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Growing installations of intermittent energy sources are increasing the uncertainty in generation for electric

energy. Unless the demand can be controlled, this trend requires more flexible generation capacity, which

is costly. Emerging smart grid technology offers an opportunity to control the load and to mitigate cost

effects of increasing uncertainty. In this paper, we analyze the potential of using non-event-driven demand

side resources (DSRs) that are scheduled one day ahead of generation to shape the demand profile on the

following day. By dispatching DSRs, load can be shifted from periods with high loads to earlier and later

periods by owners of such resources. Our objective is to determine the day-ahead DSR dispatch schedule that

minimizes the sum of DSR dispatch cost and expected operating cost of power generating units. We present

a stochastic dynamic programming model and develop a solution algorithm that combines an approximate

dynamic programming algorithm with stochastic sample-based progressive hedging. We derive a lower bound

on the optimal solution and provide convergence results. Using data from the California Independent System

Operator region, we show that our approach can solve real world instances in reasonable time and show in

an extensive numerical study that the savings potential from using DSRs to level demand is substantial.

Key words : Demand Response, Stochastic Unit Commitment, Approximate Dynamic Programming,

Stochastic Sample-Based Progressive Hedging

1. Introduction

The share of intermittent power sources in electric power generation has considerably increased dur-

ing the last few years. Power generation from wind and solar sources in California, for instance, has

increased by 27% from 2011 to 2012 and accounted for 6% of total generation in 2012 (U.S. Energy

Information Administration 2013). By 2020, one third of the generated electricity is expected to be

delivered from renewable sources and a large share will be generated by intermittent sources (Cal-

ifornia State Senate 2011). The actual generation of intermittent sources depends to a large extent

on external factors that cannot be controlled, such as wind speed and solar irradiation. Therefore,

systems with a large intermittent capacity require costly reserve capacity from conventional sources

to maintain system stability and to match demand. Especially during peak load hours, when many

units are operating at maximum capacity, the marginal cost of generation is high.

Emerging smart grid technology provides a mean to mitigate the cost effect of increased genera-

tion volatility. By integrating demand side resources (DSRs) that can be remotely controlled into

the distribution network, the demand profile can be influenced to better match generation.
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While previous research on DSRs analyzed the use of DSRs to react to short term deviations of

intermittent generation sources from forecasted capacity (i.e., event-driven DSRs, e.g., Papavasiliou

and Oren 2013a, Sioshansi 2012, Parvania and Fotuhi-Firuzabad 2010), we focus on the potential

of DSRs to shape the demand profile (i.e., non-event-driven DSRs, e.g., California ISO 2013).

We analyze how DSRs can be used in a day-ahead market to reshape the demand profile of the

next operating day to obtain a more leveled demand profile that can be met at a lower expected

operating cost.

Non-event-driven DSRs are mainly offered by load aggregators who cooperate with load operators

and offer “negative” generation capacity. If the offer of a load aggregator is accepted by an operator,

the aggregator is obligated to provide a reduction in consumption of electric energy (California

ISO 2011). Prices for electric energy tend to be high during peak demand hours and aggregators

offer demand reductions during these hours. However, scheduling DSRs for dispatch typically leads

to load shifting. In the day-ahead DSR scheduling model that we consider, a reduction of load

in one period can result in an increase of load in previous or subsequent periods and this effect

must be anticipated when scheduling generators and DSRs. The problem that we consider exists,

for instance, as part of the Residual Unit Commitment process of Independent System Operators

(ISOs) that allow DSRs to offer load reduction in the day-ahead market (Harvey et al. 2005).

Our objective is to compute a day-ahead schedule for the dispatch of DSRs on the next day that

results in minimum expected total cost. This schedule is submitted one day ahead of the actual

dispatch to the load aggregators that operate the DSRs. The resulting demand profile of the next

day, after the dispatch of DSRs, must be met by the power generating units in the network. Their

optimal dispatch policy can be determined by solving a unit commitment problem (e.g., Wood

and Wollenberg 2006). However, the DSR dispatch schedule and the optimal operating schedule

of the generators are not independent, and therefore, we must solve an integrated problem that

determines the dispatch schedule of the DSRs and the operating policy of the generators jointly.

Including non-event-driven DSRs into unit commitment results in a complex stochastic problem

because load can be shifted to previous as well as to subsequent periods. To solve the problem,

we develop a stochastic sample-based extension of the progressive hedging algorithm (Rockafellar

and Wets 1991), which allows us to efficiently solve our model by solving a sequence of dynamic

programs. Given a DSR dispatch schedule, the underlying unit commitment problem is mod-

eled as a dynamic program and solved by approximate dynamic programming (ADP). Stochastic

sample-based progressive hedging is used to optimize DSR bids where each “function evaluation”

corresponds to solving a unit commitment problem. We also derive a lower bound on the optimal

expected cost. In addition, we provide convergence results of the stochastic sample-based progres-

sive hedging algorithm. We also perform an extensive numerical study to assess the value of using

non-event-driven DSRs.
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Our contribution is threefold. First, we present a non-event-driven DSR model with load shifting.

Unlike previous research, we allow for stochastic load shifts to previous as well as to subsequent

time periods, which is important, because the load shifts are uncertain and load can be shifted to

previous periods when the DSRs are scheduled for dispatch one day ahead. Second, we develop a

new solution approach that combines stochastic sample-based progressive hedging and approximate

dynamic programming and we derive convergence results for the algorithm that are of interest

in their own right. Third, we present numerical results based on real-world data that indicate

that substantial savings in energy generation cost can be achieved if non-event-driven DSRs are

scheduled with our algorithm.

This paper is organized as follows. In Section 2, we review the related literature on the unit

commitment problem, on DSR models, and on the solution approaches that we rely on. In Section

3, we state the problem formally. In Section 4, we present our model. In Section 5, we show how the

problem can be solved and derive convergence results for our algorithm. In Section 6, we present

numerical results that are based on actual data from the California ISO region. In Section 7, we

conclude. The notation is summarized in the appendix, and similarly all proofs are also deferred

to the appendix.

2. Literature Review

We build on and extend the literature on unit commitment models (Subsection 2.1) and on solution

approaches for such models (Subsection 2.2).

2.1. Unit Commitment Models

An important element of our model is the unit commitment problem. The early versions of the

model consider deterministic settings without DSRs and differ in the components and constraints

that they incorporate. Muckstadt and Koenig (1977) present a basic model and consider only

reserve capacity and demand constraints. Subsequent research extends the basic model and includes

transmission constraints (Ma and Shahidehpour 1998), voltage constraints (Ma and Shahidehpour

1999), and storage (Al-Agtash 2001). One of the most general models is studied by Baldick (1995),

who includes minimum up and downtime constraints, power-flow constraints, line-flow limits, volt-

age limits, reserve constraints, ramp limits, and total fuel and energy limits on hydro as well as

thermal power generating units. Recently, models include stochastic elements and allow for stochas-

tic prices and cost (Takriti et al. 2000), stochastic fuel cost (Valenzula and Mazumdar 2003), and

stochastic load (Li et al. 2014, Papavasiliou and Oren 2013a,b, Constantinescu et al. 2011, Sioshansi

and Short 2009, Morales et al. 2009). Wood and Wollenberg (2006) provide an extensive overview
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of unit commitment models. Our model differs from these approaches by modeling the unit com-

mitment problem as a multi-stage decision problem, whereas most previous work considers only

two stages.

Some authors have included DSRs in their models. Zhao and Zeng (2010) analyze a unit com-

mitment model with DSRs that minimizes the worst-case operating cost. Parvania and Fotuhi-

Firuzabad (2010) consider a model where DSRs are employed if load exceeds capacity. Pritchard

et al. (2010) present a single-settlement, energy-only market model, in which DSRs may offer load

reduction in the day-ahead market and can be redispatched in real-time. All three models consider

stochastic and responsive loads but neglect load shifting effects.

Another set of authors takes load shifting into account but assumes that loads are deterministic.

Su (2007) and Su and Kirschen (2009) analyze a manufacturing process where the manufacturer

submits price-responsive bidding curves for electric energy. The bids are incorporated in a unit

commitment model, such that the production rate can be optimized based on energy-bid prices.

Dietrich et al. (2012) and De Jonghe (2011) develop unit commitment models, where a centralized

decision maker has the authority to shift loads between periods. Dietrich et al. (2012) consider

a model with local decision making, where load shifts are based on bidding curves of electricity

prices.

The only work combining stochastic demand and generation with load shifting is by Papavasil-

iou and Oren (2013a). They consider a stochastic unit commitment model with different demand

response paradigms. In the first paradigm, the system operator can centrally control the demand

of individual loads and shift load deterministically in real time. In the second paradigm, the distri-

bution of deferrable demands over the time horizon is determined by bid-curves. Our model differs

from their model because we consider day-ahead scheduling of DSRs to level the demand profile

before demand is realized.

While all previous research analyzes event-driven DSRs, we consider non-event-driven DSRs that

are scheduled for dispatch a day ahead of operation and we allow for stochastic load shifts, which

is important in this setting, because there is considerable uncertainty about the load-shift effect

over the course of a day when the DSR is scheduled and notified in the day-ahead market.

2.2. Solution Approaches

The solution approaches that are typically used to solve stochastic unit commitment problems rely

on scenario-based representations of uncertainty (Li et al. 2014, Papavasiliou and Oren 2013a,b,

Ruiz et al. 2009, Cerisola et al. 2009, Shiina and Birge 2004, Takriti and Birge 2000, Takriti et al.

2000, Nowak and Römisch 2000). Uncertainty about the next stage is incorporated in the model

by considering a number of scenarios that are weighted with probabilities. For our setting, the
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scenario-based approach has drawbacks because we deal with a two-stage decision problem, where

the second stage problem itself has multiple stages with stochastic quantities at each stage. In the

first stage, we model stochastic load shifts between periods, which results in a stochastic vector of

high dimensionality. In the second stage, we model the unit commitment problem as a multi-stage

problem and allow for correlation of demand between periods. A scenario-based approach would

require a nested scenario tree with many scenarios for load-shifting of each DSR and would result

in a model that is computationally intractable for reasonably sized problems.

Therefore, we use a different approach. We model the unit commitment problem that we solve

in the second stage as a dynamic program and embed it into a stochastic proximal point algorithm

that solves the first stage problem. Because the resulting dynamic program is very large, we use

ADP to approximate the problem. We review the related literature on the proximal point algorithm

and ADP next.

The proximal point algorithm was introduced by Martinet (1970) and Rockafellar (1975) and was

extended to the progressive hedging algorithm, which allows for decomposition of problems with

a special structure, by Rockafellar and Wets (1991). Recent work on the proximal point algorithm

focuses on convergence rates (Yao and Shahzad 2012) and on extensions to inexact proximal steps

(He and Yuan 2012). The progressive hedging algorithm has been used as a decomposition approach

for solving various problems in scenario-based stochastic programming (e.g., Li et al. 2014, Haugen

et al. 2001, Takriti and Birge 2000). We extend both, the proximal point and the progressive

hedging algorithm, to stochastic problems, such that the proximal step is taken based on Monte-

Carlo sampling and prove convergence of the algorithms for convex problems. Our line of proof

follows Bertsekas (2011), who proves convergence of incremental proximal bundle methods. We use

the stochastic sample-based progressive hedging algorithm to decompose the first stage decisions

of our problem by time period and we use the stochastic proximal point algorithm to develop lower

bounds on the optimal solution.

We approximate the second stage of our problem using ADP. ADP has been widely applied to

resource allocation problems, which have many similarities to our problem. Especially the applica-

tion to transportation problems by Powell and Topaloglu (2003) and the framework provided by

Powell et al. (2001) share notation and methodology with our ADP algorithm. For an extensive

review of ADP the reader is referred to Powell (2007), Powell and Van Roy (2004), Sutton and

Barto (1998), and Bertsekas and Tsitsiklis (1996).

3. Problem Description

We consider the DSR scheduling problem of an ISO in a day-ahead market. By dispatching DSRs,

the ISO can change the demand profile on the following day to flatten the demand profile and
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reshape it, such that it becomes less deep and steep (California ISO 2013). The reshaped demand

profile is supplied using two types of energy resources, intermittent renewable generation capacity

(wind and solar), and conventional generators (hydro-electric, gas, etc.). The capacity of the inter-

mittent resources is determined by external factors and cannot be controlled by the ISO, but the

ISO can control the capacity of the conventional generators.

Dispatching DSRs is costly, but it can help reducing the operating cost of the conventional

generators (California ISO 2013). Our objective is to determine the dispatch schedule of the DSRs

for the next operating day such that the sum of the DSR dispatch cost and the expected operating

cost of the generators is minimized. The optimization is subject to a constraint that demand is

met with a certain probability and to physical constraints of the conventional generators, such as

minimum up and downtimes and ramp limits.

The output of our optimization is a DSR dispatch schedule for the next day and an operating

policy for the conventional generators for the next day. The DSR dispatch schedule for the next

day is sent to load aggregators. The load aggregators notify contracted loads who then adjust their

load profile on the following day according to the accepted offers, e.g., by reducing air conditioning

during dispatch and increasing it before and after dispatch (California ISO 2011). Because DSRs

are scheduled a day before their actual dispatch, our model allows for participation of DSRs that

do not qualify for emergency-triggered real time programs due to longer notification times.

The operating policy for the conventional generators states which actions should be taken in each

period, given the state of the system at the beginning of the period. Note that we do not obtain an

operating schedule that can be implemented because the actions taken in a period depend on the

unknown realizations of random variables on the following day, such as the realizations of demands

and renewable generation capacities.

We use a finite planning horizon that is divided into T periods. In our numerical experiments,

we use a time period of one hour to reflect the typical resolution of energy system operations

(Shahidehpour et al. 2003) and the total time horizon of one day. We denote the day-ahead forecast

of the gross demand for energy in period t before the dispatch of DSRs by LGt and the forecast

of the capacity of the intermittent resources in period t by Pt. At the time at which the model is

solved, the quantities LGt and Pt are stochastic because we consider the day-ahead problem where

only forecasts are available.

We can control the demand to be filled by conventional generators to a certain extent by schedul-

ing DSRs. The dispatch of a DSR in period t reduces the demand in that period, but it can affect

demand in other periods. If a DSR is scheduled for a demand reduction, it is notified as soon as

day-ahead schedules are posted, i.e., on the day prior to the scheduled period. DSRs may reallocate

demand to periods prior to or after the period in which the demand reduction is scheduled. The
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ISO must anticipate this effect when determining the DSR dispatch schedule and the resulting

demand profile (Black et al. 2008).

