
Dynamic Prediction Length for Time Series with Sequence to
Sequence Network

ABSTRACT
Recurrent neural networks and sequence to sequence models re-
quire a predetermined length for prediction output length. Our
model addresses this by allowing the network to predict a variable
length output in inference. A new loss function with a tailored
gradient computation is developed that trades off prediction accu-
racy and output length. The model utilizes a function to determine
whether a particular output at a time should be evaluated or not
given a predetermined threshold. We evaluate the model on the
problem of predicting the prices of securities. We find that the
model makes longer predictions for more stable securities and it
naturally balances prediction accuracy and length.

CCS CONCEPTS
•Computingmethodologies→Machine learning algorithms.

KEYWORDS
deep learning, recurrent neural network, finance

ACM Reference Format:
. 2018. Dynamic Prediction Length for Time Series with Sequence to Se-
quence Network. In New York 2020: ACM International Conference on AI
in Finance, October 15–16, 2020, New York 2020. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Recurrent neural networks are very popular and effective at solving
difficult sequence problems such as language translation, creation
of artificial music, and video prediction. New architectures, such
as Sequence to Sequences networks by Sutskever et al. [20] and
Memory Networks by Sukhbaatar et al. [19] are used to solve prob-
lems in language translation and answer questions using a large
memory bank. However, these problems generally have training
data with given sequence outputs (for example, a model translating
a sentence from English to Spanish). Because input and output
sequences are known a priori for these problems, it is possible to
solve them with a fixed model architecture.

A fixedmodel architecture is effective for sequences, but there are
a number of problems related to multiple time series datasets that
do not have a natural sequence size. For example, a company may
wish to predict the number of products to be shipped out for sale
based upon customer demand. Each product has a different amount

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
New York 2020, October 15–16, 2020,
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/20/10. . . $15.00
https://doi.org/10.1145/1122445.1122456

of demand volatility, which can make an enormous difference in
how far in advance they are willing to predict the demand of a
product. In this case, it would be extremely useful to have a model
that can balance F1 score and the number of future predictions
based upon a product’s base demand.

Another example, which we explore in this work, is financial
security price prediction. Some securities are extremely volatile,
which makes prediction for longer times highly inaccurate. On the
other hand, low volatility securities are easier to predict further
into the future.

The biggest problem in multiple time series predictions when it
comes to dynamic prediction length is that the training data does
not exhibit output sequences of various length. For this reason, a
different model is required. In multiple time series, input sequences
can be naturally created for example by a fixed-size sliding window.
However, the length of the output sequences can be dynamic since
typically there is flexibility in how far to predict in the future. In
inference, we allow our prediction model to generate a different
number of predictions depending on the current input sequence as
well as a different number of predictions per time series. The num-
ber of predictions the model generates depends on a thresholding
function that determines the model’s confidence of that particu-
lar output. If the confidence is too low, we no longer consider the
predictions our model generates for that particular sample.

The main objective of our study is to create a prediction model
that balances F1 score and predicting into the future. The main chal-
lenge is the fact that samples which are taken from infinite time
series do not naturally contain dynamic length predictions. This
aspect requires a different loss function that includes the notion
of confidence and tailored computation of gradients on different
length output sequences. We create a model architecture relying on
a novel loss function that allows for a dynamic number of output
predictions. We explain the ideas and concepts by utilizing predic-
tions of several correlated financial securities. In this case, rather
than having to adjust the predictive length manually depending
on market volatility, the model learns how far in advance it can
confidently predict during training. For security prediction, a model
that is not limited to a fixed number of output predictions can pro-
vide much more robust price predictions. For example, we expect
that some security j with high volatility during the training phase
should result in fewer predictions. On the other hand, if the same
security j is trained during a low volatility period, we expect the
model to generate more predictions. Clearly, a dynamic model that
can easily adjust to the current training environment of a security
can provide huge benefits. In inference the model provides a natural
way to stop generating output predictions.

Our work contains two main contributions. First, we create a
way to measure the confidence of a model’s prediction without
having to rely on Bayesian statistics. Second, our model is the first
of its kind to allow for dynamic prediction length with sequence

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

New York 2020, October 15–16, 2020,

to sequence networks. Along the way, we have to tailor gradient
computation.

In our study, we use two financial security datasets which consist
of several years of tick prices. One contains five distinct securities
and the other contains twenty-two different securities. We find that
our new architecture successfully balances prediction F1 score and
the number of future predictions. In addition, our architecture uses
different prediction lengths at different times for each security due
to stochastic drift between training and test sets. The best dynamic
output prediction length model is a sequence to sequence network
which earns an F1 score of 0.503 in contrast to a traditional LSTM
structure that only gets an F1 score of 0.209 for a single prediction.

In Section 4.2, we review two main subjects related to our work.
First, we inspect studies within the realm of deep learning related
to our new model architecture. Second, we analyze other work on
predicting financial securities with a focus on machine learning
and deep learning methods. In Section 4.3, we present the dynamic
prediction length model while in Section 4.4 we present a computa-
tional study based on securities.

