The Impact of the Mini-batch Size on the Dynamics of
SGD: Variance and Beyond

Xin Qian
Department of Industrial Engineering and Management Sciences
Northwestern University
Evanston, IL 60201
xingian2017Qu.northwestern.edu

Diego Klabjan
Department of Industrial Engineering and Management Sciences
Northwestern University
Evanston, IL 60201
d-klabjan@northwestern.edu

Abstract

We study mini-batch stochastic gradient descent (SGD) dynamics under linear
regression and deep linear networks by focusing on the variance of the gradients
only given the initial weights and mini-batch size, which is the first study of this
nature. In both cases, we provide recursive relationships of the norm of the gradients
and weight matrices between consecutive time steps. We further show that, in each
iteration, the norm of the gradient is a polynomial in the reciprocal of the mini-batch
size and a decreasing function of the mini-batch size. The results theoretically back
the important intuition that smaller batch sizes yield larger variance of the stochastic
gradients and lower loss function values which is a common believe among the
researchers. The proof techniques exhibit explicit relationships between a variety
of general functions of stochastic gradient estimators and initial weights, which is
useful for further research on the dynamics of SGD. We empirically provide insights
to our results on various datasets and commonly used deep network structures.
We further discuss possible extensions of the approaches we build in studying the
generalization ability of the deep learning models.

1 Introduction

Deep learning models have achieved great success in a variety of tasks including natural language
processing, computer vision, and reinforcement learning [[10]. Despite their practical success, there
are only limited studies of the theoretical properties of deep learning; see survey papers [41} 9] and
references therein. The general problem underlying deep learning models is to optimize (minimize) a
loss function, defined by the deviation of model predictions on data samples from the corresponding
true labels. The prevailing method to train deep learning models is the mini-batch stochastic gradient
descent algorithm and its variants [4} 5]]. SGD updates model parameters by calculating a stochastic
approximation of the full gradient of the loss function, based on a random selected subset of the
training samples called a mini-batch.

Although SGD can converge to the minimum of a convex function [6], deep neural networks are
strongly non-convex. Thus, the success of SGD in neural network training, especially the dynamics
of SGD, becomes an interesting question. Some researchers approximate the dynamics of SGD by
a continuous-time dynamic system [28| 27, 30, [19]. Another line of research [29, |8, 2] show that

Preprint. Under review.

the dynamics of SGD in training over-parameterized neural networks are similar to training a linear
model. However, these statements are approximate in nature and do not provide explicit formulas
for calculating any specific quantities during SGD training. The mini-batch size is also a key factor
deciding the dynamics of SGD. Some research focuses on how to choose an optimal mini-batch
size based on different criteria [40, [12]]. However, these works make strong assumptions on the loss
function properties (strong or point or quasi convexity, or constant variance near stationary points) or
about the formulation of the SGD algorithm (continuous time interpretation by means of differential
equations). The theoretical results regarding the relationship between the mini-batch size and the
variance (and other performances, like loss and generalization ability) of the SGD algorithm applied
to general machine learning models are still missing.

Besides, it is well-accepted that selecting a large mini-batch size reduces the training time of deep
learning models, as computation on large mini-batches can be better parallelized on processing units.
For example, Goyal et al. scale ResNet-50 [[14] from a mini-batch size of 256 images and training
time of 29 hours, to a larger mini-batch size of 8,192 images [[13]]. Their training achieves the same
level of accuracy while reducing the training time to one hour. However, noted by many researchers,
larger mini-batch sizes suffer from a worse generalization ability [24} 21]]. Therefore, many efforts
have been made to develop specialized training procedures that achieve good generalization using
large mini-batch sizes [[17,[13]. Smaller batch sizes have the advantage of allegedly offering better
generalization (at the expense of a higher training time). We hypothesize that, given the same initial
point, smaller sizes lead to lower training loss and, unfortunately, decrease stability of the algorithm
on average. The latter follows from the fact that the smaller is the batch size, more stochasticity
and volatility is introduced. After all, if the batch size equals to the number of samples, there is no
stochasticity in the algorithm. To this end, we conjecture that the variance of the gradient in each
iteration is a decreasing function of the mini-batch size. We partially prove this conjecture in this
work.

In this paper, we study the dynamics of SGD by representing related quantities only using the mini-
batch size, initial points and learning rates, which are available before training. This is different from
previous literature which analyzes SGD by focusing on one-step properties. In fact, the dynamics
of SGD are not comparable if we merely consider the one-step behavior, as the model parameters
change iteration by iteration. We are able to build general frameworks in the convex linear regression
case and in a deep linear neural network setting. The frameworks provide explicit and recursive
relationships of general forms, which cover many interested quantities regarding the dynamics of
SGD, between consecutive iterations.

As an application of our frameworks, we are able to prove the hypothesis about variance in the convex
linear regression case and to show significant progress in a deep linear neural network setting. We
show that the variance is a polynomial in the reciprocal of the mini-batch size and that it is decreasing
if the mini-batch size is larger than a threshold (further experiments reveal that this threshold can be
as small as 1). The increased variance as the mini-batch size decreases should also intuitively imply
convergence to lower training loss values and in turn better prediction and generalization ability
(these relationships are yet to be confirmed analytically; but we provide empirical evidence to their
validity).

The major contributions of this paper are as follows.

(1) For linear regression, we build a framework to recursively calculate the norm of any linear
combination of sample-wise gradients between consecutive iterations (Theorem[I). This recursive
relationship can be used to calculate any quantity related to the full or stochastic gradient or loss at
any iteration with respect to the initial weights. As an application of this framework, we show that in
each iteration the norm of any linear combination of sample-wise gradients can be computed by a
polynomial in the reciprocal of the mini-batch size b and is a decreasing function of b (Theorem [2)).
As a special case, the variance of the stochastic gradient estimator and the full gradient at the iterate
in step ¢ are also decreasing functions of b at any iteration step ¢ (Theorem [3|and Corollary [T).

(ii) For a deep linear neural network under a teacher-student network setting, we consider a two-layer
linear network as an example and provide a framework for recursively calculating the trace of any
product of the stochastic gradient estimators, weight matrices and other constant matrices at time
step ¢ by using the variables at time step ¢t — 1 (Theorems []and [5). This explicit relationship can
be used to derive the expected value of the product of the weight matrices and stochastic gradient
estimators as a polynomial in 1/b with coefficients a sum of products of the initial weights (Theorem

@). As a special case, the variance of the stochastic gradient estimator is a polynomial in 1/b without
the constant term (Theorem[7) and therefore it is a decreasing function of b when b is large enough
(Theorem|8). The results and proof techniques can be easily extended to general deep linear networks.
As a comparison, other papers that study theoretical properties of two-layer networks either fix
one layer of the network, or assume the over-parameterized property of the model and they study
convergence, while our paper makes no such assumptions on the model capacity. The proof also
reveals the structure of the coefficients of the polynomial, and thus it serves as a tool for future work
on proving other properties of the stochastic gradient estimators and weight matrices.

(iii) The proofs are involved and require several key ideas. The main one is to show a more general
result than it is necessary in order to carry out the induction on time step t. New concepts and
definitions are introduced in order to handle the more general case. Along the way we show a result
of general interest establishing expectation of the product of quadratic terms of samples with general
distribution intertwined with constant matrices.

(iv) We verify the theoretical results regarding the decreasing property of variance on various datasets
and provide a further understanding. We also empirically show that the results extend to other widely
used network structures and hold for all choices of the mini-batch sizes. We also empirically verify
that, on average, in each iteration the loss function value and the generalization ability (measured by
the gap between accuracy on the training and test sets) are all decreasing functions of the mini-batch
size.

In conclusion, we study the dynamics of SGD under linear regression and a multi-layer linear network
setting by building frameworks that can recursively and explicitly calculate general products and
sums of the stochastic gradient estimators and weights matrices between consecutive iterations. As
an application of the frameworks, we focus on representing the variance of the stochastic gradient
estimators by the mini-batch size, initial weights and other constant variables, and therefore prove the
decreasing property of the variance of the stochastic gradient estimators. The proof techniques can
also be used to derive other properties of the SGD dynamics in regard to the mini-batch size and initial
weights. To the best of authors’ knowledge, the work is the first one to theoretically and explicitly
study the important quantities of SGD at iteration ¢ only using the initial weights and mini-batch size,
under mild assumptions on the network and the loss function. We support our theoretical results by
experiments. We further experiment on other state-of-the-art deep learning models and datasets to
empirically show the validity of the conjectures about the impact of mini-batch size on average loss,
average accuracy and the generalization ability of a model.

The rest of the manuscript is structured as follows. In Section [2] we review the literature while in
Section [3| we present a general framework on how to recursively represent some functions of the
stochastic gradient estimators by initial weights, under different models including linear regression
and deep linear networks. We also provide applications of the presented framework in Section [3]
Section 4| introduces part of the experiments that verify our theorems and provide further insights
into the dynamics of SGD and we defer the complete experimental details to Appendix [A] Section 3]
discusses possible extensions of the framework and concludes the paper. The proofs of the theorems
and other technical details are available in Appendix B}

2 Literature Review

Stochastic gradient descent type methods are broadly used in machine learning [3} 23| I5]. The
performance of SGD highly relies on the choice of the mini-batch size. It has been widely observed
that choosing a large mini-batch size to train deep neural networks appears to deteriorate general-
ization [24]. This phenomenon exists even if the models are trained without any budget or limits,
until the loss function value ceases to improve [21]. One explanation for this phenomenon is that
large mini-batch SGD produces “sharp” minima that generalize worse [[16}[21]. Specialized training
procedures to achieve good performance with large mini-batch sizes have also been proposed [17,13].

It is well-known that SGD has a slow asymptotic rate of convergence due to its inherent variance
[20]. Variants of SGD that can reduce the variance of the stochastic gradient estimator, which yield
faster convergence, have also been suggested. The use of the information of full gradients to provide
variance control for stochastic gradients is addressed in [20} 136/ 38]]. The works in [25| 26, [37] further
improve the efficiency and complexity of the algorithm by carefully controling the variance.

There is prior work focusing on studying the dynamics of SGD. Neelakantan et al. propose to
add isotropic white noise to the full gradient to study the “structured” variance [33]. The works in
[27,130, [19] connect SGD with stochastic differential equations to explain the property of converged
minima and generalization ability of the model. Smith et al. propose an “optimal” mini-batch
size which maximizes the test set accuracy by a Bayesian approach [40]. The Stochastic Gradient
Langevin Dynamics (SGLD, a variant of SGD) algorithm for non-convex optimization is studied in
[451132].

In most of the prior work about the convergence of SGD, it is assumed that the variance of stochastic
gradient estimators is upper-bounded by a linear function of the norm of the full gradient, e.g.
Assumption 4.3 in [5]. Gower et al. give more precise bounds of the variance under different
sampling methods [12] and Khaled et al. extend them to smooth non-convex regime [22]. These
bounds are still dependent on the model parameters at the corresponding iteration. To the best of the
authors’ knowledge, there is no existing result which represents stochastic gradient estimators only
using the initial weights and the mini-batch size. This paper partially solves this problem.

3 Analysis

Mini-batch SGD is a lighter-weight version of gradient descent. Suppose that we are given a loss
function L(w) where w is the collection (vector, matrix, or tensor) of all model parameters. At each
iteration ¢, instead of computing the full gradient V,, L(w;), SGD randomly samples a mini-batch
set B; that consists of b = |B;| training instances and sets w1 < w; — @V, L, (wt), where the
positive scalar «; is the learning rate (or step size) and V,, Lg, (w;) denotes the stochastic gradient
estimator based on mini-batch ;.

An important property of the stochastic gradient estimator V., Lg, (w;) is that it is an unbiased
estimator, i.e. EV,, Lg, (w:) = V,, L(w;), where the expectation is taken over all possible choices of

mini-batch B;. However, it is unclear what is the value of var (V, Lz, (w;)) := E |V Lg, (wy)]|* —

|EV . Lg, (wt)H2 Intuitively, we should have var (V,Lg, (w;)) o ";var (VwL(wy)), where n
is the number of training samples and stochasticity on the right-hand side comes from mini-batch
samples behind w; [40, [12]. However, even the quantities V,, L(w;) and var (V,, L(w;)) are still
challenging to compute as we do not have direct formulas of their precise values. Besides, as we
choose different b’s, their values are not comparable as we end up with different w;’s.

A plausible idea to address these issues is to represent EV,, Lg, (w;) and var (V,,Lg, (w)) only
using the fixed and known quantities wq, b, ¢, and a;. In this way, we can further discover the
properties, like decreasing with respect to b, of EV,, Lg, (w;) and var (V,, L, (w;)). The biggest
challenge is how to connect the quantities in iteration ¢ with those of iteration 0. This is similar to
discovering the properties of a stochastic differential equation at time ¢ given only the dynamics of
the stochastic differential equation and the initial point.

In this section, we address these questions by recursively representing some general forms of
stochastic gradient estimators under two settings: linear regression and a deep linear network. In
Section[3.T]in a linear regression setting, we provide explicit formulas for calculating any norm of
the linear combination of sample-wise gradients at time step ¢. As an application of the presented
recursive relationships, we therefore show that the var (V,,Lp, (w:)) is a decreasing function of
the mini-batch size b. In Section[3.2] under a deep linear network with teacher-student setting, we
provide explicit formulas for calculating any trace of the (Kronecker-)product of weight matrices
and stochastic gradient estimators. With this tool, we further show that these traces are polynomials
in 1/b with finite degree and that var (V,, Lg, (w;)) is a decreasing function of the mini-batch size
b > by for some constant by. In Section [3.3|we discuss possible extensions of the proof techniques to
a variety of networks.