We denote the fraction of the demand that is shifted from period t to period t′ by βt,t′ . Load

can be shifted from period t to earlier (t′ < t) and later (t′ > t) periods. Value βt,t′ is a random

variable because it is not known with certainty how much load is shifted to which period when

the DSR dispatch decision is made a day ahead of the actual load reduction. For a given DSR

schedule, we denote the change in the demand for electric energy in period t that is due to the

dispatch of DSRs by LDt . Note that LDt can be positive or negative. The residual demand that

must be filled by conventional generators is Lt =LGt −LDt −Pt. Figure 1 shows an example for the

residual demand without and with DSR dispatches. In the example, the expected peak demand

around noon is reduced and some demand is shifted to morning and evening hours.

630

ExpectedLoad [GW]

20

Period24
18

343230

242628

211815129

22
Exp. load after DSR dispatch (E[ܮ௧])Exp. load before DSR dispatch (E[ܮ௧ீ − ௧ܹ])

Rebound EffectPreloading Effect

Load reduction by DSR dispatch

Figure 1 Effect of day-ahead scheduling of DSRs on expected load

To determine the optimal solution, we must trade-off the cost of the conventional generators

and the cost of the DSRs. We denote the cost of conventional generators by CC
t and the dispatch

cost of DSRs by CD. The cost of the conventional generators consists of start-up and actual

generation cost. The cost of dispatching DSRs depends on the prices that resources are asking

for load reductions. Each resource can offer load reduction capacity at different prices (California

ISO 2011). By sorting and aggregating the offers of all resources ascending by price, we obtain

an aggregate offer curve that shows the demand reduction as a function of the price. Figure 2
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Figure 2 Offer curves for two load aggregators and resulting aggregate offer curve

shows an example, where the aggregate offer curve consists of seven segments. Each segment can

be accepted at any fraction, i.e., any load reduction between 0 MW and 4 MW can be chosen.

4. Model

We first develop individual models for stochastic unit commitment and DSRs and then combine

them into an integrated model. In Subsection 4.1, we assume that the demand profile is given

and develop a model for the stochastic unit commitment problem that determines the minimum

expected operating cost of the generators. In Subsection 4.2, we develop a model for the DSRs

that determines the cost of DSR dispatches. In Subsection 4.3, we combine both models to obtain

an integrated model for determining an optimal DSR schedule, where we take the effect of DSR

dispatches on the demand profile and the expected operating cost of the generators into account.

This model also determines the optimal operating policy of the generators.

4.1. Stochastic Unit Commitment Model

The objective of the stochastic unit commitment problem is to determine a commitment and

dispatch policy for the next-day operation of the generators such that the expected operating cost

over the planning horizon is minimized. The stochastic unit commitment problem is a multi-stage

stochastic decision problem and we model it as a stochastic dynamic program. For each period t of

the next day, the optimal commitment and dispatch policy must be computed given the (stochastic)

demand forecast Lt.

The sequence of events on the following day is as follows: At the beginning of time period t,

we observe the state of the system, St, which includes the demand of period t, lt
1. Next, we make

commitment and dispatch decisions xt and determine the cost of the period. The cost depends on

the state of the system at the beginning of the period and the decisions that we take in the period.

At the end of the period, we update the state of the system.

1 If the demand is realized after the state is observed, a slight adjustment to the model is needed, but all results and
algorithms presented later still hold with minor modifications.
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Unlike previous research (e.g., Papavasiliou and Oren 2013a,b, Takriti et al. 1996) we do not

classify resources into slow resources which require commitment decisions on the previous day, and

fast resources that can be committed in real time. Instead, we model notification times of generators

for each generator individually, which allows to commit generators with medium response times

(e.g., four hours) more economically.

We next explain the components of the dynamic program in detail and then introduce the

optimality equation.

States. The system consists of a set of I conventional generators with different physical char-

acteristics. The characteristics of a generator that are relevant for us are the current output level,

the number of periods the generator has been committed (uptime), and the number of periods it

has been uncommitted (downtime). For each generator i, we define vector Rt,i with 1 + T ui + T di

coordinates, where T ui denotes the minimum uptime and T di denotes the minimum downtime of the

generator. The first coordinate is the (continuous) operating level of the generator. The next T ui

coordinates are binary and are 1 if the generator has an uptime that corresponds to the time period

of the underlying coordinate and 0 otherwise. If the uptime is equal to or exceeds the minimum

uptime, then the last component of the T ui components is 1. The last T di components are defined

correspondingly for the downtime. For a generator i with minimum uptime of T ui = 3 periods and

minimum downtime of T di = 2 periods, Rt,i = {0.70,0,1,0,0,0} represents the state of the generator

with current operating level of 0.70, an uptime of two periods, and a downtime of zero periods.

Our representation of the generator states uses more components of the state vector than alter-

native representations that use the number of periods that a generator has been online. However,

for the algorithms that we use in Section 5 and the proofs in Subsection 5.4, the representation

that we use is convenient and we therefore use it for our model.

We allow the demand to be correlated over time. Therefore, we have to keep track of the demands

in previous periods and include them in our state. The full representation of the state of the system

at the beginning of period t is St = (Rt, l0, . . . , lt). We denote the generator state space by Rt, the

state space of the demand process from periods 0 to t by Lt, and the resulting state space by

St =Rt×Lt.

Actions. Two types of actions are relevant, binary commitment actions (turning generators on

or off) and continuous dispatching actions (changing the operating levels). We model the binary

commitment actions of generator i in period t by binary decision variables xon
t,i and xoff

t,i . If generator

i is committed in period t, then xon
t,i = 1 and xon

t,i = 0 otherwise. If generator i is decommitted in

period t, then xoff
t,i = 1 and xoff

t,i = 0 otherwise. We model the dispatch action of generator i in period

t by the continuous decision variable xdt,i, 0 ≤ xdt,i ≤ 1. The decision variable is equal to 0 if the

generator operates at the minimum output level and is equal to 1 if the generator operates at the
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maximum output level, i.e., it measures the percentage of the adjustable generator output. We

denote the vector of all decision variables for generator i in period t by xt,i = (xon
t,i, x

off
t,i , x

d
t,i) and the

vector of decision variables for all generators by xt.

We capture physical restrictions of the generators, such as ramping limits, notification times,

and minimum up and downtimes, by restricting the feasible set of actions in a period. We denote

the set of feasible actions by X (St). Because the actions are restricted by physical constraints that

depend on the state of the system, the set of feasible actions depends on the state St.

Transition Function. We denote the function that translates the state of the generators at the

beginning of time period t and the action of period t to the state of the generators at the beginning

of time period t + 1 by RM(Rt, xt) = ARt + Bxt, where A and B are matrices of appropriate

dimension. We provide an example of the function in Appendix EC.1.1. The transition function

for the state variables is given by St+1 = SM(St, xt,Lt+1) = (RM(Rt, xt), l0, . . . , lt,Lt+1). Function

SM(St, xt,Lt+1) translates the state of the system at the beginning of period t, St, actions taken at

the beginning of period t, xt, and the demand for period t+1, Lt+1, into the state at the beginning

of time period t+ 1.

Objective Function. The objective function consists of generation cost cgi (Rt,i, x
d
t,i) and start-

up cost csi (Rt,i, x
on
t,i) (see Appendix EC.1.3 for details). Additional cost components, such as shut-

down cost, could easily be incorporated in the model. Our modeling and solution approach does

not rely on a specific form of the cost functions and we only require that the generation cost

cgi (Rt,i, x
d
t,i) is convex in xdt,i if the generator is committed and that it is zero if the generator is

uncommitted. The operating cost of the generators in period t is
∑

i∈I c
g
i (Rt,i, x

d
t,i) + csi (Rt,i, x

on
t,i).

The power generation in period t is
∑

i∈I gi(Rt,i, x
d
t,i), where gi(Rt,i, x

d
t,i) is the energy output of

generator i given state Rt,i and output level xdt,i (see Appendix EC.1.3 for details). Our objective

is to dispatch the generators, such that they meet the demand. However, demand Lt is stochastic

and unless we make strong assumption about the joint distribution of L0, . . . ,LT−1 and the initial

state S0, we cannot guarantee that the system will always be able to match the demand.

To ensure that the problem has always a feasible solution, we introduce imbalance variable bt,

which measures the difference between generation and demand. If bt = 0, then generation is equal

to demand. If bt > 0, then generation is greater than demand and we charge penalty cost c+
t for each

unit of excess generation. If bt < 0, then generation is less than demand and we charge penalty cost

c−t for each unit of excess demand. The penalty cost can be interpreted as the cost of emergency

actions, such as load curtailment (Wood and Wollenberg 2006). In our examples, we use sufficiently

high values for the penalty cost to make imbalances very rare exceptions.
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By adding the relevant cost components, we obtain the following expression for the operating

cost of the generators

CC
t (Rt, xt, bt) =

∑
i∈I

(
cgi (Rt,i, x

d
t,i) + csi (Rt,i, x

on
t,i)
)

+ c+
t [bt]

+ + c−t [−bt]+, (1)

where the system imbalance is computed as bt = lt−
∑

i∈I gi(Rt,i, x
d
t,i).

Operating Reserve. Operating reserves are used in unit commitment models to hedge against

uncertainty in demand. Unit commitment models typically include two types of operating reserve

capacity, spinning and non-spinning reserve capacity (Wood and Wollenberg 2006). Spinning

reserve capacity is capacity provided by committed generators, as opposed to non-spinning reserve

capacity, which is provided by uncommitted generators. Both share the requirement that they must

be able to reach a desired output level within a short time interval, e.g., within ten minutes (Elli-

son et al. 2012). We include operating reserve requirements in the model by formulating a chance

constraint that requires that the probability of not having sufficient generation capacity in period

t+1 is less than ε: P
{∑

i∈Ireserve(Rt)
gmax
i (RM(Rt,i, xt,i))≤Lt+1

}
≤ ε. This constraint captures both,

spinning and non-spinning reserve, and can be translated into a deterministic constraint for known

distributions of load and intermittent generation.

Function gmax
i (Rt,i) denotes the maximum output of generator i when in state Rt,i (see Appendix

EC.1.3 for details). We incorporate random plant failures (N − 1 condition) into the reserve con-

straint by summing over all generators excluding the committed generator with maximum currently

committed capacity, i.e., by summing over Ireserve(Rt) that excludes the generator currently running

with maximum capacity instead of I that includes all generators.

We note that most previous research on stochastic unit commitment problems uses scenario-

based approaches (e.g., Papavasiliou and Oren 2013a,b, Takriti and Birge 2000, Takriti et al. 1996),

where operating reserves are computed in the first stage of the problem and are implicitly defined by

the scenario with the maximum load. Because we do not use scenarios, but the entire distribution

of the demand, and model notification times exactly we do not rely on a maximum load scenario

and use a chance constraint instead. The results are similar, but the approach is different because

operating reserves can be adjusted over the day.

Dynamic Programming Model. We denote the optimal value function of the system in

state St at time t by Vt(St), which represents the expected cost-to-go from period t to the end

of the planning horizon, if all subsequent actions are taken optimally. The dynamic programming

optimality equation for the stochastic unit commitment problem is

Vt(St) = min
xt∈X (St)

{
CC
t (Rt, xt, bt) +ELt+1

[
Vt+1

(
SM(St, xt,Lt+1)

)]}
, (2)
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subject to

bt = lt−
∑
i∈I

gi(Rt,i, x
d
t,i), (3)

and

P

 ∑
i∈Ireserve(Rt)

gmax
i (RM(Rt,i, xt,i))≤Lt+1

≤ ε. (4)

We provide the detailed formulation of the action space Xt(St) in Appendix EC.1.2. Note that the

expected value in Equation (2) is defined with respect to the conditional distribution of Lt+1 given

the load history up to period t captured by state St.

The dynamic program determines the optimal commitment and dispatch policy for each period.

The policy states which commitment and dispatch actions must be taken in each period given the

current state of the system St for that period. For initial state S0, the optimal total expected cost

over the planning horizon is V0(S0). Note that the value functions are non-convex due to the binary

commitment decisions.

4.2. Demand Side Resources Model

We model DSRs as offer curves. An offer curve consists of N segments, each characterized by an

offer price and an offer quantity. We allow segments to be cleared partially, i.e., an offer can be

accepted at any fraction. We consider a single aggregate offer curve in each period and denote the

offer price and quantity of segment n in period t by cDt,n and gDt,n, respectively.

We use a continuous decision variable zt,n ∈ [0,1] to represent the dispatch decision for segment n

in period t. Then, z = (zt,n)0≤t≤T−1,0≤n≤N−1 represents a full dispatch schedule for all DSRs. Total

dispatch cost of schedule z is given by

CD(z) =
T−1∑
t=0

N−1∑
n=0

zt,nc
D
t,n.

Scheduling and notifying a DSR in the day-ahead market results in lower expected demand in

the period for which it is scheduled for dispatch and may increase expected demand in previous or

subsequent periods. We model the fraction of demand of segment n that is shifted from period t to

period t′ by an arbitrarily distributed random variable βt,t′,n. Reducing expected demand in period

t by zt,ng
D
t,n leads to an increase of expected demand in period t′ of zt,ng

D
t,nβt,t′,n. The sum of the

shifted demand does not necessarily equal the dispatched capacity. We allow net energy conserva-

tion (
∑

t′ 6=t βt,t′,n < 1) and net increase in expected demand for electric energy (
∑

t′ 6=t βt,t′,n > 1)

induced by dispatch of DSRs in t.
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For dispatch schedule z, the expected reduction of demand in period t that is induced by dis-

patching DSRs is

LDt (z) =
N−1∑
n=0

zt,ng
D
t,n−

T−1∑
t′=0

βt′,t,n

N−1∑
n=0

zt′,ng
D
t′,n (5)

and the residual demand that must be filled by generation by conventional generators is Lt(z) =

LGt −Pt−LDt (z).