2 RELATEDWORK
Similar to our concept of dynamic output prediction, Pointer Net-
works by Vinyals et al. [21] are used for problems such as sorting
variable sized sequences. They use an attention mechanism that
points to a particular part of the input sequence that is used as the
next output. Although this architecture can allow for variable input
sizes, the output size is constrained to be the same size as the input.
Our model allows for any size output (unrelated to the input size)
up to some arbitrary maximum size. Pointer networks are also not
applicable to our case since output is not a specific part of input.

Graves [11] introduces adaptive computation time (ACT) for
recurrent networks. The author creates an additional metric that
allows the network to continue “pondering" the input through ad-
ditional computation. We can think of ACT as a model that in each
time has a dynamic number of stacked LSTM or GRU cells. We
considered using ACT along with our architecture, but it increases
the computational complexity by recalculating the feed-forward
step a number of times. Basing the stopping decision with respect
to the natural choice of the output time requiring substantial com-
putational time, does not work when most times a single layer is
needed. In time series with a walk forward strategy, smaller less
complex models are more effective. This renders ACT not appro-
priate. In addition, online algorithms need to be agile, and adding
computational time would be a detriment to a model. Therefore,
we choose to use traditional LSTM architectures that train much
faster.

To achieve better training and dynamic output sizes, we added
an additional term to the loss function and modify the measure
of predictions. Although there have been many new architectures
such as Residual Networks by He et al. [13], Memory Networks
by Sukhbaatar et al. [19], and Neural Turing Machines by Graves
et al. [12], none of these incorporate a new loss function with their
architecture. This tendency of not creating new loss functions is
noted by Janocha et al. [14]. The authors explain that although there
is a lot of work in neural network activations, optimization, and
architecture, the loss function used for nearly all neural networks is

a combination of log loss and L1/L2 norms. Janocha et al. [14] show
that functions that were previously deemed to be inferior in deep
learning can be more robust than log loss for classification problems.
Therefore, it is important for studies to continue exploring loss
functions to increase the network performance and to create a
variety of new models.

There are some studies that significantly change the loss function
in deep learning. ACT by Graves [11] uses a unique addition to the
loss function so that their network does not “ponder" on the input
for too long. There is growing momentum for using theWasserstein
metric as the loss function as seen in the work by Frogner et al. [10].
The Wasserstein metric is even successfully being used in GAN’s
in the work of Arjovsky et al. [2]. We expand the volume of work
in this area by developing a loss function that encourages a model
to have a dynamic output length at prediction. In contrast to loss
functions specific to problem type, our architecture can be used
with any recurrent neural network architecture.

Next, we focus on works on predicting financial securities with
deep networks. Most work utilizing deep neural networks focuses
on applying other forms of data for prediction, such as news about
financial markets or specific companies. Chong et al. [7] review
many of the prediction methods commonly used for security predic-
tion and the predicted outcome. Niaki and Hoseinzade [17], focuses
on predicting upward and downward movement of S&P 500 with
a deep feed-forward network. Ding et al. [8] use historical pricing
data in combination with financial news data with a deep feed
forward network. Krauss et al. [16] utilizes both random forests
and deep feed-forward networks to find statistical arbitrage on the
S&P 500. In contrast to the aforementioned models, we predict sig-
nificant movement in prices, utilize temporal models, and predict
multiple securities with a single model.

Sirignano [18] uses deep learning directly on financial security
price data as well. He utilizes limit order book data with multiple
ask/bid prices for each security to predict the change in the spread.
In addition, he uses a deep feed-forward network and a separate
model for the prediction of each security. In contrast, we predict
all securities with one model and apply recurrent neural networks
in addition to feed forward networks. Another similar work, Dixon
et al. [9], uses deep feed-forward networks for prediction directly
on security prices. In contrast, our study applies recurrent and
convolutional recurrent models in addition to the baseline feed
forward network.

There is also work on security prediction beyond the standard
feed-forward network. Borovykh et al. [5] uses convolutional neural
networks over the security time series to make predictions. Others,
such as Bao et al. [4], use stacked auto-encoders and wavelet trans-
formations to form an embedding of financial data, and feed this
into an RNNmodel for prediction. Chen et al. [6] use an RNNmodel
on opening and closing security prices on the Chinese market with
seven classification categories. Akita et al. [1] use both textual and
price information to predict a security price. In contrast to these
works, our model consists only of security price data. Also, we
apply sequence to sequence and convolutional LSTM models in
addition to having a dynamic output length for security predictions.

Dynamic Prediction Length for Time Series with Sequence to Sequence Network New York 2020, October 15–16, 2020,

3 MODEL
In this section, we explain the architecture of our model that pre-
dicts a dynamic number of outputs. The model uses a sequence
to sequence (Seq2Seq) network in combination with our new pro-
posed loss function. For details on Seq2Seq networks, please see
the original paper by Sutskever et al. [20]. We also use attention in
our model which is explained in the paper by Bahdanau et al. [3].

In addition, we use teacher forcing. We found that the first input
to the decoder has a great impact on accuracy. By far the best
performing first decoder input is the ground truth associated with
the last encoder input.