For a random matrix M, we define var (M) := E |vec(M)|* — |Evec(M)|* where vec(M) denotes
the vectorization of matrix M. We denote [m : n] := {m,m+1,...,n}if m < n, and J otherwise.
We use [n] := [1:n] as an abbreviation. For clarity, we use the superscript b to distinguish
the variables with different choices of the mini-batch size b. In each iteration ¢, we use BY to
denote the batch of samples (or sample indices) to calculate the stochastic gradient. We denote

"Note that this definition is different from the variance of a vector, i.e., the covariance matrix. This “scalar”
variance is a common practice in the field of optimization (e.g. equation (4.6) in [5]).

by F? the filtration of information before calculating the stochastic gradient in the ¢-th iteration,
ie. Ff = {wo,wl,...,w, By, ..., B)_; }. We use &),y Ai to denote the Kronecker product of
matrices Aq,..., A,.

3.1 Linear Regression

In this subsection, we discuss the dynamics of SGD applied in linear regression. Given data points
(1,11), " (Tn,Yn), where x; € RP and y; € R, we define the loss function to be L(w) =
IS Li(w) =2 Zl 13 L (wTa; — y,) , where w € RP are the model parameters. We consider
minimizing L(w) by mini-batch SGD. Note that the bias term in the general linear regression models
is omitted, however, adding the bias term does not change the result of this section. Formally, we first
choose a mini-batch size b and initial weights wyq. In each iteration ¢, we sample P, a subset of [n]
with cardinality b, and update the parameters by wy | = wy — g7, where g = § 3, VLi (w}) .

We first show the relationship between the variance of stochastic gradient g0 and the full gradient
VL (wy) and sample-wise gradient VL; (w}) ,i € [n], derived by considering all possible choices
of the mini-batch BY. Readers should note that Lemma actually holds for all models with Lj-loss,
not merely linear regression (since in the proof we do not need to know the explicit form of L;(w)).

Lemma 1. Let ¢, = % > 0. For any matrix A € RP*P we have var (Ag |]-‘b) =

E [agt]’[7] - |AVE (w))]* = e (£ 20, [AVL: ()| = [AVL (w})]*)

Lemma |1| provides a bridge to connect the norm and variance of g? with sample-wise gradients
VL; (wy) ,i € [n]. Therefore, if we can further discover the properties of VL; (w?) ,i € [n], we are
able to calculate the variance of g. Theoreml 1| addresses this problem by showing the relationship
between any linear combination of VL; (w})’s and VL; (w)_;)’s.

Theorem 1. For any set of square matrices {Ay,--- ,A,} € RP*P, if we denote A =
Sy Al then we have E | S0, AV L: ()| Fo| = B [[Siy BV L (wh) 50| +
e S NI B ([BEV L (wh)||Fo |, where B = A; — 24; BE = Aifi = ki1,

Bfl Aifi=1,i # k, and BF' equals the zero matrix, otherwise.

Theorem |1| provides an explicit relationship between the norm of any linear combinations of the
sample-wise gradients at time steps ¢ + 1 and ¢. Therefore, we can easily use it to recursively calculate
this norm for all iterations ¢. As an application of this theorem, note that ¢, is a decreasing function
of b, and thus we are able to show Theorem[2]

Theorem 2. For any t € N and any matrices A; € RP*P j € | [HZ 1A VL, (wf) HQ‘]:O] isa
decreasing function of b for b € [n].

Theorem 2] states that the norm of any linear combinations of the sample wise gradients is a decreasing
function of b. Combining Lemma which connects the variance of g¥ with the linear combination of
VL; () s, and the fact that VL (wt) = 711 S VL (wt) we have Theoreml

Theorem 3. Fixing initial weights wg, both var (Bgf |f0) and var (BVL (wi’) |f0) are decreasing
Sfunctions of mini-batch size b for all b € [n], t € N, and all square matrices B € RP*P,

As a special case, Corollary [T| guarantees that the variance of the stochastic gradient estimator is a
decreasing function of b.

Corollary 1. Fixing initial weights wy, both var (gff7 |}'0) and var (VL (w?) }.7-'0) are decreasing
functions of mini-batch size b for all b € [n] and t € N.

In conclusion, we provide a framework for calculating the explicit value of variance of the stochastic
gradient estimators and the norm of any linear combination of sample-wise gradients. In fact, the
presented theorems can be applied to a Variety of terms, like the total loss L(w?), as long as it is a
polynomlal of degree of 2 with respect to w?. Theorem|1|can be further modified to hold for higher
orders of w? in a similar manner.

As an application of the framework, we show that the variance of the full gradient and the stochastic

gradient estimators are both decreasing functions of b. Readers should note that the framework

here is not limited to showing the decreasing property of the variance, but can also be used in

many other circumstance. For example, we can use Theorem [I] to induct on ¢ and easily show
2 . . .

that E [szlzl A VL, (w?) H ‘.7—'0] is a polynomial of % with degree at most ¢ and calculate the

coefficients therein.

3.2 Deep Linear Networks

In this section, we study the dynamics of SGD on deep linear networks. We consider the two-layer
linear network as an example while the results and proofs can be easily extended to deep linear
networks of any depth (see Appendix [B.3|for more details). Given a distribution D in R, we consider

the population loss L(w) = E,p [% |WoWiax — W Wl*a:||2] under the teacher-student learning

framework [15]] with w = (W7, W5) a tuple of two matrices. Here W; € RP**P and W, € RP2*P1
are parameter matrices of the student network and W;* and W3 are the fixed ground-truth parameters
of the teacher network. We use online SGD to minimize the population loss £(w). Formally, we
first choose a mini-batch size b and initial weight matrices {Wy 1, Wy 2}; in each iteration ¢, we

independently draw a mini-batch BY := {xi’l (i E [b]} of b samples from D and update the weight
matrices by WP, | | = WP, — augl y and WP, | 5 = WPy — augl 5, where

1 1 2 1 T T
shai= 5 Vg, (g [Whawtiat - wawieat) = § 33 (wh) et (o) 0
b 1 L b b sr% b |2 Lo b (6 \T v \T
gt,2 '= b i;thbﬂ (5 HWt,QWt,lxt,i - W3y Wy T i) = b ;Wt T4 <$m> (Wt,l) . ()

Here W) := Wt’jQWth 1 — WFW denotes the gap between the product of model weights and
ground-truth weights and the derivation follows from the formulas in [35]].

For a multi-set of matrices M = {Mi,..., M,}, we use deg (4; M) to denote the number of
appearances of matrix A and its transpose A7 in M. Mathematically, we have deg (A4; M) :=
Dlieln] (I{A = A;} + T{AT = A;}). We further denote deg (A; M) := >, , deg (A; M) for
any set of matrices A. We denote W} := {Wp, WP, }, W* := {W¥ Wi} and G} := {g?,, 90, }.
We use C to denote the infinite set of all non-random matrices given]-"oﬂ

As pointed out in the Section [I] the difficulty of studying the dynamics of SGD is how to connect the
quantities in iteration ¢ with fixed variables, like the initial weights Wy 1, Wy 2 and mini-batch size b.
We overcome this challenge by carefully building the connection between (i) gf’- and WP, i=1,2;

(i) Wtb’i and 9?71,1" i = 1, 2. The following two theorems address these two quelstions ré;};ectively.
Theorem 4. Let M := {M; ; : i € [0:m], j € [n]} be a multi-set of matrices such that each M, ;
or its transpose only takes value in (Ui:o Wf) U (Ui:o Gg) UC and deg (G¥; M) = d. Then
there exist constants m',n', L and matrices Qs uv,l € [L],s € [0:d],u e [0:m'],v € [n'] such
that E [tr (C (@ie[m] (Hje[n] M,-J))) Hje[n] Mo,j)]:tb] = Qo +0~51% S +&dbid, where 0y =
Die[r) Clstr (Cl_,s (@ue[m,] (H@e[n’] Ql,s,u,v))) [Loepn Quso0:s € [0:d], cs is a constant,
C,C s € C are constant matrices, and Qs v € (Uizo st) U (Ui;é Gls’) yc.

It is important to note that in Theorem |4 we condition on]-'tb and include Gé’ while each Q5,0

involves only ng(1" This enables induction.

Theorem 5. Let M := {M;;:ie€[0:m],je[n]} be a multi-set of matrices such
that each M;; or its transpose only takes value in (Ui:o st) U (Ui;t Gls’) Uc
and deg (W); M) = d Then there exist matrices My, ;,k € [29,i €

>The definition of C here is loose to keep the main body of the paper concise. We give a more detailed
definition of C in Appendix[B.2}

[0:m],j € [n] such that tr (C (@ie[m] (Hje["] M”>)> [Liepn Mo, =
Zke[Qd aytr (C (@ie[m] (H eln] M, ”))) Hje[1 M0, where @y, is a constant, C € C is a
constant matrix, and My, ; ; € (Ut : Wb) U (Ut 5 Gb> Uc.

We present the complete version of these theorems and their proofs in Appendix [B.2] The ex-
act values of m’,n', L, ¢; 5, C s, @k, Qi,s,u,0 and My ; ; are also provided in the corresponding
proof. In fact, these two theorems provide a recursive relationship for explicitly representing

any quantity of the form tr (C (@ie[m] (]_[je[n] M”)>) [Liepny Mo,; (with M; ; taking value in
(Ui:o st) U (Ui:o Gg) (JC) as the sum of many other terms of the same form (with M, ; taking

value in (UZ;}) st) U (UZ;B GZ) JO). As a direct result, we are able to represent the expected
value of this term (conditioning on JFy) using learning rates, initial weights, ground-truth weights,
and other constants matrices.

Theorem 6. Let M := {M; ; : i€ [0:m],j € [n]} be a multi-set of matrices such that each M; ;

or its transpose only takes value in (UZ=O st) U (Ui:o GZ) \UC. Then there exist constants
q,m/,n', Ls,s € [0:q] and matrices Qs uv,! € [Ls]|,s € [q],u € [0:m'],v € [n'] such that
E [tr (C’ (@ie[m] (]_[je[n] M”)>) Hje[n] MO,j‘]:O] = ag + 041% + 4 oqu%, where oy =

Zle jCustr (Cl s (@ue[m,] (Hve[n,] Ql7s,u7v))) Hve[n,] Q1,5,0,0:8 € [0:q], ¢ 5 is a constant,

. b
C, C’LS € C are constant matrices, and Q1 s, € Wy | JC.

Again, the complete version of Theorem [6]is presented in Appendix

We next show some applications of this framework. By Theorem [6} we are able to give the exact value
of E [H gi’ i H2] and var (gi7 ;) »i = 1,2 by further taking expectation over the random initialization of

weights matrices. As a special case of Theorem@ Theorem [7)shows that the variance of the stochastic
gradient estimators is a polynomial of without a constant term. This backs the important intuition
that the variance is approximately 1nversely proportional to the mini-batch size b and provide much
more precise relationship between the variance and the mini-batch size b.

Theorem 7. Givent € N, value var (gi’z) ,4 = 1,2 can be written as a polynomial of% with degree

3t+1

at most — 1 with no constant term. Formally, we have var (ggi) = ﬂl% + -+ B b%’ where

r < 3" — 1 and each B; is a constant independent of b.

One should note that the polynomial representation of var (931') ,© = 1,2 does not have the constant

term. This is intuitively correct since var (gf,i) — 0 as b — oo. Therefore, to show that the variance
is a decreasing function of b, we only need to show that the leading coefficient 3; is non-negative.
This is guaranteed by the fact that variance is always non-negative. We therefore have the next
theorem.

Theorem 8. Givent € N, there exists a constant by such that for all b = by, function var (gfl) b=
1,2 is a decreasing function of b.

The constant by is the largest root of the equation 816"~ 4 826" =2 4 - - - + B, = 0. See the proof of
Theorem|[8]in Appendix [B.2]for more details. Although we cannot calculate the precise value of b,
we verify that by is smaller than 1 in many experiments (see Appendix [A]for more details). From
the proofs we conclude that the scale of each j; is of the order O (| M), where M is a product of
Wo 1, Wo,2, Wi, W5 and other constant matrices with degree m' + n'.

In conclusion, we provide a framework for recursively calculating the expected value of a general form
that consists of stochastic gradient estimators and weight matrices at time step ¢. As an application,
we use our framework to represent the variance of stochastic gradient estimators by a polynomial in
1/b and prove that the variance is a decreasing function of b when b is large. Readers should note
that the framework here can handle gt and Wtb ,© = 1,2 with any finite degree, and thus provide
much larger capability than just calculatlng the variance. As a result, similar to Theorems|[7]and 8] we
can show that the population loss £(w?) at iteration ¢ is also a polynomial in 1/b and is a decreasing
function of b when b is large.

3.3 [Extensions

Our results can be easily extended to deep linear networks, see Appendix for more details. We
next discuss the extensions of the proof techniques to non-linear networks.

For general neural networks without any assumption on model capacity, we can approximate non-
linear activation functions by polynomials up to any precision. For example, suppose we approximate
the Sigmoid function o(z) by P(z) = >;_, sz with degree n (see [42] for further properties of the
polynomial), then the two-layer non-linear network can be approximated by f(x) = Wao (Wix) ~
Wy ZZ:O ar(Wix)F, where the power of a vector is applied entry-wise. We can represent [-layer
fully-connected networks with the Sigmoid activation function in a similar polynomial representation.
Under the polynomial representation of the network, the loss function and the variance of the
(stochastic) gradient are also polynomials in w?, which is captured by our theorems about any
multiplication term of model weights and stochastic gradient estimators. By this approach our
theorems extend to non-linear networks in an approximate sense.

Another possible approach would be to show similar results with the help of existing neural tangent
kernel results under the over-parameterized setting [[18| [7]. With over-parameterization, a neural
network can be approximated by linear models and the theorems in our paper can be applied.

4 Experiments

In this section, we present numerical results to support the theorems in Section [3| and provide
further insights into the impact of the mini-batch size on the dynamics of SGD. The experiments are
conducted on four datasets and models that are relatively small due to the computational cost of using
large models and datasets. We only report the results on the MNIST dataset here due to the limited
space. A complete empirical study is deferred in Appendix

For all experiments, we perform mini-batch SGD multiple times starting from the same initial weights
and following the same choice of the learning rates and other hyper-parameters, if applicable. This
enables us to calculate the variance of the gradient estimators and other statistics in each iteration,
where the randomness comes only from different samples of SGD.