4.3. Integrated Model

The stochastic unit commitment model in Subsection 4.1 determines the minimum expected oper-

ating cost of the generators for a given stochastic demand profile Lt, t = 0, . . . , T − 1. The DSR

model in Subsection 4.2 determines the effect of DSR dispatch schedule z on the demand profile

and the cost of DSR dispatch. To determine the optimal DSR schedule, we must take the into

account effect of DSR dispatch on the DSR dispatching cost and on the expected operating cost

of the generators.

Technically, we first replace the variable Lt by function Lt(z) in Function (2) and in Constraints

(3) and (4) of the dynamic program to obtain a dynamic program that determines the minimum

expected operating cost of the generators for a given dispatch schedule z:

Vt(z,St) = min
xt∈X (St)

{
CC
t (Rt, xt, bt) +ELt+1(z)

[
Vt+1

(
z,SM(St, xt,Lt+1(z))

)]}
, (6)

subject to

bt = lt(z)−
∑
i∈I

gi(Rt,i, x
d
t,i), (7)

and

P

 ∑
i∈Ireserve(Rt)

gmax
i (RM(Rt,i, xt,i))≤Lt+1(z)

≤ ε. (8)

To find the DSR dispatch schedule that minimizes the total expected cost, we add the cost of the

DSR schedule and the expected operating cost of the generators and solve the following integrated

problem to determine the DSR schedule that minimizes the sum of both costs:

min
z

{
CD(z) +V0(z,S0)

}
(9)

subject to Constraints (7) and (8). State S0 is the state of the system at the beginning of the

planning horizon.

The integrated problem is solved a day ahead of the actual generation. The solution consists

of an optimal DSR schedule z∗ that minimizes expected cost and an optimal operating policy for

the generators. The operating policy states the optimal actions for each period as a function of
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the initial state of the period. Because the demand realization of a period is only revealed at the

beginning of the period, we do not obtain a specific schedule but a policy. An exception are slow

generators that need to be notified long before their actual dispatch. For such generators, specific

schedules might be available at least for the first few hours of operation.

5. Solution Approach

Solving our model is not straightforward because the DSR schedule affects the optimal operating

schedule of the generators and vice versa. To solve the problem, we propose a novel solution

approach that relies on an extension of the progressive hedging algorithm (Rockafellar and Wets

1991) and we combine it with approximate dynamic programming. Because this approach relies

on approximations, we will generally not find the optimal solution. However, we can derive a lower

bound on the optimal solution and quantify the maximum gap between the approximated and

optimal solution.

In Subsection 5.1, we analyze the problem for a single deterministic realization of the random

variables and determine the optimal DSR schedule using an approach that combines progres-

sive hedging with dynamic programming. In Subsection 5.2, we extend the model to incorporate

stochastic demand, intermittent generation, and load shifting. In Subsection 5.3, we use approxi-

mate dynamic programming to solve the stochastic version of the problem. In Subsection 5.4, we

use the results to derive a lower bound on the optimal solution and in Subsection 5.5, we derive

convergence results.

5.1. Solution Approach for a Single Demand Realization

Consider a DSR schedule z and a single realization of residual demand for all time periods lt(z),

t= 1, . . . , T − 1. This setting corresponds to a deterministic unit commitment problem with DSRs

that we use later as a building block to solve the stochastic unit commitment problem with DSRs

and to derive a lower bound on its optimal solution. To find the optimal DSR schedule z∗ that

minimizes the sum of the DSR dispatching and operating costs of the generators, we solve

z∗ = arg min
z

CD(z) +V0(z,S0) (10)

with

Vt(z,St) = min
xt∈X (St)

CC
t (Rt, xt, bt) +Vt+1

(
z,SM(St, xt, lt+1(z)

)
, (11)

where ∑
i∈I

gi(Rt,i, x
d
t,i) + bt = lt(z). (12)
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We optimize over DSR schedules z that state the fraction zt,n of the offer curve section n is

dispatched in period t. One approach to solve Problem (10) is to discretize the decision variables

zt,n, include them into the state to capture the load shifts between periods, and to apply standard

dynamic programming. However, to obtain a reasonably accurate solution, we would require a large

state space and solving the resulting dynamic program would become computationally expensive

even for the deterministic version of the problem.

Therefore, we take a different approach and use progressive hedging. With progressive hedging,

we do not use a single DSR schedule z for all periods but introduce a local DSR schedule for each

period. We denote the local DSR schedule of period t by z̃t. The local schedule z̃t has the same

dimension as the schedule z, i.e., it is a complete schedule for all periods. When we optimize the

local DSR schedule of period t, we ignore the local DSR schedules of all other periods. A local

schedule is locally optimal for a period, if it minimizes the generation cost for that particular

period. For example, consider a problem with a single DSR bid per period and T = 2 periods,

for which the local DSR schedules z̃1 = (1,0) and z̃2 = (0,0.8) are optimal. With this solution,

the cost of period 1 is minimized by dispatching the DSR in period 1 at 100% (z̃1
1,1 = 1) and not

dispatching it in period 2 (z̃1
2,1 = 0). The cost of period 2 is minimized by not dispatching the

DSR in period 1 (z̃2
1,2 = 0) and dispatching it in period 2 at 80% (z̃2

2,2 = 0.8). Obviously, such a

solution cannot be implemented because the two local schedules provide differing decisions for both

periods. Progressive hedging iteratively synchronizes the local DSR schedules to take a common

implementable value.

Using progressive hedging, we do not have to include DSR schedules in the state because we

use a local DSR schedule for each period that is independent of the local DSR schedules of other

periods. Formally, we solve

{
z̃0, ..., z̃T−1

}
= arg min
{z̃0,...,z̃T−1}

CD
(
z̃0
)

+V0(z̃0, . . . , z̃T−1, S0) (13)

with

Vt(z̃
t, ..., z̃T−1, St) = min

xt∈X (St)
CC
t (Rt, xt, bt) +Vt+1

(
z̃t+1, ..., z̃T−1, SM(St, xt, lt+1(z̃t)

)
, (14)

where ∑
i∈I

gi(Rt,i, x
d
t,i) + bt = lt(z̃

t). (15)

The result of the optimization is a set of locally optimal DSR schedules {z̃0, ..., z̃T−1}. Adding

the constraint

z = z̃0 = z̃1 = ...= z̃T−1, (16)
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to the problem would suffice to obtain a global DSR schedule, but a dynamic program with this

constraint would be difficult so solve.

In Appendix EC.2, Proposition EC.1, we show that solving Problem (13) subject to Constraints

(14) - (16) is the same as solving Problem (10) subject to Constraints (11) and (12).

As it is unclear how to handle Constraint (16) explicitly in a dynamic program, we dualize it

and formulate the augmented Lagrangian of the problem:{
z, z̃0, ..., z̃T−1

}
= arg min
{z,z̃0,...,z̃T−1}

max
w

CD
(
z̃0
)

+V0(z̃0, ..., z̃T−1, S0)+
1

2α

∑
t

‖z− z̃t‖2 +
∑
t

wtz̃t. (17)

The terms that were added penalize deviations of the locally optimal schedules from the global

DSR schedule. The term 1
2α

∑
t ‖z− z̃t‖2 penalizes deviations of the locally optimal schedules from

the global DSR schedule. The term
∑

tw
tz̃t contains individual penalty terms wt for each z̃t, where

the wt are ordinary Lagrangian multipliers. Unfortunately, we cannot solve Equation (17) directly

because the quadratic term links all z̃t (as did Constraint (16)) and prevents us from calculating

the optimal value functions in Equation (14).

However, we can solve Equation (17) subject to Equations (14) and (15) by progressive hedging.

In iteration k = 0, we set zkt,n = 0 for all t and n, wt,k = 0 for all t and, given zkt and wt,k, we find

the locally optimal solutions z̃t,k by solving{
z̃0,k, ..., z̃T−1,k

}
= arg min
{z̃0,...,z̃T−1}

CD
(
z̃0
)

+V0(z̃0, ..., z̃T−1, S0) +
1

2αk

∑
t

‖zk− z̃t‖2 +
∑
t

wt,kz̃t (18)

subject to Equations (14) and (15). We can find the solution by first calculating the optimal value

functions

V̄t(z
k,wk, St) = min

z̃t,xt∈X (St)
CC
t (Rt, xt, bt) +wt,kz̃t +

1

2αk
‖zk− z̃t‖2 + V̄t+1

(
zk,wk, SM(St, xt, lt+1(z̃t))

)
(19)

subject to Equation (15) by backward dynamic programming and then identifying the local DSR

schedules z̃t,k that are optimal given zk and wk, with a forward path. In EC.2, Proposition EC.2,

we show that calculating Equation (19) for all t allows us to obtain an optimal solution to Problem

(18).

Using the solutions z̃t,k to Equation (19), we update zk by zk+1 = 1
T

∑T−1

t=0 z̃
t,k and wt,k by

wt,k+1 =wt,k+ 1
αk

(z̃t,k− 1
T

∑T−1

t=0 z̃
t,k). Then, we choose a new step size αk, and repeat the procedure

with the updated values. We iterate until all locally optimal solutions z̃t converge to a common

value, i.e., to the desired global schedule z.

The choice for the sequence of step sizes αk is crucial for the behavior of the algorithm. In

Subsection 5.5, we analyze the properties of the procedure and rules for choosing αk that guarantee

convergence of the algorithm.
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Algorithm 1 Solution Algorithm

1: Initialize: k= 0, z0 = 0, z̃t,0 = 0, wt,0 = 0, t= 1, . . . , t.

2: Choose α0 > 0.

3: while stopping criterion is not met do

4: for all t= T − 1, . . . ,1 do

5: Compute

V̄t(z
k,wk, St) = min

z̃t,xt∈X (St)
CCt (Rt, xt, bt) +wt,kz̃t +

1

2αk
‖zk − z̃t‖2

+ELt+1(z̃t)

[
V̄t+1

(
zk,wk, SM (St, xt,Lt+1(z̃t))

)]
.

subject to Equations (15) and (21).

6: end for

7: Generate samples lG,kt , pkt , and βkt , t= 1, . . . , t.

8: for all t= 0, . . . , T − 1 do

9: Compute

z̃t,k+1 = arg min
z̃t

min
xt∈X (St)

CCt (Rt, xt, bt) +wt,kz̃t +
1

2αk
‖zk − z̃t‖2 +ELt+1(z̃t)V̄t+1

(
zk,wk, SM (St, xt, l

k
t+1(z̃t))

)
subject to

∑
i∈I gi(Rt,i, x

d
t,i)+bt = lG,kt −pkt −

∑N−1
n=0 z̃

t
t,ng

D
t,n−

∑T−1
t′=0 β

k
t′,t,n

∑N−1
n=0 z̃

t
t′,ng

D
t′,n and Eq. (24).

10: end for

11: Set zk+1 = 1
T

∑
t z̃
t,k+1 and wt,k+1 =wt,k + 1

αk (z̃t,k+1− zk+1) for all t= 0, . . . , T − 1.

12: Choose αk and set k= k+ 1.

13: end while

14: Return zk.

5.2. Stochastic Demand and Stochastic Load Shifting

In the previous section, we showed how to solve a deterministic version of the problem. However,

demand, intermittent generation, and load shifting are stochastic and we next extend the approach

to this setting. Under stochastic demand, generation, and stochastic load shifting, we search for

the DSR schedule z that minimizes expected cost. To solve the problem, we again use progressive

hedging, which we extend to a stochastic version that incorporates sampling of the random vectors.

Algorithm 1 shows the pseudo code of the algorithm.

At the beginning of period t, the demand of period t is given by state St but the demands of the

following periods are stochastic. We must solve

V̄t(z
k,wk, St) = min

z̃t,xt∈X (St)
CC
t (Rt, xt, bt) +wt,kz̃t +

1

2αk
‖zk− z̃t‖2

+ELt+1(z̃t)

[
V̄t+1

(
zk,wk, SM(St, xt,Lt+1(z̃t))

)] (20)

for all St subject to Equation (15) and

P

 ∑
i∈Ireserve(Rt)

gmax
i (RM(Rt,i, xt,i))≤Lt+1(z̃t)

∣∣∣l0, . . . , lt
≤ ε. (21)
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We solve the model by backwards dynamic programming. The solution is a policy that states

how z̃t must be chosen for given realizations of the gross demand, intermittent generation, and

load shift factors. Therefore, the set of optimal local DSR schedules (z̃0, ..., z̃T−1) depends on the

realizations of these stochastic quantities.

The progressive hedging algorithm needs a single set of local DSR schedules in each iteration

that we generate by drawing realizations of the gross demand, lG,k, the intermittent capacity, pkt ,

and the load shift factors βkt from the corresponding distributions. Then, we find the optimal set

of local DSR schedules, given zk and wk, with a forward path through

z̃t,k = arg min
z̃t

min
xt∈X (St)

CC
t (Rt, xt, bt) +wt,kz̃t +

1

2αk
‖zk− z̃t‖2

+ELt+1(z̃t)

[
V̄t+1

(
zk,wk, SM(St, xt,Lt+1(z̃t))

)] (22)

subject to ∑
i∈I

gi(Rt,i, x
d
t,i) + bt = lkt (z̃

t). (23)

and

P

 ∑
i∈Ireserve(Rt)

gmax
i (RM(Rt,i, xt,i))≤Lt+1(z̃t)

∣∣∣lk0 , . . . , lkt
≤ ε. (24)

The solution approach for the stochastic model is similar to the solution approach for the deter-

ministic model but we solve a stochastic dynamic program as opposed to a deterministic dynamic

program.

The outer loop updates zk and wt,k based on samples of the random variables. It can be inter-

preted as an extension of the known progressive hedging algorithm to a stochastic version that

minimizes the expected value of a function involving random variables. In Subsection 5.5, we for-

mally introduce our extension and formulate conditions under which the algorithms converges to

an optimal solution. Next, we present an approximate dynamic programming approach that allows

us to find good solutions in a reasonable time.

5.3. Approximation of the Stochastic Dynamic Program

The exact solution of the dynamic program (Equation 20) is computationally intractable for real-

istic problem sizes and we must rely on alternative solution approaches.

We solve the dynamic program using approximate dynamic programming (Powell 2007) and

replace the exact value function by an approximation of sufficiently low dimensionality whose

parameters we estimate iteratively. We discretize the continuous operating levels of the generators

and the demand history in the state variable. We denote the discretized generator state space by

R̂i and the discretized space of demand history intervals by L̂t.



