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Abstract

The expected improvement (EI) algorithm is a popular strategy for information1

collection in optimization under uncertainty. The algorithm is widely known to2

be too greedy, but nevertheless enjoys wide use due to its simplicity and ability3

to handle uncertainty and noise in a coherent decision theoretic framework. To4

provide rigorous insight into EI, we study its properties in a simple setting of5

Bayesian optimization where the domain consists of a finite grid of points. This6

is the so-called best-arm identification problem, where the goal is to allocate7

measurement effort wisely to confidently identify the best arm using a small8

number of measurements. In this framework, one can show formally that EI is far9

from optimal. To overcome this shortcoming, we introduce a simple modification10

of the expected improvement algorithm. Surprisingly, this simple change results in11

an algorithm that is asymptotically optimal for Gaussian best-arm identification12

problems, and provably outperforms standard EI by an order of magnitude.13

1 Introduction14

Recently Bayesian optimization has received much attention in the machine learning community15

[23]. This literature studies the problem of maximizing an unknown black-box objective function by16

collecting noisy measurements of the function at carefully chosen sample points. At first a prior belief17

over the objective function is prescribed, and then the statistical model is refined sequentially as data18

are observed. Expected improvement (EI) [14] is one of the most widely-used Bayesian optimization19

algorithms. It is a greedy improvement-based heuristic that samples the point offering greatest20

expected improvement over the current best sampled point. EI is simple and readily implementable,21

and it offers reasonable performance in practice.22

Although EI is reasonably effective, it is too greedy, focusing nearly all sampling effort near the23

estimated optimum and gathering too little information about other regions in the domain. This24

phenomenon is most transparent in the simplest setting of Bayesian optimization where the function’s25

domain is a finite grid of points. This is the problem of best-arm identification (BAI) [2] in a multi-26

armed bandit. The player sequentially selects arms to measure and observes noisy reward samples27

with the hope that a small number of measurements enable a confident identification of the best28

arm. Recently Ryzhov [22] studied the performance of EI in this setting. His work focuses on a link29

between EI and another algorithm known as the optimal computing budget allocation [4], but his30

analysis reveals EI allocates a vanishing proportion of samples to suboptimal arms as the total number31

of samples grows. Any method with this property will be far from optimal in BAI problems [2].32

In this paper, we improve the EI algorithm dramatically through a simple modification. The resulting33

algorithm, which we call top-two expected improvement (TTEI), combines the top-two sampling34

idea of Russo [21] with a careful change to the improvement-measure used by EI. We show that35

this simple variant of EI achieves strong asymptotic optimality properties in the BAI problem, and36

benchmark the algorithm in simulation experiments.37
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Our main theoretical contribution is a complete characterization of the asymptotic proportion of38

samples TTEI allocates to each arm as a function of the true (unknown) arm means. These particular39

sampling proportions have been shown to be optimal from several perspectives [5, 13, 10, 21, 9], and40

this enables us to establish two different optimality results for TTEI. The first concerns the rate at41

which the algorithm gains confidence about the identity of the optimal arm as the total number of42

samples collected grows. Next we study the so-called fixed confidence setting, where the algorithm is43

able to stop at any point and return an estimate of the optimal arm. We show that when applied with44

the stopping rule of Garivier and Kaufmann [9], TTEI essentially minimizes the expected number of45

samples required among all rules obeying a constraint on the probability of incorrect selection.46

One undesirable feature of our algorithm is its dependence on a tuning parameter. Our theoretical47

results precisely show the impact of this parameter, and reveal a surprising degree of robustness to its48

value. It is also easy to design methods that adapt this parameter over time to the optimal value, and49

we explore one such method in simulation. Still, removing this tuning parameter is an interesting50

direction for future research.51

Further related literature. Despite the popularity of EI, its theoretical properties are not well52

studied. A notable exception is the work of Bull [3], who studies a global optimization problem and53

provides a convergence rate for EI’s expected loss. However, it is assumed that the observations54

are noiseless. Our work also relates to a large number of recent machine learning papers that try to55

characterize the sample complexity of the best-arm identification problem [6, 19, 2, 8, 15, 11, 12, 16–56

18]. Despite substantial progress, matching asymptotic upper and lower bounds remained elusive in57

this line of work. Building on older work in statistics [5, 13] and simulation optimization [10], recent58

work of Garivier and Kaufmann [9] and Russo [21] characterized the optimal sampling proportions.59

Two notions of asymptotic optimality are established: sample complexity in the fixed confidence60

setting and rate of posterior convergence. Garivier and Kaufmann [9] developed two sampling61

rules designed to closely track the asymptotic optimal proportions and showed that, when combined62

with a stopping rule motivated by Chernoff [5], this sampling rule minimizes the expected number63

of samples required to guarantee a vanishing threshold on the probability of incorrect selection is64

satisfied. Russo [21] independently proposed three simple Bayesian algorithms, and proved that65

each algorithm attains the optimal rate of posterior convergence. TTEI proposed in this paper is66

conceptually most similar to the top-two value sampling of Russo [21], but it is more computationally67

efficient.68

1.1 Main Contributions69

As discussed below, our work makes both theoretical and algorithmic contributions.70

Theoretical: Our main theoretical contribution is Theorem 1, which establishes that TTEI–a simple71

modification to a popular Bayesian heuristic–converges to the known optimal asymptotic72

sampling proportions. It is worth emphasizing that, unlike recent results for other top-two73

sampling algorithms [21], this theorem establishes that the expected time to converge to the74

optimal proportions is finite, which we need to establish optimality in the fixed confidence75

setting. Proving this result required substantial technical innovations. Theorems 2 and 376

are additional theoretical contributions. These mirror results in [21] and [9], but we extract77

minimal conditions on sampling rules that are sufficient to guarantee the two notions of78

optimality studied in these papers.79

Algorithmic: On the algorithmic side, we substantially improve a widely used algorithm. TTEI can80

be easily implemented by modifying existing EI code, but, as shown in our experiments, can81

offer an order of magnitude improvement. A more subtle point involves the advantages of82

TTEI over algorithms that are designed to directly target convergence on the asymptotically83

optimal proportions. In the experiments, we show that TTEI substantially outperforms an84

oracle sampling rule whose sampling proportions directly track the asymptotically optimal85

proportions. This phenomenon should be explored further in future work, but suggests that86

by carefully reasoning about the value of information TTEI accounts for important factors87

that are washed out in asymptotic analysis. Finally–as discussed in the conclusion–although88

we focus on uncorrelated priors we believe our method can be easily extended to more89

complicated problems like that of best-arm identification in linear bandits [24].90

2



2 Problem Formulation91

Let A = {1, . . . , k} be the set of arms. The reward Yn,i of arm i ∈ A at time n ∈ N follows a92

normal distribution N(µi, σ
2) with common known variance σ2, but unknown mean µi. At each93

time n = 1, 2, . . ., an arm In ∈ A is measured, and the corresponding noisy reward Yn,In is observed.94

The objective is to allocate measurement effort wisely in order to confidently identify the arm with95

highest mean using a small number of measurements. We assume that µ1 > µ2 > . . . > µk, i.e., the96

arm-means are unique and arm 1 is the best arm. Our analysis takes place in a frequentist setting, in97

which the true means (µ1, . . . , µk) are fixed but unknown. The algorithms we study, however, are98

Bayesian, in the sense that they begin with prior over the arm means and update the belief to form a99

posterior distribution as evidence is gathered.100

Prior and Posterior Distributions. The sampling rules studied in this paper begin with a normally101

distributed prior over the true mean of each arm i ∈ A denoted by N(µ1,i, σ
2
1,i), and update this to102

form a posterior distribution as observations are gathered. By conjugacy, the posterior distribution103

after observing the sequence (I1, Y1,I1 , . . . , In−1, Yn−1,In−1
) is also a normal distribution denoted104

by N(µn,i, σ
2
n,i). The posterior mean and variance can be calculated using the following recursive105

equations:106

µn+1,i =

{
(σ−2
n,iµn,i + σ−2Yn,i)/(σ

−2
n,i + σ−2) if In = i,

µn,i, if In 6= i,

and107

σ2
n+1,i =

{
1/(σ−2

n,i + σ−2) if In = i,

σ2
n,i, if In 6= i.

.

We denote the posterior distribution over the vector of arm means by108

Πn = N(µn,1, σ
2
n,1)⊗N(µn,2, σ

2
n,2)⊗ · · · ⊗N(µn,k, σ

2
n,k)

and let θ = (θ1, . . . , θk). For example, with this notation109

Eθ∼Πn

[∑
i∈A

θi

]
=
∑
i∈A

µn,i.

The posterior probability assigned to the event that arm i is optimal is110

αn,i , Pθ∼Πn

(
θi > max

j 6=i
θj

)
. (1)

To avoid confusion, we use θ = (θ1, . . . , θk) to denote a random vector of arm means drawn from111

the algorithm’s posterior Πn, and µ = (µ1, . . . , µk) to denote the vector of true arm means.112

Two notions of asymptotic optimality. Our first notion of optimality relates to the rate of poste-113

rior convergence. As the number of observations grows, one hopes that the posterior distribution114

definitively identifies the true best arm, in the sense that the posterior probability 1− αn,1 assigned115

by the event that a different arm is optimal tends to zero. By sampling the arms intelligently, we hope116

this probability can be driven to zero as rapidly as possible. We will see that under TTEI the posterior117

probability tends to zero at an exponential rate, and so following Russo [21], we aim to maximize the118

exponent governing the rate of decay, effectively solving the optimization problem119

min
sampling rules

lim sup
n→∞

1

n
log (1− αn,1) .

The second setting we consider is often called the “fixed confidence” setting. Here, the agent is120

allowed at any point to stop gathering samples and return an estimate of the identity of the optimal. In121

addition to the sampling rule TTEI, we require a stopping rule that selects a time τ at which to stop,122

and decision rule that returns an estimate îτ of the optimal arm based on the first τ observations. We123

consider minimizing the average number of observations E[τ ] required by an algorithm guaranteeing124

a vanishing probability δ of incorrect identification, i.e., P(̂iτ 6= 1) ≤ δ. Following Garivier and125

Kaufmann [9], the number of samples required scales with log(1/δ), and so we aim to minimize126

lim sup
δ→0

E[τ ]

log(1/δ)

among algorithms with probability of error no more than δ. In this setting, we study the performance127

of EI when combined with the stopping rule studied by Chernoff [5] and Garivier and Kaufmann [9].128
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3 Sampling Rules129

In this section, we first introduce the expected improvement algorithm, and point out its weakness.130

Then a simple variant of the expected improvement algorithm is proposed. Both algorithms make131

calculations using function f(x) = xΦ(x) + φ(x) where Φ(·) and φ(·) are the CDF and PDF of132

the standard normal distribution. One can show that as x → ∞, log f(−x) ∼ −x2/2, and so133

f(−x) ≈ e−x2/2 for very large x. One can also show that f is an increasing function.134

Expected Improvement. Expected improvement [14] is a simple improvement-based sampling135

rule. The EI algorithm favors the arm that offers the largest amount of improvement upon a target.136

The EI algorithm measures the arm In = arg maxi∈A vn,i where vn,i is the EI value of arm i at time137

n. Let I∗n = arg maxi∈A µn,i denote the arm with largest posterior mean at time n. The EI value of138

arm i at time n is defined as139

vn,i , Eθ∼Πn

[(
θi − µn,I∗n

)+]
.

where x+ = max{x, 0}. The above expectation can be computed analytically as follows,140

vn,i =
(
µn,i − µn,I∗n

)
Φ

(
µn,i − µn,I∗n

σn,i

)
+ σn,iφ

(
µn,i − µn,I∗n

σn,i

)
= σn,if

(
µn,i − µn,I∗n

σn,i

)
.