For a general Seq2Seq network, let θ describe the trainable
weights, X be our input sample, and f

q
t (X ,θ , fi<t) be the final

output via a softmax function at time t for time series q, q = 1...Q .
In the presence of several time series, each time series requires
a separate softmax. The general formulation for a Seq2Seq net-
work with Kullback-Leibler divergence with true labels Y = {Y

q
t }t

reads minθ E(X ,Y)
∑Q
q=1

∑T
t=1 KL(Y

q
t | | f

q
t (X ;θ ; fi<t)).We use the

notation fi<t = (f
q
t̄)

t−1,Q
t̄=1,q=1.

A general Seq2Seq network is effective for multiple time series
problems that rely on a known training output size which is often
not the case. However, if the natural sequence size is not known a
priori, a basic Seq2Seq is insufficient. We create a model that is able
to learn from training data that contains a capped output length
during the training phase and predicts a dynamic output sequence
during the prediction phase.

3.1 Dynamic Prediction Length Sequence to
Sequence

To create a model that predicts a dynamic output length for each
time series, we introduce a function, д(fi≤t) that captures confi-
dence of the prediction at time t . Note that the confidence function
may be dependent on previous values f1, f2, ... ft . To determine out-
put length, we measure the confidence function against a threshold
value τ (which is a hyper-parameter) resulting in

min
θ

E(X ,Y)

Q∑
q=1

∑
д(f qi≤t (X ;θ ;fi<t))≥τ

KL(Y
q
t | | f

q
t (X ;θ ; fi<t)). (1)

For the remainder of ourwork, we letLqt := KL(Y
q
t | | f

q
t (X ;θ ; fi<t))

and Gq
t := д(f

q
i≤t (X ;θ ; fi<t)). Note that we use the output of the

softmax function f
q
t (X ;θ ; fi) as a loss measure in the Kullback-

Leibler divergence and the confidence measure for dynamic output
length. As an example,Gq

t can return the maximum predicted prob-
ability at time t , but it can also be total variation between one time
step and the next.

The baseline loss function above contains a flaw. Since the set
of optimal values are Θ∗ := {θ∗ : Gq

t (θ
∗) ≥ τ }, the model does not

have to make accurate predictions to minimize the loss function. It
can for example select θ such thatGq

1 < τ and thus an “empty" sum.
Therefore, we add a penalty to the loss function that punishes the
model for not meeting the threshold to generate accurate prediction
outputs.

Next, we introduce a second hyperparameter, λ, with the new
penalty function in the loss. If the model makes few predictions,

we can increase λ and decrease τ . To balance the F1 score and
output length, we adjust each of these hyperparameters. By using
the indicator function I [G

q
t ≥ τ] for 1 if Gq

t ≥ τ and 0 otherwise,
the loss function reads

min
θ

E(X ,Y))

Q∑
q=1

T∑
t=1

(
I [G

q
t ≥ τ]L

q
t + λ max(τ −G

q
t , 0)

)
. (2)

By design, if the model masks the Kullback-Leibler divergence (i.e.
G
q
t < τ), the penalty function produces a nonnegative output and

vice-versa.
In addition to designing our penalty function to counter the

Kullback-Leibler error, we make the penalty function in the form of
a rectifier unit. We do this since rectifier units are effective with neu-
ral networks for training and have a simple non-vanishing gradient.
Since there is only a single gradient difference between this func-
tion and the Kullback-Leibler loss, we save a lot of computational
effort.

We also consider a smooth masking function to improve differ-
entiability. We propose a form of the sigmoid function. With the
sigmoid function our loss reads

min
θ

E(X ,Y)

Q∑
q=1

T∑
t=1

[
Hk,τ
t (G

q
t)L

q
t + λ max(τ −G

q
t , 0)

]
. (3)

where Hk,τ
t (x) = 1

1+e−k (
x−τ
1−τ)

for positive and possibly large hyper-
parameter k . Since the loss function in (3) is differentiable, standard
back propagation can be used. On the other hand, (2) is not differ-
entiable since the number of summation term depends on trainable
parameters θ .

Up until this point, we have not considered the various pos-
sibilities for the function д(f

q
i≤t (X ;θ ; fi<t). To properly balance

accuracy and future predictions, we require that the function can
express the confidence of the model and/or be an effective measure
of volatility. We choose four different functions that range in both
complexity and time dependency:

• Maximum: maxj f
q
t, j (X ;θ ; fi<t)

• Confidence Distance:
maxj (f

q
t, j (X ;θ ; fi<t)) − maxk,k,j∗ (f

q
t,k (X ;θ ; fi<t)) where

j∗ := arg maxj (f
q
t, j (X ;θ ; fi<t))

• Total Variation: maxj | f
q
t, j (X ;θ ; fi<t) − f

q
t−1, j (X ;θ ; fi<t−1)|

• Wasserstein/Earth Mover Distance:
W 1(f

q
t (X ;θ ; fi<t), f

q
t−1(X ;θ ; fi<t−1)).