Authors’ names blinded for peer review
Article submitted to Operations Research; manuscript no. OPRE-2013-04-158 19

Algorithm 2 ADP Algorithm for the Stochastic Unit Commitment Problem with DSRs

1: Set k= 0, z̃t,k = 0, wt,k = 0, and c̄g,max,k
t = 0 for all t, and zk = 0.

2: Set vl̂,R̂,kt,i = 0, for all i∈ I, c̄g,max,k
t = 0, R̂ ∈ R̂, l̂ ∈ L̂t, and t.

3: Choose arbitrary αk > 0.

4: Set Sk0 = S0, for all k≥ 0.

5: while stopping criterion is not met do

6: for all t= 0, . . . , T − 1 do

7: Generate samples βk, lG,kt , and pkt for all t.

8: Compute

(xkt , z̃
t,k) = arg min

xt,z̃t
CCt (Rt, xt, bt) +wt,kz̃t +

1

2αk
‖zk − z̃t‖2 + V̂t+1

(
SM (St, xt, l

k
t+1(z̃t))

)
subject to

∑
i∈I gi(Rt,i, x

d
t,i)+bt = lG,kt −pkt −

∑N−1
n=0 z̃

t
t,ng

D
t,n+

∑T−1
t′=0 β

k
t′,t,n

∑N−1
n=0 z̃

t
t′,ng

D
t′,n and Eq. (24).

9: Set Skt+1 = SM (Skt , x
k
t , l

k
t+1(z̃t,k)).

10: Store maximum average generation cost cg,max
t .

11: end for

12: for all t= T − 1, . . . ,0 do

13: Set c̄g,max,k+1
t = (1−αk)c̄g,max,k

t +αkcg,max
t .

14: for all i∈ I and R̂ ∈ R̂ do

15: Compute ∆(R̂t,i).

16: Set v
lk0 ,...,l

k
t ,R̂i,k+1

t,i = (1−αk)v
lk0 ,...,l

k
t ,R̂i,k

t,i +αk∆(R̂t,i).

17: end for

18: end for

19: Set zk+1 = 1
T

∑
t z̃
t,k+1, wt,k+1 =wt,k + 1

αk (z̃t,k+1− zk+1).

20: Choose αk and set k= k+ 1.

21: end while

22: Return zk.

We choose an additively separable form of the value function that is separable by generator,

which is a natural approximation for weakly coupled dynamic programs (Adelman and Mersereau

2008) such as the unit commitment problem. For each generator i ∈ I, each discretized demand

history (l̂0, ..., l̂t) ∈ L̂t, and each operating state R̂i ∈ R̂i, we define a parameter v l̂0,...,l̂t,R̂it,i that

represents an estimate of the value that generator i has if its current operating state is R̂i and if

we have observed a demand history that falls in the intervals (l̂0, ..., l̂t). We replace the exact value

function by an additively separable linear approximation

V̂t(z,w,St) =
∑
i

V̂t,i(z,w, R̂t,i, l̂0, ..., l̂t), (25)

where

V̂t,i(z,w, R̂t,i, l̂0, ..., l̂t) =
∑
R̂i∈R̂i

R̂iv
l̂0,...,l̂t,R̂i
t,i (z,w). (26)
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In the following we drop the dependency of V̂ on z and w, because we store only a single set of

v l̄0,...,l̄t,R̂it,i that does not depend on z and w. We update this vector in each iteration with solution

information based on new values of wk and zk that are computed by the algorithm as explained

below.

Algorithm 2 shows the pseudo code of the algorithm. After initialization, we sample the demand,

intermittent capacity, and load shift factors in step 7. Then, in the loop consisting of steps 6-11

we step forward in time and solve the single period problems based on the current approximation

of the value functions of future time periods. Finally, in steps 12-18 we update the value function

approximation and continue the procedure until a stopping criterion is met.

The initialization, demand sampling, and forward optimization steps are standard implementa-

tions of approximate dynamic programming (Powell 2007). The update step to estimate parameters

v of the value function is specific to the unit commitment problem and we use the following

approach. In the forward path through the dynamic program, we compute the maximum average

energy generation cost cg,max
t of each period, i.e., for each committed generator in a period, we

calculate the average generation cost by dividing the current output by total generation cost of the

generator and select the highest value. We compute

cg,max,k
t = max

i∈IU

cgi (R̂
k
t,i)

gi(R̂k
t,i)

,

where IU is the set of all running generators that have reached their minimum uptime. We only

consider generators that have reached their minimum uptime because only those generators could

in principle be decommitted in this period. We use the value of cg,max
t to update the estimate of the

expected maximum average generation cost in each period by c̄g,max,k+1
t = (1−αk)c̄g,max,k

t +αkcg,max
t .

Then, going backwards from period T − 1, we update v
l̂k0 ,...,l̂

k
t ,R̂i,k

t,i for the observed demand

history for all R̂i ∈ R̂i, i ∈ I, and t. For all possible operating states of each generator, we

calculate an estimate of the value of being in that operating state. For operating states in

which the generator is uncommitted this value is obtained by solving minxi∈Xi(R̂t,i)

{
csi (R̂t,i, x

on
t,i) +

V̂t+1,i(R̂t+1,i, l
k
0 , ..., l

k
t+1)

}
. For operating states in which the generator is running we additionally

estimate the savings achieved in this operating state compared to the expected maximum average

generation cost in that period. Formally, we compute

∆(R̂t,i) = min
xi∈Xi(R̂t,i)

{
csi (R̂t,i, x

on
t,i)+V̂t+1,i(R̂t+1,i, l

k
0 , ..., l

k
t+1)

}
+

{
gi(R̂t,i)

(
c
g
i (R̂t,i)

gi(R̂t,i)
− c̄g,max,k+1

t

)
if generator is committed in R̂t,i

0 otherwise,

and use ∆(R̂t,i) to update v
l̂k0 ,...,l̂

k
t ,R̂i,k

t,i by the rule v
l̂k0 ,...,l̂

k
t ,R̂i,k+1

t,i = (1− αk)v l̂
k
0 ,...,l̂

k
t ,R̂i,k

t,i + αk∆(R̂t,i)

and proceed to period t− 1.
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After updating the parameters of the approximation in all periods, we complete iteration k

by updating the DSR schedule zk and multipliers wt,k, as introduced in the previous subsection,

choosing a new step size αk+1, and incrementing the iteration count.

We continue the procedure until the change in the DSR schedule zk from one iteration to the

next falls below a predefined tolerance and use the last value of zk as the solution to Problem (9).

5.4. Lower Bound on the Optimal Solution

Our solution approach uses two approximations. We apply the stochastic sample-based progres-

sive hedging algorithm to a non-convex function (Problem (9) is not convex) and we use ADP.

Therefore, the solution is not necessarily optimal, but we can obtain an upper bound on the opti-

mal expected cost by simulating the operating policy using Monte-Carlo-Sampling. With existing

solution approaches, an optimal solution cannot be computed for problems of relevant size and we

cannot evaluate the solution obtained from our algorithm by comparing it to an optimal solution.

However, we can compute a lower bound on the optimal solution and use the lower bound as a

benchmark. To compute the lower bound, we solve a sequence of relaxed problems based on sam-

ples from the distribution of net demand Lt. We show that the sequence of values obtained from

these relaxed problems converges to a lower bound on Problem (9).

Proposition 1 provides a convexity result for Problem (9) with relaxed integrality constraints.

We use this relaxation as the starting point for the lower bound.

Proposition 1. The continuous relaxation of the unit commitment problem with DSRs is convex,

if φ−1
t (·, z) is convex in z for t = 0, . . . , T − 1, where φt(·, z) denotes the cumulative distribution

function of Lt(z).

Even for the continuous relaxation, it is unclear how the expected value in the dynamic program-

ming recursion can be evaluated. We use the procedure in Theorem 2 that we introduce later in

Subsection 5.5 to solve the continuous relaxation of Problem (9) iteratively for z∗ by generating

samples (l0, . . . , lT−1) and solving a deterministic unit commitment problem in each iteration. This

is equivalent to relaxing the non-anticipativity condition inherent in the dynamic program and

yields a lower bound on the optimal cost. We take the expectation over all Lt(z) after minimizing

over x to obtain the following lower bound on the unit commitment problem with DSRs.

Theorem 1. Problem

min
z

{
CD(z) +EL0(z),...,LT−1(z)

[
min
x̄∈X̄

T−1∑
t=0

CC
t (Rt, x̄t, bt)

]}
(27)
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where

X̄ = X̄ (z,R0) =

{
x̄∈ [0,1]3×T×|I| : x̄∈X (St),Rt+1 =RM(Rt, x̄t),∑
i∈I

gi(Rt,i, x̄
d
t,i) + bt =Lt(z),

P

 ∑
i∈Ireserve(Rt)

gmax
i (RM(Rt,i, x̄t,i))≤Lt+1(z)

≤ ε, t= 0, . . . , T − 1

}
,

(28)

is a lower bound on the stochastic unit commitment problem with DSRs.

We apply the procedure in Theorem 2 to Problem (27) and obtain a sequence of DSR schedules

zk. The following corollary provides convexity of the lower bounding problem and convergence of

the obtained sequence zk to the optimal solution of Problem (27).

Corollary 1. Problem (27) is a lower bound on Problem (9) and satisfies all conditions of Theo-

rem 2, if φ−1
t (·, z) is convex in z for t= 0, . . . , T −1. The limit point z∗ of the sequence zk generated

by the procedure in Theorem 2 solves Problem (27).

While z∗ is the optimal solution to Problem (27), we must evaluate the expected value in the

objective function to obtain the actual value of the lower bound. We can dualize the constraint∑
i∈I gi(Rt,i, x

d
t,i) + bt =Lt(z) to obtain a computationally tractable bound on the expected value.

Proposition 2 presents the resulting relation.

Proposition 2. For every z and λ∈RT

EL0,...,LT

[
min
x̄∈X̄

T−1∑
t=0

CC
t (Rt, x̄t, bt)

]
≥

T−1∑
t=0

λtE [Lt(z)] + min
x̂∈X̂

{
T−1∑
t=0

(
CC
t (Rt, x̂t, bt)−λt

(∑
i∈I

gi(Rt,i, x̂
d
t,i) + bt

))} (29)

holds, where X̂ is the set obtained when removing the dualized constraint from the definition of X̄ .

Inequality (29) holds for any z and λ. To obtain a tight lower bound, we maximize the right hand

side of Inequality (29) for the value z∗ obtained from solving Problem (27). This maximization can

be performed by subgradient descent and no expected value over a function must be evaluated to

obtain a valid lower bound on Problem (9). We report performance results of the lower bound in

Section 6.

5.5. Stochastic Proximal Point and Stochastic Sample-Based Progressive Hedging Algorithm

In this section, we formally introduce the stochastic proximal point algorithm and the stochastic

sample-based progressive hedging algorithm and prove conditions under which both algorithms
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converge. We start with the stochastic proximal point algorithm, which is an extension of the prox-

imal point algorithm (Rockafellar 1976, Martinet 1970) to stochastic programming problems. Its

objective is to find (v∗,w∗) ∈ argminimaxv,w E[l(v,w,ω)], where l(v,w,ω) :N ×M×Ω→ R,N ⊆

Rn,M⊆ Rm is a saddle-function, i.e., l is convex in v for all w and concave in w for all v, and

(Ω,F ,P) is a probability space. Our extended version finds (w∗, v∗) = argminimaxv,w E[l(v,w,ω)]

based on drawing samples ω ∈ Ω, whereas the existing deterministic version finds (w∗, v∗) =

argminimaxv,w l(v,w,ω) for constant ω.

To show that the algorithm converges to an optimal solution (w∗, v∗) under mild conditions, we

need the following assumption:

Assumption 1. There exists a constant c∈R, such that for all v, v̄ ∈N , w, w̄ ∈M, and ω ∈Ω

max
g∈∂vl(v,w,ω)

{‖g‖} ≤ c,

max
g∈∂wl(v,w,ω)

{‖g‖} ≤ c

and

|l(v,w,ω)− l(v̄,w,ω)| ≤ c‖v− v̄‖,

|l(v,w,ω)− l(v, w̄,ω)| ≤ c‖w− w̄‖.

Also there exist M(ω) such that |l(v,w,ω)| ≤ M(ω) for every ω ∈ Ω, v ∈ N and w ∈ M, and

E[M(ω)]<∞.

The following known result is the basis for the convergence proofs of many stochastic optimization

algorithms and we also rely on it (Bertsekas and Tsitsiklis 1996, Prop. 4.2).

Proposition 3. Let Y k, Zk, and W k, k= 0,1, . . . , be three sequences of random variables and let

Fk, k= 0,1, . . . , be sets of random variables such that Fk ⊂Fk+1 for all k. Suppose that:

1. The random variables Y k, Zk, and W k are nonnegative, and are functions of the random

variables in Fk.

2. For each k, we have

E{Y k+1|Fk} ≤ Y k−Zk +W k.

3. There holds
∑∞

k=0W
k <∞.

Then we have
∑∞

k=0Z
k <∞, and the sequence Y k converges to a nonnegative random variable Y

almost surely.

We now state our main result for the stochastic proximal point algorithm for saddle-functions.
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Theorem 2 (Stochastic Proximal Point Algorithm). Let l(v,w,ω) :N ×M×Ω→R be con-

vex in v, concave in w for every ω ∈ Ω, let N ⊂ Rn,M⊂ Rm be compact convex sets, and let

(Ω,F ,P) be a probability space. Additionally, let l be lower semi-continuous on N for every w ∈M

and let l be upper semi-continuous on M for every v ∈ N . Assume there exists a point (v∗,w∗)

such that E[l(v∗,w,ω)]≤E[l(v∗,w∗, ω)]≤E[l(v,w∗, ω)] for all (v,w)∈N ×M.

Let k= 0, v0 ∈N , w0 ∈M and consider the following procedure:

1. Sample ωk ∈Ω.

2. Solve

(vk+1,wk+1)∈ argminimax
v̂∈N ,ŵ∈M

{
l(v̂, ŵ, ωk) +

1

2αk
‖v̂− vk‖2− 1

2αk
‖ŵ−wk‖2

}
.

