�, Algorithm B1 identifies the 𝑚𝑡ℎ position in each path 𝑃 ∈ 

𝑃𝑎𝑡ℎ𝐶(�̅�𝑖)T  such that Ω𝑚,𝑃 ≠ ∅ and Ω𝑚−1,𝑃 = ∅ by the bisection search method. We know that 

𝑃𝑚 ⊑ 𝑃𝑚−1 ⇔ ¬𝑃𝑚−1 ⊑ ¬𝑃𝑚 for any concepts 𝑃𝑚 and 𝑃𝑚−1. Hence, Ω𝑚−1,𝑃 ≠ ∅ implies that 

Ω𝑚,𝑃 ≠ ∅. Step 12 adds all nodes which are subsumed by 𝑃𝑚 to 𝑠𝑢𝑝𝐶(�̅�𝑖) if conditions in steps 8 

and 10 are satisfied 

As in the run time analysis of Algorithm 1, we let 𝑁 be the number of nodes in 𝒢 and 𝑀 

the maximum number of paths between any node and the root T. Similarly to Algorithm 1, the 

most outer loop in step 2 is O(𝑁) while the middle loop in step 4 is considered as O(𝑀). Algorithm 

B1 relies on the bisection search which is accounted for O(log2 𝑁). Computing Ω𝑚,𝑃 for each node 
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𝑃𝑚 requires O(𝑁2). Therefore, the computational complexity of Algorithm B1 is O(log2 𝑁 ∙ 𝑁3 ∙

𝑀) compared to O(𝑁4 ∙ 𝑀) corresponding to Algorithm 1. 

 

Appendix C  

Proof of Proposition 1:   

We first argue that 𝑆𝐶 is feasible. For any path  𝑃 ∈ 𝑃𝑎𝑡ℎ𝐶(�̅�𝑖)T  of �̅�𝑖 ∈ �̅�, 𝑃𝑙𝑒𝑛𝑔𝑡ℎ(𝑃) = 𝐶(�̅�𝑖) ∈

𝑉𝐶. According to the assumption that ∃𝑦 ∈ 𝑉𝐶 ∪ 𝑉𝑁𝐶 , 𝑦 ≠⊥ such that 𝑦 ⊑ 𝐶(𝑜) ⊓ ¬𝐶(�̅�) for all 

�̅� ∈ �̅� and 𝑜 in KB, there exists node 𝑦 in 𝒢 which yields paths from ¬𝐶(�̅�𝑖) to 𝑦 and 𝐶(o) to 𝑦 

for any �̅�𝑖 ∈ �̅�. This implies that 𝑁𝑜𝑑𝑒⊥𝐶(𝑜) ∩ 𝑁𝑜𝑑𝑒⊥¬𝐶(�̅�𝑖) ≠ ∅  which corresponds to nonempty 

Ω 𝑚,𝑃 of 𝐶(�̅�𝑖) for any �̅�𝑖 ∈ �̅� and any path 𝑃 for an 𝑚. Hence, 𝑇𝐶(�̅�𝑖) is a set in 𝑆𝐶 for every �̅�𝑖 ∈

�̅�. This implies that 𝑆𝐶 is feasible.  

Let 𝑇𝛼1
, 𝑇𝛼2

, … , 𝑇𝛼𝑘
 be a feasible solution to 𝑆𝐶. We know that ⋃ 𝑇𝛼𝑖 𝑖 = 𝑈  and 𝛼𝑖 ∈

𝑠𝑢𝑝𝐶(𝑜). For each �̅�𝑖, there exists 𝑗(𝑖) such that �̅�𝑖 ∈ 𝑇𝛼𝑗(𝑖)
. Let 𝛼 = {𝛼𝑗(𝑖)} 𝑖=1

𝑛 . We next argue that 

𝛼 is an object evidence of falseness. The definition implies that 𝛼𝑗(𝑖) ∈ 𝑃 where 𝑃 ∈  𝑃𝑎𝑡ℎ𝐶(�̅�𝑖)T 

which implies that 𝐶(�̅�𝑖) ⊑ 𝛼𝑗(𝑖). The first requirement in Definition 1 is therefore satisfied. 