The first two functions are based upon the current prediction
time while the other two are dependent on the current and previous
outputs. Confidence distance and maximum measure confidence
of the current prediction. If the model is struggling between two
different labels (uncertainty), then we expect this value to be small
enough to be below the threshold. Both Total Variation and the
Wasserstein Distance are classic measures for the distance between
two probability distributions. Note that we specifically choose the
first Wasserstein Distance, which is also known as the Earth Mover
Distance. In addition, because total variation and the earth mover
distance measure volatility, we defineGq

t to be the negative of these
two measures, which then leads to Gq

t ≤ τ .

New York 2020, October 15–16, 2020,

3.2 Training and Inference
There are differences between the training of a typical Seq2Seq
model and our new model during training and prediction. For ex-
ample, when our network stops at T̂ (q) for time series q, we no
longer consider the accuracy error terms for t > T̂ (q) when com-
puting the gradient.

In the forward pass, we stop when G
q
t̄ < τ occurs the first

time for time series q and thus t̄ = t̄(q). It may happen that for
some Gq

t̂ (q)
≥ τ for some t̂(q) > t̄(q). When this occurs, we do not

consider the terms corresponding to t̂(q) in the Kullback-Leibler di-
vergence or in our F1 score calculation. With the indicator function,
the outputs from the Kullback-Leibler divergence are completely
masked to zero. However, with the sigmoid function, the outputs
below τ are only partially masked. In addition, when utilizing the
sigmoid function, we calculate the F1 scores in the same manner as
in the case of the indicator function.

After obtaining t̄(q) in the forward pass for each time series q,
we change the loss to the following when using (1):

min
θ

E(X ,Y))

Q∑
q=1


t̄ (q)∑
t=1

L
q
t +

T∑
t̂=t̄ (q)+1

λ max(τ −G
q
t̂
, 0)

 .
From this point on, we do standard backpropagation treating t̄(q)
as fixed for the current sample.

4 COMPUTATIONAL STUDY
4.1 Data Preparation
We study our model on financial time series data. Our data consists
of fourteen years of securities at five minute tick intervals for two
sets consisting of twenty-two ETF’s and five distinct commodities.
The identity of the securities are unknown; therefore, we do not
incorporate any additional features such as news and market an-
nouncements. To clarify, the dataset consists of only the single
tick price rather than prices on multiple levels of an order book.
In addition, we do not have trade volume information. The prices
for the twenty-two ETF dataset are the returns of each security,
which is the relative change in price from one 5 minute interval to
the next. The five commodity dataset consists of the price of each
security at each time t . In order to have consistency between the
two datasets, we choose to only consider the returns of the five
commodity dataset.

We create two representations of our data: one for the feed
forward and seq2seq networks and the other for the convolutional
seq2seq network. First, we create a sequence of inputs consisting
of T̄ returns for each financial asset. Since our data can be viewed
as a continuous streaming sequence (no obvious beginning or end),
we create sequences of various size T̄ . For each sequence, the next
sequence moves forward by a 5 minute interval. We found that
including this overlap increased prediction accuracy. In our best
performing feed forward networks, our feature vectors consist of
ten returns. For a seq2seq network we increase the sequence size
to twenty.

Since an increase in the sequence size greatly increases the
computation time of a seq2seq neural network, we consider a 1-
dimensional convolutional LSTM. A convolutional LSTM layer can
take much larger sequences because the convolutional step in each

LSTM node reduces the total number of sequences via a convo-
lutional kernel. Since we input multiple returns from different fi-
nancial assets, each channel of convolution represents a difference
financial security (similar to RGB). We tried two models: convolu-
tion feeding into LSTM and ConvLSTM (Xingjian et al. [22]). All
seq2seq models are embedded with our loss function unless stated
otherwise.

For normalization, we use the standard approach of calculating
the mean and standard deviation of the training set and using that
to normalize both the training and validation/test sets. For our data,
we use one year of training data (47,000 samples), and classify the
next week of returns (1,000 samples).

We utilize a walk-forward methodology to evaluate our model
over the entire dataset. After each training phase we move the
training and testing windows one week forward. The first week
of the previous training data is dropped form the training data of
the next phase. Each training is warm-started (pretrained) from the
previous window.

To classify the returns of each security, we split the labels into
five classes: large upward movement, small upward movement,
insignificant movement, small downward movement, and large
downward movement.

We calculate the mean (µD) and standard deviation (σD) of the
returns sD of the previous day to create our labeling scheme of five
classes for the returns of day D + 1. To classify the return xD+1

t on
day D + 1 at time t , we use the following rules:

xD+1
t < µD − σD , µD − σD ≤ xD+1

t < µD − βσD ,

µD − βσD ≤ xD+1
t < µD + βσD , µD + βσD ≤ xD+1

t < µD + σD ,

µD + σD ≤ xD+1
t .

Here β is a parameter. We set β such that roughly 50% of all values
lie within insignificant movement (β = 0.14) for the twenty-two se-
curity dataset. For the other dataset, a few of the securities contain
large data imbalances at the large upward and downward move-
ments. Since this is the case, we pick β = 0.1 so that the majority
class contains roughly 50% of all labels. These choices lead to class
imbalances of roughly [5%, 20%, 50%, 20%, 5%].

