
Large Language Models for Automated Feature
Engineering

Abstract. Automated feature engineering (AutoFE) aims to liber-
ate data scientists from manual feature construction, which is crucial
for improving the performance of machine learning models on tabu-
lar data. The semantic information of datasets provides rich context
for AutoFE but is exploited in few existing work. In this paper, we
introduce AutoFE by Prompting (FEBP), a novel AutoFE approach
that leverages large language models (LLMs) to process dataset de-
scriptions and automatically construct features. FEBP iteratively im-
proves its solutions through in-context learning of top-performing
examples and is able to semantically explain the constructed features.
Experiments on seven public datasets show that FEBP outperforms
state-of-the-art AuoFE methods by a significant margin. We also per-
form ablation study and feature analysis to verify the effect of seman-
tic information and characterize the behavior of LLM-based feature
search.1

1 Introduction2

Tabular data, a form of structured data comprising instances and3

attributes, have extensive use in numerous domains, e.g., credit as-4

sessment, market prediction, and quality control. Classical machine5

learning models, especially tree-based models [4], have strong per-6

formance on tabular datasets of small and medium sizes and high7

interpretability. Feature engineering is the process of computing new8

features from feature attributes of a dataset to enhance downstream9

model performance, which is crucial for classical ML models as it10

extracts useful information for predicting the target by capturing non-11

linear relationships. However, feature engineering by hand requires12

domain expertise and tremendous human labor.13

Automated feature engineering (AutoFE) aims to develop high-14

level models and algorithms to automate the FE process and achieve15

comparable performance to domain experts. Many existing AutoFE16

methods, such as DIFER [23] and OpenFE [21], compute and eval-17

uate a large number of features in a trial-and-error manner. While18

some of these methods learn to optimize the quality of features dur-19

ing AutoFE, they do not utilize prior knowledge to guide feature20

search. The need to start searching from scratch for new datasets or21

downstream models hampers their effectiveness and efficiency. Be-22

sides, these methods do not explain their solutions and may generate23

over complex features that affect the interpretability of downstream24

models.25

Most tabular datasets contain descriptions of the dataset and at-26

tributes, providing rich context for FE. A feature engineer may con-27

sult attribute descriptions to select feature attributes and compute28

new features that are useful for target prediction. For instance, the29

square footage of a house times the average housing price per square30

foot in neighborhood could be a good predictor of the market value31

of the house. Large language models (LLMs) [14, 2, 13, 15, 16],32

Figure 1. Overview of FEBP

pretrained on large volumes of text data, excel in natural language 33

processing and encapsulate extensive domain knowledge transfer- 34

able across datasets. This suggests that given proper instructions, an 35

LLM may process the semantic information of a dataset and utilize 36

its knowledge to perform FE in a similar manner to domain experts. 37

Previously, CAAFE [5] explores this idea by instructing the LLM to 38

generate code in Python, but it is not sufficiently effective in terms of 39

feature search. 40

In light of this, we propose a novel AutoFE approach leveraging 41

LLMs for effective and efficient feature engineering, called AutoFE 42

by Prompting (FEBP). As illustrated in Figure 1, we provide the 43

LLM with dataset descriptions and example features represented in 44

canonicalized reverse Polish notation (RPN) and prompt it to con- 45

struct new features. After evaluating the constructed features, we up- 46

date in the prompt top-ranked features with evaluation scores and 47

instruct the LLM to construct further features. In this way, the LLM 48

iteratively explores the search space and improves its solutions. The 49

semantic information of dataset descriptions not only informs feature 50

search, but also helps the LLM better understand example features 51

to learn their patterns in-context. Utilizing its domain knowledge, 52

the LLM constructs semantically meaningful features and explains 53

the usefulness of features, enhancing the interpretability of down- 54

stream models. Experiments on seven public datasets show that our 55

approach outperforms state-of-the-art baseline methods with statisti- 56

cal significance and achieves over 8% performance gain over three 57

downstream models on average. Furthermore, our ablation study 58

shows that the semantic context of dataset descriptions helps improve 59

the performance. 60

We summarize our main contributions as follows: 61

• We propose a novel LLM-based AutoFE approach that exploits 62

the semantic information of datasets and performs adaptive feature 63

search. 64

• We conduct experimental evaluations of our approach against65

state-of-the-art baselines using GPT-3.5 and GPT-4.66

• We perform analysis on the effect of semantic context on our ap-67

proach and the behavior of LLM-based feature search.68

2 Related Work69

2.1 Large Language Models (LLMs)70

LLMs are large-scale general-purpose neural networks pretrained71

on large corpora of raw text data for natural language processing,72

typically built with transformer-based architectures [17]. Generative73

LLMs, such as GPT family [14, 2, 13] and LLaMA family [15, 16],74

are pretrained to successively predict the next token given the in-75

put text and can be finetuned using reinforcement learning from hu-76

man feedback (RLHF) [24]. By this means, they acquire the knowl-77

edge about syntax and semantics of human languages and are able to78

achieve state-of-the-art performance on various tasks like text gener-79

ation, summarization, and question answering. LLMs can be adapted80

to specific tasks without changing model parameters through prompt81

engineering. One approach is to include examples in the prompt for82

the model to learn in-context, i.e., few-shot learning [2]. Leverag-83

ing such capability, an LLM may function as a problem solver [19]84

that iteratively improves candidate solutions according to the task85

description and feedback.86