4.1 Results on MNIST Dataset

The MNIST dataset is to recognize digits in handwritten images of digits. We use all 60,000 training
samples and 10,000 validation samples of MNIST. We build a three-layer fully connected neural
network with 1024, 512 and 10 neurons in each layer. For the two hidden layers, we use the ReLU
activation function. The last layer is the softmax layer which gives the prediction probabilities for
the 10 digits. We use mini-batch SGD to optimize the cross-entropy loss of the model. The model
deviates from our analytical setting since it has non-linear activations, the cross-entropy loss function
(instead of L), and empirical loss (as opposed to population). The goal is to verify the results in this
different setting and to back up our hypotheses.

(a) Different initial weights (b) Log of loss (c) Log of error (d) Gap of accuracy (zoomed-in)

Figure 1: Experimental results for the MNIST dataset.

As shown in Figure[T[a), we run SGD with two batch sizes 64 and 128 on five different initial weights
with 50 runs for each initial point. This plot shows that, even the smallest value of the variance among
the five different initial weights with a mini-batch size of 64, is still larger than the largest variance
of mini-batch size 128. We observe that the sensitivity to the initial weights is not large. This plot
also empirically verifies our conjecture in the introduction that the variance of the stochastic gradient

estimators is a decreasing function of the mini-batch size, for all iterations of SGD in a general deep
learning model.

In addition, we also conjecture that there exists the decreasing property for the expected loss, error
and the generalization ability with respect to the mini-batch size. Figure[I{b) shows that the expected
loss on the training set is a decreasing function of b for all epochs. However, this decreasing property
does not hold on the validation set when the loss tends to be stable or increasing, in other words, the
model starts to be over-fitting. We hypothesize that this is because the learned weights start to bounce
around a local minimum when the model is over-fitting. As the larger mini-batch size brings smaller
variance, the weights are closer to the local minimum found by SGD, and therefore yield a smaller
loss function value. Figure[T|c) shows that both the expected error on training and validation sets are
decreasing functions of b.

Figure|[T|d) exhibits a relationship between the model’s generalization ability and the mini-batch size.
As suggested by [39]], we build a test set by distorting the 10,000 images of the validation set. The
prediction accuracy is obtained on both training and test sets and we calculate the gap between these
two accuracies every 100 epochs. We use this gap to measure the model generalization ability (the
smaller the better). Figure [I{d) shows that the gap is an increasing function of b starting at epoch
500, which partially aligns with our conjecture regarding the relationship between the generalization
ability and the mini-batch size. We test this on multiple choices of the hyper-parameters which
control the degree of distortion in the test set and this pattern remains clear.

5 Discussion and Future Work

We study the dynamics of SGD by explicitly representing the important quantities of SGD using the
mini-batch size and initial weights. For linear regression and a two-layer linear network, we are able
to build frameworks that recursively calculate general forms of the product of the weight matrices
and stochastic gradient estimators between consecutive iterations. We further theoretically prove
that the variance conjecture holds. Experiments are performed on multiple models and datasets to
verify our claims and their applicability to practical settings. Besides, we also empirically address the
conjectures about the expected loss and the generalization ability.

We provide mathematical tools to calculate and represent the product of the stochastic gradients
estimators and weight matrices in the ¢-th step (and not a single step), which is non-trivial and requires
a sophisticated mathematical proof. These tools can be extended to calculate any form that has a
polynomial relationship to the model parameters w?, e.g. expectation/variance of the loss function,
norm of the SG estimator to any finite degree. We can also derive other properties of the dynamics of
SGD by using these tools.

One possible application of the results is to help tighten the convergence rates of SGD and develop
better variance reduction methods. Current analyses of SGD convergence rely on two constants M
and My, such that

var (¢?) < M + My |V L(u})|”.

But it is unclear what are the exact values of M and My (see Assumption 4.3 of [3]] and the
context therein). It is a common practice to take relatively large M and My, to make sure the above
bound holds. However, this leads to a relatively poor convergence rate of the SGD algorithm. Our

frameworks are able to explicitly calculate var (g7) and |V L(w}) H2 by recursive formulas and thus
to provide optimal values for M and My, .

Another challenging research direction is to theoretically and explicitly investigate the generalization
ability during training of SGD. There are existing works studying the relationship between the variance
of the stochastic gradients and the generalization ability [L1, 31]. Together with the frameworks
developed herein, it would be possible to tighten the generalization bounds of a neural network
by explicit variance and other quantities. We can further choose an optimal mini-batch size which
minimizes the generalization ability by solving a polynomial equation if we have a more precise
relationship between the variance and the generalization ability.

Further interesting work is to extend our techniques to more complicated and sophisticated networks
as we discuss in Section[3.3] Although the underlying model of this paper corresponds to deep linear
network networks, we are able to show a deeper relationship between the variance and the mini-batch

size, the polynomial in 1/b, while the common knowledge is simply that the variance is proportional
to 1/b. The extension to other optimization algorithms, like Adam and Gradient Boosting Machines,
are also very attractive. We hope our theoretical framework can serve as a tool for future research of
this kind.

References

[1] Mohan S Acharya, Asfia Armaan, and Aneeta S Antony. A comparison of regression models
for prediction of graduate admissions. In 2019 International Conference on Computational
Intelligence in Data Science, pages 1-5, 2019.

[2] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overpa-
rameterized neural networks, going beyond two layers. arXiv preprint arXiv:1811.04918,
2018.

[3] Léon Bottou. Stochastic gradient learning in neural networks. Proceedings of Neuro-Nimes,
91(8):12, 1991.

[4] Léon Bottou. Online learning and stochastic approximations. On-line Learning in Neural
Networks, 17(9):142, 1998.

[5] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223-311, 2018.

[6] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[7] Simon Du, Jason Lee, Yuandong Tian, Aarti Singh, and Barnabas Poczos. Gradient descent
learns one-hidden-layer CNN: Don’t be afraid of spurious local minima. In International
Conference on Machine Learning, pages 1339-1348, 2018.

[8] Simon Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

[9] Jianging Fan, Cong Ma, and Yigiao Zhong. A selective overview of deep learning. arXiv
preprint arXiv:1904.05526, 2019.

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[11] Eduard Gorbunov, Filip Hanzely, and Peter Richtarik. A unified theory of sgd: Variance
reduction, sampling, quantization and coordinate descent. In International Conference on
Artificial Intelligence and Statistics, pages 680-690, 2020.

[12] Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
Richtarik. SGD: General analysis and improved rates. In International Conference on Machine
Learning, pages 5200-5209, 2019.

[13] Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training
Imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pages 770-778, 2016.

[15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[16] Sepp Hochreiter and Jiirgen Schmidhuber. Flat minima. Neural Computation, 9(1):1-42, 1997.

[17] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the
generalization gap in large batch training of neural networks. In Advances in Neural Information
Processing Systems, pages 1731-1741, 2017.

10

[18] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. arXiv preprint arXiv:1806.07572, 2018.

[19] Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos Storkey. Three factors influencing minima in SGD. arXiv preprint
arXiv:1711.04623, 2017.

[20] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems, pages 315-323, 2013.

[21] Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter Tang, Dheevatsa Mudigere, and Mikhail
Smelyanskiy. On large-batch training for deep learning: Generalization gap and sharp minima.
In 5th International Conference on Learning Representations, 2017, 2017.

[22] Ahmed Khaled and Peter Richtdrik. Better theory for sgd in the nonconvex world. arXiv
preprint arXiv:2002.03329, 2020.

[23] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the Institute of Electrical and Electronics
Engineers, 86(11):2278-2324, 1998.

[24] Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Miiller. Efficient backprop. In
Neural networks: Tricks of the trade, pages 9-48. Springer, 2012.

[25] Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex finite-sum optimization
via SCSG methods. In Advances in Neural Information Processing Systems, pages 2348-2358,
2017.

[26] Mu Li, Tong Zhang, Yugiang Chen, and Alexander J Smola. Efficient mini-batch training for
stochastic optimization. In Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 661-670, 2014.

[27] Qianxiao Li, Cheng Tai, and Weinan E. Stochastic modified equations and adaptive stochastic
gradient algorithms. In Proceedings of the 34th International Conference on Machine Learning,
pages 2101-2110. PMLR, 2017.

[28] Qianxiao Li, Cheng Tai, and E Weinan. Stochastic modified equations and adaptive stochastic

gradient algorithms. In International Conference on Machine Learning, pages 2101-2110.
PMLR, 2017.

[29] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic
gradient descent on structured data. arXiv preprint arXiv:1808.01204, 2018.

[30] Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent as
approximate bayesian inference. The Journal of Machine Learning Research, 18(1):4873-4907,
2017.

[31] Qi Meng, Yue Wang, Wei Chen, Taifeng Wang, Zhi-Ming Ma, and Tie-Yan Liu. Generalization
error bounds for optimization algorithms via stability. arXiv preprint arXiv:1609.08397, 2016.

[32] Wenlong Mou, Liwei Wang, Xiyu Zhai, and Kai Zheng. Generalization bounds of SGLD for
non-convex learning: Two theoretical viewpoints. In Conference On Learning Theory, pages
605-638, 2018.

[33] Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach,
and James Martens. Adding gradient noise improves learning for very deep networks. arXiv
preprint arXiv:1511.06807, 2015.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative

style, high-performance deep learning library. In Advances in Neural Information Processing
Systems, pages 8024-8035, 2019.

[35] KB Petersen, MS Pedersen, et al. The matrix cookbook, vol. 7. Technical University of Denmark,
15, 2008.

11

[36] Nicolas L Roux, Mark Schmidt, and Francis R Bach. A stochastic gradient method with
an exponential convergence rate for finite training sets. In Advances in Neural Information
Processing Systems, pages 2663-2671, 2012.

[37] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83-112, 2017.

[38] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. Journal of Machine Learning Research, 14(Feb):567-599, 2013.

[39] P.Y. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolutional neural networks
applied to visual document analysis. In Seventh International Conference on Document Analysis
and Recognition, pages 958-963, 2013.

[40] Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic
gradient descent. arXiv preprint arXiv:1710.06451, 2017.

[41] Ruoyu Sun. Optimization for deep learning: theory and algorithms. arXiv preprint
arXiv:1912.08957, 2019.

[42] Miroslav Vlcek. Chebyshev polynomial approximation for activation sigmoid function. Neural
Network World, 22(4):387-393, 2012.

[43] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in
Neural Information Processing Systems, pages 5754-5764, 2019.

[44] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In Advances in Neural Information Processing Systems, pages 649—657, 2015.

[45] Yuchen Zhang, Percy Liang, and Moses Charikar. A hitting time analysis of stochastic gradient
langevin dynamics. In Conference on Learning Theory, pages 1980-2022, 2017.

12

A Experiments

In this section, we present numerical results to support the theorems in Section [3| to backup the
hypotheses discussed in the introduction, and provide further insights into the impact of the mini-
batch size on the dynamics of SGD. The experiments are conducted on four datasets and models that
are relatively small due to the computational cost of using large models and datasets.

Remark: We cannot present the complete numerical results in the main paper due to the space limit.
Therefore, we move the whole experimental section to Appendix. In order to keep a smooth reading,
some of the content is overlapping with Section 4}

A.1 Datasets and Settings

For all experiments, we perform mini-batch SGD multiple times starting from the same initial weights
and following the same choice of the learning rates and other hyper-parameters, if applicable. This
enables us to calculate the variance of the gradient estimators and other statistics in each iteration,
where the randomness comes only from different samples of SGD. The learning rate o is selected to
be inversely proportional to iteration ¢, or fixed, depending on the task at hand.

All models are implemented using PyTorch version 1.4 [34] and trained on NVIDIA 2080Ti/1080
GPUs. We have also tested several other random initial weights and ground-truth weights, and
learning rates, and the results and conclusions are similar and not presented.

A.1.1 Graduate Admission Dataset

The Graduate Admission datasetﬂ [LL] is to predict the chance of a graduate admission using linear
regression. The dataset contains 500 samples with 6 features and is normalized by mean and variance
of each feature. This is a popular regression dataset with clean data. We build a linear regression
model to predict the chance of acceptance (we include the intercept term in the model) and minimize
the empirical Ly loss using mini-batch SGD, as stated in Section [3.1]

For the experiment in Figure [JJ(a), we randomly select an initial weight vectors wq and run SGD for
2,000 iterations where it appears to converge. We record all statistics at every iteration. There are in
total 1,000 runs behind each observation which yields a p-value lower than 0.05. As for Figure 2b),
we select 20 different b’s and run SGD from the same initial point for 40 iterations. There are in total
of 200,000 runs to make sure the p-value of all statistics are lower than 0.05. In all experiments, the
learning rate is chosen to be a; = %, t € [2000] because this rate yields a theoretical convergence
guaranteed (factor 1/2 has been fine tuned). The purpose of this experiment is to empirically study
the rate of decrease of the variance. The theoretical study exhibited in Section [3.1] establishes the
non-increasing property but it does not state anything about the rate of decrease.