4.2 Results
The following results are based upon the best sequence sizes, neu-
rons per layer, optimization method, and number of layers found
through hyperparameterization of each network. The models were
trained on Titan X’s and Nvidia 1080’s and implemented in tensor-
flow. For each dataset, we have one model to classify all twenty-two
ETF’s from one dataset and one model to classify all five commodi-
ties in the other dataset. We test the ETF dataset on all baseline and
final model architectures. Due to computational time constraints,
we only calculate the results of the commodity dataset using the
best model from the ETF dataset.

4.3 Baseline Test
For our first experiments, we use a FFN, LSTM network, LSTM
Seq2Seq network, and a ConvLSTM Seq2Seq network in the setting
of a fixed prediction of 1 or 10. The FFN consists of two layers
with sixty-four neurons and ten returns for each security. We train

Dynamic Prediction Length for Time Series with Sequence to Sequence Network New York 2020, October 15–16, 2020,

Architecture ETF’s Commodities
FFN (One Pred) 0.176 0.159
LSTM (One Pred) 0.209 0.286
ConvLSTM (One Pred) 0.513 0.410
LSTM Seq2Seq (One Pred) 0.598 0.513
LSTM Seq2Seq (Ten Pred) 0.509 0.474

Table 1: Dynamic Model Summary (All Sigmoid)

the FFN with the stochastic gradient optimization method. The
basic recurrent LSTM network consists of two LSTM layers, each
with sixty-four neurons and input sequence size of twenty. For all
recurrent networks, we use the ADAM optimization method by
Kingma and Ba [15], which is known to perform well for recurrent
networks. We train for a number of epochs until the F1 score no
longer increases on the validation dataset. Last, the sequence to
sequence network consists of one encoder and one decoder layer,
each with sixty-four neurons and either LSTM or ConvLSTM layers.
We tried using deeper networks, but those resulted in much lower
F1 score. We utilize the same model architecture for both the ETF
and commodity datasets.

We are using financial security datasets, which typically contain
imbalanced classes. When considering imbalanced classes, the tra-
ditional accuracy measure does not display the true effectiveness
of a model. Therefore, we utilize the F1 score, which accounts for
imbalanced classes. The F1 score is calculated via a one-against-all
structure of precision and recall for each of the five classes. The
values we report are an average of the F1 scores for each class and
security.

The FFN, LSTM, LSTM Seq2Seq, and ConvLSTM Seq2Seq results
are presented in Table 1. To produce these results, we give each
model a warm start by training on 5 windows of data. We then train
the models for 25 more windows on the 22 ETF’s and 5 commodities
datasets. The F1 scores in Table 1 are the average test scores over
this 25 window period.

We use our baseline results in Table 1 to determine the best
architecture for our dynamic output length model and to examine
the differences of the various seq2seq networks. We observe that
each single prediction model generally increases in performance
when using more robust models (such as seq2seq). As expected,
the seq2seq models and recurrent LSTM models far outperform
the FFN, but we did not expect such a large performance increase
when utilizing a seq2seq model. Even when making 10 predictions
forward in time, the seq2seq model more than doubles the F1 score
compared to the traditional LSTM network that makes a single
prediction. With ConvLSTM layers, we found that the best formu-
lation is utilizing 1D convolutions with each security representing
a channel in the image. Ultimately, we find that the best ConvL-
STM seq2seq model does not perform as well as the LSTM seq2seq
model. Since the LSTM seq2seq model is by far the most accurate,
we choose it for our dynamic output length model.

4.4 Output Length and Accuracy
We begin by examining the behavior of our dynamic model with
the confidence distance (CD) threshold function, which turns our to
be the best one as shown below. We want the model to find the best

number of predictions for each security and each input. To verify
this behavior, we train the seq2seq LSTM model with parameters
τ = 0.4 and λ = 1.0 on the first training window. We utilize these
particular hyperparameter values since they showcase dynamic
prediction length and result in superior performance. This pair and
other hyperparameter pairs are visualized in the next section.

In Figure 1, we present the training F1 scores and average output
length for a single test window of the 22 ETF’s dataset. In the
image on the left we observe that the validation loss decreases for
roughly 20 epochs before it begins to overfit. During our model
training, we use the model weights that result in the best validation
F1 score (which coincides with the best lowest validation loss) as a
starting point for the next training window. For the output length
image on the right, the output length margin between training and
validation is small at the beginning of training. However, as the
model continues to train, the average number of predictions for
training and validation diverges slightly. Also, we observe that as
the model continues to train, the number of predictions increases
to a limit at around 20 epochs, which matches the loss.

Figure 1: Total loss (KL divergence plus max) and average
output length for a single windowwith the CD thresholding
function.