The EI value vn,i measures the potential of arm i to improve upon the largest posterior mean µn,I∗n at141

time n. Because f is an increasing function, vn,i is increasing in both the posterior mean µn,i and142

posterior standard deviation σn,i.143

Top-Two Expected Improvement. The EI algorithm can have very poor performance for selecting144

the best arm. Once it finds a particular arm with reasonably high probability to be the best, it allocates145

nearly all future samples to this arm at the expense of measuring other arms. Recently Ryzhov [22]146

showed that EI only allocates O(log n) samples to suboptimal arms asymptotically. This is a severe147

shortcoming, as it means n must be extremely large before the algorithm has enough samples from148

suboptimal arms to reach a confident conclusion.149

To improve the EI algorithm, we build on the top-two sampling idea in Russo [21]. The idea is to150

identify in each period the two “most promising” arms based on current observations, and randomize151

to choose which to sample. A tuning parameter β ∈ (0, 1) controls the probability assigned to the152

“top” arm. A naive top-two variant of EI would identify the two arms with largest EI value, and flip153

a β–weighted coin to decide which to measure. However, one can prove that this algorithm is not154

optimal for any choice of β. Instead, what we call the top-two expected improvement algorithm uses155

a novel modified EI criterion which more carefully accounts for the decision-maker’s uncertainty156

when deciding which arm to sample.157

For i, j ∈ A, define vn,i,j , Eθ∼Πn [(θi − θj)+]. This measures the expected magnitude of158

improvement arm i offers over arm j, but unlike the typical EI criterion, this expectation integrates159

over the uncertain quality of both arms. This measure can be computed analytically as160

vn,i,j =
√
σ2
n,i + σ2

n,jf

 µn,i − µn,j√
σ2
n,i + σ2

n,j

 .

TTEI depends on a tuning parameter β > 0, set to 1/2 by default. With probability β, TTEI measures161

the arm I
(1)
n by optimizing the EI criterion, and otherwise it measures an alternative I(2)

n that offers162

the largest expected improvement on the arm I
(1)
n . Formally, TTEI measures the arm163

In =

{
I

(1)
n = arg maxi∈A vn,i, with probability β,
I

(2)
n = arg maxi∈A vn,i,I(1)n

, with probability 1− β.

Note that vn,i,i = 0, which implies I(2)
n 6= I

(1)
n .164

We notice that TTEI with β = 1 is the standard EI algorithm. Comparing to the EI algorithm, TTEI165

with β ∈ (0, 1) allocates much more measurement effort to suboptimal arms. We will see that TTEI166

allocates β proportion of samples to the best arm asymptotically, and it uses the remaining 1 − β167

fraction of samples for gathering evidence against each suboptimal arm.168
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4 Convergence to Asymptotically Optimal Proportions169

For all i ∈ A and n ∈ N, we define Tn,i ,
∑n−1
`=1 1{I` = i} to be the number of samples of arm170

i before time n. We will show that under TTEI with parameter β, limn→∞ Tn,1/n = β. That is,171

the algorithm asymptotically allocates β proportion of the samples to true best arm. Dropping for172

the moment questions regarding the impact of this tuning parameter, let us consider the optimal173

asymptotic proportion of effort to allocate to each f the k − 1 remaining arms. It is known that the174

optimal proportions are given by the unique vector (wβ2 , · · · , w
β
k ) satisfying,

∑k
i=2 w

β
i = 1− β and175

(µ2 − µ1)2

1/wβ2 + 1/β
= . . . =

(µk − µ1)2

1/wβk + 1/β
. (2)

We set wβ1 = β, so wβ =
(
wβ1 , . . . , w

β
k

)
encodes the sampling proportions of each arm.176

To understand the source of equation (2), imagine that over the first n periods each arm i is sampled177

exactly wβi n times, and let µ̂n,i ∼ N
(
µi,

σ2

wβi n

)
denote the empirical mean of arm i. Then178

µ̂n,1 − µ̂n,i ∼ N
(
µ1 − µi, σ̃2

i

)
where σ̃2

i =
σ2

n/β + n/wβi
.

The probability µ̂n,1 − µ̂n,i ≤ 0–leading to an incorrect estimate of the arm with highest mean–is179

Φ ((µi − µ1)/σ̃i) where Φ is the CDF of the standard normal distribution. Equation (2) is equivalent180

to requiring (µ1 − µi)/σ̃i is equal for all arms i, so the probability of falsely declaring µi ≥ µ1181

is equal for all i 6= 1. In a sense, these sampling frequencies equalize the evidence against each182

suboptimal arm. These proportions appeared first in the machine learning literature in [21, 9], but183

appeared much earlier in the statistics literature in [13], and separately in the simulation optimization184

literature in [10]. As we will see in the next section, convergence to this allocation is a necessary185

condition for both notions of optimality considered in this paper.186

Our main theoretical contribution is the following theorem, which establishes that under TTEI187

sampling proportions converge to the proportions wβ derived above. Therefore, while the sampling188

proportion of the optimal arm is controlled by the tuning parameter β, the remaining 1− β fraction189

of measurement is optimally distributed among the remaining k− 1 arms. One of our results requires190

more than convergence to wβ with probability 1, but a sense in which the expected time until191

convergence is finite. To make this precise, we introduce a time after which for each arm, both its192

empirical mean and empirical proportion are accurate. Specifically, given β ∈ (0, 1) and ε > 0, we193

define194

T εβ , inf
{
N ∈ N : |µn,i − µi| ≤ ε and |Tn,i/n− wβi | ≤ ε, ∀i ∈ A and n ≥ N

}
. (3)

If Tn,i/n → wβi with probability 1, then by the law of large numbers P(T εβ < ∞) = 1 for every195

ε > 0. Such a result was established for other top-two sampling algorithms in [21]. To establish196

optimality in the “fixed confidence setting”, we need to prove in addition that E[T βε ] < ∞ for all197

ε > 0, which requires substantial new technical innovations.198

Theorem 1. If TTEI is applied with parameter β ∈ (0, 1), E[T εβ ] <∞ for any ε > 0. Therefore,199

lim
n→∞

Tn,i
n

= wβi ∀i ∈ A.

4.1 Problem Complexity Measure200

Given β ∈ (0, 1), define the problem complexity measure201

Γ∗β ,
(µ2 − µ1)2

2σ2
(

1/wβ2 + 1/β
) = . . . =

(µk − µ1)2

2σ2
(

1/wβk + 1/β
) ,

which is a function of the true arm means and variances. This will be the exponent governing202

the rate of posterior convergence, and also characterizing the average number of samples in the203
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fixed confidence stetting. The optimal exponent comes from maximizing over β. Let us define204

Γ∗ = maxβ∈(0,1) Γ∗β and β∗ = arg maxβ∈(0,1) Γ∗β and set205

w∗ = wβ
∗

=
(
β∗, wβ

∗

2 , . . . , wβ
∗

k

)
.

Russo [21] has proved that for β ∈ (0, 1), Γ∗β ≥ Γ∗/max
{
β∗

β ,
1−β∗
1−β

}
, and therefore Γ∗1/2 ≥ Γ∗/2.206

This demonstrates a surprising degree of robustness to β. In particular, Γβ is close to Γ∗ if β is207

adjusted to be close to β∗, and the choice of β = 1/2 always yields a 2-approximation to Γ∗.208

5 Implied Optimality Results209

This section establishes formal optimality guarantees for TTEI. Both results, in fact, hold for any210

algorithm satisfying the conclusions of Theorem 1, and is therefore one of broader interest.211

5.1 Optimal Rate of Posterior Convergence212

We first provide upper and lower bounds on the exponent governing the rate of posterior convergence.213

The same result has been has been proved in Russo [21] for bounded correlated priors. We use214

different proof techniques to prove the following result for uncorrelated Gaussian priors.215

This theorem shows that no algorithm can attain a rate of posterior convergence faster than e−Γ∗n216

and that this is attained by any algorithm that, like TTEI with optimal tuning parameter β∗, has217

asymptotic sampling ratios (w∗1 , . . . , w
∗
k). The second part implies TTEI with parameter β attains218

convergence rate e−nΓ∗β and that it is optimal among sampling rules that allocation β–fraction of219

samples to the optimal arm. Recall that, without loss of generality, we have assumed arm 1 is the arm220

with true highest mean µ1 = maxi∈A µi. We will study the posterior mass 1− αn,1 assigned to the221

event that some other has the highest mean.222

Theorem 2 (Posterior Convergence - Sufficient Condition for Optimality). The following properties223

hold with probability 1:224

1. Under any allocation rule satisfying Tn,i/n→ w∗i for each i ∈ A,225

lim
n→∞

− 1

n
log (1− αn,1) = Γ∗.

Under any sampling rule,226

lim sup
n→∞

− 1

n
log(1− αn,1) ≤ Γ∗.

2. For β ∈ (0, 1), under any allocation rule satisfying Tn,i/n→ wβi for each i ∈ A,227

lim
n→∞

− 1

n
log(1− αn,1) = Γ∗β .

Under any sampling rule satisfying Tn,1/n→ β,228

lim sup
n→∞

− 1

n
log(1− αn,1) ≤ Γ∗β .

This result reveals that when the tuning parameter β is set optimally to β∗, TTEI attains the optimal229

rate of posterior convergence. Since Γ∗1/2 ≥ Γ∗/2, when β set to the default value 1/2, the exponent230

governing the convergence rate of TTEI is at least half of the optimal one.231

5.2 Optimal Average Sample Size232

Chernoff’s Stopping Rule. In the fixed confidence setting, besides an efficient sampling rule, a233

player also needs to design an intelligent stopping rule. This section introduces a stopping rule234

proposed by Chernoff [5] and studied recently by Garivier and Kaufmann [9]. This stopping rule235

makes use of the Generalized Likelihood Ratio statistic, which depends on the current maximum236
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likelihood estimates of all unknown means. For each arm i ∈ A, the maximum likelihood estimate of237

its unknown mean µi at time n is its empirical mean µ̂n,i = T−1
n,i

∑n−1
`=1 1{I` = i}Y`,I` . If Tn,i = 0,238

we set µ̂n,i = 0. For arms i, j ∈ A, if µ̂n,i ≥ µ̂n,j , the Generalized Likelihood Ratio statistic Zn,i,j239

has the following explicit expression for Gaussian noise distributions:240

Zn,i,j , Tn,id(µ̂n,i, µ̂n,i,j) + Tn,jd(µ̂n,j , µ̂n,i,j)

where d(x, y) , (x− y)2/(2σ2) is the KL-divergence between two normal distributions N(x, σ2)241

and N(y, σ2), and µ̂n,i,j is a weighted average of the empirical means of arms i, j defined as242

µ̂n,i,j ,
Tn,i

Tn,i + Tn,j
µ̂n,i +

Tn,j
Tn,i + Tn,j

µ̂n,j .