A.1.2 Synthetic Dataset

We build a synthetic dataset of standard normal samples to study the setting in Section[3.2] We fix
the teacher network with 64 input neurons, 256 hidden neurons and 128 output neurons. We optimize
the population L, loss by updating the two parameter matrices of the student network using online
SGD, as stated in Section[3.2] In this case we have proved the functional form of the variance as a
function of b and show the decreasing property of the variance of the stochastic gradient estimators
for large mini-batch sizes. However, we do not show the decreasing property for every b. With this
experiment we confirm that the conjecture likely holds. In the experiment, we randomly select two
initial weight matrices Wy 1, Wy 2 and the ground-truth weight matrices W5*, W5*. We run SGD
for 1,000 iterations which appears to be a good number for convergence while there are 1,000 runs
of SGD in total to again give a p-value below 0.05. We record all statistics at every iteration. The
learning rate is chosen to be o = ﬁ, t € [1000] for the same reason as in the regression experiment.
A.1.3 MNIST Dataset

The MNIST dataset is to recognize digits in handwritten images of digits. We use all 60,000 training
samples and 10,000 validation samples of MNIST. The images are normalized by mapping each entry

*https://www.kaggle.com/mohansacharya/graduate-admissions

13

https://www.kaggle.com/mohansacharya/graduate-admissions

batch 4, full grad batch 4, stochastic grad -0.5 1 iteration 10
04 —-- batch 16, fullgrad ~ —— batch 16, stochastic grad
batch 64, full grad —— batch 64, stochastic grad B
oy batch 256, full grad batch 256, stochastic grad -1.0 - !terat\on 30
iteration 40

‘ —— iteration 20

-159 |

o1 |

Log of variance of VL(w?) and g?
|
(=)}
P
]
FI
F 1
!] '
!
!
Log of polynomial value

****** RRREEEEEESSSES -2.57 \
-109 e -‘\‘_\
-3.0 \‘—::::"- — _
-12 e —
0 250 500 750 1000 1250 1500 1750 2000 0 100 200 300 400 500
Iteration t Mini-batch size b
(a) Variance of stochastic gradients and full gradients (b) Fitting polynomials of mini-batch size b

Figure 2: Experimental results for the Graduate Admission dataset. Left: log (var (gi7 |]-'0)) and

log (var (VL(w,lg’) ‘.7-"0)) vs iteration ¢ for 4 different mini-batch sizes. Right: The log of polynomial val-
ues when fitting polynomials on selected mini-batch sizes at certain iterations.

to [—1,1]. We build a three-layer fully connected neural network with 1024, 512 and 10 neurons
in each layer. For the two hidden layers, we use the ReLLU activation function. The last layer is the
softmax layer which gives the prediction probabilities for the 10 digits. We use mini-batch SGD to
optimize the cross-entropy loss of the model. The model deviates from our analytical setting since it
has non-linear activations, it has the cross-entropy loss function (instead of L), and empirical loss
(as opposed to population). MNIST is selected due to its fast training and popularity in deep learning
experiments. The goal is to verify the results in this different setting and to back up our hypotheses.

We run SGD for 1,000 epochs on the training set which is enough for convergence. The learning rate
is a constant set to 3 - 1073 (which has been tuned). For the experiment in Figure there are in total
100 runs to give us the p-value below 0.05. For the experiment in Figure[d(a), we randomly select five
different initial points and we have 50 runs for each initial point. For the experiment corresponding to
Figure f{b), we choose o = 8 and o = 2 as in [39]]. The initial weights and other hyper-parameters
are chosen to be the same as in Figure 5]

A.1.4 Yelp Review Dataset

The Yelp Review dataset from the Yelp Dataset Challenge [44] contains 1,569,264 samples of
customer reviews with positive/negative sentiment labels. We use 10,000 samples as our training set
and 1,000 samples as the validation set. We use XLNet [43]] to perform sentiment classification on
this dataset. Our XLNet has 6 layers, the hidden size of 384, and 12 attention heads. There are in
total 35,493,122 parameters. We intentionally reduce the number of layers and hidden size of XLNet
and select a relatively small size of the training and validation sets since training of XLNet is very
time-consuming ([43] train on 512 TPU v3 chips for 5.5 days) and we need to train the model for
multiple runs. This setting allows us to train our model in several hours on a single GPU card. We
train the model using the Adam weight decay optimizer, and some other techniques, as suggested in
Table 8 of [43]. This dataset represents sequential data where we further consider the hypotheses.

We randomly select a set of initial parameters and run Adam with two different mini-batch sizes of
32 and 64. For computational tractability reasons, for each mini-batch size there are in total of 100
runs and each run corresponds to 20 epochs. We record the variance of the stochastic gradient, loss
and accuracy in every step of Adam. The statistics reported in Figure [6| are averaged through each
epoch. In all experiments, the learning rate is set to be 4 - 10~° and the € parameter of Adam is set to
be 10~# (these two have been tuned). The stochastic gradients of all parameter matrices are clipped
with threshold 1 in each iteration. We use the same setup for the learning rate warm-up strategy as
suggested in [43]. The maximum sequence length is set to be 128 and we pad the sequences with
length smaller than 128 with zeros.

14

batch size 4; full grad batch 4, stochastic grad
-~ batch size 16; full grad —— batch 16, stochastic grad

---batch size 64; full grad —— batch 64, stochastic grad
01 batch size 256; full grad batch 256, stochastic grad
-24 1}

/ 2
/
/ 4
/)i
/
J
/
/
!
!

-8 batch size 4; full grad batch 4, stochastic grad

- batch size 16; full grad —— batch 16, stochastic grad

- batch size 64; full grad —— batch 64, stochastic grad
batch size 256; full grad batch 256, stochastic grad

Log of variance of Vi, £(wP) and g,
Log of variance of Vu,£(w?) and gf,

-104 -101

oA

0 200 400 600 800 1000 200 400 600 800 1000
Iteration t Iteration t

(a) Variance of gradients with respect to W, (b) Variance of gradients with respect to Wy

Figure 3: Experimental results for the Synthetic dataset. Left: log (var (g,lf’1 |]-'0))
and log (var (Vw, L(W/1,W/5)|Fo)) vs iteration . Right: log (var (g¢2|F0)) and
log (var (Vw, L(W{ 1, W{2) |Fo)) vs iteration .

A.2 Discussion

As observed in Figure[2a), under the linear regression setting with the Graduate Admission dataset,
the variance of the stochastic gradient estimators and full gradients are all strictly decreasing functions
of b for all iterations. This result verifies the theorems in Section Figure 2[b) further studies
the rate of decrease of the variance. From the proofs in Section we see that var (gﬂ}'o) isa

polynomial of % with degree ¢ + 1. Therefore, for every ¢, we can approximate this polynomial
by sampling many different b’s and calculate the corresponding variances. We pick b to cover all
numbers that are either a power of 2 or multiple of 40 in [2, 500] (there are a total of 21 such values)
and fit a polynomial with degree 6 (an estimate from the analyses) at ¢ = 10, 20, 30, 40. Figure[2(b)
shows the fitted polynomials. As we observe, the value var (g¢|F;) (approximated by the value of
the polynomial) is both decreasing with respect to the mini-batch size b and iteration ¢. Further, the
rate of decrease in b is slower as the b increasing. This provides a further insight into the dynamics of
training a linear regression problem with SGD.

Under the two-layer linear network setting with the synthetic dataset, Figure [3| verifies that the
variance of the stochastic gradient estimators and full gradients are all strictly decreasing functions of
b for all iterations. This figure also empirically shows that the constant by in Theorem[§]could be as
small as by = 4. In fact, we also experiment with the mini-batch size of 1 and 2, and the decreasing
property remains to hold. We also test this on multiple choices of initial weights and learning rates
and this pattern remains clear.

In aforementioned two experiments we use SGD in its original form by randomly sampling mini-
batches. In deep learning with large-scale training data such a strategy is computationally prohibitive
and thus samples are scanned in a cyclic order which implies fixed mini-batches are processed many
times. Therefore, in the next two datasets we perform standard “epoch” based training to empirically
study the remaining two hypotheses discussed in the introduction (decreasing loss and error as a
function of b) and sensitivity with respect to the initial weights. Note that we are using cross-entropy
loss in the MNIST dataset and the Adam optimizer in the Yelp dataset and thus these experiments do
not meet all of the assumptions of the analysis in Section 3]

As shown in Figure[d[a), we run SGD with two batch sizes 64 and 128 on five different initial weights.
This plot shows that, even the smallest value of the variance among the five different initial weights
with a mini-batch size of 64, is still larger than the largest variance of mini-batch size 128. We
observe that the sensitivity to the initial weights is not large. This plot also empirically verifies our
conjecture in the introduction that the variance of the stochastic gradient estimators is a decreasing
function of the mini-batch size, for all iterations of SGD in a general deep learning model.

In addition, we also conjecture that there exists the decreasing property for the expected loss, error
and the generalization ability with respect to the mini-batch size. Figure[5(a) shows that the expected
loss (again, randomness comes from different runs of SGD through the different mini-batches with
the same initial weights and learning rates) on the training set is a decreasing function of b. However,

15

Average variance

Log of variance

—2 4 = batch size 64, median 0.049 4
—— batch size 128, median
—44 0.048
—6) 0.047 -
I
3
iy o 0.046 -
“
o
2 0.045
—10 4 8
—124 0.044 -
~— batch size 64; train acc - test acc
batch size 128; train acc - test acc
—14 4 0.043 —— batch size 256; train acc - test acc
T T T T T T T T T T T T T T T
0 200 400 600 800 1000 100 200 300 400 500 600 700 800 900
Epochs Epochs

(a) Different initial weights (b) Gap of accuracy (zoomed-in)

Figure 4: Experimental results for the MNIST dataset. Left: The median, min, and max of the log of variance
of the stochastic gradient estimators for two different mini-batch sizes (distinguished by colors) and five different
initial weights. The solid lines show the median of all five initial weights while the highlighted regions show the
min and max of the log of variance. Right: The gap of accuracy on training and test sets vs epochs starting from
epoch 100.

Log of loss

R R R R 0
—— batch size 64; train == batch size 64; Va|lc!at|0l’| —— batch size 64; train —~~ batch size 64; validation
04 batch size 128; train batch size 128; validation batch size 128; train batch size 128; validation
—— batchsize 256; train == batch size 256; validation 2 —— batch size 256; train — = batch size 256; validation
—2 —4
.
S
=
@
4 i
- =)
o
3
—g4
—64
—104
_g4
T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Epochs Epochs

(a) Log of loss for training and validation sets (b) Log of error for training and validation sets

Figure 5: Experimental results for the MNIST dataset. Left: The log of the training and validation loss vs
epochs. Right: The log of training and validation error vs epochs. Here error is defined as one minus predicting
accuracy. The plot does not show the epochs if error equals to zero.

~ batch size 64; train
—— batch size 32; train
~ = batch size 64; validation
= batch size 32; validation

—— batch size 64; train
—— batch size 32; train
~ = batch size 64; validation
== batch size 32; validation

18850 | —— batch size 64

—— batch size 32

18840 0.8
18830

18820

Average loss
Average error

18810

18800

8 10

Epochs

12 14 10

Epochs

6 8 12 14 12

10
Epochs

(a) Variance of stochastic gradients (b) Training and validation loss (c) Training minus validation error

Figure 6: Experimental results for the XLNet model on the Yelp dataset. Left: The variance of stochastic
gradient estimators vs epochs. Middle: The training and validation loss vs epochs. Right: The training and
validation error vs epochs.

this decreasing property does not hold on the validation set when the loss tends to be stable or
increasing, in other words, the model starts to be over-fitting. We hypothesize that this is because the
learned weights start to bounce around a local minimum when the model is over-fitting. As the larger
mini-batch size brings smaller variance, the weights are closer to the local minimum found by SGD,
and therefore yield a smaller loss function value. Figure[5|b) shows that both the expected error on
training and validation sets are decreasing functions of b.

16

Figure [b) exhibits a relationship between the model’s generalization ability and the mini-batch size.
As suggested by [39], we build a test set by distorting the 10,000 images of the validation set. The
prediction accuracy is obtained on both training and test sets and we calculate the gap between these
two accuracies every 100 epochs. We use this gap to measure the model generalization ability (the
smaller the better). Figure f{b) shows that the gap is an increasing function of b starting at epoch
500, which partially aligns with our conjecture regarding the relationship between the generalization
ability and the mini-batch size. We also test this on multiple choices of the hyper-parameters which
control the degree of distortion in the test set and this pattern remains clear.

Figure [6] shows the similar phenomenon that the variance of stochastic estimators and the expected
loss and error on both training and validation sets are decreasing functions of b even if we train
XLNet using Adam. This example gives us confidence that the decreasing properties are not merely
restricted on shallow neural networks or vanilla SGD algorithms. They actually appear in many
advanced models and optimization methods.

B Lemmas and Proofs

B.1 Lemmas and Proofs of Results in Section 3.1]

For two matrices A, B with the same dimension, we define the inner product (4, B) := tr (A" B).

Lemma 2. Suppose that f(x) and g(x) are both smooth, non-negative and decreasing functions of
x € R. Then h(zx) = f(x)g(x) is also a non-negative and decreasing function of .

Proof. Ttis obvious that h(z) is non-negative for all . The first-order derivative of h is

W(z) = f(x)g(x) + f(x)g'(z) <0,

and thus h(z) is also a decreasing function of z. O

Proof of Lemmall) Throughout the paper, We use C* = W to denote the combinatorial number.
Note that

E |} (o) || = E | X VL (wh)] VL (
ieBl ieBb
1 (crl -2
-5 (a2, VLi (w)) VL; (w?)” + C,ﬁ Y IVL; (w)) VL, (w};)T)
nog=1 nooi#j

Il

<
/-~
Sl
=
<

5

=
Nl
<

&

&
i”_?
**M

L (w b)T)

n(=1 e z:l
n—>ob n b—1)n
= 2 Ve () VL () ¢ ém_”l)w)L)"

17

For any A € RP*P, we have

E||Agt|”

] = [()TATAgi7]—'b] =E [tr ((gf)TATAgf)‘}'f]
=B (4%t ())|72]
=tr (ATAE [gt () D

- <bnqzn -1) Z ATAVL; (w}) VL; (w)T + Z(JIZH__I)SATAVL (w}) VL (wf)T>
n— u (b—
“ (=1 Z [AVL: (wf)[* + bn HAVL(NI°
o (A 51w () L o)) AV @)
i=1

Therefore, we have

var (Agf|]:f) =K [HAgt 2

?| - IE [4gtl]

—E||Agt*| 7| - [AvE (uh)[”
1 ¢ NP by (12
= | = D [AVL ()|~ [AVE (wi)]”)
i1
O
Lemma 3. For any set of square matrices {Aq,--- , Ap} € RP*P, ifwe denote A = > | A;x;xt,

then we have

E[
i=1

2 2 2

kl
i

(o)

o (wha) i (w?)

fo] +

2 n n n
Y NE
2
k=11=1

fo}

fo] -& [
i=1

Here B, = A; — %A; Bfl =Aifi=k,i#]I, Bfl =Aifi=1,i #k, andBfl equals the zero

matrix, otherwise.