One particularly interesting behavior we find with the dynamic
model is that each security had variable prediction lengths. In Figure
2 we present an example of this behavior under the same setting.
The prediction lengths are an average of 5 test set windows after
a 5 window warm-up period with the 22 ETF’s dataset. We notice
that the number of predictions varies from roughly 5 predictions
to nearly 10. In addition to the the average number of predictions,
we place the majority class label percentage, which is a proxy to
volatility, of each security at the top of each corresponding bar.
There does not appear to be a correlation between volatility and
the average prediction length. We hypothesize that the difference
in prediction length is due to the difference in volatility of the
training and test sets of each security. Financial securities tend
to have covariate shift, and our model may capture this during
inference, which we examine in Figure 3. We compare this to the
corresponding output length of the test set.

To test the variance, we perform the standard t-test between
the samples of the training and test sets. Specifically, we test the
difference between the means of final input (the actual return)
of each training and test sequence. We expect that less variance
between the training and test sets (a larger p-value) correlates with
a longer output length. In Figure 3, we use the same 5 windows,
threshold function, and values for τ and λ as in Figure 2. Each point
in the plot corresponds to the average p-value of the t-test between

New York 2020, October 15–16, 2020,

training and test sets, and the average prediction length for each of
the 22 ETF’s.

Figure 2: Average number
of predictions for each ETF
over a 5 window period.

Figure 3: Training and test
p-value vs the number of
predictions

Next we examine the benefits of a dynamic output length. In
the following two sections, we explore the effectiveness of our four
proposed confidence functions.

4.5 Maximum and Confidence Distance
Confidence Functions

We begin with the two confidence functions that depend only upon
the current prediction: maximum and CD. We study the sensitivity
of τ and λ, and the comparison between the indicator (Ind) and
sigmoid (Sig) functions, i.e. loss functions (4.2) and (4.3) respectively.
In the following sections, we refer to the indicator and sigmoid
functions as masking functions because they mask the output from
the Kullback-Leibler divergence.

A large gradient for λ max(τ −G
q
t , 0) means that we encourage

the model to make more predictions. We can control the output
length by adjusting the hyperparameters λ and τ . In Figure 4 we
present a range of τ and λ values and the respective F1 scores with
G
q
t being the maximum. In addition, we place an annotation of the

best pair (τ , λ) that results in the largest distance above the static
curve in bold. We add this annotation to all figures of this type.

Figure 4: F1 and average output length for pairs of τ and λ.

In Figure 4, we first create a line that gives the F1 scores from a
static seq2seq model for 5 training windows after a 5 window warm
start. We compute F1 for 1, 4, 7, 10 predictions by the static model
and interpolate the remaining values. It is important to point out
that the F1 scores here are different than in Table 1 since we are
measuring 5 windows rather than 25. We expect the dynamic model
to be above this curve when using appropriate values for (τ , λ).
Each point in Figure 4 is the average output length and F1 score
of the 22 ETF dataset for a pair (τ , λ). On the left is the indicator

masking function and the right is the sigmoid masking function.
For both figures, we use the same values for τ and λ. We find that
with τ = 0.5, our model has high accuracy with a relatively large
average output length.

The red points are a pair (τ , λ) that perform worse than the static
model and the green are those that perform better. We expect to find
many pairs of hyperparameters that lead to superior F1 scores since
our model uses a dynamic prediction length for each sample. There
are a few outliers that fall well below the estimated performance in
the figure on the left, which uses the indicator masking function.
The sigmoid function on the right has many more points above the
static curve and does not have any points below the 0.4 F1 score.
We observe that many red points usually have large λ’s. When λ is
too big, the model stops training for prediction accuracy and only
focuses on creating more predictions. Note that not all large λ’s
lead to strictly poor performance since the best sigmoid pair has
λ = 5.0.

Next we consider CD. As in Figure 4, Figure 5 shows a hyperpa-
rameter search (τ , λ) with the indicator masking function on the
left and sigmoid masking function on the right. Note that with CD,
the number of points below the static line is smaller compared to
the maximum function. When λ is too large, the indicator version
has three points that fall far below our estimation. It is important
to point out that there is a large distance between the green points
and the blue curve that is rarely seen with other confidence func-
tions. Based on these results, we recommend using the CD over the
maximum function. It requires very little extra computation and
leads to better F1 with a similar average output length.

Figure 5: F1 score and average output length for pairs of τ
and λ.

In Figures 4 and 5, we show that large λ’s usually lead to inferior
models. Therefore, we explore τ to see if we can find a relationship
between this hyperparameter and the average output length. We
present two images in Figure 6 of the sensitivity of the indicator
and sigmoid masking functions with maximum and CD functions.
We create these figures by choosing λ = 0.1, which produces the
best performance for all cases of τ and plot the relationship be-
tween average number of predictions and τ . Note that we use the
same approach of utilizing a 5 window warm start and measure
the average output length based upon the next 5 windows. The
trend lines are made via linear regression and show high statistical
significance between τ and output length.

On the left, we observe that the slope for the sigmoid masking
function is sharper than the indicator function for both confidence
functions. In the case of these two functions, the sensitivity is
not nearly as large as the other two confidence functions that we

Dynamic Prediction Length for Time Series with Sequence to Sequence Network New York 2020, October 15–16, 2020,

explore in the next section. For CD, the slope is much smaller (in
terms of absolute value), which provides additional evidence to
recommend it over the maximum confidence function.