On the other hand, if µ̂n,i < µ̂n,j , then Zn,j,i is well-defined as above, and Zn,i,j = −Zn,j,i ≤ 0 (if243

Tn,i = Tn,j = 0, we let Zn,i,j = Zn,j,i = 0). Given a target confidence δ ∈ (0, 1), to ensure that244

one arm is better than the others with probability at least 1− δ, we use the stopping time245

τδ , inf

{
n ∈ N : Zn , max

i∈A
min

j∈A\{i}
Zn,i,j > γn,δ

}
where γn,δ > 0 is an appropriate threshold. By definition, we known that minj∈A\{i} Zn,i,j is246

nonnegative if and only if µ̂n,i ≥ µ̂n,j for all j ∈ A \ {i}. Hence, whenever Î∗n , arg maxi∈A µ̂n,i247

is unique, Zn = minj∈A\{Î∗n} Zn,Î∗n,j .248

Next we introduce the exploration rate for normal bandit models that can ensure to identify the best249

arm with probability at least 1− δ. We use the following result given in Garivier and Kaufmann [9].250

Proposition 1 (Garivier and Kaufmann [9] Proposition 12). Let δ ∈ (0, 1) and α > 1. For any251

normal bandit model, there exists a constant C = C(α, k) such that under any possible sampling252

rule, using the Chernoff’s stopping rule with the threshold γαn,δ = log(Cnα/δ) guarantees253

P
(
τδ <∞, arg max

i∈A
µ̂τδ,i 6= 1

)
≤ δ.

Sample Complexity. Garivier and Kaufmann [9] recently provided a general lower bound on the254

number of samples required in the fixed confidence setting. In particular, they show that for any255

normal bandit model, under any sampling rule and stopping time τδ that guarantees a probability of256

error less than δ,257

lim inf
δ→0

E[τδ]

log(1/δ)
≥ 1

Γ∗
.

Recall that T εβ , defined in (3), is the first time after which the empirical means and empirical258

proportions are within ε of their asymptotic limits. The next result provides a condition in terms of259

T εβ that is sufficient to guarantees optimality in the fixed confidence setting.260

Theorem 3 (Fixed Confidence - Sufficient Condition for Optimality). Let β ∈ (0, 1). Consider any261

sampling rule which, if applied with no stopping rule, satisfies E[T εβ ] < ∞ for all ε > 0. Fix any262

α > 1. Then if this sampling rule is applied with Chernoff’s stopping rule with the threshold γαn,δ,263

we have264

lim sup
δ→0

E[τδ]

log(1/δ)
≤ α

Γ∗β
.

Since α can be chosen to be arbitrarily close to 1, when β = β∗ the general lower bound on sample265

complexity of 1/Γ∗ is essentially matched. In addition, when β is set to the default value 1/2 and α266

is taken to be arbitrarily close to 1, the sample complexity of TTEI combined with the Chernoff’s267

stopping rule is at most twice the optimal sample complexity since 1/Γ∗1/2 ≤ 2/Γ∗.268

6 Numerical Experiments269

To test the empirical performances of TTEI, we conduct several numerical experiments. The first270

experiment compares the performance of TTEI with β = 1/2 and EI. The second experiment271
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compares the performances of different versions of TTEI, top-two Thompson sampling (TTTS) [21],272

knowledge gradient (KG) [7] and oracle algorithms that know the optimal proportions a priori. Each273

algorithm plays arm i = 1, . . . , k exactly once at the beginning, and then prescribe a priorN(Yi,i, σ
2)274

for unknown arm-mean µi where Yi,i is the observation from N(µi, σ
2). In both experiments, we fix275

the common known variance σ2 = 1 and the number of arms k = 5. We consider three instances276

[µ1, . . . , µ5] = [5, 4, 1, 1, 1], [5, 4, 3, 2, 1] and [2, 0.8, 0.6, 0.4, 0.2]. The optimal parameter β∗ equals277

0.48, 0.45 and 0.35, respectively.278

Recall that αn,i, defined in (1), denotes the posterior probability that arm i is optimal. Table 1 shows279

the average number of measurements required for the largest posterior probability being the best to280

reach a given confidence level c, i.e., maxi αn,i ≥ c. The results in Table 1 are averaged over 100281

trials. We see that TTEI with β = 1/2 outperforms standard EI by an order of magnitude.

Table 1: Average number of measurements required to reach the confidence level c = 0.95

TTEI-1/2 EI
[5, 4, 1, 1, 1] 14.60 238.50
[5, 4, 3, 2, 1] 16.72 384.73
[2, .8, .6, .4, .2] 24.39 1525.42

282

The second experiment compares the performance of different versions of TTEI, TTTS, KG, random283

sampling oracle (RSO) and tracking oracle (TO). The random sampling oracle draws a random arm in284

each round from the distribution w∗ encoding the asymptotically optimal proportions. The tracking285

oracle tracks the optimal proportions at each round. Specifically, the tracking oracle samples the arm286

with the largest ratio its optimal and empirical proportions. Two tracking algorithms proposed by287

Garivier and Kaufmann [9] are similar to this tracking oracle. TTEI with adaptive β (aTTEI) works288

as follows: it starts with β = 1/2 and updates β = β̂∗ every 10 rounds where β̂∗ is the maximizer of289

equation (2) based on plug-in estimators for the unknown arm-means. Table 2 shows the average290

number of measurements required for the largest posterior probability being the best to reach the291

confidence level c = 0.9999. The results in Table 2 are averaged over 200 trials. We see that the292

performances of TTEI with adaptive β and TTEI with β∗ are better than the performances of all other293

algorithms. We note that TTEI with adaptive β substantially outperforms the tracking oracle.294

Table 2: Average number of measurements required to reach the confidence level c = 0.9999

TTEI-1/2 aTTEI TTEI-β∗ TTTS-β∗ RSO TO KG
[5, 4, 1, 1, 1] 61.97 61.98 61.59 62.86 97.04 77.76 75.55
[5, 4, 3, 2, 1] 66.56 65.54 65.55 66.53 103.43 88.02 81.49
[2, .8, .6, .4, .2] 76.21 72.94 71.62 73.02 101.97 96.90 86.98

7 Conclusion and Extensions to Correlated Arms295

We conclude by noting that while this paper thoroughly studies TTEI in the case of uncorrelated296

priors, we believe the algorithm is also ideally suited to problems with complex correlated priors297

and large sets of arms. In fact, the modified information measure vn,i,j was designed with an eye298

toward dealing with correlation in a sophisticated way. In the case of a correlated normal distribution299

N(µ,Σ), one has300

vn,i,j = Eθ∼N(µ,Σ)[(θi − θj)+] =
√

Σii + Σjj − 2Σijf

(
µn,i − µn,j√

Σii + Σjj − 2Σij

)
.

This closed form accommodates efficient computation. Here the term Σi,j accounts for the correlation301

or similarity between arms i and j. Therefore v
n,i,I

(1)
n

is large for arms i that offer large potential302

improvement over I(1)
n , i.e. those that (1) have large posterior mean, (2) have large posterior variance,303

and (3) are not highly correlated with arm I
(1)
n . As I(1)

n concentrates near the estimated optimum, we304

expect the third factor will force the algorithm to experiment in promising regions of the domain that305

are “far” away from the current-estimated optimum, and are under-explored under standard EI.306
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A Outline386

The appendix is organized as follows.387

1. Section B introduces some further notations required in the theoretical analysis.388

2. Section C is the proof of Theorem 2, a sufficient condition in terms of optimal proportions389

(wβ1 , . . . , w
β
k ) to guarantee the optimal rate of posterior convergence.390

3. Section D is the proof of Theorem 3, a sufficient condition in terms of T εβ under which the391

optimality in the fixed confidence setting is achieved.392

4. Section E provides several basic results which is used in the theoretical analysis of TTEI.393

5. Section F proves that TTEI satisfies the sufficient conditions for two notions of optimality,394

which immediately establishes Theorems 1.395

B Notation396

For notational convenience, we assume that sampling rules begin with an improper prior for each arm397

i ∈ A with µ1,i = 0 and σ1,i =∞. Consequently, if Tn,i =
∑n−1
`=1 1{I` = i} = 0, µn,i = µ1,i = 0398

and σn,i = σ1,i =∞, and if Tn,i > 0,399

µn,i =
1

Tn,i

n−1∑
`=1

1{I` = i}Y`,I` and σ2
n,i =

σ2

Tn,i
,

so the posterior parameters are identical to the frequentist sample mean and variance under the400

observations collected so far.401

We introduce some further notations. We define402

∆min , min
i 6=j
|µi − µj | and ∆max , max

i,j∈A
(µi − µj).

Since the arm means are unique, we have ∆min,∆max > 0. In addition, we define403

βmin , min{β, 1− β} and βmax , max{β, 1− β}.

Note that for β ∈ (0, 1), βmin > 0.404

We introduce the filtration (Fn : n = 1, 2, . . . ) where405

Fn = Σ(I1, Y1,I1 , · · · , In, Yn,In)

is the sigma algebra generated by observations up to time n. For all i ∈ A and n ∈ N, define406

ψn,i , P(In = i|Fn−1) and Ψn,i ,
n−1∑
`=1

ψ`,i.

Note that for all i ∈ A, T1,i = Ψ1,i = 0. Both Tn,i and Ψn,i measure the effort allocated to arm i up407

to period n.408

Finally, rather than use the notation vn,i and vn,i,j introduced in Section 3 for the expected-409

improvement measures it is more convenient to work with the notation defined here. Set410

v
(1)
n,i ≡ vn,i ∀i ∈ A

to be the expected improvement used in the identifying the first among in the top-two, and411

v
(2)
n,i ≡ vn,i,I(1)n

∀i ∈ A

to be the second expected improvement measure where I(1)
n is the arm optimizing the first expected412

improvement measure.413
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C Proof of Theorem 2414

To prove Theorem 2, we first need to introduce the so-called Gaussian tail inequality.415

Lemma 1. Let X ∼ N(µ, σ2) and c ≥ 0, then we have416

1√
2π
e−(σ+c)2/(2σ2) ≤ P(X ≥ µ+ c) ≤ 1

2
e−c

2/(2σ2).

Proof. We first prove the upper bound.417

P(X ≥ µ+ c) =

∫ ∞
µ+c

1√
2πσ2

e−(x−µ)2/(2σ2)dx

=

∫ ∞
0

1√
2πσ2

e−(x+c)2/(2σ2)dx

≤
∫ ∞

0

1√
2πσ2

e−(x2+c2)/(2σ2)dx

= e−c
2/(2σ2)

∫ ∞
0

1√
2πσ2

e−x
2/(2σ2)dx

=
1

2
e−c

2/(2σ2).

Next we prove the lower bound.418

P(X ≥ µ+ c) =

∫ ∞
µ+c

1√
2πσ2

e−(x−µ)2/(2σ2)dx

=

∫ ∞
0

1√
2πσ2

e−(x+c)2/(2σ2)dx

≥
∫ σ

0

1√
2πσ2

e−(x+c)2/(2σ2)dx

≥
∫ σ

0

1√
2πσ2

e−(σ+c)2/(2σ2)dx

=
1√
2π
e−(σ+c)2/(2σ2).

419

Proof of Theorem 2. We let I = {i ∈ A : limn→∞ Tn,i = ∞} and I = A \ I. Note that I420

contains arms that are only sampled finite times. First, suppose that I is nonempty. For each i ∈ A,421

we define422

µ∞,i , lim
n→∞

µn,i and σ2
∞,i , lim

n→∞
σ2
n,i.