3. Set k= k+ 1, choose αk, and go to step 1.

If the step size αk satisfies
∞∑
k=0

αk =∞,
∞∑
k=0

(αk)2 <∞,

then the sequence {vk,wk} produced by the procedure converges almost surely to a point (v∗,w∗) ∈

N ×M, such that E[l(v∗,w,ω)]≤E[l(v∗,w∗, ω)]≤E[l(v,w∗, ω)] for all (v,w)∈N ×M and

lim inf
k→∞

E[l(vk,w∗, ω)]−E[l(v∗,wk, ω)] = 0.

Theorem 2 states that under mild conditions on the saddle-function l and the sequence of

step sizes αk, the stochastic proximal point algorithm finds a saddle-point (v∗,w∗), such that

E[l(v∗,w,ω)]≤E[l(v∗,w∗, ω)]≤E[l(v,w∗, ω)] for all (v,w)∈N ×M. The proof combines the conver-

gence proof of the deterministic algorithm (Rockafellar 1976) and Proposition 3 to show that Zk =

αk(E[l(vk, z∗, ωk)− l(y∗,wk, ωk)|Fk]) is a martingale. This provides convergence of the sequence

{‖vk− v∗‖+ ‖wk−w∗‖}k≥0, and it can be shown that limk→∞ ‖vk− v̄‖+ ‖wk− w̄‖ exists for some

(v̄, w̄) with E[l(v̄, w̄, ω)] =E[l(v∗,w∗, ω)].

Note that a convex function is a saddle-function and thus all results that hold for saddle-functions

include convex functions as a special case. We used Theorem 2 in Subsection 5.4 to calculate the

lower bound on our solution, where l corresponds to the objective function of Problem (27), which

is convex, v corresponded to the dispatch schedule z, and ω corresponded to the random quantities

in the problem, i.e., the load shifting factors β and the residual load LGt .

The optimization in Step 2 of Theorem 2 does not require saddle-function l to take a special

structure other than the conditions stated in Assumption 1 and Theorem 2. In our application,

however, we can exploit the special structure of the problem to decompose the optimization problem

in Step 2 into a number of separate optimization problems.
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To exploit this structure, we extend the procedure to a decomposable version. Because our

extension is an extension of the known progressive hedging algorithm to a sampling-based version,

we refer to it as stochastic sample-based progressive hedging.

Let h : Z × Ω→ R be a function of the form h(y,ω) = h(h0(y,ω), . . . , hT−1(y,ω)), where h is

convex in y for all ω ∈Ω and components ht are convex and linked by y only for all t and ω ∈Ω. Our

objective is finding y∗ ∈ arg miny E[h(y,ω)]. Let h̄ : ZT ×Ω→ R be given by h̄(y0, . . . , yT−1, ω) =

h(h0(y0, ω), . . . , hT−1(yT−1, ω)).

In our problem of Subsection 5.2, the components ht of function h correspond to the value

functions Vt of the dynamic program in Equation (6) that are linked by dispatch schedule z.

Components h̄t correspond to the modified value functions V̄t, where yt correspond to the local

dispatch schedules z̃t.

Because E[h̄( 1
T

∑
τ yτ , . . . ,

1
T

∑
τ yτ , ω)] =E[h(ȳ, ω)] for ȳ= 1

T

∑
τ yτ , any yt obtained from solving

the problem miny0,...,yT−1
E[h̄(y0, . . . , yT−1, ω)] subject to yt = 1

T

∑
τ yτ for all t solves minȳ E[h(ȳ, ω)].

We focus on miny0,...,yT−1
E[h̄(y0, . . . , yT−1, ω)] subject to yt = 1

T

∑
τ yτ for all t next. The aug-

mented Lagrangian relaxation (e.g., Bertsekas 1982) obtained from dualizing the constraints yt =

1
T

∑
τ yτ for all t reads

l̄(y0, . . . , yT−1,w0, . . . ,wT−1, ω) =

h̄(y0, . . . , yT−1, ω)+
∑
t′

wt′(yt′ − 1

T

∑
τ

yτ

)
+

1

2α

∥∥∥∥∥yt′ − 1

T

∑
τ

yτ

∥∥∥∥∥
2
 ,

(30)

where wt are the Lagrangian multipliers and α is a penalty factor. Function l̄ is a saddle-

function and satisfies all conditions of Theorem 2. Problem (y∗0 , . . . , y
∗
T−1,w

∗
0, . . . ,w

∗
T−1) ∈

argminimaxy∗0 ,...,y∗T−1
,w∗0 ,...,w

∗
T−1

E[l̄(y0, . . . , yT−1,w0, . . . ,wT−1, ω)] can therefore be solved using the

procedure given in Theorem 2.

Note that the derivation of l̄ is similar to the derivation of V̄t in Subsection 5.1. Both terms

in the sum over t′ in the definition of l̄, however, prevent from decomposing the optimization in

Step 2 of Theorem 2 into separate optimization problems, each involving only yt. Following the

ideas of the progressive hedging algorithm (Rockafellar and Wets 1991), we modify the augmented

Lagrangian representation by introducing an iterative update of the multipliers wt and by replacing

the quadratic penalty term to obtain a decomposable version of the procedure in Theorem 2.

Let k be the iteration count. First, we replace
∥∥yt′ − 1

T

∑
τ yτ
∥∥2

in the definition of l̄ by∥∥yt′ − 1
T

∑
τ y

k−1
τ

∥∥2
, i.e., we use the solution of iteration k− 1, yk−1

0 , . . . , yk−1
T−1, in the penalty term.

Second, starting from w0
t = y0

t − 1
T

∑
τ y

0
τ , we update wkt by wk+1

t = wkt + 1
αk

(yk+1
t − 1

T

∑
τ y

k+1
τ )

instead of maximizing over w0, . . . ,wT−1. Note that now (yt− 1
T

∑
τ yτ )wt = ytwt because 1

T

∑
τ yτ

and wt are orthogonal. As a result, the minimization over y0, . . . , yT−1 is now decomposable. We
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formally introduce the stochastic sample-based progressive hedging algorithm and provide its con-

vergence in the next theorem.

Theorem 3 (Stochastic Sample-Based Progressive Hedging). Let Z ⊂ Rn be a compact

convex set, Y =ZT , T ∈N and let (Ω,F ,P) be a probability space. Let h̄(y,ω) : Y ×Ω→R be con-

vex and lower semi-continuous in y for every ω ∈ Ω. Let k be the iteration count and choose an

arbitrary y0 ∈Y and w0
t = y0

t − 1
T

∑
τ y

0
τ . Consider the following procedure:

1. Sample ωk ∈Ω.

2. Solve for all t= 0, . . . , T − 1

yk+1
t = arg min

ŷt∈Z

h̄(ŷ0, . . . , ŷt, . . . , ŷT−1, ω
k) + ŷtw

k
t +

1

2αk

∥∥∥∥∥ŷt− 1

T

∑
τ

ykτ

∥∥∥∥∥
2
 .

3. Set wk+1
t =wkt + 1

αk
(yk+1
t − 1

T

∑
τ y

k+1
τ ) for all t= 0, . . . , T − 1.

4. Set k= k+ 1, choose αk and go to step 1.

If the step size αk satisfies

∞∑
k=0

αk =∞ and
∞∑
k=0

(αk)2 <∞,

then the sequence {yk} generated by the procedure converges to some y∗ ∈ Y such that

E[h( 1
T

∑
τ y
∗
τ , ω)]≤E[h( 1

T

∑
τ yτ , ω)] almost surely for all y ∈Y.

The proof is based on showing that the sequence (yk,wk) generated by the procedure of Theorem

3 is actually the same as the sequence of points generated by the procedure in Theorem 2. Then,

the convergence proof of Theorem 2 carries over and provides convergence to the optimal solution

for the procedure in Theorem 3.

We apply the procedure of Theorem 3 in Subsection 5.2, where we generate samples of β, Pt,

and LGt in Step 1 of the procedure. In Step 2, we solve Problem (22) for all t to obtain z̃t in a

forward path through the dynamic program.

Our extension of progressive hedging to the stochastic case allows us to additionally handle

continuous random variables within each of the decomposed subproblems. It is therefore capable

of solving problems based on sampling the random variables.

Theorem 3 provides optimality for convex problems. Problem (9) is not convex because of the

binary commitment decisions. However, if the algorithm converges, then the following corollary

provides local optimality of a solution.

Corollary 2. If the procedure in Theorem 3 is applied to a non-convex problem such that in each

iteration the generated solutions yk+1
t are optimal in a δ-neighborhood of yk+1

t for fixed δ > 0 for all
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t and the sequence {yk,wk}k≥0 does converge to some (y∗,w∗), then y∗ is a locally optimal solution

to the problem

min
y

E

[
h

(
1

T

∑
t

yt, ω

)]
.

Corollary 2 provides local optimality of the DSR schedule obtained by applying the procedure in

Theorem 3 to Problem (9). It also holds for the approximate model obtained from discretizing the

state space of the dynamic program.

6. Computational Results

We apply our approach to the generation system of the California ISO region. This region is of

particular interest because it has high installed intermittent generation capacity. We formulate a

base case using actual data and perform a sensitivity analysis with respect to the key parameters of

the model. We use a planning horizon of one day and a period length of one hour. The algorithms

are implemented in C++ and the mixed-integer quadratic problems of Algorithm 2 are solved

using CPLEX 12.1 under Linux on a Westmere Hexa-Core Xeon X5650 processor running at 2.66

GHz.

6.1. Base Case

Our model requires data on loads, conventional generation capacity, intermittent generation capac-

ity, and DSR bids. To obtain the data, we rely on a number of sources and we pre-process data

when necessary.

Loads. Historical loads of the California ISO region are available from California ISO OASIS

(2011). We use the hourly loads of Mondays from April to June of the years 2000 to 2010 to

estimate the mean and correlation matrix of the joint normal distribution function of hourly loads

on a typical Monday in spring. Average daily load is 654 GWh.

Conventional generation capacity. Data on the types and generation capacities of all grid-

connected generators of the California ISO region is available from the California Energy Com-

mission (2011). For our analyses, we use the generators that were connected to the grid of the

California ISO region in May 2011. A total of 392 generators with a capacity greater or equal to 20

MW were connected to the grid and had a total capacity of 53,602 MW. Table 1 summarizes the

type and characteristics of the generators. Generators with less than 20 MW are not considered

because they represent less than 3% of generation capacity and are mostly emergency generators.

We use cost factors and physical characteristics of the generators as provided by CAISO for test
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Capacity (MW) Min. Uptime (h) Min. Downtime (h)

Type Number min max avg min max avg min max
Nuclear 4 1,118 1,124 168.0 168.0 168.0 168.0 168.0 168.0
Coal 7 21 118 96.0 96.0 96.0 48.0 48.0 48.0
Natural Gas 245 20 887 6.3 1.0 96.0 5.1 1.0 24.0
Geothermal 30 20 90 196.0 196.0 196.0 196.0 196.0 196.0
Hydro 88 20 659 196.0 196.0 196.0 196.0 196.0 196.0
Biomass 18 20 81 5.6 1.0 6.0 7.3 1.0 8.0

Table 1 Generator characteristics in the base case

studies in the California and Western Electricity Coordinating Council (WECC) markets (e.g.,

Price 2013).

Intermittent generation capacity. Intermittent generation capacity consists of wind and

solar capacity. We did not find a source of hourly generation of the intermittent sources, and there-

fore, we simulated the operations of the wind farms and solar panels to estimate the distribution

function of intermittent generation for a typical spring day. To simulate the operations of wind

farms, we obtained the locations, the capacities, and the turbine types of all major wind farms

in the California ISO region from the California Energy Commission (2011), which have a total

maximum capacity of 2,709 MW. We obtained the hourly historical wind speeds for April to June

of the years 2004 to 2006 at the locations of the wind farms from the National Renewable Energy

Laboratory’s (NREL) wind integration data set (National Renewable Energy Laboratory 2011b)

and used NREL’s Solar Advisor Model software2to simulate hourly wind power generation for all

turbines. We aggregated the hourly generation and estimated the mean and the correlation matrix

of the joint normal distribution of total hourly wind power generation for a typical day in spring.

To simulate the operations of the solar panels, we obtained the locations, the capacities, and the

panel types of all registered solar panels in the California ISO region from the NREL’s OpenPV

Project database (National Renewable Energy Laboratory 2011a), which have a total maximum

capacity of 511 MW. We obtained the hourly historical solar irradiation intensity for April to June

of the years 1998 to 2005 at the locations of the solar panels from the National Climatic Data

Center SUNY Gridded Data (National Climatic Data Center 2011) and used NREL’s Solar Advisor

Model software to simulate hourly solar power generation for all panels. We aggregated the hourly

generation and estimated the mean and the correlation matrix of the joint normal distribution of

total hourly solar power generation for a typical day in spring.

DSR. Using DSRs to shift load from peak demand periods to off-peak periods is a relatively new

approach and economic DSR participation programs have only recently been put into place. Data

on actual DSR bid curves and shifting profiles is not publicly available, but we obtained estimates

2 The Solar Advisor Model was initially designed to simulate the operations of solar panels but now also includes a
simulation module for wind turbines.
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for the fraction of shiftable load by load type from case studies (Knödler 2012, Engel et al. 2003)

and modeled shifting profiles and offer curves based on these sources (Section 6.3). In our base

case, we use a bid curve with ten segments and 100 MW bid capacity for each segment, i.e., in

each period 1,000 MW of total load reduction by DSR dispatch are possible, with an initial price

of 10$/MWh and an increment of 2$/MWh per segment. We assume that load can be shifted to

the four previous and four subsequent periods with βt,t′ uniformly i.i.d. between 0% and 25% with

mean 12.5% for all t and t′.

All data used in the computational study can be obtained from the authors’ website. [For the

review process, the link has been blinded.]

6.2. Solution

In this section, we solve the base case and report the performance of the algorithm and lower

bound. The average runtime for 500 iterations of our algorithm is 4.2 hours, when starting with

a value function approximation initialized to 0. With an initial approximation that carries more

information, e.g., from previous optimization runs, and faster CPUs, the run time can be reduced

and should be reasonable for real-world applications, where the problem is solved a day ahead of

operations.

We first apply our method to a deterministic instance of Problem (9) with and without DSR to

assess the quality of the value function approximation and the lower bound. In all instances we use

a fixed step size of α= 0.1 for Algorithm 2.