Figure 6: The output length and τ values for both CD and
maximum functions with λ = 0.1.

Given these two confidence and masking functions, we recom-
mend using CD with the sigmoid masking function. Although the
sigmoid masking function is more sensitive to τ , we find that sig-
moid does not have as many points falling under the static curve.
Next, we examine the two confidence functions that depend on the
current and previous predictions.

4.6 Total Variation and Wasserstein
Confidence Functions

The other two functions we test are total variation (TV) and the
first Wasserstein distance (EMD). We design the first two functions,
maximum and CD, to find the confidence of the current prediction
using only the current prediction and input sequence. On the other
hand, we use TV and EMD to determine the volatility between the
current and previous prediction. If the volatility is low, we expect
the model to be confident enough to make several predictions. We
first examine the results from TV in Figure 7. The indicator function
is on the left while the sigmoid function is on the right.

Figure 7: The F1 score and respective output length for vari-
ous (τ , λ) pairs with TV.

TV does not garner high performance with either masking func-
tion. There are some points with the sigmoid masking function that
are slightly better than the expected F1 scores, but TV is clearly
not a successful measure. There are likely some cases where the
TV may be large between two predictions, but the model may still
be confident about that prediction. For example, if the prediction
changes from one label to another at the next prediction step, the
TV between these two predictions may be large. However, this
does not necessarily imply that the model is not confident about its

next prediction. Also note that there are two rows of points above
and below the static curve of the sigmoid version. The difference
between these two is that the value for λ is larger for the points
below the estimated curve, which is similar to the results we obtain
form the maximum and CD functions.

Figure 8: The F1 score and respective output length for vari-
ous (τ , λ) pairs with EMD.

In Figure 8, we observe that EMD contains a similar pattern to
TV (the indicator function is on the left while the sigmoid func-
tion is on the right). Similar to TV, the indicator masking function
with EMD performs poorly on the left compared to the better F1
scores of the sigmoid masking function on the right. EMD performs
slightly better than TV with a few more points above the estimated
curve. This likely occurs because EMD is a more robust probability
measure. Instead of finding the maximum distance between two
probability measures P and Q (TV), EMD finds the cost of trans-
forming the entirety of one distribution P into another distribution
Q . EMD is more robust, but a label change from one time step to
the next may correlate with a large EMD. However, this does not
always imply lower prediction confidence.

To conclude our examination of TV and EMD, we observe the
relationship between the number of predictions and τ in Figure 9.
Note that the relationship is the opposite of the maximum and CD
functions since we reverse the relationship with respect to τ , which
we clarify in Section 4.3.1. The trend lines are made via traditional
linear regression and show high statistical significance between τ
and output length.

Figure 9: The output length and τ values for both TV and the
EMD with λ = 0.1.

The slopes for the sigmoid versions of both metrics are larger
than their indicator function counterparts. We also observe that
the slopes are large overall when compared to both the maximum
and CD confidence functions. Slight changes in τ lead to large
changes in output lengths for TV and EMD. In general, we found
that the values of these two metrics tend to be small, which is what

New York 2020, October 15–16, 2020,

leads to their sensitivity to τ . Overall, for all metrics, the sigmoid
masking function slope is larger inmagnitude than the same version
with the indicator masking function. Also, TV and EMD show that
confidence in predictions depends upon more than volatility.

4.7 Five Commodity Results
Next, we test our model on the five commodity dataset. Since we
observe that the CD with the sigmoid masking function provide the
best performing model with the ETF dataset, we use the identical
functions on the commodity dataset. In addition, we create four
static models predicting 1, 4, 7, 10 time steps each to create the blue
curve as with the previous ETF figures. In Figure 10, we present
the dynamic model results with the commodity dataset. As with
the previous figures of the same type, we run the model for a total
of 10 walk-forward steps and average the final 5 F1 scores, which
are reported in Figure 10.

The first thing we observe is that this is the first time that ev-
ery single pair (τ , λ) is above the static predictions. This probably
occurs because of volatility in the commodity dataset. Some com-
modities are extremely volatile, and the price ranges from big highs
to lows for a high percentage of the labels. In addition, other com-
modities in the dataset have very low volatility for a long period of
time. Because of the skewed nature of the commodity dataset, it is
possible for our model to only choose to predict at times when it
can make many correct predictions. To observe the dynamic model
in Figure 11 (τ = 0.3, λ = 0.1, average prediction length = 7), we
observe the F1 scores of our best dynamic commodity model and
two static models over 10 walk forward periods.

Figure 10: The F1 score and
respective output length
for various (τ , λ) pairs.

Figure 11: The F1 score of our
best dynamic model.

The F1 score of our dynamic model is superior at nearly every
walk forward time period in comparison to a static single prediction
model, except for walk forward period 5. As expected, the single
prediction static model has a better F1 score on average than the
static model making 7 predictions. However, the difference between
1 prediction and 7 predictions is small, which is in stark contrast to
the ETF dataset. This provides additional evidence that the price
volatility of the labels makes a static number of predictions difficult,
and shows that a dynamic model can be advantageous with a time
series dataset that has a skewed distribution.