Recall that for each i ∈ A, an improper prior with µ1,i = 0 and σ1,i = ∞ is prescribed. Then if423

Tn,i =
∑n−1
`=1 1{I` = i} = 0, µn,i = µ1,i = 0 and σn,i = σ1,i =∞, and if Tn,i > 0.424

µn,i =
1

Tn,i

n−1∑
`=1

1{I` = i}Y`,I` and σ2
n,i =

σ2

Tn,i
,

Hence, for i ∈ I, µ∞,i = µi and σ2
∞,i = 0, while for i ∈ I, σ2

∞,i > 0. We let425

Π∞ = N(µ∞,1, σ
2
∞,1)⊗N(µ∞,2, σ

2
∞,2)⊗ · · · ⊗N(µ∞,k, σ

2
∞,k),

and for each i ∈ A, we define426

α∞,i , Pθ∼Π∞

(
θi > max

j 6=i
θj

)
.
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For i ∈ I is nonempty, we have α∞,i ∈ (0, 1) since σ2
∞,i > 0. This implies α∞,1 < 1 and so427

lim
n→∞

− 1

n
log(1− αn,1) = lim

n→∞
− 1

n
log(1− α∞,1) = 0.

Now suppose I is empty. By definition, αn,1 = Pθ∼Πn (θ1 > maxi 6=1 θi), so 1 − αn,1 =428

Pθ∼Πn (∪i 6=1(θi ≥ θ1)), and then we have429

max
i 6=1

Pθ∼Πn (θi ≥ θ1) ≤ 1− αn,1 ≤
∑
i 6=1

Pθ∼Πn (θi ≥ θ1) ≤ (k − 1) max
i 6=1

Pθ∼Πn (θi ≥ θ1) (4)

where the second inequality uses the union bound.430

To simplify the presentation, we need to introduce the following asymptotic notation. We say two431

real-valued sequences {an} and {bn} are logarithmically equivalent if limn→∞ 1/n log(an/bn) = 0.432

We denote this by an
.
= bn. Using equation 4, we conclude433

1− αn,1
.
= max

i6=1
Pθ∼Πn (θi ≥ θ1) .

Next we want to show that for i 6= 1, Pθ∼Πn (θi ≥ θ1)
.
= exp

(
−(µn,i−µn,1)2

2σ2(1/Tn,i+1/Tn,1)

)
. Note that at434

time n, θi− θ1 ∼ N(µn,i− µn,1, σ2
n,i + σ2

n,1) and σ2
n,i + σ2

n,1 = σ2(1/Tn,i + 1/Tn,1). Since every435

arm is sampled infinite times, when n is large, µn,1 ≥ µn,i, and then using Lemma 1, we have436

1√
2π

exp

−
(√

σ2
n,i + σ2

n,1 + µn,1 − µn,i
)2

2(σ2
n,i + σ2

n,1)

 ≤ Pθ∼Πn (θi − θ1 ≥ 0) ≤ 1

2
exp

(
−(µn,1 − µn,i)2

2(σ2
n,i + σ2

n,1)

)
,

which implies437

1

n
log

(
1√
2π

)
− 1

2n
− µn,1 − µn,i
n
√
σ2
n,i + σ2

n,1

≤ 1

n
log

 Pθ∼Πn (θi ≥ θ1)

exp
(
−(µn,1−µn,i)2
2(σ2

n,i+σ
2
n,1)

)
 ≤ 1

n
log

(
1

2

)
.

Note that when µn,1 ≥ µn,i,438

0 ≤ µn,1 − µn,i
n
√
σ2
n,i + σ2

n,1

=
µn,1 − µn,i

σ
√
n(n/Tn,i + n/Tn,1)

≤ µn,1 − µn,i
σ
√

2n

where the last equality uses Tn,i, Tn,1 < n. Using the squeeze theorem, we have439

lim
n→∞

µn,1 − µn,i
n
√
σ2
n,i + σ2

n,1

= 0,

and440

lim
n→∞

1

n
log

 Pθ∼Πn (θi ≥ θ1)

exp
(
−(µn,1−µn,i)2
2(σ2

n,i+σ
2
n,1)

)
 = 0.

Hence, Pθ∼Πn (θi ≥ θ1)
.
= exp

(
−(µn,i−µn,1)2

2σ2(1/Tn,i+1/Tn,1)

)
. Then we have441

1− αn,i
.
= max

i 6=1
Pθ∼Πn (θi ≥ θ1)

.
= max

i 6=1

{
exp

(
−(µn,i − µn,1)2

2σ2(1/Tn,i + 1/Tn,1)

)}
.
= exp

(
−nmin

i 6=1

{
(µn,i − µn,1)2

2σ2(n/Tn,i + n/Tn,1)

})
where the second equality uses the property that if an,i

.
= bn,i for each i = 1, . . . , c where c a positive442

integer, then maxi∈{1,...,c} an,i
.
= maxi∈{1,...,c} bn,i.443
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Let W ,
{
w = (w1, . . . , wk) :

∑k
i=1 wi = 1 and wi ≥ 0,∀i ∈ A

}
denote the set of possible pro-444

portions on k arms. Russo [21] showed that445

Γ∗ = max
w∈W

min
i 6=1

(µi − µ1)2

2σ2(1/wi + 1/w1)
,

and given β ∈ (0, 1),446

Γ∗β = max
w∈W :w1=β

min
i6=1

(µi − µ1)2

2σ2(1/wi + 1/w1)
.

Under any sampling rule,447

1− αn,i
.
= exp

(
−nmin

i6=1

{
(µn,i − µn,1)2

2σ2(n/Tn,i + n/Tn,1)

})
≥ exp

(
−n max

w∈W
min
i 6=1

{
(µn,i − µn,1)2

2σ2(1/wi + 1/w1)

})
Since every arm is sampled infinite times, as n→∞, µn,i → µi and µn,1 → µ1, and thus448

lim sup
n→∞

− 1

n
log(1− αn,i) ≤ Γ∗.

If Tn,i/n→ w∗i for each i ∈ A, then for each i 6= 1, we have449

lim
n→∞

(µn,i − µn,1)2

2σ2(n/Tn,i + n/Tn,1)
=

(µi − µ1)2

2σ2(1/w∗i + 1/β)
= Γ∗,

and thus450

1− αn,i
.
= exp

(
−nmin

i6=1

{
(µn,i − µn,1)2

2σ2(n/Tn,i + n/Tn,1)

})
.
= exp (−nΓ∗) ,

which implies451

lim
n→∞

− 1

n
log(1− αn,i) = Γ∗.

Similarly, for β ∈ (0, 1), under any sampling rule satisfying Tn,1/n→ β, we have452

lim sup
n→∞

− 1

n
log(1− αn,i) ≤ Γ∗β ,

and under any sampling rule satisfying Tn,i/n→ wβi for each i ∈ A,453

lim
n→∞

− 1

n
log(1− αn,i) = Γ∗β .

D Proof of Theorem 3454

Let β ∈ (0, 1). Recall that TTEI begins with an improper prior for each arm i ∈ A with µ1,i = 0 and455

σ1,i = ∞, so for any i ∈ A and n ∈ N, µn,i = µ̂n,i, i.e., the posterior mean equals the empirical456

mean, and thus I∗n = arg maxi∈A µn,i is identical to Î∗n = arg maxi∈A µ̂n,i. We can rewrite Zn457

used in the Chernoff’s stopping rule as follows,458

Zn = min
j∈A\{I∗n}

Zn,I∗n,j

where the Generalized Likelihood Ratio statistic is459

Zn,I∗n,j = Tn,I∗nd(µn,I∗n , µn,I∗n,j) + Tn,jd(µn,j , µn,I∗n,j)

where460

µn,I∗n,j =
Tn,I∗n

Tn,I∗n + Tn,j
µn,I∗n +

Tn,j
Tn,I∗n + Tn,j

µn,j .
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Note that ∆min = mini 6=j |µi − µj | > 0. Then by definition of T∆min/4
β , for all i ∈ A and461

n ≥ T
∆min/4
β , |µn,i − µi| ≤ ∆min/4, which implies µn,1 > . . . µn,k, and thus I∗n = 1. Using462

d(x, y) = (x− y)2/(2σ2), for n ≥ T∆min/4
β , we have463

Zn
n

= min
i∈A\{1}

(µn,i − µn,1)2

2σ2(n/Tn,i + n/Tn,1)
.

Note that464

Γ∗β =
(µ2 − µ1)2

2σ2
(

1/wβ2 + 1/β
) = . . . =

(µk − µ1)2

2σ2
(

1/wβk + 1/β
)

and when β ∈ (0, 1), Γ∗β > 0. Given ε > 0, there exists ε′ ∈ (0,∆min/4] such that for all465

n ≥ N ε , T ε
′

β , |µn,i − µi| ≤ ε′ and |Tn,i/n − wβi | ≤ ε′,∀i ∈ A can imply Zn/n ≥ Γ∗β − ε. We466

have E [N ε] = E
[
T ε
′

β

]
<∞.467

Let δ ∈ (0, 1) and α > 0. By Proposition 1, the stopping time τδ =468

inf {n ∈ N : Zn > log(Cnα/δ)} can ensure P (τδ <∞, arg maxi∈A µτδ,i 6= 1) ≤ δ.469

For ε ∈
(

0,Γ∗β/(1 + α)
)

, when n ≥ N ε, Zn ≥ (Γ∗β − ε)n > 0. Let M ε ,
⌈
max{N ε, 1/ε2}

⌉
470

where the ceil function dxe is the least integer greater than or equal to x. Now let us consider the471

following two cases.472

1. ∃r ∈ [1,M ε] such that Zr > log(Crα/δ)473

This case implies τδ ≤M ε.474

2. ∀r ∈ [1,M ε], Zr ≤ log(Crα/δ)475

This case implies τδ ≥ M ε + 1. Note that M ε =
⌈
max{N ε, 1/ε2}

⌉
≥ N ε, so for476

n ≥ M ε, Zn ≥ (Γ∗β − ε)n. Let xε be the solution of (Γ∗β − ε)x = log(Cxα/δ). Since477

(Γ∗β − ε)M ε ≤ ZMε ≤ log(C(M ε)α/δ), we have xε ≥M ε, which implies xε ≥ 1/ε2, and478

then log(xε) ≤ (xε)1/2 ≤ εxε. Hence, (Γ∗β − ε)xε = log(C(xε)α/δ) ≤ log(C) + αεxε +479

log(1/δ), which implies480

xε ≤ log(C) + log(1/δ)

Γ∗β − (1 + α)ε
.

Let Lεδ , inf
{
n ≥M ε : (Γ∗β − ε)n > log(Cnα/δ)

}
. Since (Γ∗β − ε)xε =481

log(C(xε)α/δ), we have482

Lεδ ≤ dxεe+ 1 ≤

⌈
log(C) + log(1/δ)

Γ∗β − (1 + α)ε

⌉
+ 1 <

log(C) + log(1/δ)

Γ∗β − (1 + α)ε
+ 2.