18

Proof of Lemma[3] Let C; = z;zl and C = L 3" | C; and thus A = ¥ | A;C;. Then

4_44j .ﬂﬁl

2

i=1
n 2
=F |E Z thgt))xz ff:| fO]

]

2 2

E || AVL; (w},,)
=1

n

=E|[E Z A; (xZwaH —yi) x;

i=1

2

—E|E || AVL; (w}) - a,Ag}
i=1

2 n
_E Fo| - 204 lE KZ A;VL; (w)) ,Agi’> ff} fo]
i=1 i=1
+ afE [IE [HAglt 2 t: ’.7:0]
- - .
i=1 i=1
+aE |c (Z |AV L)) — [AVL(w?)]) + fo]
i=1

N 2
—E | |Y AVL; (w}) - a,AVL(w})

i=1

Fo —&-afch[Z”AVL wt || -

i=1

2
at Cp

—E || Y AVL; (w}) — a,AVL(w})

i=1

—E i(A—A) Li (w)

Fo | + % S B [|AVL, (wf) - AV (u}) | 70|

i#]

}'0] + ang i iE[HAVL (w}) — AVL; (w})] ‘}‘o]

i=175=1

2

Therefore, if we set B; = A; — <+ A and

A i=ki#l,
Bfl_{—A i=1i+k,

0 otherwise,
]-'0] =E [> BVL; (w))
i=1

we have

q”

2 2

DAL (wfy,)

i=1

Rrigiiq

Proof of Theorem|[2] We use induction to show this statement.

When t = 0, E [Hg;l AVEL; (w) \\Q)fo] — |3, A;VL; (wo)|? which is invariant of b. There-

fore, it is a decreasing function of b.

19

Suppose the statement holds for ¢. For any set of matrices {Ay, ..., A,} in RP*?, by Theoremwe
know that there exist matrices {By, -+ , B, } and { B} : i, k,1 € [n]} such that

2
Fo| =E

2 n

n 2
>, BiVL (uw}) o

i=1

Z A;VL; (w?+1) Fol| +

i=1

E

n o n
2B
k=11=1 i=1

By induction, we know that E [[, B:VL; (w})|”|F | and all B ||, BEVL; (w)) || 7]

afcb _ af(n—b)
n2 = bn3(n—1)

and decreasing function of b. By Lemma we know that %E [HZ?’:I BFVL; (w}) H2‘]-'o] is

are non-negative and decreasing functions of b. Besides, clearly is a non-negative

also a non-negative and decreasing function of b. Finally, E [HZLl A, VL; (wf +1) H2‘}"0], as the
sum of non-negative and decreasing functions in b, is a non-negative and decreasing function of b.
O

In order to prove Theorem[3] we split the task to two separate theorems about the full gradient and
the stochastic gradient and prove them one by one.

Theorem 9. Fixing initial weights wy, var (BVL (wi’) |]-"0) is a decreasing function of mini-batch
size bfor allb € [n], t € N, and all square matrices B € RP*P.

Theorem 10. Fixing initial weights wy, var (B gt ’]—'0) is a decreasing function of mini-batch size b
forallb e [n], t € N, and all square matrices B € RP*P,

Proof of Theorem[9} We induct on t to show that the statement holds. For ¢ = 0, we have
var (BVL (w}) |Fo) = 0 for any matrix B. Suppose the statement holds for ¢ — 1 > 0. Note
that from

VL (wf) = T; (mfwf — yi)

-
Il
—

S
=

T4 (CUZT (wfq - atgf,l) — i)

S|
1P

I
<] 3=
t~

=

n
T, b @ T b
i (xz Wi_1 — yz) T Z Lil; Gg—1
i=1

.
I
—_

(wffl) - atCQile

20

> BHVL; (w))

2

Fo

we have
var (BVL (wf) ’]:0)
= var (BVL (wi’ 1) — a:BCg? | 7o)
—E|[|BVL (u}_)) — a:BCo, | 78] — [E[BVEL (wi_,) - asBCgl, | R
—E||BVL (w}_)) | — 20 (BVL (w}_,) , BCg}_,) + o |BCg!_,|]fb] |E[BVL (w!_,) — a;BCgl_,|FL]|
(w?

|7 + o [E [[BCg, |

Fo|| 78] - 200 [[(BVEL (wh_y) BCgt DI FE |7

g

)

)

—E||BVL (u}_,)
~ |E[E[BVL (w)_,) - s BCgl_ |,]| R

)

—E||BVL (wl,)[*|Fo] + ofE

(n > [BOVL (wy_) | = |BCVL (uf_y) \2) +|BEVE (w),)|’
i=1

fO]
1 n

S E[1BOvL ()| - [)Bcwwsl)ﬂfo])

i=1

— 20, [(BVL (w_,), BCVL (w’_,))| Fo] — [E[BVL (w!_,) — s BCVL (w?_)|]|
(3)

1 n
—E[|B(- C) VL (w}_,) ||2‘J-"8] +a2eE K” Z |BCVL,; (w!_)|* = | BOVL (w}_,) |2>

—|E[BI - C) VL (w_ 1)|f0

n

=var (B(I —atC)VL(wt 1) [Fo) —&-atcb(

= var (B(—a;C)VL (wt 1) |_7:0 [HBC’VL wl_ 1 — BCVL; (wi’_l)HZ‘]-"o]v

“)
where (3) is by Lemmal[I] By induction, we know that the first term of (@) is a decreasing function of

b. Taking A; = BC, A; = —BC, Ay, = 0,k € [n]\{4, j} in Theorem 2 we know that
E[|BCVL (wiy) - BOVL; (w)-,)|’| 7

is also a decreasing function of b. Note that ancb decreases as b increases. By Lemmalwe learn that
(@) is a decreasing function of b and hence we have completed the induction.

L]
Proof of Theorem[I0} We have
var (Bg} | 7o) = E | |Bt|| o | - |E [Ba|7o] |
~E|E||Bg[|72 ||| - [E [E [Bg| 7] 70] [
(2 S [lovs)] -2 v ot)

+E[|BYL (u})|’|Fo| — [E[BVL (w})|7o] |

- & Y E||BVL: (uf) - BVL; (w)) |70 + var (BVEL (w}) | 7o) -
i#j

Taking A; = B, Aj = =B, Ay = 0,k € [n]\{i, j} in Theorem 2} we know that
E[|BVL: (w}) = BVL; (u}) | 7]

is a decreasing and non-negative function of b for all ¢, 5 € [n]. By Theorem EI, we know that
var (BVL (w}) | Fo) is also a decreasing function of b. Therefore, var (Bg} | Fo), as the sum of two
decreasing functions of b, is also a decreasing function of b.

21

Proof of Corollary[l] Simply taking B = I, in Theorem 2] yields the proof. O

B.2 Proofs for Results in[3.2]

Notations. For n € NT, we use e, 4,7 € [n] to denote the i-th unit vector of R™. We denote
Z = {I, : n e Nt} as the collection of identity matrices and we define a set of (infinite many)
matrices

Epr ~pieps) [(€pu20)(€5.,70) [(1171) @ ® (ymTm) ® (2171) ® -+ (273]] -
Yi = ep,j{ ® e ®6p’j;‘,ni ®$?,S7’, ®€p7ki‘, ® N ®ep,ki’bi7
Yi=e,; ® ®e, ®a}s, e,z ® ®e, i,

Podm, Ko

Co— 20 € {xi’l 1i € [b]} U {epu},Zo € {xf,i 1q € [b]} U {epw} u,v e [p],
2j,Z; € {55?1 1i€ [b]} .7 € [n],

JirTar Ky By €] cv € [mal, B € il i € [m],

my,n; €N, s;,5; € [b],i € [m],

m,neN,te NT

where p is the dimension of the samples and x?ws, s € [b] are the random samples we use to build the

stochastic gradient at step ¢ and thus every element of C is a constant matrix under F. Note that C
is a union over all m, n, m;,n; € N and t € N*. We also point out that when zg = €p,us 20 = €p.us

the leading scalar terms are 1. We also denote & := {e, el ; : i,j € [p]} and C := C|JZ|J €. Note

that every element of C is a non-random matrix under F, and C is an infinite set of matrices that we
use in the following proofs as auxiliary matrices.

T T T
Let 91157,1,5 = (Wtbg) WP (mi’s (x'g’s)) and th,z,s = Wtb (mgs (mf_ys))~Wtb71, s € [b] denote the
stochastic gradient with respect to the sample 7 , at time step t. We have g7; = § X 41 975,507 =
1, 2. Recall that we denote W) = {Wp |, Wiy}, W* = (Wi Wi} and G} = {g} |, g}, } in Section
—b .

We further denote G, = {g?, ,:s€[b],i = 1,2} and X} = {xfé (xf,s)T 1s€ [b]} For
simplicity, we denote GY ., := ?:tl GYand W}, = iitl wp.

Throughout the discussion of this section, we define the term that a matrix A “takes values in” or
“belongs to” a multi-set A if either A or AT are in A. We also abuse the notation A € A to denote A
isin A or AT isin A.

Lemma 4. For matrices M, j,i € [m], j € [n] with appropriate dimensions, we have

® (1) I1 (@)

i€[m] \ je[n] je[n] \i€[m]

Proof. Tt is easy to prove by induction on m and n and by the fact that (A ® B)(C ® D)
(AC) ® (BD) for any matrices A, B, C, D.

[

Remark. If we view the multi-set M := {M; ;, i € [m], j € [n]} as a matrix of matrices
Myy My Myz -+ M,
M:o s
Mm,l Mm,2 Mm73 T Mm,n

then) ;¢,] (]_[jern) M, j) can be regarded as first multiplying the entries of M within each row

and then using the Kronecker product to multiply all of the rows. Similarly, [;¢ (@ie[m] Mm‘)

can be regarded as first using the Kronecker product to multiply all the entries of a column, then
multiplying all the rows. Lemma[]shows that these two calculations on multi-set M give the same
resulting matrices. We frequently use this lemma in the following proofs. We give illustrations of the
multi-sets to help readers better understand and follow the proofs.

22

Lemma 5. Given two distributions D1 and D in RP* and RP2, respectively. Given y1, . . ., Ym ~ D1,
21, ... 2n ~ Do and constant matrices Dy, ..., Dy, A1, ..., A, with appropriate dimensions, we
have

Ey,~Di,2;~Ds [Doz125 D (2{ D122) -+ (201 Dn—12n) (yhAmun) (ui A1) -+ (v 1 Am—19m) |

g e e G (CRRCR))]

for some constant matrices C,, ,, specified in the proof.

Proof. Letyg := y,, and Ay := A,,,. We have

m—1 - m—1 n—1
H (yI Aiyisr) H z; TDizji1) = tr (i Aiyiz1) H tr (ZJ-TDiZjH)
i=0 j=1 i=0 j—1

m—1

—

~.

g

|
-

tI‘ szrlyz H Zj+1z D)
m—1 n—1
<® Yir1Yi)) ® < (Zj+1ZjTDi)>>
1= Jj=1
1 n n—1
“(((guon)o(@enn)) ((84)+(82)))
i=0 j=1 j=1
where we use the fact that tr (A)tr (B) = tr(A® B) for any matrices A and B in the
second-to-last equation and use Lemma {4 1n the last equation. Further, note that zyz! =
Zume[pl] em,uegw (eglyuzl) (eglyvzn) and ep1 w21, we have
Ey;~Dy,2j~Dy [DOZM:D" (ZlTDlzz) o (szan—lzn) (y,TnAmyl) (leAlyz) . (yTTwlAm—lyvn)]
= Eyi~D1,2j~D2 |: Z Do (em»“egl,v (egl,u'zl) (ezl,vzn>) D, tr <<<7®)1 (y1+lyzf)> ® <1&>11 (z]quz?))) ((WQQIA) <V®1 D; >>>}
w,velp1] s iz
= Z]Ey'i"’Dlrzj'“D2 {Doeplyuez;lvantr (((egl,uzq) (ezj:l,vzn) (féé: (y1+1y3~)) ® <’&>ll (zj+1zji_">>>) ((’" 1) (n 1)))]
u,velp1] i= i= =
= Z {Doem,uegva”tr (Eyi~731,2j~92 [(ezl,uzl) (p1,v7) (® (Tli+1yiT>> ® (”’11 (ZJ+IZJ'T)>} <<m®lA) (" 1)))}
u,ve[p1] =0 J
-3 entns (e (5o (32)
u,velp1] i=1

where Cuy = Byupyims | (6 u21) (€hr020) (O (win107)) ® (@] (254127)) |
O

Lemma 6. Let M := {M; ; : i€ [0:m],j € [n]} be a multi-set of matrices such that each M; ;
or its transpose only takes value in W¢,, Uéi U ng(tfl) UW*JC and deg (@f; ./\/l) = d (here
d, m,n are constants independent of b). Then for

m i=m+d—2, n:=6mn(d+1), L:=2%p?mD+2

where d' = deg (élt); {M;j:ie[m],je [n]}), there exist multi-sets of matrices Q; :=
{Qiuw:ue[0:m],ve 0]}, €[L] such that

Eltr|([C| @ | []Mj|||[]Mos|F|=Date|C| @ | [] Qo [T @uow

ie[m] \ je[n] je[n] le[L] ue[m’] \ ve[n’] ve[n']

23

</

where ¢; € {—1,+1}, C,C; € C and Q; .., only takes value in W¢, | J ng(t_l) Uw*UJC uel0
m'],v € [n'],l € [L]. Further, for eachl € [L] we have

Q
(S
2
~

m
—

o

~

|

—
P

Proof. Let M := {M, ;:i€[0:m],j € [3n]} be the multi-set of matrices such that M; ; =
Mi,3j72 ‘Mi,?)jq 'Mi,gj, where

o if M, ;€ élt) and M; j = g1, = (Wt’fz)TWtb <xé”io (mg’iO)T) for some iy € [b], then

M wo " M b b b \T.

we set M; 352 = (t,2) s Misgj—1 = Wy and M, 35 = z}; (xt,io) - the case of
_ b ./

M;; = 9¢ 2.4, for some i, € [b] is similar;

. —b — -— — .
o if M, ; ¢ G,, then we set M;3;_o = M;; and M;3;_1 = M;3; = I, where I is an
identity matrix with an appropriate dimensiorﬂ

My
M 1
M:

_Mm,l

e Y — .
My, Moz Moz Moy
Mm Ml,z Ml,?; M1,4
_M'm,l Mmz Mmﬁ MmA

My
My o

il

H0,5
Mlﬁ

My, 5

My n, 1

My,

Mm,n .|
Moe - Mosgn-2 Mozn1 Mosn
Mg - Mign2 Mige1 Mg,
M'm.,ﬁ e Mm,?m,f2 Mm,‘dnfl Mm,Sn _

Figure 7: The transformation from M to M.