0% 0 100 200 400 500300

20%

5%
15%
10%

Iteration
ADP 0%

10%
20%

400 5003002001000
5

15

Iteration
ADP

GapADP vs. LB GapADP vs. LB

Figure 3 Deterministic, without DSRs
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Figure 4 Deterministic, with DSRs
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Deterministic instances. Figures 3 and 4 report the relative gap between the solution of

Algorithm 2 over 500 iterations and the lower bound (LB) obtained by solving Problem (27) with

and without DSRs, respectively. To assess the performance of the lower bound, we additionally solve

the lower bounding Problem (27) without relaxed integrality constraints, i.e., the mixed-integer

formulation, which provides the optimal value of Problem (9) for deterministic instances.

For the problem without DSRs, the lower bound is 0.017% below the optimal solution. The ADP

algorithm found the best solution after 301 iterations. It is 0.031% above the optimal solution and

0.047% above the lower bound. For the problem with DSRs, the lower bound is 0.081% below the

optimal solution. The ADP algorithm found the best solution after 432 iterations. It is 0.070%

above the optimal solution and 0.151% above the lower bound.

Stochastic instances. For stochastic instances, we cannot solve the model exactly and we

report relative gaps between the solution found by our algorithms and the lower bound. We consider

the problem with and without DSRs. As the quality of the lower bound depends on the variance

of the stochastic quantities, we conducted experiments with varying coefficients of variation (CV)

for the demand that must be filled by conventional generators Lt = LGt − LDt − Pt. The CV of

the demand that must be filled by conventional generators in the base case is determined by the

historic data on load and intermittent generation and we vary the variance in the distribution

that we use to generate samples of the random quantities while keeping its mean constant. We

perform optimization runs with the CV of the base case, with a CV increased by 50%, and with a

CV decreased by 50%. In all three scenarios, we simulated the solution obtained from Algorithm

2 after every 20 iterations for 5,000 draws of the random components. Figures 5 and 6 show how

the simulated mean value improves when Algorithm 2 is executed for an increasing number of

iterations.

We can observe that the convergence of the algorithm depends on the degree of uncertainty in

the optimization problem. For the base case, we obtained optimality gaps of 2.6% and 3.0% for

the base cases without DSRs and with DSRs, respectively. Reducing the coefficient of variation

by 50% decreased the gaps between the ADP solution and the lower bound to 1.6% and 2.2% for

the scenarios without and with DSRs, respectively. Increasing the coefficient of variation by 50%

increased the gaps to 3.2% and 3.9%, respectively.

The optimality gaps obtained for the stochastic instances are difficult to compare with the gaps

achieved by scenario-based models because our representation of uncertainty follows an alternative

approach.

Solution of the base case. Our base case shows potential savings of 1.1 million USD/day

(7.54%) when using DSRs as opposed to not using DSRs. If no DSRs are present in the system,
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Figure 5 Stochastic, varying CV of Lt, without DSRs
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Figure 6 Stochastic, varying CV of Lt, with DSRs

total cost amounts to 15.8 million USD/day compared to 14.7 million USD/day when DSR capacity

is dispatched. Especially during peak hours, the dispatch of DSR leads to a net shift of load to

off-peak hours. This reduces the number of peak units with high variable cost that are started

during peak hours and used only for a small number of periods.

Figure 7 shows the average load in the system with and without DSR dispatch and the shifted

load. The peaks are flattened and the dips between periods 0 and 6 and periods 20 and 24 are filled

with load from mid-day. Figure 8 shows the average number of generators running to meet current

load over the planning horizon without and with dispatch of DSRs. DSRs prevent the start-up of

the expensive peak generators during the day at the expense of having more generators running in

the early morning and late evening.

50-5 24

35
2530
20

181260 Period

Avg. Total Load[GW]
160180
140

0 6 12 18 24
100120

0

Avg. number of generators online

Period

without DSRshifted load
with DSR with DSRno DSR

Figure 7 Avg. load and shifted load
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6.3. Sensitivity

To analyze how changes in the parameter values affect the solution, we conduct several sensitivity

analyses.

Varying uncertainty in intermittent generation forecast. We conducted experiments for

varying coefficients of variation (CV) of the quantity LGt −Pt, which can be interpreted as varying

the uncertainty in the forecast of intermittent generation capacity. The quality of the lower bound

depends on the variance of the right hand side of Constraint (3). For our analyses, we first calculated

the DSR dispatch schedule and value function approximation by executing Algorithm 2 for 500

iterations and then simulated operations of the generators for the obtained DSR dispatch schedule

for 5,000 draws of the random variables. We report confidence intervals for our solutions along

with the expected total cost.

Figures 9 and 10 show the upper bound(UB) with confidence interval and lower bound (LB) on

the optimal expected cost for varying values of CV of the intermittent capacity for cases without

and with DSRs. Note that increasing uncertainty causes higher expected costs of operation due

to an increase in the right hand side of Constraint (4). The gap between the upper and the lower

bound increases in the CV of the intermittent capacity for cases without and with DSRs. This

effect can be explained by the fact that Inequality (29) in Proposition 2 becomes less binding as the

variance of LGt −Pt increases. The lower bound increases only slightly in the CV of the intermittent

capacity because Constraint (8) is almost never binding in our problem instance. This is caused by

the high share of natural gas powered generators that allow for relatively flexible operations and

prevent from committing large reserve capacities.
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Figure 9 Base Case, without DSR
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DSR bid curves. For DSR bid prices, no public data is available and we performed a sensitivity

analysis to assess the potential of utilizing DSR for varying offer prices. We used an offer curve

with ten segments and 100 MW bid capacity for each segment, i.e., in each period 1,000 MW of

total load reduction by DSR dispatch is possible. Each segment of the offer curve is 2$/MWh more

expensive than the previous segment. In our experiment, we vary the price for the first segment

of the offer curve from 2$/MWh to 58$/MWh. We report total cleared DSR capacity along with

total expected cost in Figures 11 and 12.

We can observe that the total cleared DSR capacity decreases monotonically in the bid prices.

The total DSR cost, however, first increases and then decreases for minimum offer prices of more

than 20$/MWh. Below the peak value, the price increase outweighs the decrease in dispatched

capacity. Total cost increases monotonically with increasing offer prices.
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Figure 11 Cleared DSR capacity and cost for

increasing offer prices
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Figure 12 Expected total cost for increasing offer

prices

Natural gas prices. 245 of the 392 generators that we consider are powered by natural gas.

Prices for natural gas are subject to large fluctuations. We performed a sensitivity analysis to assess

how DSRs can mitigate the effect of rising fuel prices on total cost by preventing from start up of

expensive peak generators. We varied the price for natural gas, pg, from -50% to 100% of current

prices and report total cleared DSR capacity along with the upper (UB) and lower bound (LB) on

the optimal total expected cost in Figures 13 and 14. We do not report the confidence interval on

the UB to keep Figure 14 legible.
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We can observe that the total cleared DSR capacity increases with increasing fuel prices because

dispatching DSRs becomes more profitable. For natural gas price increases of 40% and above all

DSR capacity is dispatched and the quantity remains close to its maximum value of 24 GWh.
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Figure 13 Cleared DSR capacity and cost for

increasing natural gas prices
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Figure 14 Expected total cost for increasing natural

gas prices

7. Conclusion

In this paper, we modeled and analyzed the potential of utilizing DSRs with stochastic load shifting

as a tool for leveling demand for electric energy. The goal was to quantify the value of DSRs in

an energy generation network, while considering the uncertainty in the load shifting effect induced

by dispatch of DSRs in day-ahead markets. Our model allows for participation of “slow” DSRs

that do not qualify for emergency-triggered real time programs because DSRs are scheduled a day

ahead of their actual dispatch.

To solve our model, we developed a unit commitment model and a solution algorithm based on an

extension of the progressive hedging algorithm by Rockafellar and Wets (1991) to stochastic func-

tions. Our algorithm combines elements of ADP and stochastic sample-based progressive hedging

and allows for decomposition of decisions within a dynamic program that link time periods.

We provided convergence results for the stochastic proximal point algorithm and the stochastic

sample-based progressive hedging algorithm. These algorithms are capable of solving a broad class

of convex stochastic programming problems optimally based on Monte-Carlo-Sampling.

To quantify the effect of DSRs on operation and cost of an energy system, we implemented our

solution approach and solved problem instances based on real world data. Our implementation is a
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decision making tool for dispatch of DSRs in energy networks and can be readily applied by system

operators. Our results indicate that substantial savings in energy cost can be achieved by utilizing

DSRs. These savings increase for growing uncertainty in the forecast of intermittent generation

and load, which can be explained by mitigation of demand peaks that are expensive to satisfy.

Our approach is applicable to many other convex stochastic programming problems. For example

in problems, where uncertainty is partly modeled as discrete scenarios and partly as continuously

distributed random variables can exploit the decomposition property of the algorithm in Theorem

3.

We also hope to spark interest in further investigating the value of DSRs in energy generation.

More detailed unit commitment models that include, e.g., transmission constraints or more detailed

cost models can help improve the accuracy of the models and improve DSR schedules.
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Appendix. Notation

We use symbols with or without subscript and superscript as required in the corresponding con-

text, e.g, we write zk to denote (zkt,n)0≤t<T,0≤n<N . We do not explicitly list all possible combinations

in the following table.

α algorithm step size
βt,t′,n fraction of demand shifted from period t to t′ by DSR dispatch of offer curve segment n
bt imbalance between generation and demand for electric energy
cgi generation cost function of generator i
csi start-up cost function of generator i
c+
t , c

−
t unit penalty cost for positive and negative imbalance energy

cDt,n cost of DSR supply curve segment n
cg,max
t maximum average energy generation cost
c̄g,max
t smoothed maximum average energy generation cost
CC
t generation cost of conventional generators with penalties

CD dispatch cost for DSRs
δ indicator function
ε probability of shortage in scheduled capacity
gi energy output function of generator i
gmax
i maximum reachable output function of generator i
gDt,n capacity of DSR supply curve segment n
Gmax
i maximum power output of generator i

Gmin
i minimum power output of generator i

H mean value operator
i subscript for generator index
I set of all conventional generators
Ireserve set of all conventional generators minus current maximum capacity committed generator
IU set of all conventional generators that have reached their minimum uptime
k superscript for iteration count
K duplication operator
λ penalty factor in Lagrangian relaxation
lt realization of Lt in period t
lGt realization of LGt in period t

l̂t discretized realization of Lt in period t
LDt dispatched DSR capacity
LGt forecast of gross demand for energy
Lt net demand for energy from conventional generators in period t
Lt joint distribution of L0, . . . ,Lt
L̂t discretized joint distribution of L0, . . . ,Lt
φt(·, z) cumulative distribution function of Lt(z)
pg price of natural gas
Pt forecast of capacity of intermittent resources
RM resource transition function
Rt,i state of generator i

R̂t,i discretized state of generator i
RLdi maximum ramp down rate of generator i
RLui maximum ramp up rate of generator i
Rt generator state space

R̂t discretized generator state space
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SM state transition function
St state of the system
St state space
t index of time period
T di minimum downtime of generator i
T ui minimum uptime of generator i
T number of planned time periods

vl0,...,lt,R̂it,i estimate of the value of generator i being in state R̂i for load history l0, . . . , lt
Vt optimal value function
V̄t value function for augmented Lagrangian formulation

V̂t value function approximation
ω random vector
wt Lagrangian multipliers corresponding to z̃t

xoff
t,i binary decision variable for generator i, ’switch generator off’
xon
t,i binary decision variable for generator i, ’switch generator on’
xdt,i continuous decision variable for generator i, ’output level’
xt vector of all decision variables
x̄t continuous relaxation of xt
Xt,i set of feasible actions
X̄ continuous relaxation of X
X̂ continuous relaxation of X with dualized reserve constraints
zt,n dispatch quantity for DSR offer curve segment n in period t
z̃t local copy of dispatch schedule z in period t (same dimension as z)
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Appendix

EC.1. Dynamic Programming Model Details

EC.1.1. Transition Function

In this section we give an example for the generator state transition function RM . We consider a

generator with an minimum uptime of T u = 2 periods and a minimum downtime of T d = 2 periods.

As a result the generator state vector Rt has 1 + T u + T d = 5 coordinates. The first coordinate is

continuous and takes values in the interval [0,100] representing the operating level. Coordinates

two to five are binary, and there is always exactly one binary coordinate taking the value 1, all other

binary coordinates take value 0. The binary coordinates indicate for how long the generator has

been running, if it is committed, or how long the generator has been turned off, if it is uncommitted.

For example, coordinate two takes value 1, if the generator has been running for one hour. All

other binary coordinates have value 0. If the uptime exceeds the minimum uptime, the coordinate

corresponding to the minimum uptime remains at value 1. If the downtime exceeds the minimum

downtime, the coordinate corresponding to the minimum downtime remains at value 1.

The generator state transition equation has the form Rt+1 =ARt+Bxt. For our specific example

it reads

Rt+1 =


0 0 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 0 0

Rt +


0 0 1
0 1 0
−1 0 0
1 0 0
0 −1 0


 xon

t

xoff
t

xdt



EC.1.2. Action Space

In this section we provide details on the specific form of the action space X (St) for the dynamic

programming formulation of the unit commitment problem. In our model we consider ramping

limits and minimum up and downtimes, and provide their specific formulation.

Ramping Limits For each generator, there exist ramping limits, which limit the rate of change

in its output level from one period to the next. Let RLui be the maximum rate at which we can

increase the output of generator i, and let RLdi be the maximum rate at which we can decrease

the output of generator i.

Rt,i,0 denotes the first coordinate of the generator state, i.e., the current operating level of

generator i. Then the constraint on ramping up reads xdt,i −Rt,i,0 ≤ RLui and the constraint on

ramping down reads Rt,i,0−xdt,i ≤RLdi .

Dispatch Restriction A generator can only be dispatched, if it is committed. Let J U be

the set of indices of those coordinates of generator state Rt,i that correspond to states in which
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the generator is committed. We disallow dispatch of uncommitted generators by the constraint

xdt,i ≤
∑

j∈JU Rt,i,j.

Minimum Up- and Downtimes Many generators cannot be committed and decommitted

instantaneously, but instead require to remain committed for a minimum amount of time, if they

are running, and to remain uncommitted for a minimum amount of time, if they are turned off.

We therefore allow to commit a generator on (set xon
t,i = 1 in a period) only, when it has reached its

minimum downtime and we allow decommitting a generator (set xoff
t,i = 1 in a period) only, when

it has reached its minimum uptime.