We notice that ZLεδ ≥ (τ∗β − ε)Lεδ > log(C(Lεδ)
α/δ), so we have τδ ≤ Lεδ .483

Combining the above two cases, we have τδ ≤ M ε + Lεδ, and thus E[τδ] ≤ E[M ε] + E[Lεδ]. Note484

that M ε =
⌈
max{N ε, 1/ε2}

⌉
and E[N ε] <∞ imply E[M ε] <∞.485

Now we fix ε̃ = (α− 1)Γ∗β/[α(1 + α)] ∈
(

0,Γ∗β/(1 + α)
)

, then we have486

Lε̃δ <
log(C) + log(1/δ)

Γ∗β − (1 + α)ε
+ 2 = α

[
log(C) + log(1/δ)

Γ∗β

]
+ 2 =

[
α log(C)

Γ∗β
+ 2

]
+
α log(1/δ)

Γ∗β
.

Therefore, we have487

lim sup
δ→0

E[τδ]

log(1/δ)
≤ lim sup

δ→0

E
[
M ε̃
]

+ E
[
Lε̃δ
]

log(1/δ)
≤ α

Γ∗β
.

E Preliminaries488

In this section, we introduce several preliminary results which is used in the theoretical analysis of489

TTEI.490
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E.1 Properties of f(x) = xΦ(x) + φ(x)491

We provide several properties of the function f(x) = xΦ(x)+φ(x) including its monotonicity, upper492

bound and lower bound.493

Lemma 2. f(x) is positive and increasing on R.494

Proof. This is true since f ′(x) = Φ(x) ≥ 0 and limx→−∞ f(x) = 0.495

Lemma 3. For x > 0,496

f(−x) < φ(−x).

Proof. For x > 0, f(−x) = −xΦ(−x) + φ(−x) < φ(−x).497

Lemma 4. For x ≥ 2,498

f(−x) >
1

x3
φ(−x).

Proof. Let g(x) = 1
x [f(−x) − 1

x3φ(−x)] = −Φ(−x) + 1
xφ(−x) − 1

x4φ(−x). We have g′(x) =499

(−x−2 +x−3 + 4x−5)φ(x) = x−5(−x+ 2)(x2 +x+ 2)φ(x), which implies that g(x) is decreasing500

in [2,∞). We notice that g(2) > 0 and limx→∞ g(x) = 0, so for x ≥ 2, g(x) > 0. Therefore, for501

x ≥ 2, f(−x) > 1
x3φ(−x).502

Lemmas 3 and 4 provides the upper and lower bounds for f(·), which is used to study the expected503

improvement measures.504

E.2 Maximal Inequalities505

In the theoretical analysis of TTEI, we need a bound on the difference between the empirical mean506

µn,i and the unknown true mean µi for each arm i ∈ A at period n, and a bound on the difference507

between Tn,i and Ψn,i, two measurements of effort allocated to arm i up to period n. Two sample-path508

dependent variables W1 and W2 are required to obtain the two bounds.509

Lemma 5. Under any sampling rule beginning with an improper prior for each arm i ∈ A with510

µ1,i = 0 and σ1,i =∞, E[eλW1 ] <∞ for all λ > 0 where511

W1 , max
n∈N

max
i∈A

√
Tn,i + 1

log(e+ Tn,i)

∣∣∣∣µn,i − µiσ

∣∣∣∣ .
Proof. Under any sampling rule beginning with an improper prior for each arm i ∈ A with σ1,i =∞512

and µ1,i = 0 for each arm i ∈ A, if Tn,i =
∑n−1
`=1 1{I` = i} = 0, µn,i = µ1,i = 0, and if Tn,i > 0,513

µn,i =
1

Tn,i

n−1∑
`=1

1{I` = i}Y`,I` .

A mathematically equivalent way of simulating the system is to generate a collection of independent514

variables (Xn,i)n∈N,i∈A where each Xn,i ∼ N(µi, σ
2). At time n, the algorithm selects an arm In,515

and observes the real valued response XSn,In ,In
where Sn,In ,

∑n
`=1 1{I` = i}. For all i ∈ A, we516

let X0,i = 0, and for n ∈ N, Xn,i = 1
n

∑n
`=1X`,i denote the empirical mean of arm i up to the nth517

time it is chosen. We will bound518

W̃ , max
n∈N∪{0}

max
i∈A

√
n+ 1

log(e+ n)

∣∣∣∣Xn,i − µi
σ

∣∣∣∣ .
When every arm is played infinitely often, W1 = W̃ . One always has W1 ≤ W̃ , so it is sufficient to519

bound E[eλW̃ ] for all λ > 0. Notice that W̃ = max{ξ, |µ1|/σ, . . . , |µk|/σ} ≤ ξ + σ−1
∑
i∈A |µi|520

where521

ξ , max
n∈N

max
i∈A

√
n+ 1

log(e+ n)

∣∣∣∣Xn,i − µi
σ

∣∣∣∣ .
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Hence, it suffices to bound E[eλξ] for all λ > 0.522

For all n ∈ N and i ∈ A, we define Zn,i ,
√
n
(
Xn,i−µi

σ

)
, and then523

ξ = max
n∈N

max
i∈A

√
n+ 1

n log(e+ n)
|Zn,i|.

Each Zn,i ∼ N(0, 1), and thus by Lemma 1, Zn,i satisfies the tail bound P(|Zn,i| ≥ z) ≤ e−z
2/2524

for z > 0. Therefore, for all x ≥ 2525

P (ξ ≥ 2x) = P

(
∃n ∈ N, i ∈ A : |Zn,i| ≥ 2

√
n log(e+ n)

n+ 1
x

)

≤
∑
n,i

P

(
|Zn,i| ≥ 2

√
n log(e+ n)

n+ 1
x

)

≤
∑
n,i

exp

(
−2n log(e+ n)

n+ 1
x2

)

= k
∑
n

exp

(
−2n log(e+ n)

n+ 1
x2

)
(∗)
≤ k

∑
n

exp

(
−2 log(e+ n)− n

n+ 1
x2

)

= k
∑
n

(
1

e+ n

)2

e−
n
n+1x

2

≤ Ce−x
2/2.

where step (∗) uses the ab ≥ a + b when a, b ≥ 2 and C = k
∑
n∈N(e + n)−2 < ∞ is a constant.526

Then for all λ > 0,527

E
[
eλξ
]

=

∞∫
x=1

P
(
eλξ ≥ x

)
dx

(∗)
=

∞∫
u=0

P
(
eλξ ≥ e2λu

)
2λe2λudu ≤ 2+C

∞∫
u=2

e−u
2/2·2λe2λudu <∞

where in step (∗), we have substituted x = e2λu. Hence, for all λ > 0, E
[
eλW1

]
<∞.528

This result provides a bound for the difference between the empirical mean of an arm and its true529

unknown mean. For i ∈ A and n ∈ N530

|µn,i − µi| ≤ σW1

√
log(e+ Tn,i)

Tn,i + 1
.

Then we introduce the second sample-path dependent variable W2, and the following lemma on the531

difference between two measurements of effort under any top-two sampling rule, which at each time,532

measures one of the two designs that appear most promising given current evidence.533

Lemma 6. Under any top-two sampling rule with parameter β ∈ (0, 1) beginning with an improper534

prior for each arm i ∈ A with µ1,i = 0 and σ1,i =∞, E[eλW2 ] <∞ for all λ > 0 where535

W2 , max
n∈N

max
i∈A

|Tn,i −Ψn,i|√
(1 + Ψn,i/βmin) log (e2 + Ψn,i/βmin)

.

Proof. Similar to the proof for Lemma 5, it suffices to show P(W2 ≥ x) ≤ ke−x2/2 for all x ≥ 2.536

Fix some i ∈ A. Define for each n ∈ N537

Dn , Tn,i −Ψn,i =

n−1∑
`=1

d`
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where538

dn , 1(In = i)− ψn,i = 1(In = i)− P(In = i|Fn−1).

Then E[dn|Fn−1] = 0 and Dn is a zero mean martingale. Now, note ψn,i ∈ {0, β, 1 − β} almost539

surely, and set540

Xn := 1(ψn,i > 0)

to be the indicator that i is among the top-two in period n. We can see that dn = Xndn, and so541

Dn =

n−1∑
`=1

X`d`.

Here {Xn} is a binary valued previsable process (i.e. Xn is Fn−1 measureable), and dn is a542

zero-mean Fn adapted process with increments bounded as |dn| ≤ 1 almost surely.543

The quadratic variation of Dn is544

〈D〉n =

n−1∑
`=1

E[X`d
2
` |F`−1] =

n−1∑
`=1

X`β(1− β)

and so the magnitude of fluctuations of the martingale Dn scale with the number of times i is in the545

top-two.546

There are a number of martingale analogues to the central limit theorem, which suggest that Dn =547

OP

(√
〈D〉n

)
. To establish this formally, we apply the theorem of self-normalized martingale548

processes [20], which bound processes like Dn/
√
〈D〉n. We will apply a result established in [1].549

Because |dn| ≤ 1, applying Hoeffding’s Lemma implies550

E[eλdn |Fn−1] ≤ eλ
2/2, λ ∈ R

and so dn is 1-sub–Gaussian conditioned on Fn−1. Applying Corollary 8 of [1] implies that for any551

δ > 0, with probability least 1− δ552

|Dn| ≤

√√√√√2

(
1 +

n−1∑
`=1

X`

)
log


√

1 +
∑n−1
`=1 X`

δ

, ∀n ∈ N

Analogously, for any x ≥ 2 with probability at least 1− e−x2/2,553

|Dn| ≤

√√√√√2

(
1 +

n−1∑
`=1

X`

)
log


√

1 +
∑n−1
`=1 X`

e−x2/2


=

√√√√(1 +

n−1∑
`=1

X`

)(
log

(
1 +

n−1∑
`=1

X`

)
+ x2

)

≤

√√√√(1 +

n−1∑
`=1

X`

)(
log

(
e2 +

n−1∑
`=1

X`

)
+ x2

)

≤

√√√√(1 +

n−1∑
`=1

X`

)
log

(
e2 +

n−1∑
`=1

X`

)
x2

for all n ∈ N, where the last step uses that ab ≥ a+ b for a, b ≥ 2. Then, for all x ≥ 2554

P

max
n∈N

|Dn|√(
1 +

∑n−1
`=1 X`

)
log
(
e2 +

∑n−1
`=1 X`

) ≥ x
 ≤ e−x2/2
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Since Ψn,i ≥ βmin

∑n−1
`=1 X`, we have shown that for any i,555

P

(
max
n∈N

|Tn,i −Ψn,i|√
(1 + Ψn,i/βmin) log (e2 + Ψn,i/βmin)

≥ x

)
≤ e−x

2/2

Taking a union bound over i ∈ A implies P(W2 ≥ x) ≤ ke−x2/2 for any x ≥ 2.556

This result implies that for any period n and arm i,557

|Tn,i −Ψn,i| ≤W2

√
(1 + Ψn,i/βmin) log (e2 + Ψn,i/βmin).

The next result provides another bound, which is used in the theoretical analysis of TTEI.558

Lemma 7. Under TTEI with parameter β ∈ (0, 1) beginning with an improper prior for each arm559

i ∈ A with µ1,i = 0 and σ1,i =∞, for all n ∈ N and arm i ∈ A,560

|Tn,i −Ψn,i| <

(
2 +

3Ψ
3/4
n,i

βmin

)
W2.