Figure [7|shows the transformation from M to M. By this transformation, we have

[n]

[] M= [] Miy, i€l0:m], (5)
JjE

Jjel3n]

“In the following, we use I to denote an identity matrix with an appropriate dimension, without specifying
the dimension. Readers should be able to infer the dimension easily from the matrices that this identity matrix is

multiplied with.

24

where each M ; € Wg, UGG,y UW* U WU X7 UC and

deg (W2; M) = deg (W}; M) + deg (@f,/\/l) = deg (W); M) +d,
deg (W*; M) = deg (W*; M),

deg (WP; M) = deg (@i’; M) —d,

deg (X?; M) = deg (@i’; M) —d,

deg (é’;;ﬂ) —0,

deg (W M) = deg (Wi M), fel0:t—1],

deg (G%; M) = deg (G1; M), fel0:t—1].

Further, let M := {]\Z jiief0:m],je [3mn]} be a multi-set of matrices such that

M; 1<i<m3-(i—-1)-n+1<j<3-i-n,
M; ;= M;; i=0,1<j<3n, (6)
I otherwise,

where I denotes an identity matrix with an appropriate dimension. Figure [§shows the transformation
from M to M.

- Mo,l Mo.z e Mo,sn |
Mm Ml,z s M[,i}n
ﬂ : M.z;l M2,2 tee Mz,zn
_Mm,l Mm,? e Mm‘?m i
Mﬂ,l Ho,z oo¢ Ho,:m I I e I
Hl,l ﬂhz s ﬂl,gw I I . I
I r .- I Msy My - My,
| T I I I I I Mml ng MM,”

Figure 8: The transformation from M to M.

Then we have

deg (W3 M) = deg (W} M) = deg (W5 M) + d,

deg (W*: M) = deg (W* M) = deg (W*5 M),

deg (Wi M) = deg (W}s M) = d,

deg (Xt”;/\?) — deg (X" M) = d,

deg (W}’;M) — deg (Wh M) = deg (Wi M), fel0:t—1],
deg (G’};M) = deg (G% M) = deg (Wi M), fel[0:t—1].

By (), (6) and Lemmaf] we have

Q[[TMy|=@ | [] Moy |= Q@ [[T My |= T[] (@AZ,J) (7)

ie[m] \ je[n] ie[m] \ je[3n] ie[m] \ je[3mn] je[3mn] \i€[m]

and o N
[[Mo; =[] Mo;= [] Mo ®)
j€ln] Jje[3n] j€[3mn]

If we denote
do := deg (Xf; {J\“J’O,j je [3mn]}) — deg (éﬁ; (Mo :je [n]})
and
@ = deg (X}3{ My i e [m], j € [3mnl}) = deg (G {Mi; i € [m],j € [n]})

then we have dgy + d’ = deg (6?, ./\/l) =d.

Without loss of generalization, we assume that dy > 0 and d’ > 0 (the case of dg = O ord’ = 0
are simpler than the general case we discuss below and can be derived directly from the following
arguments).

Note that for any j € [3mn], the multi-set M ji= {Z\Z jii€E [m]contains at most one element

that is not an identity matrix. Thus, there exist exactly d’ pairs of indices (i1, j1), ..., (i@, jar), 1 <

J1 < -+ < ja < 3mn,i € [m],k € [d] such that M;, ;, = af ., (xi’,Sk)T e X! for some
sk € [b], k € [d']. By (6), for any k € [d'],]\71 j,. 18 an identity matrix with an appropriate dimension
ifi # jg,i € [m] (it is easy to see that]\Z]k = Ip,i # ji, since]\Zwk =ab,, (:pgsk)T € RP*P).

~

Thus, we can write &);c(,,) Mi,j, in the following way

~

® Mi,jl«,

i€[m]
— b b \T
=L® -QL® T sp (‘Tt,sk) LR - ®I,
— —
(i — 1) Ip’s (m —ig) Ip’s
T
= Z Ep.q1 617;141 ®-® Z 61‘77‘1%7165(1%71 ® (x?,sk (xgsk)) ®
q1€[p] qij,—1€[p]

T T
® Z €p.qiy,+1%p,qiy 41 ® ® Z €p.qm €p,qm

qij,+1€[p] am€[p]

- > (eraeha) ® @ (ena,-165q,) © (b, (ahs) ") ©

Q1y5Qig—1:Tif+15---,dmE[P]

T T
® (epaQik,+lengik+l) K (ep,qmep,qm)
_ b
= 2 (epm Q@ pg, 1 Tt Depgy 1 @ @ erQm) ‘

q1seeGig—15Gig +150-dm E[P]
X T
’ (ep,ql @ Qepg, 1 Oy, €pg, .1 @ @ euqm)
o b b T
T Z Yt kg (yt,k,q) ’)

qe[pm—1]

>Note that My, ; ¢ ./\7]-,j € [3mn].

26

where the second-to-last equation follows from Lemma and yf kg = € @ ®€pg, @xlg’% ®
pagi 1 @ ®epg, Withg—1= (g1 =1)+ (g2 = 1)p+ -+ (qi—1 — VDp"* > + (qi 11 —
Dp™ = 4+ (g — ™2]

If we denote

Ak:: H (@Mi7j>’ 1<k<d/_]-»

JE<j<irk+1 \i€[m]

Avi=] (@ M})

Jor <j<3mn \i€[m]
Figure|§| gives an intuition on how we split the multi-set M to form quantities Ag, A1, ..., Ag.
Mo, - o Mosmn
My, oo Myja My, My o0 My, My, My, Muyjza o0 Migme
Mm,l o Mm,jlfl Mm,j1 Mm,j1+1 e Mm,jz—l 17\4’11;,]’2 Tttt Mm,jd Mm,j,,+1 T Mm,.‘}m'n,
AO Al Ad

Figure 9: The formation of Ay, Ay, ..., Aqg.

Combining (7) and (@), we have

tr | C ® H Mi7j =tr|C H (® Mi,]’)
Jjeln]

ie[m] je[3mn] \i€[m]

=tr <CA() < ® Mi,h) Ay (Mi,h) Ao Ay (® Mi,jd/> Ad’>
i€[m] i€[m] i€[m]

T T T
b b b b b b
=tr | CAp Z Yt,1,q1 (ytwlaql) Ay Z Yt,2,q0 (yt71,q1> Az Agy Z Yt,d’ .q 4 (yt,d’,qd/) Ay

q1€[p™—1] g2€[p™—1] qq€[pm 1]
T T T
b b b b b b
- Z tr <CA0?Jt,1,q1 (yt,l,ql) A1Yi,2,45 (Z/t,l,ql) Az Agayiar gy (yt,d/,qd,) Ad’)
q1,-,qgr€[p™ L]
T T T
b b b b b b
= Z <yt,d/,qd/) Ad’CAoyt,l,ql (yt,l,ql) Alyt,2,q2 (yt,l,ql) Ag--- Ad’ﬂyt,d’,qd/

b T b b T b b T b
= Z (yt,d’yqd/) Ad’CAoyt,l’fh (yt,l’ql) Alyt»2,q2 <yz,d’—1,qd/_1) Adlflyivd',%’ ’

(10)

where we use the fact that tr (AB) = tr (BA) for any matrices A and B with appropriate dimension
in the second-to-last equation.

SIntuitively, this equation gives a one-to-one mapping between

{(q1s - Qi1 Qig 1y Qm) Qs Qi 15 Qi 41, Gm € [p]} and {q:q€ [pmfl]}. In fact,
g1 —1,...,¢i,—1 —1,qi,+1 — 1,...,qm — 1 are the digits of the base-p representation of ¢ — 1.

27

Similarly, there exist exactly dy indices [1,...,lq, suchthat 1 < I; < -+ < lg, < 3mn and
]\7071,6 =}, (:z:lt’mk)T € X! for some 7 € [b], k € [do]. If we denote

D() = n Mo’j,

1<j<ly

Dy, = H My j, 1<k<dy—1,
le<j<li+1

Dyyi= [Moy,

lag<j<3mn

then we have

T
> b b \T b b \T b b
H Mo ; = Doxtﬂ“l (xt-,m) Dlxt,rz (mt,7’2) "'Ddo—lmt,mo <xt77"d0> Da,
jEe[3mn]

= Doxf;ﬁ (zg,rd()) Dy, ((xf,m) Dlx?ﬂ"z) ((zgﬂb) D2If7r3) ((z?vrdol) Ddo—lﬁﬂo))
(11)

Combining (T0), (TT) and by Lemma 5] we have

E|tr|C ® HMi,j HMOJ‘Ftb
Jje[n]

i€[m] je[n]

=Eluw|Cc| ® | [] My [T Moy |7

ie[m] \ je[3mn] Je[3mn]

T T T
© X et () pa () D) () Panet)

q1,--,qq€[p™1]

T T
b b b T b b b
' ((yt,d’,qd/) Ad’OAOyt,l,ql) ((yt,l,ql) Alyt,zqz) ((yt,d’—l,qdu) Ad’—lyt,d',qd/>

= Z Z Doepprer o Dagtr (Cyy. gy prpe (AeCA) @ A1 ® - Ag_1 ® D1 ® -+ Dgy—1))

q1,--sqq €[P™ 1] p1,p2€[P]

]—'f]

12)

where the exact value of Cy, ... 4., .p1,p. 15 available in Lemma@

Finally, it remains to show that (A7 CAp) ® A1 ® - ® Ag—1 ® D1 ® - - - Dy, 1 can be written in
the form of @ ([T M, ;). To this end, let {B; ; : i € [d — 1], j € [d + 1]} be a multi-set of matrices
such that Bl,l = Ad/,BLg = C, Bi7i+2 = Ai_l,i € [dl],Bd/+i7d/+i+2 = D;,i € [do — 1] and
B, j = I otherwise. Following is an illustration of the multi-set {B; ; : ¢ € [d — 1], € [d + 1]}.

'\(NE

C
1
I

N

s

~
NN~

{Bi,j}(d—l)x(d+1) :

~
S
o
e
~ i~ i~

~N e
~
-
S

28

We have

(AgCA)) ®AI® - ®Ay_1Q0D1 Q- Dgy—1 = @ H B |= H (® B; ;
ie[d—1] \ je[d+1] je[d+1] \i€[d—1]
(13)

Note that for each j € [d + 1], there is at most one element of {B; ; : i € [d — 1]} that is not an
identity matrix. We next show that, for each j € [d + 1], @ie[d—1] B; ; can be written as a product

of the Kronecker product of some matrices of the form

® Bij=]] (& J‘A@u) (14)

ie[d—1] j’e[3mn] \i’€[m+d—2]

In fact, for 7 = 1 we have

Q) Bi1=ArQRI® QI

i€[d—1] (d—2) s

- 11 <®J\7J> RIQ QI

Jar<j'<3mn i'e[m]

- ® [] My||l®lo @I

i'e[m] \ j<j’<3mn

~

= J] Myle-o|] Mwy|o|] I|le-®

Jar <j'<3mn Jar <J'<3mn Jar <j'<3mn Jqr <Jj'<3mn

H (@Mi,,j)@I@---@I

Jar<j’'<3mn i'e[m] (d—2)I's
- I®--.) My
]_[® I |]_[<7® MJ)@I@ ® I
VSar | (m+d—2)I's Jar<j'<3mn | \i'€[m] (d—2)TI's
= H (® Ml,i’,j’) .
j'e[3mn] \¥€[m+d—2]

The case of j = 3 (and thus ®ie[d—1] Bis=A®I®---®1I)issimilarto j = 1. For j = 2, we

(d—2) I's
have
X Bi2=C®I® - ®[=CRI® - QIQI® QI
. —_——— ~ ~
ield—1] (d—2)I's (d—2) I's (m —1) I’s
=|c [T 1]l®e| ® [T 1]l®| &® I] I
j'e[3mn—1] i’e[d—2] \ j’e[3mn] i'e[m—1] \ j’e[3mn]

celes)ele) L l(e)(e)

= 1_[® J/M\27i/’j/> .
€[3mn i

29

) |

[1

1

For 4 < j < d’ + 2 (for clarity, we write X),c(417 Bik to replace (9;c(4_17 Bi,j ford < k < d'+2
so that we avoid the conflict of j and 51, ..., j#), we have

X Bip=I® QIQA 301 QI

ie[d—1] (k—3) I's (d—k+1)Is

(Le,)e I (&m)|e(. %J)
® (1 1)|e|® e [

i’e[k—3] \ jr—3<j'<jr—2 'e[m] \ ji— 3<J <jrk—2 €ld— k+1 Jr—3<j'<jk—2

el i)l
I ey e(gm)eL W]fﬂ

- T (® M)

j'e[3mn] i’€[m+d—2]

The case of d’ + 3 < j < d + 1 is similar.

In conclusion, we build a multi-set of matrices M =
{ M0y j € [d+11,7 € [3mn], ' € [m + d — 2]} such that (T4 holds for all j € [d + 1] and
each]/\Zjﬂ;/,j/ € {M@j 11E [m],j € [3mn],j F 1, .- 7jd’} U {MOJ 1] #F ll, ceey ld()} UI only
takes value in Wg,, G5,) UW* U W} ZUACY.