Let ju denote the index of the coordinate of generator state Rt,i corresponding to the minimum

uptime of generator i and let jd denote the index of the coordinate of generator state Rt,i corre-

sponding to the minimum downtime of generator i. Then the minimum uptime constraint is given

by xoff
t,i ≤Rt,i,ju and the minimum downtime constraint is given by xon

t,i ≤Rt,i,jd .

EC.1.3. Generation and Cost Functions

The energy generation function gi(Rt,i, x
d
t,i) computes the power output of a generator i given

its current state Rt,i and dispatch decision xdt,i. Let Gmin
i denote the minimum power output of

generator i and let Gmax
i the maximum power output of generator i. Additionally, let J U be the

set of indices of those coordinates of generator state Rt,i that correspond to states in which the

generator is committed. The generation function reads

gi(Rt,i, x
d
t,i) =Gmin

i

∑
j∈JU

Rt,i,j +xdt,i(G
max
i −Gmin

i ).

Maximum output function gmax
i (Rt,i) computes the maximum achievable output of a generator

that is currently in state Rt,i. For generators currently committed, it is given by the current

operating level plus the maximum ramp-up rate, i.e., Rt,i,0(Gmax
i −Gmin

i )+RLui . For generators that

are uncommitted and cannot be synchronized quickly enough to qualify for non-spinning reserve,

it takes value 0, and for generators that are uncommitted but can be synchronized to the grid

sufficiently quickly it takes value Gmin
i +RLui .

Cost function cgi (Rt,i, x
d
t,i) represents the energy generating cost of generator i for given generator

state Rt,i and dispatch decision xdt,i. We model the cost function to take the form

cgi (Rt,i, x
d
t,i) = ai

∑
j∈JU

Rt,i,j + bix
d
t,i + ci(x

d
t,i)

2,

where ai, bi, and ci are nonnegative scalar values. ai represents the no-load cost of generator i, i.e.,

the cost incurred when the generator is committed and running at minimum capacity, and bi and

ci represent the linear and quadratic coefficients of the incremental generation cost. We model cost

parameters to be stationary, but we could also let a, b, and c depend on t.
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EC.2. Propositions for Reformulation of the Integrated Problem

This section contains two additional propositions that support the reformulation of the integrated

problem (9) in Section 5 into the form necessary to solve the problem using dynamic programming

techniques.

Proposition EC.1. Problem (9) subject to Constraints (7) and (8) is equivalent to problem{
z̃0, ..., z̃T−1

}
= arg min
{z̃0,...,z̃T−1}

CD
(
z̃0
)

+V0(z̃0, S0) (EC.1)

with

Vt(z̃
t, ..., z̃T−1, St) = min

xt∈X (St)
CC
t (Rt, xt, bt) +ELt+1(z̃t)

[
Vt+1

(
z̃t+1, ..., z̃T−1, SM(St, xt,Lt+1(z̃t))

)]
,

(EC.2)

subject to ∑
i∈I

gi(Rt,i, x
d
t,i) + bt = lt(z̃

t), (EC.3)

P

{ ∑
i∈Ireserve

gmax
i (RM(Rt,i, xt,i))≤Lt+1(z̃t)

∣∣∣l0, . . . , lt+1

}
≤ ε (EC.4)

and

z = z̃0 = z̃1 = ...= z̃T−1. (EC.5)

We begin by noting that

min
z0,...,zT−1

CD(z0) + Ṽ0(z0, . . . , zT−1, S0) = min
z
CD(z) + Ṽ0(z, . . . , z,S0).

s.t. z0 = · · ·= zT−1

Let (Ak) = VT−k(z,ST−k) and (Bk) = ṼT−k(z, . . . , z,ST−k), where k= 2, . . . , T and (Bk) has param-

eter z k− 1 times. We show (Ak) = (Bk) for all k and z.

Base Case. Let k= 2. By definition (A2) = (B2) holds.

Induction Step. Now consider (Ak+1) and (Bk+1). The induction assumption is that (Ak) = (Bk).

We have

(Bk+1) =ṼT−k−1(z, . . . , z,ST−k−1)

= min
xT−k∈X (ST−k,z)

CC
T−k(RT−k, xT−k, bT−k) +ELT−k(z)

[
ṼT−k(z, . . . , z,ST−k)

]
= min
xT−k∈X (ST−k,z)

CC
T−k(RT−k, xT−k, bT−k) +ELT−k(z) [VT−k(z,ST−k)]

=(Ak+1),

where the second and fourth equality are by definition and the third equality follows from the

induction assumption. Therefore, (AT+1) = (BT+1) for all z. This suffices to show equality of the

two problems in the proposition.
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Proposition EC.2. Problem (18) is equivalent to problem

min
z̃0

{
CD(z̃0) + z̃0w0 +

1

2α
‖z̃0− z‖2 + min

x0

{
CC

0 (R0, x0, b0) +EL1(z̃0)

[
V̄1 (z,w,S1)

]}}
(EC.6)

with

V̄t(z,w,St) = min
z̃t

{
z̃twt +

1

2α
‖z̃t− z‖2 + min

xt

{
CC
t (Rt, xt, bt) +ELt+1(z̃t)

[
V̄t+1 (z,w,St+1)

]}}
(EC.7)

and V̄T = 0.

We show that for all St, w, z, and t equality

min
{z̃t,...,z̃T−1}

Vt(z̃
t, . . . , z̃T−1, St) +

T−1∑
τ=t

(
z̃τwτ +

1

2α
‖z̃τ − z‖2

)
= V̄t(z,w,St) (EC.8)

holds. The statement of the proposition then follows from the definition of Problem (18). Through-

out the proof we do not explicitly write xt ∈ X (St, z), but note that the optimal value of xt is a

function of the state and z, because the distribution of Lt depends on z.

The proof is carried out by induction.

We define problems (Ak) and (Bk) for k= 1, . . . , T as

(Ak) min
{z̃T−k,...,z̃T−1}

VT−k(z̃
T−k, . . . , z̃T−1, ST−k) +

T−1∑
τ=T−k

(
z̃τwτ +

1

2α
‖z̃τ − z‖2

)
,

and

(Bk) min
z̃T−k

{
z̃T−kwT−k +

1

2α
‖z̃T−k− z‖2+ min

xT−k

{
CC
T−k(RT−k, xT−k, bT−k)

+ELT−k(z̃T−k)

[
V̄T−k+1(z,w,ST−k+1)

]}}
.

Base case. Let k= 1. We have

(A1) min
z̃T−1

z̃T−1wT−1 +
1

2α
‖z̃T−1− z‖2 + min

xT−1

CC
T−1(RT−1, xT−1, bT−1),

and

(B1) min
z̃T−1

z̃T−1wT−1 +
1

2α
‖z̃T−1− z‖2 + min

xT−1

CC
T−1(RT−1, xT−1, bT−1).

Obviously (A1) = (B1) for all w and z.

Induction step. The induction assumption is (Ak) = (Bk) or

min
{z̃T−k,...,z̃T−1}

VT−k(z̃
T−k, . . . , z̃T−1, ST−k) +

T−1∑
τ=T−k

(
z̃τwτ +

1

2α
‖z̃τ − z‖2

)
= V̄T−k(z,w,ST−k).
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Consider (Ak+1)

min
{z̃T−k−1,...,z̃T−1}

VT−k−1(z̃T−k−1, . . . , z̃T−1, ST−k−1) +
T−1∑

τ=T−k−1

(
z̃τwτ +

1

2α
‖zτ − z‖2

)
.

We have

T−1∑
τ=T−k−1

(
z̃τwτ +

1

2α
‖z̃τ − z‖2

)
=z̃T−k−1wT−k−1 +

1

2α
‖z̃T−k−1− z‖2

+
T−1∑

τ=T−k

(
z̃τwτ +

1

2α
‖z̃τ − z‖2

)
.

Rewriting (Ak+1) using this equality gives

min
{z̃T−k−1,...,z̃T−1}

{
z̃T−k−1wT−k−1 +

1

2α
‖z̃T−k−1− z‖2 +

T−1∑
τ=T−k

(
z̃τwτ +

1

2α
‖z̃τ − z‖2

)
+ min
xT−k−1

{
CC
T−k−1(RT−k−1, xT−k−1, bT−k−1)

+ELT−k(z̃T−k)

[
VT−k(z̃

T−k, . . . , z̃T−1, ST−k)
]}}

= min
z̃T−k−1

z̃T−k−1wT−k−1 +
1

2α
‖z̃T−k−1− z‖2

+ min
{z̃T−k,...,z̃T−1}

{ T−1∑
τ=T−k

(
z̃τwτ +

1

2α
‖z̃τ − z‖2

)
+ min
xT−k−1

{
CC
T−k−1(RT−k−1, xT−k−1, bT−k−1)

+ELT−k(z̃T−k)

[
VT−k(z̃

T−k, . . . , z̃T−1, ST−k)
]}}

,

By the induction assumption this is equal to

min
z̃T−k−1

z̃T−k−1wT−k−1 +
1

2α
‖z̃T−k−1− z‖2

+ min
xT−k−1

{
CC
T−k−1(RT−k−1, xT−k−1, bT−k−1) +ELT−k

[
V̄T−k(z,w,ST−k)

]}
= (Bk+1).

The statement of the proposition follows from noting that Equation (EC.8) holds for t= 1 and

from the definition of Problem (18) and Vt.

EC.3. Proofs of Theorems

Proof of Theorem 1

We start by noting that relaxing the integrality constraints on x provides a lower bound on the

original problem, because X ⊂ X̄ . Then, because for any function it holds that Eω[minx f(x,ω)]≤
minxEω[f(x,ω)], we can move the expectation with respect to Lt in the definition of Vt in front of

the minimization over xt to obtain a lower bound on Vt. We apply this procedure recursively and

obtain a deterministic minimization problem inside the expectation over {L0(z), . . . ,LT−1(z)} ∈
LT−1 given in (27).
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Proof of Theorem 2

A function is lower (upper) semi-continuous if for every point x0 in the domain it holds lim infx→x0 ≥
f(x0) (which is replaced by lim supx→x0 ≤ f(x0) for upper). On several occasions we use the property

that if function f is lower semi-continuous, then supx∈C f(x) is attained whenever C is a compact

set (for upper semi-continuous functions, the sup is replaced by inf). Since N ,M are compact and

l is lower (upper) semi-continuous, the argminimax in Step 2 of the procedure in the theorem is

non-empty. For each k= 0,1, . . . we have that

0∈ ∂vl(vk+1,wk+1, ωk) +NN (vk+1) +
1

αk
(vk+1− vk)

and

0∈ ∂wl(vk+1,wk+1, ωk)−NM(wk+1)− 1

αk
(wk+1−wk). (EC.9)

See Du and Pardalos (1995) and Rockafellar 1970, §35, for details on subgradients and optimality

conditions of saddle-functions.

Adding 1
αk

(wk+1−wk) on both sides of (EC.9) yields

1

αk
(wk+1−wk)∈ ∂wl(vk+1,wk+1, ωk)−NM(wk+1),

which implies that there exists d ∈ ∂wl(vk+1,wk+1, ωk) such that d− 1
αk

(wk+1 −wk) ∈NM(wk+1)

(note that l(vk+1, ·, ωk) is a concave function and the subgradient points in the direction of increase).

Then we have that z − wk+1 ∈ TM(wk+1) for each z ∈M and by definition of the normal cone

(d− 1
αk

(wk+1−wk))T (z−wk+1)≤ 0. We conclude that 1
αk

(wk+1−wk)T (z−wk+1)≥ dT (z−wk+1).

Now since d∈ ∂wl(vk+1,wk+1, ωk), we have that for all z ∈M

l(vk+1,wk+1, ωk) + dT (z−wk+1)≥ l(vk+1, z,ωk)

and as a result

l(vk+1,wk+1, ωk) +
1

αk
(wk+1−wk)T (z−wk+1)≥ l(vk+1, z,ωk). (EC.10)

Using similar arguments for convex function l(·,wk+1, ωk), we obtain

l(vk+1,wk+1, ωk) +
1

αk
(vk− vk+1)T (y− vk+1)≤ l(y,wk+1, ωk) (EC.11)

for all y ∈N .

Expanding the relation ‖vk−y‖2 +‖wk−z‖2 = ‖vk−vk+1 +vk+1−y‖2 +‖wk−wk+1 +wk+1−z‖2

yields

‖vk+1− y‖2 + ‖wk+1− z‖2 =‖vk− y‖2 + ‖wk− z‖2

+2(vk− vk+1)T (y− vk+1)

+2(wk−wk+1)T (z−wk+1)

−‖vk− vk+1‖2−‖wk−wk+1‖2.
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Combining with (EC.10) and (EC.11) yields

‖vk+1− y‖2 + ‖wk+1− z‖2 ≤‖vk− y‖2 + ‖wk− z‖2

− 2αk(l(vk+1,wk+1, ωk)− l(y,wk+1, ωk))

− 2αk(l(vk+1, z,ωk)− l(vk+1,wk+1, ωk))

−‖vk− vk+1‖2−‖wk−wk+1‖2

=‖vk− y‖2 + ‖wk− z‖2

− 2αk(l(vk, z,ωk)− l(y,wk, ωk))

− 2αk(l(y,wk, ωk)− l(y,wk+1, ωk))

− 2αk(l(vk+1, z,ωk)− l(vk, z,ωk))

−‖vk− vk+1‖2−‖wk−wk+1‖2

≤‖vk− y‖2 + ‖wk− z‖2

− 2αk(l(vk, z,ωk)− l(y,wk, ωk))

− 2αk(l(y,wk, ωk)− l(y,wk+1, ωk))

− 2αk(l(vk+1, z,ωk)− l(vk, z,ωk)).

Note that both the left- and right-hand side are random variables since we deal with a randomized

algorithm and thus we can take conditional expectations on both sides. We now take conditional

expectation with respect to Fk on both sides and set (y, z) = (y∗, z∗), where (y∗, z∗) is a saddle

point of function E[l(v,w,ω)]. The saddle-point exists due to the lower and upper semi-continuity

assumptions. We obtain

E[‖vk+1− y∗‖2 + ‖wk+1− z∗‖2|Fk]≤‖vk− y∗‖2 + ‖wk− z∗‖2

− 2αk(E[l(vk, z∗, ωk)− l(y∗,wk, ωk)|Fk])

− 2αk(E[l(y∗,wk, ωk)− l(y∗,wk+1, ωk)|Fk])

− 2αk(E[l(vk+1, z∗, ωk)− l(vk, z∗, ωk)|Fk]).