Proof. Fix some arm i ∈ A. If arm i is never chosen in either case 1 or case 2 of TTEI up to period561

n, then Ψn,i = 0, and thus562

|Tn,i −Ψn,i| ≤W2

√
(1 + Ψn,i/βmin) log (e2 + Ψn,i/βmin) < 2W2

Once arm i has been chosen in either case 1 or case 2 of TTEI, Ψn,i ≥ βmin. Then we have563

1 + Ψn,i/βmin < 3Ψn,i/βmin and log
(
e2 + Ψn,i/βmin

)
< 3(Ψn,i/βmin)1/2, which leads to564

|Tn,i −Ψn,i| < 3W2(Ψn,i/βmin)3/4 <
3Ψ

3/4
n,i

βmin
W2.

Hence,565

|Tn,i −Ψn,i| < max

{
2,

3Ψ
3/4
n,i

βmin

}
W2 <

(
2 +

3Ψ
3/4
n,i

βmin

)
W2.

566

E.3 Technical Lemmas567

The following technical lemma is used to quantify the time after which TTEI satisfies a certain568

property. We want to write such a time as a polynomial of sample-path dependent variables.569

Lemma 8. Fix constants c0 > c1 > 0 and c, c2 > 0. Then for any a1, a2 > 0, there exists a570

X = poly(a1, a2) such that for all x ≥ X ,571

exp (cxc0 − a1x
c1) > a2x

c2 .

Proof. There exists X1 = poly(a1) such that for all x ≥ X1, cxc0−c1 − a1 > 1. In addition, there572

exists X2 = poly(a2) such that for all x ≥ X2, exp (xc1) > a2x
c2 . Hence, for all x ≥ X ,573

max{X1, X2},574

exp (cxc0 − a1x
c1) = exp

(
xc1
(
cxc0−c1 − a1

))
≥ exp (xc1) > a2x

c2 .

575

F Results specific to TTEI576

In this section, we present theoretical results specific to the proposed TTEI policy. The main challenge577

is ensuring E[T εβ ] is finite where T εβ is the time after which for each arm, its empirical mean and578

empirical proportion are ε-accurate. To do this, we present several results for any sample path (up579

to a set of measure zero), and show that T εβ depends at most polynomially on W1 and W2. By580

Lemmas 5 and 6, the expected value of polynomials of W1 and W2 is finite. This ensures that E[T εβ ]581

is finite, which immediately establishes that TTEI achieves the sufficient conditions for both notions582

of optimality.583
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F.1 Sufficient Exploration584

We first show that every arm is sampled frequently under TTEI.585

Proposition 2. Under TTEI with parameter β ∈ (0, 1), there exists N1 = poly(W1,W2) such that586

for all n ≥ N1,587

Tn,i ≥
√
n/k, ∀i ∈ A.

To prove this proposition, we first need to define two under-sampled sets for all L > 0 and n ∈ N:588

ULn , {i ∈ A : Tn,i < L1/2}

and589

V Ln , {i ∈ A : Tn,i < L3/4}.1

Let ULn , A \ ULn and V Ln , A \ V Ln . Then Proposition 2 can be proved using the following two590

lemmas. Note that in this paper, X = poly(W1,W2) means that X = O(W c1
1 W c2

2 ) for positive591

constants c1 and c2 where (σ, k, µ1, . . . , µk, β) are treated as constants throughout the proof.592

Lemma 9. Under TTEI with parameter β ∈ (0, 1), there exists L1 = poly(W1) such that for all593

L ≥ L1 and n ≤ kL,2 if ULn is nonempty, then I(1)
n ∈ V Ln or I(2)

n ∈ V Ln .594

Proof. First of all, we will show that if I(1)
n ∈ V Ln , then I∗n ∈ V Ln where I∗n = arg maxi∈A µn,i.595

We prove this by contradiction. Suppose I∗n ∈ V Ln . By definition, T
n,I

(1)
n

> Tn,I∗n , which implies596

σ
n,I

(1)
n

< σn,I∗n . By Lemma 2, we have597

v
(1)

n,I
(1)
n

= σ
n,I

(1)
n
f

(
µ
n,I

(1)
n
− µn,I∗n

σ
n,I

(1)
n

)
< σn,I∗nf(0) = v

(1)
n,I∗n

,

which contradicts the definition of I(1)
n . Hence, if I(1)

n ∈ V Ln , then I∗n ∈ V Ln .598

Secondly we will show that when L is sufficiently large, if I∗n ∈ V Ln , then for all i ∈ V Ln \ {I∗n},599

µn,i − µn,I∗n ≤ −0.5∆min where ∆min = mini6=j |µi − µj | > 0. By Lemma 5, for all i ∈ V Ln ,600

|µn,i − µi| ≤ σW1

√
log(e+ Tn,i)

Tn,i + 1
≤ σW1

√
log(e+ L3/4)

L3/4 + 1

where the last inequality is valid because g(x) = log(e + x)/(x + 1) is positive and decreasing601

on (0,∞) and Tn,i ≥ L3/4. Note that for L ≥ 1, log(e + L3/4) ≤ 2L1/4. Then there exists602

M1 = poly(W1) such that for all L ≥M1,603 √
log(e+ L3/4)

L3/4 + 1
≤

√
2L1/4

L3/4 + 1
≤ ∆min

4σW1
.

Suppose there exists ĩ ∈ V Ln \ {I∗n} such that µĩ > µI∗n . Then for L ≥M1, we have604

µn,̃i − µn,I∗n ≥µĩ − σW1

√
log(e+ L3/4)

L3/4 + 1
− µI∗n − σW1

√
log(e+ L3/4)

L3/4 + 1

=(µĩ − µI∗n)− 2σW1

√
log(e+ L3/4)

L3/4 + 1

≥∆min − 2σW1(∆min/4σW1) = 0.5∆min,

1We fix the exponent here to be 3/4. Indeed, it can be changed to 1/2 + ε for any ε > 0. We just need a gap
between the exponent here and 1/2 in UL

n .
2L could be any value, but n must be integer value.
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which contradicts the definition of I∗n. Hence, for L ≥ M1, if I∗n ∈ V Ln , then µI∗n > µi for all605

i ∈ V Ln \ {I∗n} (note that we assume that all arm-means are unique), and thus606

µn,i − µn,I∗n ≤ (µi − µI∗n) + 2σW1

√
log(e+ L3/4)

L3/4 + 1
≤ −∆min + 0.5∆min = −0.5∆min.

Thirdly we will show when L is sufficiently large and n ≤ kL, if I(1)
n ∈ V Ln (which implies607

I∗n ∈ V Ln ), then v(1)
n,I∗n

> v
(1)
n,i for all i ∈ V Ln \ {I∗n}, which implies I(1)

n = I∗n. For all i ∈ V Ln \ {I∗n},608

σ2
n,i = σ2/Tn,i ≤ σ2/L3/4, and when L ≥M1, µn,i − µn,I∗n ≤ −0.5∆min, which lead to609

v
(1)
n,i = σn,if

(
µn,i − µn,I∗n

σn,i

)
≤ σ

L3/8
f

(
−∆minL

3/8

2σ

)
<

σ

L3/8
φ

(
−∆minL

3/8

2σ

)
(5)

where the last inequality uses Lemma 3. On the other hand,610

v
(1)
n,I∗n

= σn,I∗nf(0) ≥ σ

(kL)1/2
φ(0). (6)

There exists M2 such that for all L ≥ M2, the right hand side of (6) is larger than the right hand611

of (5). Hence, for L ≥ max{M1,M2} and n ≤ kL, if I(1)
n ∈ V Ln (which implies I∗n ∈ V Ln ), then612

v
(1)
n,I∗n

> v
(1)
n,i for all i ∈ V Ln \ {I∗n}, which implies I(1)

n = I∗n.613

Finally we will show that when L is sufficiently large and n ≤ kL, if ULn is nonempty (which implies614

V Ln is nonempty by definition) and I(1)
n ∈ V Ln (which implies I∗n ∈ V Ln ), then I(2)

n ∈ V Ln . We have615

proved that for L ≥ {M1,M2}, I(1)
n = I∗n. Then for all i ∈ V Ln \ {I∗n},616

µn,i − µn,I(1)n
= µn,i − µn,I∗n ≤ −0.5∆min,

and by definition,617

σ2
n,i + σ2

n,I
(1)
n

= σ2
n,i + σ2

n,I∗n
=

σ2

Tn,i
+

σ2

Tn,I∗n
≤ σ2

L3/4
+

σ2

L3/4
<

4σ2

L3/4
,

which leads to618

v
(2)
n,i <

2σ

L3/8
f

(
−∆minL

3/8

4σ

)
<

2σ

L3/8
φ

(
−∆minL

3/8

4σ

)
. (7)

where the last inequality uses Lemma 3. On the other hand, for all j ∈ ULn ,619

µn,j − µn,I(1)n
=µn,j − µn,I∗n

≥µj − σW1

√
log(e+ Tn,j)

Tn,j + 1
− µI∗n − σW1

√
log(e+ Tn,I∗n)

Tn,I∗n + 1

≥(µj − µI∗n)− 2σW1

√
log(e)

1
= (µj − µI∗n)− 2σW1

where the last inequality is valid because g(x) = log(e + x)/(x + 1) is positive and decreasing620

on (0,∞) and Tn,j , Tn,I∗n ≥ 0. If µI∗n > µj , µn,j − µn,I(1)n
≥ −∆max − 2σW1 where ∆max =621

maxi,j∈A(µi − µj); otherwise, µn,j − µn,I(1)n
≥ ∆min − 2σW1 > −∆max − 2σW1. Hence, we622

have µn,j − µn,I(1)n
≥ −∆max − 2σW1, and by definition,623

σ2
n,j + σ2

n,I
(1)
n

= σ2
n,j + σ2

n,I∗n
=

σ2

Tn,j
+

σ2

Tn,I∗n
>

σ2

L1/2
+
σ2

kL
>

σ2

L1/2
,

which leads to624

v
(2)
n,j >

σ

L1/4
f

(
−(∆max + 2σW1)L1/4

σ

)
.
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Let M3 , (2σ/∆max)4. Since W1 ≥ 0 by definition, for all L ≥M3, (∆max + 2σW1)L1/4/σ ≥ 2,625

and then by Lemma 4, we have626

v
(2)
n,j >

σ

L1/4
f

(
−(∆max + 2σW1)L1/4

σ

)
>

σ4

L(∆max + 2σW1)3
φ

(
−(∆max + 2σW1)L1/4

σ

)
.