We next show the second property in Definition 1. Each 𝛼𝑗(𝑖) ∈ 𝑠𝑢𝑝𝐶(𝑜) which is added in 

step 9 has to satisfy conditions in steps 6 and 8 according to Algorithm 1. For any path  𝑃 ∈ 

𝑃𝑎𝑡ℎ𝐶(�̅�𝑖)T , Ω 𝛼𝑗(𝑖),𝑃 ≠ ∅ implies that ∃𝑦 ∈ 𝑉𝐶 ∪ 𝑉𝑁𝐶 , 𝑦 ≠⊥ such that there is a path from 𝐶(𝑜) to 

𝑦 and a path from ¬𝛼𝑗(𝑖) to 𝑦. Hence, ∃𝑦 ∈ 𝑉𝐶 ∪ 𝑉𝑁𝐶 , 𝑦 ≠⊥ such that 𝑦 ⊑ 𝐶(𝑜) and 𝑦 ⊑ ¬𝛼𝑗(𝑖) 
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which is equivalent to 𝐶(𝑜) ⋢ 𝛼𝑗(𝑖). As 𝐶(𝑜) ⋢ 𝛼𝑗(𝑖) is assured for all 𝑗(𝑖), the second requirement 

in Definition 1 is satisfied. It is clear by construction that 𝑘 ≥ |𝛼|.  

Proof of Proposition 2:  Let 𝛼 = {𝛼1  , 𝛼2, … , 𝛼𝑘} be feasible to 𝐸𝑃.  

By requirement 1 of 𝐸𝑃, for every  �̅�𝑖 ∈ �̅� there exists 𝛼𝑖  such that 𝐶(�̅�𝑖) ⊑ 𝛼𝑖.  From TBox 

classification which is used to construct the subsumption tree,  we know that 𝑎 ⊑ 𝑏 if and only 

if there is a path from 𝑏 to 𝑎 for 𝑎, 𝑏 ∈ 𝑉𝐶. Hence, a path 𝑃 ∈ 𝑃𝑎𝑡ℎ𝐶(�̅�𝑖)T  is one of the paths in step 

4.  The requirement 2 of 𝐸𝑃 corresponds to Ω′ computed and substituted to step 7 in Algorithm 1. 

If Ω′𝑚,𝑃 ≠ ∅  which is verified (by checking satisfiability of the concept 𝐶(𝑜)  ⊓ ¬𝑃𝑚)  in Step 8, 

𝑃𝑚 considered as evidence 𝛼𝑖 is added to 𝑠𝑢𝑝𝐶(�̅�𝑖) in step 9. By step 12 in Algorithm 1,  𝛼𝑖 ∈

𝑠𝑢𝑝𝐶(�̅�𝑖) and thus 𝛼𝑖 ∈ 𝑠𝑢𝑝𝐶(𝑜). Hence, there exists 𝑇𝛼𝑖 
for each 𝛼𝑖 ∈ 𝑠𝑢𝑝𝐶(𝑜). Since 𝛼𝑖 ∈  𝑃 where 

𝑃 ∈ 𝑃𝑎𝑡ℎ𝐶(�̅�𝑖)T,  𝐶(�̅�𝑖) ∈ 𝑇𝛼𝑖 
. We have ⋃ 𝑇𝛼𝑖 𝑖 ⊇ ⋃ 𝐶(�̅�𝑖) = �̅� = 𝑈.𝑖   This implies that 𝛼 is feasible 

to 𝑆𝐶. Since a feasible solution to 𝐸𝑃 yields a feasible solution to 𝑆𝐶, it implies that 𝑍𝑆𝐶 ≤ 𝑍𝐸𝑃. 

 As 𝑍𝑆𝐶 ≤ 𝑍𝐸𝑃 and 𝑍𝑆𝐶 ≥ 𝑍𝐸𝑃 (from Proposition 1), 𝑍𝑆𝐶 = 𝑍𝐸𝑃 is directly followed. 

 

Appendix D 

We manually observe extracted triplets in KG and compare them with their original statements. 

Based on our manual observation, incorrectly extracted triplets are provided in Table D1. 
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Table D1: Examples of incorrectly extracted triplets in KG based on SemRep 

Original statements Extracted triplets 

Six additional imino derivatives of pyridoxal 

have been studied, but none of these new 

compounds was as effective as PIH. 

(Pyridoxal ; same as ; Prolactin Release-

Inhibiting Hormone | PEE1) 

There was no significant different in the 

levels of G6PD activity in subjects with GdA 

or GdB. 

(Glucose-6-phosphate dehydrogenase 

measurement, quantitative ; USES ; GDA) 

Two methods for the removal of erythrocytes 

from buffy coats for the production of human 

leukocyte interferon. 

(Erythrocytes ; PRODUCES ; human 

leukocyte interferon) 

 

Appendix E 

According to the experiment, we observe matches among KG, Ollie and LSTM-ER 

models. Table E1 illustrates the number of matches among the different models.  

Table E1: Number of matches among KG, Ollie and LSTM-ER models based on 10,000 triplets 

Number of triplets KG Ollie LSTM-ER 

160 × × × 

160  × × 

525 × ×  

1500 ×  × 

 

Appendix F 
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We first identify the truthfulness of a lay triplet based on the PRA model for each relation type. A 

proportion of false triplets which is equivalent to the number of false triplets divided by total 

number of triplets is computed. Object candidates are computed for false triplets only. The total 

number of triplets, the false triplet proportion and the average number of object candidates for each 

relation types are summarized in Table F1.  

