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Abstract—A promising model for providing charging
services to owners of electric vehicles is a network of
battery swap stations. A swap station operator will need
to decide how many batteries to purchase initially, and
when, based on dynamic electricity rates, to charge the
batteries. We propose a dynamic programming model to
assist in making optimal charging decisions, and a master
problem embedding the dynamic program for making the
purchasing decision.

I. PROBLEM DEFINITION

The principal challenge that must be surmounted in
order to replace petroleum powered passenger vehicles
with electric vehicles (EV’s) is in providing rapid and
flexible charging of batteries. The EV’s currently coming
onto the market have a range of about 100 miles, which
is sufficient for the commute and other daily driving of
the vast majority of the world’s drivers, but does not
allow for longer planned trips. More significantly, the
100 mile limit is close enough to the daily travel distance
of many drivers that they would understandably feel
constrained and unable to either respond to emergency
driving needs or to be spontaneous in their driving habits.
This phenomenon is known in the industry as range
anxiety.

Unfortunately, current battery technology does not
allow for charging in less than half an hour (at best),
so charging stations analogous to gas stations, where
energy can be restocked to the vehicle in a few minutes,
do not currently seem possible. However, if the batteries
themselves can be swapped in and out of the EV’s, a
discharged battery can be replaced with a fully charged
one very rapidly. Such swapping stations would require
that batteries be easily accessible on the vehicle, and
replaceable by an automated process. More problemat-
ically, such stations would require a standardization of
batteries and interfaces that does not currently exist -
a swap station would not be feasible with more than a
few different kinds of batteries, just as gasoline stations

typically only carry 3 or 4 types of fuel. But despite the
difficulties, a company, Better Place, is in the process of
deploying a network of swap stations.

In order to serve Better Place’s needs, and the needs
of the imagined swap station manager of the future (a
future with a mature EV market), we propose a dynamic
programming model that aids in determining policies
for charging batteries at swap stations. In particular,
our model considers the tradeoff between responding
to dynamic electricity prices, and charging batteries just
when they are needed (regardless of the price) in order
to avoid the opportunity cost of committing capital
to charging too early. To take an extreme, illustrative
example, if the price of electricity is 5 cents per kWh
for all of February and 10 cents per kWh for the entire
month of March of the same year, it may yet be optimal
to charge a battery to satisfy early April demand in
late March rather than late February (in order to free
up capital to seek greater return elsewhere during the
month of March). The accounting of this opportunity
cost requires the model to track when each battery in
stock was charged; we use a “First-In First-Out” rule to
insure that the opportunity cost properly accounts for the
information known at the time of each charging decision.
Additionally, using the model, we propose to determine
the optimal number of batteries to hold at a station. We
will demonstrate these models using data from the San
Francisco Bay Area, where Better Place is planning to
deploy charging stations in the near future. Note that
we do not consider battery aging or other long term
changes in the properties of the charging equipment, as
our primary focus is on the short term decisions of swap
station managers.

The primary contributions of our work are in the
modeling of a new problem in an emerging and vital
application field, and in the “FIFO” rule for accounting
opportunity cost in an environment of dynamic prices.



II. MODEL

We present a dynamic programming formulation that
minimizes the sum of electricity costs (incurred while
charging batteries), opportunity cost (incurred on capital
previously committed to charging batteries), and penal-
ties for failing to satisfy customer demand. It is a back-
logging model, i.e., customers who can not be served at
the time of their arrival are assumed to wait until they
can be served. Principally, the model sets up a tradeoff
between minimizing opportunity cost (charging “just in
time”) and buying electricity when it is cheapest (and
potentially stockpiling charged batteries far in advance
of demand). An important wrinkle to the problem is that,
in order to assess opportunity cost in each period, due
to variable electricity prices, it must be known when
each of the batteries in stock was charging. Thus, the
state captures both the total number of charged batteries
in stock (less backlogged demand) and the number of
batteries that were set to charge in each previous period.

A. Formulation

We first assume that the initial number of batteries is
known in advance.

We have the following state space:

St :Net Inventory Position in Period t
(Total number of charged batteries, or
-1∗(Units of backlogged demand) if there
is unmet past demand)

Ŝt :Vector Composed of Values Sti, ∀ 0 ≤ i ≤ t− 1;
Sti is the number of batteries charged in period i
that are still remaining and available for customers
in period t

There is a simple action variable Xt, which represents
the number of batteries to start charging at time t.
There is a simple exogenous stochastic variable Wt,
corresponding to the demand for batteries in period t.
(In a given period, demand occurs before decisions are
made.)

The remaining parameters are:

L :Number of Periods Required to Charge a Battery
U :Total Number of Batteries in Initial Stock
pt :Underage Cost per Unit Demand in Period t
γ :Discount Rate**
r :Opportunity Cost Rate Parameter
D :Purchase Price per Battery
ht :The cost (of electricity) to charge one battery during

period t.

**Discount rates are typically used in dynamic programs
of this type to reflect the time value of money, which
accounts for inflation, opportunity cost, uncertainty, and
other factors.