In Table 2, we present a summary of the best results for our
dynamicmodel. Tomeasurewhich pair (τ , λ) is best, wemeasure the
relative improvement between the F1 score of the dynamic model
and the equivalent prediction length F1 score of the static model

(from the blue curves shown in previous figures). The dynamic
model with CD and sigmoid does extremely well for the commodity
dataset. The same functions also give the best F1 score with the
ETF dataset.

Architecture F1 Gap % (τ , λ) Length
Dynamic Max (ETF) 5.44 (0.50, 5.0) 7.68
Dynamic CD (ETF) 6.45 (0.40, 1.0) 6.76
Dynamic TV (ETF) 4.49 (0.07, 0.1) 6.16
Dynamic EMD (ETF) 3.72 (0.12, 0.1) 6.00
Dynamic CD (Commodity) 21.2 (0.30, 0.5) 6.89

Table 2: Dynamic Model Summary (All Sigmoid)

REFERENCES
[1] Ryo Akita, Akira Yoshihara, Takashi Matsubara, and Kuniaki Uehara. 2016. Deep

learning for stock prediction using numerical and textual information. In 15th
International Conference on Computer and Information Science. 1–6.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein GAN.
arXiv preprint arXiv:1701.07875 (2017).

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[4] Wei Bao, Jun Yue, and Yulei Rao. 2017. A deep learning framework for financial
time series using stacked autoencoders and long-short term memory. PLOS ONE
7 (2017).

[5] Anastasia Borovykh, Sander Bohte, and Cornelis W Oosterlee. 2017. Condi-
tional time series forecasting with convolutional neural networks. arXiv preprint
arXiv:1703.04691 (2017).

[6] Kai Chen, Yi Zhou, and Fangyan Dai. 2015. A LSTM-based method for stock
returns prediction: A case study of China stock market. In IEEE International
Conference on Big Data. 2823–2824.

[7] Eunsuk Chong, Chulwoo Han, and Frank C Park. 2017. Deep learning networks
for stock market analysis and prediction: Methodology, data representations, and
case studies. Expert Systems with Applications (2017), 187–205.

[8] Xiao Ding, Yue Zhang, Ting Liu, and Junwen Duan. 2015. Deep Learning for
Event-Driven Stock Prediction. In Twenty-Fourth International Joint Conference
on Artificial Intelligence.

[9] Matthew Dixon, Diego Klabjan, and Jin Hoon Bang. 2016. Classification-based
financial markets prediction using deep neural networks. Algorithmic Finance
Preprint (2016), 1–11.

[10] Charlie Frogner, Chiyuan Zhang, HosseinMobahi, Mauricio Araya, and Tomaso A
Poggio. 2015. Learning with aWasserstein loss. In Advances in Neural Information
Processing Systems. 2053–2061.

[11] Alex Graves. 2016. Adaptive computation time for recurrent neural networks.
arXiv preprint arXiv:1603.08983 (2016).

[12] Alex Graves, Greg Wayne, and Ivo Danihelka. 2014. Neural turing machines.
arXiv preprint arXiv:1410.5401 (2014).

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 770–778.

[14] Katarzyna Janocha, Wojciech Marian Czarnecki, et al. 2017. On loss functions for
deep neural networks in classification. Schedae Informaticae 2016 (2017), 4959.

[15] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[16] Christopher Krauss, XuanAnhDo, andNicolas Huck. 2017. Deep neural networks,
gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500.
European Journal of Operational Research 2 (2017), 689–702.

[17] Seyed Taghi Akhavan Niaki and Saeid Hoseinzade. 2013. Forecasting S&P 500
index using artificial neural networks and design of experiments. Journal of
Industrial Engineering International 1 (2013), 1.

[18] Justin A Sirignano. 2016. Deep Learning for Limit Order Books. arXiv preprint
arXiv:1601.01987 (2016).

[19] Sainbayar Sukhbaatar, JasonWeston, Rob Fergus, et al. 2015. End-to-end memory
networks. In Advances in Neural Information Processing Systems. 2440–2448.

[20] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. InAdvances in Neural Information Processing Systems. 3104–
3112.

[21] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In
Advances in Neural Information Processing Systems. 2692–2700.

[22] Shi Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and
Wang-chun Woo. 2015. Convolutional LSTM network: A machine learning ap-
proach for precipitation nowcasting. In Advances in Neural Information Processing
Systems. 802–810.

	Abstract
	1 Introduction
	2 Related Work
	3 Model
	3.1 Dynamic Prediction Length Sequence to Sequence
	3.2 Training and Inference

	4 Computational Study
	4.1 Data Preparation
	4.2 Results
	4.3 Baseline Test
	4.4 Output Length and Accuracy
	4.5 Maximum and Confidence Distance Confidence Functions
	4.6 Total Variation and Wasserstein Confidence Functions
	4.7 Five Commodity Results

	References