(8)
By Lemma 8, there exists M4 such that for all L ≥ M4, the right hand side of (8) is larger than627

the right hand side of (7). Therefore, for L ≥ L1 , max{M1,M2,M3,M4} and n ≤ kL, if ULn is628

nonempty (which implies V Ln is nonempty by definition) and I(1)
n ∈ V Ln (which implies I∗n ∈ V Ln ),629

then v(2)
n,j > v

(2)
n,i for all j ∈ ULn and i ∈ V Ln (here we use v(2)

n,I∗n
= v

(2)

n,I
(1)
n

= 0), which implies630

I
(2)
n /∈ V Ln , and thus I(2)

n ∈ V Ln .631

632

Note that the floor function bxc is the greatest integer less than or equal to x. Then based on Lemma633

9, we have the following result.634

Lemma 10. Under TTEI with parameter β ∈ (0, 1), there exists L2 = poly(W1,W2) such that for635

all L ≥ L2, ULbkLc is empty.636

Proof. There exists M1 = poly(W2) such that for all L ≥M1, we have bLc − 1 ≥ kL3/4 and637

βminbLc − 4kW2 −
6kbkLc3/4

βmin
W2 ≥ kL3/4

where βmin = min{β, 1 − β} > 0. Let L2 , max{L1,M1} where L1 = poly(W1) has been638

introduced in Lemma 9. Now We want to prove this statement by contradiction.639

Suppose there exists some L ≥ L2 such that ULbkLc is nonempty. Then all640

UL1 , U
L
2 , . . . , U

L
bkLc−1, U

L
bkLc are nonempty, and thus by definition, all V L1 , V

L
2 , . . . , V

L
bkLc−1, V

L
bkLc641

are empty. Since L ≥ L2, we have bLc − 1 ≥ kL3/4, so at least one arm is measured at least L3/4642

times before period bLc, and thus
∣∣∣V LbLc∣∣∣ ≤ k − 1.643

Now we want to prove
∣∣∣V Lb2Lc∣∣∣ ≤ k − 2. For all ` = bLc, bLc+ 1, . . . , b2Lc − 1, UL` is nonempty,644

then by Lemma 9, we have I(1)
n ∈ V L` or I(2)

n ∈ V L` , and thus
∑
i∈V L`

ψl,i =
∑
i∈V L`

P(I` =645

i|F`−1) ≥ βmin, which implies
∑
i∈V LbLc

ψl,i ≥ βmin due to V L` ⊆ V LbLc. Hence, we have646

∑
i∈V LbLc

(
Ψb2Lc,i −ΨbLc,i

)
=

b2Lc−1∑
`=bLc

∑
i∈V LbLc

ψ`,i ≥ βminbLc

where the inequality uses the fact that ba+ bc ≥ bac+ bbc for a, b ≥ 0. Then by Lemma 7, we have647 ∑
i∈V LbLc

(
Tb2Lc,i − TbLc,i

)

≥
∑
i∈V LbLc

(
Ψb2Lc,i −ΨbLc,i

)
−
∑
i∈V LbLc

2 +
3Ψ

3/4
b2Lc,i

βmin

W2 +

2 +
3Ψ

3/4
bLc,i

βmin

W2


≥βminbLc − 2

∑
i∈V LbLc

2 +
3Ψ

3/4
bkLc,i

βmin

W2

>βminbLc − 2k

2 +
3Ψ

3/4
bkLc,i

βmin

W2

>βminbLc − 4kW2 −
6kbkLc3/4

βmin
W2 ≥ kL3/4
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where the second last inequality uses that for all i ∈ A and n ∈ N, Ψn,i ≤ βmax(n− 1) < n, and648

the last inequality is valid because of the construction of L2 and L ≥ L2. Hence, at least one arm in649

V LbLc is measured at least L3/4 times in periods [bLc, b2Lc), and thus
∣∣∣V Lb2Lc∣∣∣ ≤ k − 2.650

Similarly, we can prove that for r = 3, . . . , k, at least one arm in V Lb(r−1)Lc is measured at least L3/4651

times in periods [b(r − 1)Lc, brLc), so
∣∣∣V LbrLc∣∣∣ ≤ k − r. Hence,

∣∣∣V LbkLc∣∣∣ = 0, i.e., V LbkLc is empty,652

which implies that ULbkLc is empty.653

Now we can prove Proposition 2.654

Proof of Proposition 2. Let N1 = kL2 where L2 = poly(W1,W2) introduced in Lemma 10. For655

all n ≥ N1, we let L = n/k, then by Lemma 10, we have ULbkLc = U
n/k
n is empty, which by656

definition results in that for all i ∈ A, Tn,i ≥
√
n/k.657

F.2 Concentration of Empirical Means658

When n is large, using the bound on the difference between the empirical mean µn,i and the unknown659

true mean µi in terms of Tn,i for each arm i ∈ A, we can formally show the concentration of µn,i to660

µi under TTEI.661

Proposition 3. Let ε > 0. Under TTEI with parameter β ∈ (0, 1), there exists N ε
2 =662

poly(W1,W2, 1/ε) such that for all n ≥ N ε
2 ,663

|µn,i − µi| ≤ ε, ∀i ∈ A.

Proof. By Lemma 5, for all i ∈ A and n ∈ N,664

|µn,i − µi| ≤ σW1

√
log(e+ Tn,i)

Tn,i + 1
.

By Proposition 2, for all n ≥ N1, for all i ∈ A, Tn,i ≥
√
n/k , and thus665

|µn,i − µi| ≤ σW1

√
log(e+ Tn,i)

Tn,i + 1
≤ σW1

√
log(e+ (n/k)1/2)

(n/k)1/2 + 1

where the last inequality uses g(x) = log(e+ x)/(x+ 1) is positive and decreasing on (0,∞). Note666

that for n ≥ k, log(e + (n/k)1/2) ≤ 2(n/k)1/4. Then there exists M ε
1 = poly(W1, 1/ε) such that667

for all n ≥M ε
1 ,668 √

log(e+ (n/k)1/2)

(n/k)1/2 + 1
≤

√
2(n/k)1/4

(n/k)1/2 + 1
≤ ε

σW1
.

Then for all i ∈ A and n ≥ N ε
2 , max{N1, k,M

ε
1} where N1 = poly(W1,W2) introduced in669

Proposition 2, we have |µn,i − µi| ≤ σW1[ε/(σW1)] = ε.670

Recall that we assume the unknown arm-means are unique and µ1 > µ2 . . . > µk. If we set ε to a671

very small value in Lemma 3, when n is large, the empirical means are order as the true means, i.e.,672

µn,1 > µn,2 . . . > µn,k, which implies the arm with the largest empirical mean is arm 1. In addition,673

we show that when n is large, the arm selected in case 1 of TTEI is also arm 1.674

Lemma 11. Under TTEI with parameter β ∈ (0, 1), there exists N3 = poly(W1,W2) such that for675

all n ≥ N3, I(1)
n = I∗n = 1.676

Proof. Let M1 , N
∆min/4
2 . By Proposition 3, for all n ≥M1,677

|µn,i − µi| ≤ ∆min/4, ∀i ∈ A

where ∆min = mini 6=j |µi − µj | > 0, which implies µn,1 > µn,2 > . . . > µn,k, and thus I∗n = 1.678
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Now for n ≥M1 and i 6= I∗n, we have679

µn,I∗n − µn,i = µn,1 − µn,i
≥ µ1 −∆min/4− µi −∆min/4

= (µ1 − µi)−∆min/2

≥ ∆min −∆min/2 = ∆min/2.

By Proposition 2, for n ≥ N1, Tn,i ≥
√
n/k for all i ∈ A. Hence, for n ≥ max{N1,M1} and680

i 6= I∗n, we have681

v
(1)
n,i = σn,if

(
µn,i − µn,I∗n

σn,i

)
≤ σk1/4

n1/4
f

(
−∆minn

1/4

2σk1/4

)
<
σk1/4

n1/4
φ

(
−∆minn

1/4

2σk1/4

)
(9)

where the two inequalities use Lemmas 2 and 3, respectively. On the other hand,682

v
(1)
n,I∗n

= σn,I∗nf(0) = σn,I∗nφ(0) >
σ

n1/2
φ(0) (10)

where the inequality uses Tn,I∗n ≤ n−1 < n. There existsM2 such that for all n ≥M2, the right hand683

side of (10) is larger than the right hand side of (9). Hence, for all n ≥ N3 , max{N1,M2,M2},684

v
(1)
n,I∗n

> v
(1)
n,i for all i 6= I∗n, which implies I(1)

n = I∗n = 1.685

F.3 Tracking the Asymptotic Proportion of the Best Arm686

In this subsection, we show that when the number of arm draws goes large, the empirical proportion687

for the best arm concentrates to the tuning parameter β used in TTEI.688

Lemma 12. Let ε > 0. Under TTEI with parameter β ∈ (0, 1), there existsN ε
4 = poly(W1,W2, 1/ε)689

such that for all n ≥ N ε
4 ,690 ∣∣∣∣Ψn,1

n
− β

∣∣∣∣ ≤ ε.
Proof. By Lemma 11, for all n ≥ N3, we have I(1)

n = 1. Then we have691

Ψn,1

n
=

1

n

(
N3−1∑
`=1

ψ`,1 +

n−1∑
`=N3

ψ`,1

)

≤ 1

n
[βmax(N3 − 1) + β(n−N3)]

<β +
(βmax − β)N3

n

where βmax = max{β, 1− β}, and692

Ψn,1

n
=

1

n

(
N3−1∑
`=1

ψ`,1 +

n−1∑
`=N3

ψ`,1

)

≥ 1

n
β(n−N3)

=β − βN3

n
.

For all n ≥ βmaxN3/ε, we have (βmax − β)N3/n < ε and −βN3/n ≥ −ε. Therefore, for all693

n ≥ N ε
4 , max{N3, βmaxN3/ε}, we have |Ψn,1/n− β| ≤ ε.694

Based on Lemma 12, we can prove the next result showing the concentration of Tn,1/n to β.695

Lemma 13. Let ε > 0. Under TTEI with parameter β ∈ (0, 1), there existsN ε
5 = poly(W1,W2, 1/ε)696

such that for all n ≥ N ε
5 ,697 ∣∣∣∣Tn,1n − β

∣∣∣∣ ≤ ε.
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Proof. It suffices to prove this statement for ε ∈ (0, β). By Lemma 12, for all n ≥ N
ε/2
4 ,698

|Ψn,1/n − β| ≤ ε/2, which implies Ψn,1 ≥ (β − ε/2)n. Lemma 7 implies that for all699

n ≥M ε
1 , max

{
N
ε/2
4 , 2/β

}
,700 ∣∣∣∣ Tn,1Ψn,1

− 1

∣∣∣∣ ≤
(

2

Ψ
1/4
n,1

+
3

βminΨ
1/4
n,1

)
W2 ≤

(2 + 3/βmin)W2

(β − ε/2)1/4n1/4
<

(2 + 3/βmin)W2

(β/2)1/4n1/4
(11)

where the second inequality is valid since Ψn,1 ≥ (β − ε/2)n > (β/2)n ≥ 1. There exists701

M ε
2 = poly(W2, 1/ε) such that for all n ≥ M ε

2 , the right hand side of (11) is less than ε/(2β + ε).702

Hence, for all n ≥ N ε
5 , max {M ε

1 ,M
ε
2}, |Tn,1/Ψn,1 − 1| < ε/(2β + ε) and |Ψn,1/n− β| ≤ ε/2,703

and thus we have704

Tn,1
n

<

(
1 +

ε

2β + ε

)
Ψn,1

n
≤
(

1 +
ε

2β + ε

)
(β + ε/2) = β + ε

and705

Tn,1
n

>

(
1− ε

2β + ε

)
Ψn,1

n
≥
(

1− ε

2β + ε

)
(β − ε/2) > β − ε,

which leads to |Tn,1/n− β| < ε.706

F.4 Tracking the Asymptotic Proportions of All Arms707

Besides the best arm, we can further show that for each arm, its empirical proportion concentrates to708

its optimal proportion when the number of arm draws goes large.709

Proposition 4. Let ε > 0. Under TTEI with parameter β ∈ (0, 1), there exists N ε
7 =710

poly(W1,W2, 1/ε, ε) such that for all n ≥ N ε
7 ,711 ∣∣∣∣Tn,in − wβi

∣∣∣∣ ≤ ε, ∀i ∈ A.