Table F1: Statistics of truthfulness and object candidates obtained from the PRA model 

Relation type Number of triplets False triplets proportion 𝑨𝒗𝒈 |�̅�| 

LOCATION_OF 378 0.15 12.19 

ISA 319 0.07 10.43 

PREDISPOSES 292 0.33 8.68 

TREATS 207 0.26 10.80 

CAUSES 179 0.39 11.50 

AFFECTS 116 0.41 14.69 

COEXISTS_WITH 114 0.30 17.29 

PREVENTS 110 0.25 7.86 

PART_OF 69 0.25 7.65 

INTERACTS_WITH 46 0.30 3.79 

INHIBITS 45 0.20 7.67 

ASSOCIATED_WITH 37 0.22 8.63 

AUGMENTS 35 0.46 11.75 

USES 35 0.09 7.67 

PRODUCES 30 0.17 8.20 

DIAGNOSES 22 0.14 14.00 

DISRUPTS 21 0.48 9.70 

PRECEDES 16 0.25 17.25 

METHOD_OF 13 0.38 19.2 
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Appendix G 

We compare the cardinality of candidates, the cardinality of evidence, and all elements in the set 

corresponding to “Al” and “Ma” in Table G1. 

Table G1: A complete comparison of elements in evidence sets “Al” and “Ma” 

False Triplets 

Al Ma 

|�̅�| |𝛂| 𝛂 |�̅�| |𝛂| 𝛂 

       

Heparin TREATS 

Fever 
2 1 

'hemic system 

symptom' 
3 1 

'hemic system 

symptom' 

Amiodarone TREATS 

Hepatitis C  5 1 

'disease of 

anatomical entity' 9 1 

'disease of 

anatomical 

entity' 

Stress management 
TREATS Mitral Valve 

Prolapse 

2 1 

'nervous system 

disease' 2 1 

'nervous system 

disease' 

Capoten TREATS 

Coughing 12 1 

'Disease, Disorder 

or Finding' 9 1 

'Disease, 

Disorder or 

Finding' 

Losartan TREATS 

Varicose Ulcer 5 3 

'insulin resistance', 

‘hypertrophy', 

‘disease' 

9 2 

'ischemia', 

‘disease' 

       

Echocardiography 

DIAGNOSES 

Hyperlipidemia 

4 1 

'disease of 

anatomical entity' 4 1 

'disease of 

anatomical 

entity' 

Platelet Size 
DIAGNOSES Anemia  

4 1 

'Cardiovascular 

Diseases' 
5 2 

'Blood Platelet 

Disorders', 

‘Cardiovascular 

Diseases' 

Esophageal pH 

Monitoring 
DIAGNOSES 

Malignant breast 

neoplasm 
11 5 

'Biological 

Process', ‘Finding', 

‘Non-Neoplastic 

Disorder', 

‘Neoplasm by 

Morphology', 

‘Digestive System 

Disorder' 

8 3 

‘Finding', ‘Non-

Neoplastic 

Disorder', 

‘Neoplasm by 

Morphology' 
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Cholesterol 

measurement test 
DIANOSES 

Malignant breast 

neoplasm 

15 5 

'Biological 

Process', ‘Mouse 

Disorder by Site', 

‘Finding', ‘Non-

Neoplastic 

Disorder', 

‘Dependence' 

4 2 

'Non-Neoplastic 

Disorder by 

Site', ‘Finding' 

Electrocardiogram 
DIAGNOSES Muscle 

strain 

1 1 

'cardiac disorder 

AE' 1 1 

'cardiac disorder 

AE' 

       

 Caffeine CAUSES 

Gout 

2 1 

'Cell Physiological 

Phenomena'  

8 3 

'Phenomena and 

Processes 

Category', 

‘Behavior and 

Behavior 

Mechanisms', 

‘Signs and 

Symptoms, 

Digestive' 

hypercholesterolemia 
CAUSES Neuropathy 7 2 

'Finding', ‘Non-

Neoplastic 

Disorder' 

6 2 

'Finding', ‘Non-

Neoplastic 

Disorder' 

Leukemia CAUSES 

Gout 
3 2 

'genetic disease', 

‘neoplasm 

(disease)' 
2 2 

'genetic 

disease', 

‘neoplasm 

(disease)' 

Harpin CAUSES 

Cardiomegaly 

7 2 

'Pathologic 

Processes', 

‘Phenomena and 

Processes 

Category' 

2 1 

'Cell Death'  

Ascorbic Acid 
CAUSES Senile 

Plaques 

2 2 

'Atherosclerosis', 

'Abnormality of the 

cerebral ventricles' 

4 2 

'Abnormality of 

digestive 

system 

physiology', 

'Abnormality of 

nervous system 

physiology' 

 

 