Further, if we denote multi-sets of matrices M\gl’p 2= {M\é’b’p 2:j€[3mn+ 1]} ,P1,D2 € [p]
such that

Mo, 1<7 <,
T .
M\én;pz — €p,p1€p,po Jj =1, (15)
Mo ;1 lay +1<j<3mn+1,
I otherwise,

and by the representation of M; ;s ; above, we have

Eltr|C| ® HM,J [1 Mos|F?
j€ln]

ie[m] \ je[n

B Z Z Doep,plengdotr (Carooigrprpn (ArCA)® AL ® - Ax 1 @ D1 ® -+ Day—1))

q1,--,qq €[P™ 1] p1,p2€[P]

— Z Z tr qu Qg7 >P1,P2 H H ([® Mj,ﬂ,j’) 1_[M,’Dl,m
i sel

q1,---,qq €[p™ 1] p1,p2€[p] jeld+1] j’€[3mn] \i'€[m+d—2] e[3mn+1]

(16)

30

and for each py € [p] and py € [p],
deg (WP ME7) + deg (WY M) = deg (W3 M) = deg (W) M) +d,
deg (W*; ME2) + deg (W5 M) = deg (W*; M) = deg (W*; M),
deg (Wf; /\7{,’1”’2) + deg (Wf; WP /\7) —d,
= > deg (X}; M) =0,
JE[Bmn],j#j1,...da

deg (W}’;ﬂgl’”) + deg (W ; = deg (WJI?,./F\/IV) = deg (W}’,M) , fel0:t—1]

N——— —— N— N N
I I

o

@

02

/N

deg (Gb,/\/lplp2> + deg (G : g(Gb;M) :deg(Gl};M) felo:t—1].

For simplicity, let us denote

IT 11 (&]‘A@i’,j'):

I1 (®]Nu,v>— ® 3Ud“ Nuw |

je[d+1] i'e[3mn] \Jj'€[m+d—2] ve[3mn(d+1)] \ue[m+d—2 ue[m+d—2] \ ve[3mn)]
H Mpl P2 . 1_[Ngldpz,
je[3mn+1] ve[3mn(d+1)]

where Nj’,3mn(jfl)+i’ = Mj,i’,j/ajl € [m +d— 2],] S [d + 1],7:’ € [3mn],Ng,1j’p2 = M\5731P27j €
[3mn + 1], p1,p2 € [p], and N§™* = I,3mn + 1 < j < 3mn(d + 1), p1, p2 € [p]. Thus we have

tr CQ17--<7qduZ71-,P2 n H < [@ @J’J') H J/\Zé),ljpz
i [

je[d+1] j’e[3mn] \i'€[m+d—2] je[3mn+1]

= tr CQ1,~~7qdf \P1,P2 ® 1_[Nuyv H N&l,u’pz. (17)

ue[m+d—2] \ ve[3mn(d+1)] ve[3mn(d+1)]

It remains to expand all appearance of WW? in the multi-sets
N :={Ny,:ue[m+d—2],ve[3mn(d+1)]}

and
NGHP2 = {NgyP? v e [3mn(d + 1))}, p1,p2 € [p].

In fact, for each p; € [p] and py € [p], it is easy to see that
deg (Wf,/\/'én’pz) + deg (Wf7j\/') =d.

Recall that W) = WP,W/p, — WHW. If we replace all appearance of W} in (T7) with
) an

(WEWhy — W3 d expand all parentheses, we have

P1,p2
tr Olh,mﬂ,ﬂ »P1,P2 @ H NU,’U n NO,u

ue[m+d—2] \ ve[3mn(d+1)] ve[3mn(d+1)]
— —lp,
= Z atr OQ1,-~7Q,1/,P171)2 ® H Nu,v H NO,];lmv (18)
le[24] ue[m+d—2] \ ve[6mn(d+1)] ve[6mn(d+1)]

where ¢; € {—1, lfor l € [29]. Foreachu € [m+d—2] and v € [3mn(d+1)], the two consecutive
matrices Wi,gv_l and N;,qu equal to (i) either Wy, W, or Wi, W, respectively, if Ny, =

In fact, ¢; = (—1)°%, where s equals to the number of appearance of W W;* that come from W in
{Ni,v cu€[m+d—2],ve [6mn(d+ 1)]} U {Wé’ﬁl’m :j € [6mn(d + 1)]}

31

W?; (ii) N, , and I, respectively. The same argument also holds for all N [;”21;7"21 and N ’;1,;”2,
[3mn(d + 1)]. The summation comes from the fact that deg (W}, N§**P?) + deg (W}, N) = d and
thus we end up with 2¢ terms of the Kronecker product of product of matrices.

Further, if we denote multi-sets of matrices A := {Wlm cre[m+d—1],s€ [6mn(d+ 1)]} and
Nl SR {Né’?’m 2 j € [6mn(d+ 1)]} ,p1,P2 € [p],1 € [29], then the elements of N's and

Ny ’pl’pz’s only take value in Wg, | Gf,,_,) UW*|JC. Foreach l € [2%], p; € [p] and p; € [p],
we have

deg (Wtb;Jvl> + deg (Wtb,/\fl o pz) < deg (Wtb;/(/l\) + 2deg (Wtb,ﬂ/l\) = deg (Wtb;/\/l) + 3d,
deg (W*,N) + deg (W* Ny Lpp2 deg (W*) + 2deg (Wf; M\) = deg (W*; M) + 2d,

deg (Wt)

deg (Gb;/\/> + deg (Gb,N S

and

) <
=0

deg (W}’,N) + deg (Wf,/\fl - p2) (Wf,) + deg (Wf,/\/lpl’pz) = deg (Wf,M) , felo:t—1],
) (Gb,)+deg(Gb;M81’p2)=deg(Gf;M), felo:t—1].
(

deg (Wt N LpL p2> + deg (W*; N LpL p2) + deg (Wt ,J\/) + deg (W*;Nl)

deg (W*; M\) + deg (Wtb; M) + 2deg (Wtb, M\)
deg (W; M) + deg (W*; M) + 3d.

Combining (T6), (T7) and (I8)), we have
Eltc|C| Q@ | [] My]|]||F

ie[m] \ je[n]

— Z Z Z citr qu,...,qd, ,P1,P2 ® 1_[Ni,v H NO,Pl ,D2

1559 €[P™ 1] p1,p2€lp] le[29] u€[m+d=2] \ ve[6mn(d+1)] je[6mn(d+1)]
where Cy, . . p1.p, € C by its definition. Obviously, there exists a one-to-one mapping be-

tween {(QD -5 4qd’ P15, P2, l) ‘q1,---,4qa € [pmil]apl,pQ € [p]vl € [Qd]} and {l e [L]}) L =
2dpd (m=1)+2 By taking Q) = {Qiuv:ue[0: (m+d—2)],ve [6mn(d+ 1)]} based on this
one-to-one mapping, we have finished the proof. [

Theorem 11 (complete version of Theorem[d). Let M := {M; ; : i € [0 : m], j € [n]} be a multi-set
of matrices such that each M; ; or its transpose only takes value in we, U Gh., yw# U@ and
deg (Gf; /\/l) = d (here d, m,n are constants independent of b). Then for

m' i=m+d—2, n':=6mn(d+1),

there exist a constant independent of b and multi-sets of matrices Q;s =
{Qisupw:ue[0:m],ve[n]},le[L],s e [0:d] such that

Eftr| C ® HM’J HMOJ‘Ftb :&0_;_&114_...4_5%7
]

iefm] \jefn] jetn ’

where

Qs = Z astr [Cs | & H Ql.s,u.v H Qis00v,8€[0:d],

le[L] ue[m’] \ ve[n’] ve[n’]

8The exact value of L is specified later in the proof.

32

c1s is a constant, C s € C and Qs ., only takes value in W, | J Gg:(t—l) UW*JC. Further, we
have

deg (G¥;Q15) =0,
deg (W); Qi) < deg (W); M) + 3d,
deg (W*; Q) < deg (W*; M) + 2d,
deg (WP; Qu5) + deg (W*; Qp) = deg (W M) + deg (W*; M) + 3d
deg (W}; Qus) = deg (Wi M), felo,t—1],
deg (G5 Qus) = deg (G M), fe[0,t—1],
deg (W*; Q5) = deg (W*; M).

Proof. Note that deg (Gi’ ; M) = d. By (1) and (@), replacing all appearance of ggi by the sum of b

different terms g7, ., s € [b],i € {1,2} in tr (C’ (@ie[m] (]_[je[n] Mw))) [Liefn) Mo,j» we know
there exists a multi-set of matrices M’ = { M, ; ; : k € [b%],i € [0 : m], j € [n]} such that

a=tr|C| & HMJ an: X Z tr () HM]C’L,] HMkO,j7

ie[m] \ je[n] je[n] ke[b?] ie[m] \ je[n] jeln]

where every element My, ;,; of M’ only takes value in W¢, |JG{,) UG, JW*JC and for
each k € [b?], we have

deg (/s M,) = deg (G M) = d,

deg (Wtb;M;c) = deg (Wtb§M))

deg (W*; M) = deg (W*; M),

deg (W}’,M%) = deg (W}’;M) , fel0,t—1],
deg (G?«;Mﬁﬁ) = deg (G?-;M) , fe[0,t—1],
deg (W*; M) = deg (W*; M),

where multi-set M/, := {M}.; ; i€ [0:m],j € [n]}, ke [b].

{ozk ke [bd]} into disjoint and non-empty sets (equivalent classes) S1, ..., Sy such that

1. forevery i € [N] and every @y, @ € S;, we have E [al|]-‘f] =K [aﬂ]—'ﬂ,

2. for every i,j € [N],i # j and every @ € S;and@, € S, we have E [o|F}] #
E [ag|]:tb],

3. UM, S = {ay : ke [b9]}.

For every 7 € [N], let k, € [b%] be such that oy, € S, is a representative element of the equivalent
class S, (in fact it can be any element of S,.). For each r € [N], we can always write |S,.| =
ero+erib+ - +e.qgbdsuchthate, s € [0:0—1],5s€[0:d—1],e.q4 € {0,1} (actually e, &’s

33

are the digits of the base-b representation of |.S.|). Then we have

1 b 1 N
leZak]:tb = bjE [Z ‘ST|04/€7,
k=1 r=1

E [a|77]

ff}
ff]

/]

= lZ ero+erib+--+ 67‘7dbd) .

N
= id Z ero +erib+ -+ epab?) E [y,

7] (19)

N
1 1
Z €r.d + 6r,d716 + e+ er,0b7d E [ak:,,.
r=1

It is important to note that IV, the number of different equivalent classes, is independent of b. This
follows from the fact that, by Lemmal6] the possible values that E [ay| 77|, k € [b%] can take only
depend on the distribution D. Thus the number of partition sets is independent of b.

By Lemma @ for each k& € [b?], there exist constants m’ = m + d — 2,0/ =
6mn(d + 1), L' = 2%p4m=1+2 that are independent of b and multi-sets of matrices Qf :=

{Qﬁu,v tue[m]ve [n’]} ;1 € [L'] such that

Eltr|C ® H Mkﬂﬁj H Mkﬂ»j]:tb = Z Céctr Olk ® 1_[Qluv H Qﬁo,m
ve[n']

ie[m] \ je[n] je[n] le[L'] ue[m’] \ veln

where ¢} € {—1,+1}, CF € C, Qf‘iu)v only takes value in W2 | JW*JZ|JC, u € [0 : m'],v
[n'],1 € [L'] and for all k € [b%] and | € [L'] we have

m

deg (W}; QF) < deg (W); M},) + 3d = deg (W7; M) + 3d,
deg (W*; QF) < deg (W*; M}) + 2d = deg (W*; M) + 2d,
deg (W); QF) + deg (W*; QF) = deg (W M},) + deg (W*; M},) + 3d
= deg (W; M) + deg (W*; M) + 3d,
deg (Wf, Qf) = deg (W}Z,Mﬁc) = deg (W}’;M) , fel0,t—1],
deg(Gb,Ql) = de g(Gl};M) = deg(Gf,M) , felo,t—1],
deg (W*; QF) = deg (W*; M},) = deg (W*; M).

By (19) and the definition of equivalent classes S1, ..., Sy, we have
N

1 1
E [oz|]-'tb] = Z <er7d + erd-13 bt e’"%d) E [akr|]-"tb]

r=1

N
1
:; <er,d+e7‘xd1b+"'+erobd)E tr | C ®]QL] Mk,.,i,j jg] Mk,.,O,j]:t

i€[m]
= i érd + endfll toteroy Z Cz'““ Cz]f ® H Qﬁfu,v H Ql’ 0,0
b b /

r=1 l'e[L"] ue[m’] ve[n’] ve[n']
~ 1 ~

E + -+ adbj’

~ K k. Ky ko

where o, = ZrE[N] Zl/e[L’] €r,d—sCp tr (Cl’ <®ue[m/] (Hue[n/] Ql’,u,v))) Hve[n’] Ql’,O,v’ s€
[0:d].

|

jo
S
4
2

34

Obviously, for each s € [0 : d], there exists an one-to-one mapping between {(r,l’, s,u,v) :
re [N],l' e [L',ue[0:m],ve[n]}and {(],s,u,v):l€[L],ue[0:m] ve [n]}, where
L = N - L. By taking the matrices Qs 4,0 in the statement of this theorem based on this mapping,
and note that both NV and L’ are independent of b, we finish the proof.