The optimality equation reads:

Vt(St, Ŝt) =

min
Xt≥0

Xt+St+
∑t−1

i=t−L+1
Sti≤U

{Xt

L∑
j=1

ht+jγ
j + C̃t(St)

+ r[

t−L∑
i=0

Sti(

i+L∑
j=i+1

hj) +

t−1∑
i=t−L+1

Sti(

t−1∑
j=i+1

hj)]

+γE[Vt+1(St+1, Ŝt+1)]}

where C̃t(a) = pt(Wt − a)+.

The transition functions are governed by:

St+1 =St + St,t−L+1 −Wt+1

St+1,i =(Sti − (Wt+1 + (St)
− −

i−1∑
j=0

Stj)
+)+,

0 ≤ i ≤ t− L (1)

St+1,i =Sti t− L+ 1 ≤ i ≤ t− 1

St+1,i =Xt i = t

The Sti state variables, tracking the number of batteries
set to charge at time i that have yet to be distributed at
time t, are updated in a First-In-First-Out fashion, so as
to always assess opportunity cost on those batteries that
were set to charge most recently. This is the appropriate
method for calculating opportunity cost because, when
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the later batteries were set to charge, the decision maker
knew about the earlier batteries - that is, the earlier
batteries were already available to satisfy any demand
that the later batteries would be able to satisfy. Thus,
opportunity cost should continue to be charged on a
battery until demand requires that the battery be used,
which is when there are no older batteries available
to satisfy that demand. This FIFO rule is represented
by (1). The inner parentheses contain the sum of this
period’s demand and backlogged demand, less the total
charged battery stock that was set to charge before
the cohort of batteries currently under consideration.
The outer parentheses contain the difference between
the number of available charged batteries in the cohort
currently under consideration and demand from this and
earlier periods that could not be absorbed by batteries
with charges of earlier vintage. For example, if Ŝt is
(0, 2, 6, 3, 5), Wt is 4, L is 2, and Xt is 1, then Ŝt+1 is
(0, 0, 4, 3, 5, 1).

B. Solution Methodology

We approximate solutions to the dynamic program
by fitting a separable piecewise linear approximation
to the value function. In the optimality equation, the
term E[Vt+1(St+1, Ŝt+1)] is replaced by the sum of a
set of piecewise linear functions, each of which depends
on only one of the state parameters (St+1, Ŝt+1). This
yields a compact estimate of the value function, over
which we can easily optimize Xt, the number of batteries
to charge in the period. Each component of the piecewise
linear approximation is defined by a set of breakpoints
and a corresponding set of slopes, such that the slope of
the function to the right of each breakpoint is defined by
the corresponding value in the slope vector.

To obtain the best function approximation, we sim-
ulate many periods (on the order of a few days, at 24
periods per day), using a random demand function and
chosen initial values for the state variables at time 0
and incumbent value function approximation. At each
iteration of the simulation, we find a derivative (using
finite differences) of the function with respect to each
state coordinate, and add the resulting breakpoints and
slopes to the approximation. At the end of the time
horizon, the state is reset to the initial value at time zero
and the entire loop is repeated several times, continually
adding breakpoints and slopes to the separable piecewise
linear approximation function. At the end, after the final
value function approximation is obtained, a separate
simulation is executed that evaluates the objective value
of the decisions produced by the value function. This
simulation is very similar to the overall simulation

Fig. 1. Two representative runs of the approximate dynamic program,
with the y-axis values scaled.

optimization algorithm except that the value function is
not being updated during these steps.

III. DATA AND TESTING

We test the model on a hypothetical network of swap
stations in the San Francisco Bay Area. One typical day
of hourly electricity prices in June is extrapolated from
historical price data. The discount rate and opportunity
cost of capital rate are both set at 5%. The underage
penalty (for being unable to satisfy a unit of demand)
is set at $20. Daily demand is roughly estimated to be
2,000 charges/day, and this quantity is broken down into
hourly demand using hourly refueling data from refuel-
ing stations in Brazil. Additionally, a random component
is added to the demand in each period (the random
component is normal, with the demand for each period
bounded below by zero). We set L, the number periods
required to charge a battery, at 7, as the battery for the
Renault Fluence Z.E., one of the models that Better
Place is compatible with, charges in 6 to 8 hours at
220V. Faster charging is possible at higher voltages, but
degrades the battery more rapidly, so we assume that a
swap station will avoid such rapid charging. Because the
Fluence Z.E.’s battery holds a total charge of 22 kWh,
we multiply the electricity prices, estimated as described
above, by 22/7 in order to generate the ht parameters.
[4]
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IV. CONCLUSION

Further testing, including sensitivity testing on the
underage penalty and interest rates, should be performed
to better understand the properties and usefulness of the
model.

The ultimate problem is to find how many batteries a
swap station should hold in stock. Note that the value
function Vt depends on U (the total stock of batteries),
i.e., V U

t . This number (of batteries) can be found by
minimizing the sum of the value function presented
above and the initial purchase cost of the batteries (as
there is only one purchase, holding cost can be assumed
to be contained in this purchase price):

min
U
{V U

0 (S0, Ŝ0) +D ∗ U},

where S0 and Ŝ0 are set to reasonable estimates of their
values at steady state.

We plan to investigate solution techniques that extend
from standard ADP methods, and incorporate insights
from optimization via simulation methods.
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