To prove this proposition, we need some further notations. For any n ∈ N, we define the under-712

sampled set713

Pn =

{
i 6= 1 :

Tn,i
n
− wβi < 0

}
,

where the unique vector
(
wβ2 , . . . , w

β
k

)
satisfies

∑k
i=2 w

β
i = 1− β and714

(µ2 − µ1)2

1/wβ2 + 1/β
= . . . =

(µk − µ1)2

1/wβk + 1/β
.

Then given ε > 0, we define the over-sampled set715

Oεn =

{
i 6= 1 :

Tn,i
n
− wβi > ε

}
.

The next result shows that when n is large, the over-sampled set is empty. Based on this result, we716

can prove that when n is large, the under-sampled set is also empty, which immediately establishes717

Proposition 4.718

Lemma 14. Let ε > 0. Under TTEI with parameter β ∈ (0, 1), there exists N ε
6 =719

poly(W1,W2, 1/ε, ε) such that for all n ≥ N ε
6 , Oεn is empty.720

Proof. If Oε/2n is empty, then Oεn is empty. Now let us consider the case that Oε/2n is nonempty, and721

it suffices to prove the statement for ε ∈ (0,min{∆min/2, 1}).722

Fix ε ∈ (0,min{∆min/2, 1}). For ε′ ∈ (0, ε/2), by Proposition 3 and Lemma 13, we can find large723

enough M ε′

1 = poly(W1,W2, 1/ε
′) such that for all n ≥ M ε′

1 , both |µn,i − µi| < ε′,∀i ∈ A and724

|Tn,1/n− β| ≤ ε′ hold.725
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First we want to prove that for n ≥ M ε′

1 , if Oε/2n is nonempty, then Pn is nonempty. We prove726

this by contradiction. Suppose Pn is empty. Then for all i 6= 1, Tn,i/n ≥ wβi . Since Oε/2n is727

nonempty, there exists some arm ĩ 6= 1 such that Tn,̃i/n > wβ
ĩ

+ ε/2. In addition, for n ≥ M ε′

1 ,728

Tn,1/n ≥ β − ε′ > β − ε/2. Hence,729 ∑
i∈A

Tn,i/n = Tn,1/n+ Tn,̃i/n+
∑
i 6=1,̃i

Tn,i/n

> β − ε/2 + wβ
ĩ

+ ε/2 +
∑
i 6=1,̃i

wβi

=
∑
i∈A

wβi = 1,

which leads to a contradiction since
∑
i∈A Tn,i/n = (n− 1)/n < 1. Hence, for n ≥M ε′

1 , if Oε/2n is730

nonempty, then Pn is nonempty.731

Next we will show that when n is sufficiently large, I(2)
n /∈ Oε/2n . By Lemma 11, for n ≥ N3, we732

have I(1)
n = I∗n = 1, and then for i 6= 1,733

v
(2)
n,i =

√
σ2
n,i + σ2

n,1f

 µn,i − µn,1√
σ2
n,i + σ2

n,1


where σ2

n,i = σ2/Tn,i and σ2
n,1 = σ2/Tn,1. Note that for n ≥ M ε′

1 , |µn,i − µi| < ε′,∀i ∈ A and734

|Tn,1/n− β| ≤ ε′. Hence, for n ≥ max
{
N3,M

ε′

1

}
and i ∈ Oε/2n ,735

v
(2)
n,i < σ

(
1

wβi + ε/2
+

1

β − ε′

)1/2

n−1/2φ

 (µi − µ1 + 2ε′)n1/2

σ
[
1/(wβi + ε/2) + 1/(β − ε′)

]1/2


where the inequality uses Lemma 3. Note that 2ε′ < ε < ∆min/2, so the value taken by φ(·) is736

negative. On the other hand, for j ∈ Pn,737

v
(2)
n,j > σ

(
1

wβj
+

1

β + ε′

)1/2

n−1/2f

 (µj − µ1 − 2ε′)n1/2

σ
[
1/wβj + 1/(β + ε′)

]1/2


> σ4

(
1

wβj
+

1

β + ε′

)2

(−µj + µ1 + 2ε′)−3n−2φ

 (µj − µ1 − 2ε′)n1/2

σ
[
1/wβj + 1/(β + ε′)

]1/2


where the last inequality is valid by Lemma 4 since there exists M ε′

2 = poly(1/ε′) such that for738

n ≥M ε′

2 , the value taken by both f(·) and φ(·) is less than−2. Let M ε′

3 , max
{
N3,M

ε′

1 ,M
ε′

2

}
=739

poly(W1,W2, 1/ε
′). For any i, j ∈ A such that i 6= j and i, j 6= 1, we define the following constant740

in terms of ε741

Cεi,j ,
(µi − µ1)2

1/(wβi + ε/2) + 1/β
− (µj − µ1)2

1/wβj + 1/β
,

and we let742

Cεmin , min
i6=j
i,j 6=1

Cεi,j ,

and for ε′ ∈ (0, ε/2), we define the following function of ε′743

gεi,j(ε
′) ,

(µi − µ1 + 2ε′)2

1/(wβi + ε/2) + 1/(β − ε′)
− (µj − µ1 − 2ε′)2

1/wβj + 1/(β + ε′)
.
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We know that744
(µ2 − µ1)2

1/wβ2 + 1/β
= . . . =

(µk − µ1)2

1/wβk + 1/β
,

so each Cεi,j > 0, and thus Cεmin > 0. Since each gεi,j(ε
′) is increasing as ε′ is decreasing to 0,745

and limε′→0 g
ε
i,j(ε

′) = Cεi,j ≥ Cεmin, there exists a threshold εi,j = poly(ε) ∈ (0, ε/2) such that746

gεi,j(εi,j) ≥ Cεmin/2 (note that ε < 1). We let747

εmin , min
i6=j
i,j 6=1

εi,j .

Then for n ≥M εmin
3 , for all i ∈ Oε/2n and j ∈ Pn,748

v
(2)
n,j

v
(2)
n,i

> Dε
i,jn
−3/2 exp

(
Cεminn

4σ2

)
≥ Dε

minn
−3/2 exp

(
Cεminn

4σ2

)
, (12)

where749

Dε
i,j ,

σ4

(
1

wβj
+ 1

β+εmin

)2

(−µj + µ1 + 2εmin)−3

σ
(

1

wβi +ε/2
+ 1

β−εmin

)1/2

and750

Dε
min , min

i6=j
i,j 6=1

Di,j .

Since εmin = poly(ε), there exists M ε
4 = poly(1/ε, ε) such that for n ≥ M ε

4 , the right hand side751

of (12) is greater than 1. Hence, for n ≥ M ε
5 , max {M εmin

3 ,M ε
4} where εmin = poly(ε), we752

have v(2)
n,j > v

(2)
n,i for all i ∈ O

ε/2
n and j ∈ Pn, which implies I(2)

n /∈ O
ε/2
n . Note that M ε

5 =753

poly(W1,W2, 1/ε, ε).754

Finally we will prove when n is sufficiently large, Oεn is empty. Let M ε , max {M ε
5 , 2/ε}. There755

are two following cases on the set Oε/2Mε .756

1.
∣∣∣Oε/2Mε

∣∣∣ = 0757

We will prove by induction that for all n ≥ M ε, Oεn is empty. For n = M ε, Oεn is empty758

since Oεn ⊆ O
ε/2
n and Oε/2n is empty. Now we suppose that Oεn is empty for some n ≥M ε,759

and we want to show that Oεn+1 is empty.760

Note that Oεn is empty, and then only I(1)
n and I(2)

n may enter Oεn+1. We known that for761

n ≥M ε, I(1)
n = 1, which implies that I(2)

n 6= 1 and only I(2)
n may enter Oεn+1. In addition,762

for n ≥ M ε, we have proved that I(2)
n /∈ Oε/2n , which implies T

n,I
(2)
n
/n − wβ

I
(2)
n

≤ ε/2.763

Since n ≥M ε ≥ 2/ε, T
n+1,I

(2)
n
/(n+1)−wβ

I
(2)
n

≤ (T
n,I

(2)
n

+1)/n−wβ
I
(2)
n

≤ 1/n+ε/2 ≤ ε,764

which implies I(2)
n /∈ Oεn+1, i.e., I(2)

n will not enter Oεn+1. Hence, if Oεn is empty, then765

Oεn+1 is empty.766

Therefore, by induction, for all n ≥M ε, Oεn is empty.767

2.
∣∣∣Oε/2Mε

∣∣∣ ≥ 1768

Similarly to the proof for case 1, we can show that for any arm i /∈ Oε/2Mε , it will not enter769

any Oεn for n ≥M ε.770

Now let us consider arm i ∈ O
ε/2
Mε . Let Lεi be the time such that i ∈ O

ε/2
n for n ∈771

[M ε, Lεi − 1] and i /∈ Oε/2Lεi
. Similar to the proof for case 1, we can prove that for i will not772

enter any Oεn for n ≥ Lεi .773

Let M ε
6 , max

i∈Oε/2
Mε

Lεi . For n ≥ M ε
6 , Oεn is empty. Note that M ε

6 =774

poly(W1,W2, 1/ε, ε).775
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Combining the above two cases, we conclude that there exists N ε
6 = poly(W1,W2, 1/ε, ε) such that776

for all n ≥ N ε
6 , Oεn is empty.777

778

Based on Lemma 14, we can easily prove that when n is large, the under-sampled set is also empty,779

which immediately establishes Proposition 4.780

Proof of Proposition 4. Given ε > 0, by Lemmas 13 and 14, there exists M
ε/k
1 =781

poly(W1,W2, 1/ε, ε) such that for n ≥ M
ε/k
1 , |Tn,1/n − wβ1 | ≤ ε/k where wβ1 = β and782

Tn,i/n− wβi ≤ ε/k for all i ∈ A \ {1}. Suppose there exists i′ ∈ A such that Tn,i′/n− wβi′ < −ε.783

Then784 ∑
i∈A

Tn,i/n = Tn,i′/n+
∑
i 6=i′

Tn,i/n

< wβi′ − ε+
∑
i6=i′

(wβi + ε/k)

=
∑
i∈A

wβi + [−ε+ (k − 1)ε/k]

= 1− ε/k.

On the other hand, for n ≥ k/ε,
∑
i∈A Tn,i/n = (n−1)/n ≥ 1−ε/k, which leads to a contradiction.785

Hence, for n ≥ N ε
7 = max

{
M

ε/k
1 , k/ε

}
, for all i ∈ A, we have −ε ≤ Tn,i/n− wβi ≤ ε/k, which786

leads to |Tn,i/n− wβi | < ε. Note that N ε
7 = poly(W1,W2, 1/ε, ε).787

F.5 Proof of Theorem 1788

For any ε > 0, by Propositions 3 and 4, for n ≥ N ε
β , {N ε

2 , N
ε
7}, we have789

|µn,i − µi| ≤ ε and |Tn,i/n− wβi | ≤ ε ∀i ∈ A.

Note that N ε
β = poly(W1,W2, 1/ε, ε). By Lemmas 5 and 6, we have E[eλW1] <∞ and E[eλW2] <790

∞ for all λ > 0, which implies that the expected value of any polynomial of W1 and W2 is finite,791

and thus E[N ε
β ] <∞. By definition, T εβ ≤ N ε

β , so E[T εβ ] ≤ E[N ε
β ] <∞.792

Since ε can be arbitrary small, for any sample path (up to a set of measure zero), we have793

lim
n→∞

Tn,i
n

= wβi ∀i ∈ A.
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