From the second condition in Assumption 1 we get l(y∗,wk, ω)− l(y∗,wk+1, ω)≤ c‖wk−wk+1‖ and

l(vk+1, z∗, ω)− l(vk, z∗, ω)≤ c‖vk+1− vk‖ and as a result

E[l(y∗,wk, ω)− l(y∗,wk+1, ω)|Fk]≤ cE[‖wk−wk+1‖|Fk]

and

E[l(vk+1, z∗, ω)− l(vk, z∗, ω)|Fk]≤ cE[‖vk+1− vk‖|Fk]

holds. Since wk ∈M we have 1
αk

(wk−wk+1)∈ TM(wk+1). On the other hand

d+
1

αk
(wk+1−wk)∈NM(wk+1).
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From the definition of the normal cone it follows that

−
(
d+

1

αk
(wk+1−wk)

)T
ν ≤ 0 for every ν ∈ TM(wk+1).

Setting ν = 1
αk

(wk−wk+1) yields∥∥∥∥ 1

αk
(wk−wk+1)

∥∥∥∥2

≤ dT
(

1

αk
(wk−wk+1)

)
≤ ‖d‖

∥∥∥∥ 1

αk
(wk−wk+1)

∥∥∥∥ .
We conclude that ‖ 1

αk
(wk−wk+1)‖ ≤ ‖d‖ for all −d∈ ∂wl(y∗,wk+1, ω).

Now by the first condition in Assumption 1 we have ‖ 1
αk

(wk−wk+1)‖ ≤ c and as a result

E[l(y∗,wk, ω)− l(y∗,wk+1, ω)|Fk]≤ cE[‖wk−wk+1‖|Fk]≤ αkc2.

Similar arguments show E[l(vk+1, z∗, ω)− l(vk, z∗, ω)|Fk]≤ αkc2. We obtain

E[‖vk+1− y∗‖2 + ‖wk+1− z∗‖2|Fk]≤‖vk− y∗‖2 + ‖wk− z∗‖2

− 2αk(E[l(vk, z∗, ωk)− l(y∗,wk, ωk)|Fk])

+ 4(αk)2c2.

Clearly, we have that
∑∞

k=0 4(αk)2c2 < ∞ since
∑∞

k=0(αk)2 < ∞. Note that E[l(y∗,w,ω)] ≤

E[l(y∗, z∗, ω)]≤ E[l(v, z∗, ω)] holds for all (v,w) ∈N ×M. Consider Y k = ‖vk − y∗‖2 + ‖wk − z∗‖2,

W k = 4(αk)2c2 and Zk = 2αk(E[l(vk, z∗, ωk)− l(y∗,wk, ωk)|Fk]). We note that Zk ≥ 0. Since

Zk = 2αk(E[l(vk, z∗, ωk)− l(y∗, z∗, ωk) + l(y∗, z∗, ωk)− l(y∗,wk, ωk)|Fk]).

By Proposition 3 we have that

∞∑
k=0

αk(E[l(vk, z∗, ωk)− l(y∗, z∗, ωk) + l(y∗, z∗, ωk)− l(y∗,wk, ωk)|Fk])<∞,

which implies

lim inf
k→∞

E[l(vk, z∗, ωk)− l(y∗, z∗, ωk) + l(y∗, z∗, ωk)− l(y∗,wk, ωk)|Fk] = 0

and we have that ‖vk − y∗‖2 + ‖wk − z∗‖2 converges to some number u = u(y∗, z∗). Because

E[l(vk, z∗, ωk)− l(y∗, z∗, ωk)|Fk]≥ 0 and E[l(y∗, z∗, ωk)− l(y∗,wk, ωk)|Fk]≥ 0 for all k we conclude

that there exists a subsequence S(y∗, z∗) such that

lim
k→∞

k∈S(y∗,z∗)

E[l(vk, z∗, ω)− l(y∗, z∗, ω)] = 0,

lim
k→∞

k∈S(y∗,z∗)

E[l(y∗, z∗, ω)− l(y∗,wk, ω)] = 0
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and

lim
k→∞
‖vk− y∗‖2 + ‖wk− z∗‖2 = u(y∗, z∗). (EC.12)

Let V ∗ = arg minv{maxw E[l(v,w,ω)]}, W ∗ = arg maxw{minv E[l(v,w,ω)]} and S(y∗,w∗) as defined

above with y∗ ∈ V ∗, z∗ ∈W ∗. Sets V ∗ and W ∗ are non-empty since there exists a saddle-point.

Since N ×M is compact, {(vk,wk)}k∈S(y∗,w∗) has a convergent subsequence C with the limit (v̄, w̄).

Since E[l(v,w,ω)] is lower (upper) semi-continuous in v (in w), it follows

lim
k→∞
k∈C

E[l(vk, z∗, ω)]≥E[l(v̄, z∗, ω)]

and

lim
k→∞
k∈C

E[l(y∗,wk, ω)]≤E[l(y∗, z̄, ω)].

On the other hand, since C ⊆ S(y∗, z∗), it follows

lim
k→∞
k∈C

E[l(vk, z∗, ω)] =E[l(y∗, z∗, ω)]

and

lim
k→∞
k∈C

E[l(y∗,wk, ω)] =E[l(y∗, z∗, ω)].

Since (y∗, z∗) is a saddle point, it follows E[l(y∗, z∗, ω)] =E[l(ȳ, z∗, ω)] =E[l(y∗, z̄, ω)] =E[l(ȳ, z̄, ω)],

which implies ȳ ∈ V ∗ and z̄ ∈W ∗. From (EC.12) it follows that limk→∞ ‖vk− ȳ‖2 +‖wk− z̄‖2 exists

and we also know that

lim
k→∞
k∈C

‖vk− ȳ‖2 + ‖wk− z̄‖2 = 0.

This implies that limk→∞ ‖vk− ȳ‖2 +‖wk− z̄‖2 = 0, i.e., the entire sequence {(vk,wk)} converges

to a point {(v̄, w̄)} such that ȳ ∈ V ∗ and z̄ ∈W ∗.

Proof of Theorem 3

Throughout this proof we write y[t,t′] to denote the set of variables {yt, yt+1, . . . , yt′} for 0≤ t≤ t′ ≤

T . We define operator H :YT →Y as Hy[0,T−1] = 1
T

∑T−1

t=0 yt and operator K :Y →YT as Kyt = yte
′,

where e is a vector of all ones of dimension T . Note that H is the orthogonal projection from YT

on Y and that any w[0,T−1] defined by w[0,T−1] = y[0,T−1]−KHy[0,T−1] is orthogonal to KHy[0,T−1].

We introduce subspace N ⊂Y defined by N = {y ∈ Y :KHy = y} and the subspace M⊂Y given

by M= {y ∈Y :KHy= 0}.

Every y ∈Y can be written as y= u+ v for (u, v)∈M×N , where u= y−KHy and v=KHy.

This holds since (KH)2 =KH, KH is self-adjoint and 〈u, v〉= 0. By induction since (KH)2 =KH
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it easily follows that wk ∈M for all k.

For each ωk ∈Ω, k= 0,1, . . . , we have

−wk− 1

αk
(
yk+1−KHyk

)
∈ ∂h̄(yk+1, ωk) +NY(yk+1). (EC.13)

Noting that 〈u, v〉= 0 for all v ∈N and u∈M, we can rewrite h̄(y,ω)+〈y,w〉 as h̄(u+v,ω)+〈u,w〉

for every w ∈M, y ∈Y for some (u, v)∈M×N .

Our claim is that for any fixed k (KHyk+1,wk+1) produced by Steps 2 and 3 of the procedure in

the theorem solves the problem

(v̄k+1, w̄k+1) = argminimax
v∈N ,w∈M

(
l(v,w,ωk) +

1

2αk
∥∥v−KHyk∥∥2− 1

2αk
∥∥w−wk∥∥2

)
, (EC.14)

where l(v,w,ω) = minu∈M{h̄(u+ v,ω) + δY(u+ v) + 〈u,w〉} and δY(y) = 0 for y ∈Y and δY(y) =∞

otherwise. Note that l(v,w,ω) is convex in v and concave in w for every ω ∈Ω. It is also lower, upper

semi-continuous in v, w, respectively, and therefore fulfills the assumptions of Theorem 2. These

properties can be shown by using basic mathematics (despite some arguments being technical, we

omit these details).

We have that (x,u) ∈ ∂l(v,w,ωk) is the same as x − w ∈ ∂(h̄(u + v,ωk) + δY(u + v)) = ∂h̄(u +

v,ωk) +NY(u+ v) (see §35 and §23 of Rockafellar 1970, and Rockafellar and Wets 1991, Theorem

5.1. with proof).

Let k be fixed and yk,wk be the current point of the procedure in the theorem. The solution to

Problem (EC.14) at this point satisfies

(
1

αk
(KHyk− v̄k+1),

1

αk
(w̄k+1−wk))∈ ∂l(v̄k+1, w̄k+1, ωk),

where ∂l= ∂lv × ∂lw. This gives

x−w=
1

αk
(KHyk− v̄k+1)− w̄k+1

and

u+ v=
1

αk
(w̄k+1−wk) + v̄k+1

which leads to

1

αk
(KHyk− v̄k+1)− w̄k+1 ∈ ∂h̄(

1

αk
(w̄k+1−wk) + v̄k+1, ωk) +NY(

1

αk
(w̄k+1−wk) + v̄k+1).

Let now yk+1 = 1
αk

(w̄k+1−wk) + v̄k+1 be the point obtained from Step 2. We then get

−w̄k+1− 1

αk
(v̄k+1−KHyk)∈ ∂h̄(yk+1, ωk) +NY(yk+1). (EC.15)
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We have yk+1 = u+ v for v = v̄k+1 =KHyk+1 and u= 1
αk

(w̄k+1−wk) = yk+1−KHyk+1. It follows

that 〈u, v〉= 0.

We now consider the subgradient −wk− 1
αk

(yk+1−KHyk) obtained in (EC.13). We rewrite it as

−wk− 1
αk

(u+KHyk+1−KHyk), which is the same as −wk− u
αk
− 1

αk
(v̄k+1−KHyk). Substituting

u yields

−wk− 1

αk
(yk+1−KHyk+1)− 1

αk
(v̄k+1−KHyk)∈ ∂h̄(yk+1, ωk) +NY(yk+1). (EC.16)

Comparing (EC.16) to (EC.15), we note that wk+1 obtained from the procedure in the theorem

equals w̄k+1 obtained from (EC.14), if wk+1 = wk + 1
αk

(yk+1 −KHyk+1). But this is precisely the

update step taken in Step 3 of the procedure in the theorem. The result now follows from Theorem

2.

EC.4. Proofs of Corollaries

Proof of Corollary 1

Problem (27) is a lower bound on Problem (9) by Theorem 1 and convex by Proposition 1. Addi-

tionally, Assumption 1 holds for Problem (9) if maximum system load is assumed to be finite and

the slope for the cost functions is bounded (we assume both conditions to be fulfilled in realistic

problem instances). Then we can rewrite Problem (27) as

min
z

EL0,...,LT−1

[
CD(z) + min

x̄∈X̄

T−1∑
t=0

CC
t (Rt, x̄t, bt)

]
and apply the procedure of Theorem 2, which also provides convergence to the optimal z∗.

Proof of Corollary 2

The proof follows the proof of Theorem 6.1. in Rockafellar and Wets (1991), and is only a simple

adoption for the stochastic case.

EC.5. Proofs of Propositions

Proof of Proposition 1

We first show convexity of Vt for all t by induction. Throughout the proof, we write (Rt, l0, . . . , lt)

instead of St.

Cost function CC
t (Rt, xt, bt) is convex, because cgi is convex in Rt,i, x

d
t,i, c

s
i is convex in xon

t,i for

continuous xt, and c+
t [bt]

+ + c−t [−bt]+ is convex in bt. We denote the set defined by Constraints

(3), (4), the action space, and xt,i ∈ [0,1]3 for all i by X̄t(z,Rt, l0, . . . , lt). X̄t is a closed convex

set for every (l0, . . . , lt) ∈ Lt, if φ−1
t (·, z) is convex in z. As a result CC

t (Rt, xt, bt) > −∞ for xt ∈

X̄t(z,Rt, l0, . . . , lt).
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Base case. Assume VT = 0. For (RT−1, l0, . . . , lT−1) and z the value function in T −1 is defined by

VT−1(z,RT−1, l0, . . . , lT−1) = minxT−1
CC
T−1(RT−1, xT−1), where xT−1 ∈ X̄T−1(z,RT−1, l0, . . . , lT−1).

Since X̄T−1 is convex for given l0, . . . , lT−1, VT−1(z,RT−1, l0, . . . , lT−1) is convex in ST−1 =

(Rt, l0, . . . , lt) and z.

Induction step. The induction assumption is that Vt+1(z,Rt+1, l0, . . . , lt+1) is convex in Rt+1 and

z for all (l0, . . . , lt+1). We show that Vt(z,Rt, l0, . . . , lt) is convex in Rt and z for every (l0, . . . , lt).

Because RM is linear in each coordinate, and the proposition assumes φ−1
t (·, z) to be convex in

z, ELt+1(z)[Vt+1(z,RM(Rt, xt), l0, . . . , lt,Lt+1(z))] is convex in Rt, xt and z for every (l0, . . . , lT−1).

We next consider

min
xt∈X̄t

CC
t (Rt, xt, bt) +ELt+1(z)[Vt+1(z,RM(Rt, xt), l0, . . . , lt,Lt+1(z))].

Again, since X̄t(z,Rt, l0, . . . , lt) is a convex set for each (l0, . . . , lt) and both summands of the min-

imization argument are convex in Rt and z for each (l0, . . . , lt), we conclude that Vt(z,Rt, l0, . . . , lt)

is convex in Rt and z for each (l0, . . . , lt).

Convexity of the continuous relaxation of the integrated Problem (9) follows from noting that

CD(z), V0(z,S0) and the domain of z are convex.

Proof of Proposition 2

The statement follows from noting that the right hand side of inequality (29) is the Lagrangian

relaxation of the expected value in (27) obtained by relaxing Constraint (3).