Theorem 12 (complete version of Theorem' Let M :={M, ; i€ [0:m],je [n]} be a multi-
set of matrices such that each M; ; or its transpose only takes value in W§., | J G} (t—1) yw=*yc

and deg (Wtb, M) = d (here d, m, n are constants independent of b) and C € C Then there exist
multi-sets of matrices My, := {Mj,; j - i € [0:m],j € [n]},k € [2%] such that

tr|C| & H M; H My ; = Z ajtr X H My,i 5 H M0,
ie[m] \ je[n] jeln] ke[29] ie[m] \ je[n] Jjeln]

where iy, k € [2%] are constants and each My, ; j only takes value in Wé’:(t_l) U ng(t_l) Uw=yc.
Further, for each k € [2?] we have

deg (G7_1; My) < deg (Gi_;; M) + 4,
deg (W)_1; My) < deg (W3 M) +d,
deg(Gt 13 My) + deg (Wt 1 My) = de g(Gf M) —l—deg(Wt 13 M) +d,
deg (G4 M) = deg (G} M), fel0:(t—2)],
deg (Wb;./\/lk) = deg (W}’;M) , fe[0:(t—2)],
deg (W*; My) = deg (W*; M) .

Proof. We simply use the fact that W/, = W), ; —aug}_, ;,i = 1,2. Note that deg (W}; M) = d,
by replacing all appearance of thii in tr (C (@ie[m] (Hje[n] M”>)> [Lepn Mo,
with (W ,, — a9} ;) and expand all the parentheses, we get 2% terms
tr (C (®i€[m] (Hje[n] M;HJ>)) [Le(ny Mo,;. The constant @), comes from the multipli-
cation of «;’s. O

Theorem 13 (complete version of Theorem @) Let M? : { 21 € [0:my],j € [ne } be a

multi-set of matrices such that each M ; or its transpose only takes value inWg, UGS, Uw*|JC
(here my,n; are constants ina’ependent of b) and C; € C. Then there exist constants
qe,my,ny, Ly s,s € [0:q] that are independent of b and multi-sets of matrices M} =

{Mlt’s’u’v cuel0:my],ve [n;]} , S € [qt] such that

1 1
el (a(@ (1100))) T 5 | = o s ot oo
i€[my] \ je[n] j€[ne]
where
t,s = Z Ct’l’str Ct:lvs ® H Mlt,s,u,v H Mlt,s,o,wse [OZQt]a
le[L¢,s] u€[my] \ ve[n}] ve[n}]

¢t1,5 is a constant, Cy ;s € C and M}, only takes value in we yw# U@ Further, we have

f+1 _ f_
qr < Z <321deg (Gb;/\/lt) + 3
]

1 deg (W}’,Mt)> .
felo:t

Proof. We use induction on ¢ to show this theorem. The case of ¢ = 0 is the same as the statement in
Theorem

35

Suppose that the statement holds for ¢ > 0 and we consider the case of ¢ + 1. By Theorem
. there exist constants My, N¢y1, Ley1 that are independent of b and multi-sets of matrices

QtJrl = { 41 Tu € [0 : ﬁzHl],v € [’ﬁt+1]} ,l € [.’itJrl]’ s €E [0 : dt+1] such that

l,s,u,v

E|tr|C ® H M H M5t Fr = Qe @1yt Oden g
’L€[mt+1] je[nt+1] je[nt+1]
(20)
where

~ ~ ~ 1 1
Ferrs =), Gt [Congs [® [T @l [T Qb sel0:dil.,

le[Lisq] u€[Mer1] \ ve[fry1] Ve[t 41]

2L

t+1
l,s,u,v

diiq = deg (GH_l,./\/l “), Ct41,1,s 18 a constant, 5}“,1’5 € C and @
W(?:(t-&-l) UGS, | UW* | JC. Further, we have

only takes value in

deg (t+15 Qt+1> deg (t+1»Mt+1) + 3 deg (Gt+1th+1))
deg (W QJ11) < deg (W* M) + 2deg (G, s M)

deg (Wtbﬂ, QtH) + deg (W* QHl) = deg (Wtbﬂ; MtH) + deg (W*; MtH) + 3deg (Gfﬂ; MHI) .

By Theorem , foreach ! e [Em] and s € [0: d¢41], there exist multi-sets of matrices Mf,s,k =
{Ml{s7,€7i7j ie[0:m,je [nt]} k€ [2%+1] such that

~ t+1 t+1
tr Ct+17175 ® 1_[Ql,s,u,v H 1,5,0,v

u€[Ms41] \ve[fisg1] vE[fi41]
= Z G tr | Coprs X H M i H M 0> (22)
kE[QdH—l] i€[my] j€[ne] j€[ne]

where my; = M1, M4 = Nyt1, O, k € [2%+1] are constants, and each M}

Ls.k,i,; only takes value
in W, UGS, \UW* C. Further, for each k € [29:+1] we have

deg (W Mj) + deg (G M, 1)
— deg (o Qf“) + deg (Wf, Qt“) + deg (Gf, Qt“)
< deg (WP MI™1) + 3deg (G2, M) + deg (WP Q1E1) +deg (G Q1))
deg (G2 M, 1)
< deg (W13 Q") + deg (615 Q1)

< deg (t+17Mt+1) + 3deg (Gt+1a MHl) + deg (Gi’, QtH)
and

deg (W*; M}, ;) = deg (W*; QI) < deg (W*5 M'H) 4+ 2deg (Gl s M' 1)

36

By (20) — (22)), we have

Eltr| C ® Mt+1 M(I)f,-;l -FO
i€[mes1] \ je[nt+1 je[nes]
BB tr C ® t+1 1_[Mt ‘Ft+1 ‘FO
ie[mt+1]]G nt+1]G nt+1
1
= E [Q41,0|Fo] + E [Gr41, 1|-7:o] +E [Gs1,d0,, [Fo]— o
Cra1,0,80% & ~

— Z %E tr | Ciga,s @ H Ml ki n Mlt,s,k,o,j Fo

le[Liy1],s€[de+1],ke[274+1] i€[me] \ je[ne] Je[n]

(23)

By induction, for each | € [Li1],s € [dis1] and k € [2%+1], there exist con-
stants mg,no, Z,d’ that are independent of b and multi-sets of matrices M) , = :=

{MO :ue[():mo],ve[no]},re[d’],ze[Z] such that

l,s,k,rz,u,v

~ 1 1
E tr Ct+]_’l)s ® n Mlﬁs,k,i,j H Mlt,s,k,o,j .7:0 = 066 + O/IE + -+ Oéd/ bd, ,
ie[m:] \ je[n:] J€ln+]

(24)

where

!
O[- Z CtlSkTZtr Ct,l,s,k,r,z ® H Mlskrzuv 1_[MlskrzOv? G[d],

z€[Z] u€[mo] \ ve[no] ve[no]
_ (25)
Ct,l,s,k,r,> s aconstant, Cy ; ¢ k> € C and MES r 2.0 ONLy takes value in we (UW*JC. Further,
we have

/ gf+1 b 3 —1 b Aqt
d < Z <2 deg (G 7Ml ,S k) 2 deg (Wf; Ml,s,k)) ’
felo:t]

Combining (23) — (23), we have

1 1
Eftr|C ® H Mit,-;l H Méj}l]:o :a0+a15+"'+aqb77

i€[mys1] \ je[nis1] J€[ne+1]

where ¢ = dy41 + d’ and foreach e € [0 : ¢],

Qe = Z Ct+1,1,sQt,kCt 1,s,k,r,2"
le[Liq1],s€[diy1],ke[2%+1],re[d'],2€[Z],r+s=¢

0
- tr Ct,l,s,k,'r,z ® H Ml,s,k,r,z,u,v H Ml,s,k,r,z,(),v

u€[mo] \ ve[no] ve[no]

37

Note that

q=di+d
t+1 3f+1 F— 1 b t
< deg (Gt+17M) + Z <2 deg (Gﬂ./\/ll s k) deg (Wf; MLS’k))
fel0:t]
3t -1
= deg (Gtﬂ, MHI) + T deg (Gt,/\/ll s k) —5 deg (Wtb; M?S’k)

3f+1 -1 b t+1 -1 b t+1
+ Z Tdeg (G M)+ deg(Wf;M)
fel0:(t—1)]

<de (t+17Mt+1)

t__

(deg (Wh s MEFY) 4 Bdeg (GY, s MPHY) + deg (Wt , Qf“) + deg (G;’, Qt“»
3t+1 _ 3t

+ (deg (Wy1; M) + Bdeg (GPy s M) + deg (G1: Q1)) +
3t —1 b. oA qt+l 1 b, A gt+1
+ 2 Tdeg(G;MJ’)-i- deg(Wf;./\/l+)
fe[0:(t—1)]
321 1y, 3 -1 b 1y, 3 -1 b, Aqt+1
- deg (Gy,1; M)+Tdeg(Wt+1;M)+Tdeg(Gt;M)
-1 b. t+1 3f+1 -1 b. t+1 -1 b. t+1
+ deg(Wt,M)—l— Z — deg(G M)+ 5 deg(Wf,M)
feloi-1)]
1 _
- Z (321 deg (Gb;Mt-&-l) n 1 deg (W});Mt-f-l)) ’
fel0:G+1)]

which finishes the proof.
O

Theorem 14 (Theoremin the main body). Given t € N, value var (gf’i) .t = 1,2 can be written
as a polynomial of 3 with degree at most 3'*Y — 1 with no constant term. Formally, we have
var (921’) = ﬁl% 4 B 5> Where r < < 3" — 1 and each B; is a constant independent of b.

Proof. We only show the case for gfﬁl since the proof for g; o can be tackled similarly. Note that

var (g21) = E|gh|” — [E[g?,][
~ & [t || - [[ot 1
= B[[()" sb)|70] | - B (2 bR as)

By Theorem there exist constants g1, m},n}, L1 s, s € [0:¢] that are independent of b and
multi-sets of matrices M| , := {Mlljs%v cu € [m)]ve [n’l]} , 8 € [q1] such that

T 1 1
E [tr ((gf,l) g?,l) lfo] =a10+ 041715 + -+ Oél’qle’ 27

where

Z Clylvstr Cl,l,s ® 1_[Mll,s,u,v S € [0 : ql])

le[L1,s] ue[mi] \ve[n}]

c1,1,s is a constant, Cq ;s € C and M}, , only takes value in W | JW* | JC. Further, we have

¢ < 3t+1 —1.

38

It is worth mentioning that we do not include matrices M ;5 0., v € [n}] in the multi-set M}, €

[L1,s],s € [0 : q1] because each M ; 0., is actually an identity matrix from the proof of the
previous theorems.

Similarly, there exist constants ga, Mm%, 1, L2 5, s € [0 : g2] that are independent of b and multi-sets
of matrices M7 := {Mﬁ&uw cue[0:mhlve [né]} , 5 € [g2] such that

1
E [ggl|]:0:| =020 + 217 + ..+ (28)

o R
b 2,92 bq2 ’

where

2 2 .
Q2,5 = Z C2,1,stT CQJ»S ® 1_[Ml,s,u,v H Ml,s,O,v?S € [O : QQ],

le[T2,.] u€[my] \ ve[ny] ve[n]
Ca,.s is a constant, Ca s € C and M7, only takes value in W | JW* | JC. Further, we have

1
q2 < 5 (3t+1—1).

Combining (26) — (28), we know there exist constants Yo, . . ., 74, ¢ = max {qi, 2¢2} < 371 —1
such that

T 1 1
var ((Wtb2) Wtb,2thjlsz) =%ty Yy
where
¥s = Ewepr lon,s] + 2 Ewg~pr [o2,u] Ewepr [a2.0],5€[0:q]

u+v=s,u,v€[0:q2]

and D’ is the initialization distribution of Wé. Further, +,’s are independent of b.

Proof of Theorem[8} We first show that in

1 1
var (g1,) = Bry + o0 By

we have 51 = 0. If r = 1, the statement obviously holds. Let us assume that the statement does not
hold for r > 1,i.e. 31 < 0. Taking b large enough such that 510" ~! + Bob" "2 + .- 4 B, < 0 yields

var (gfl) = blr (61br_1 + B+t ﬂr) <0,

which contradicts the fact that var (g7 ;) = 0. Therefore, we have 81 > 0.

Let by be large enough such that for all b > by, we have 510" ! + 286" 2 4+ -+ + 7S, > 0. We
denote f(b) = 51% + ng% +- 4 ﬁ,.b% > 0. For all b > by we have

1 -
f'(b) = sy (BLb" ™t + 280" 2 + - 4 1) <O

Therefore, for all b > by we have (var (gfb))l = — 551 f(b) + 5 f(b) < 0, and thus var (g7 ;) is a
decreasing function of b for all b > by.

O

B.3 Extension to Deep Linear Networks

The extension from a two-layer linear network to a deep linear network is straightforward. Here we
only provide the ideas on how to translate the proof of the two-layer network to a d-layer network.

39

Let us assume that the d-layer linear network is given by f(x; w) = WyWy_q - - - WoW; 2, where
Wi, i € [d] is the parameter matrix of the i-th layer and w = (W1, ..., Wy). The population loss is
defined as

1
L(w) =Eyop [2 Wy Wi — Wi Wl*as|2] .
Similar to () and (2), we have
1 1 2
9?,1@ = b Z VWtﬁk (2 HWtb,d) Wtblx;)z - W; T Wka?zH)
i=1

b
N Wipr) - (W) (Wh-Wh =W W) 2l (ab,) (W) - (Why)' ke ld].
=1

S| =

We denote W = WP, --- WP — Wi .- W, The rest is the same as the proofs in Appendix
except that we should redefine W) = {thfl, ce Wt",d} ,GY = {Gfﬁl, cey Gf,d}, etc.. We

can do this because the stochastic gradient g} .., k € [d] is still the sum of products of {x},} and
{Wfi g WhLWE Wl*} so the lemmas in Appendix [B.2|still apply.

40

	Introduction
	Literature Review
	Analysis
	Linear Regression
	Deep Linear Networks
	Extensions

	Experiments
	Results on MNIST Dataset

	Discussion and Future Work
	Experiments
	Datasets and Settings
	Graduate Admission Dataset
	Synthetic Dataset
	MNIST Dataset
	Yelp Review Dataset

	Discussion

	Lemmas and Proofs
	Lemmas and Proofs of Results in Section 3.1
	Proofs for Results in 3.2
	Extension to Deep Linear Networks