2.2 Automated Feature Engineering (AutoFE)87

Automated feature engineering computes new features for the input88

data and augments or replaces portions of the existing features, with89

the aim to enhance the performance of downstream models. Common90

AutoFE approaches include expansion-reduction [7, 6, 21], genetic91

algorithms [22], and reinforcement learning [9, 10]. DIFER [23] uti-92

lizes neural networks to learn the quality of constructed features and93

optimize features in the embedding space. OpenFE [21] proposes a94

feature boost algorithm to speedup feature evaluation. Nonetheless,95

these approaches do not exploit the semantic information of datasets,96

which affects their performance and the interpretability of solutions.97

2.3 AutoFE with Domain Knowledge98

The benefits of incorporating domain knowledge in AutoFE are99

twofold: (1) reducing the cost of learning an AutoFE model, espe-100

cially feature evaluation overhead; (2) improving the effectiveness101

of AutoFE. Previous work espousing this idea takes different ap-102

proaches. One approach is to transfer the knowledge from past Aut-103

oFE experience. LFE [12] represents features with quantile sketches104

that are transferable across datasets, and inputs them to a transforma-105

tion recommendation model. FETCH [10] is an RL-based AutoFE106

framework that takes tabular data as the state and is generalizable107

to new data. E-AFE [18] pretrains a feature evaluator to efficiently108

learn its RL-based AutoFE model. Another approach is to exploit109

the semantic information of datasets. KAFE [3] leverages knowledge110

graphs to identify semantically informative features relevant to the111

prediction task. CAAFE [5] manipulates Pandas data frames using112

the code produced from the LLM based on dataset descriptions. Our113

work also exploits the domain knowledge of LLMs, but we adopt a114

compact form of feature representations with pre-defined transfor-115

mation operators. Our approach reduces the search space and helps116

the LLM learn the patterns of useful features, leading to stronger and117

more robust performance.118

Figure 2. RPN, expression tree, and canonicalization

3 Notations 119

We denote a tabular dataset as D = ⟨X,y⟩, where X = 120

{x1, . . . ,xd} is the set of raw features with xi ∈ Rn for 121

i = 1, . . . , d and y ∈ Rn is the target. A new feature x̃ = 122

t(xj1 , . . . ,xjo) can be constructed through the transformation of ex- 123

isting features via some operator t ∈ Rn × . . .× Rn → Rn of arity 124

o. Given a set of transformation operators T , we define the feature 125

space XT recursively as: for any x̃ ∈ XT , either x̃ ∈ X; or ∃t ∈ T , 126

s.t., x̃ = t(x̃j1 , . . . , x̃jo), where x̃j1 , . . . , x̃jo ∈ XT . 127

We define the order of a feature x̃ ∈ XT as: 128

α(x̃) =

{
0 if x̃ ∈ X,

1 + maxj α(x̃j) if x̃ = t(x̃j1 , . . . , x̃jo) for some t ∈ T .

(1)
The constrained feature space by an upper limit on the order k is 129

denoted as XT
k = {x̃ ∈ XT | α(x̃) ≤ k}. 130

We denote the performance evaluation score of a downstream ma- 131

chine learning model M on the dataset as EM (X,y). The goal of 132

AutoFE is to construct a set of features X̃∗ to add to the dataset such 133

that the model performance is optimized, formally: 134

X̃∗ = arg max
∅≠X̃⊆XT \X

EM (X ∪ X̃,y). (2)

We can parse any feature x̃ ∈ XT to an expression tree, where 135

leaf nodes are raw features and internal nodes are operators [23]. For 136

features that include commutative operators like addition and mul- 137

tiplication, the expression tree is not unique since the children of 138

commutative operators are unordered. We adopt a canonicalization 139

scheme for ordering the children so that the expression tree becomes 140

unique: we arrange operator nodes before feature nodes and lexico- 141

graphically sort nodes within each of the two groups. We then repre- 142

sent the feature with the post-order traversal string of the canonical- 143

ized expression tree, a.k.a., reverse Polish notation (RPN). Figure 2 144

illustrates an example. The feature corresponding to an RPN string 145

f is denoted as x̃f ; the set of features corresponding to a set of RPN 146

strings F is denoted as X̃F . 147

4 Proposed Method 148

In this section, we propose a novel iterative AutoFE approach lever- 149

aging LLMs, particularly, GPT models [14, 2, 13]. We call our ap- 150

proach AutoFE by Prompting (FEBP). The main idea is to provide 151

the LLM with descriptive information of the dataset in the prompt 152

and guide it to search for effective features using examples. 153

Our prompt primarily consists of: 154

1. A meta description of the dataset; 155

2

2. A list of indexed attributes of the dataset, with attribute types,156

value ranges, and descriptions;157

3. Lists of transformation operators with descriptions, grouped by158

the arity;159

4. A list of example features with performance evaluation scores160

ranked in the ascending order;161

5. An output template of features and explanations.162

The descriptions of the dataset, features, and the target provide con-163

textual information necessary for the LLM to understand the dataset164

and apply domain knowledge. We include descriptions of transfor-165

mation operators as they help the LLM parse feature strings in RPN166

syntax and construct syntactically valid feature strings. The value167

ranges of attributes are useful for selecting appropriate transforma-168

tions to apply on features, e.g., min-max normalization when the169

scale is too large. The template not only formats the output but also170

instructs the LLM to reason about the usefulness of proposed fea-171

tures and make semantic explanations. Additionally, we append a172

constraint instruction asking the LLM to use no more than a certain173

number of operators, which reduces the search space and regular-174

izes the solutions. A full prompt is presented in Figure 3. It may be175

helpful to include other attribute statistics in the prompt, e.g., mean,176

standard deviation, and skewness. The examination of their effects is177

left for future work.178

We initialize the prompt with k simple random features in the con-179

strained feature space x̃1, . . . , x̃k ∈ XT
2 in canonicalized RPNs as180

seeds, without performance evaluation. Our rationale is to let the181

LLM start search from a small feature space, where it is easier to182

identify basic patterns of promising features. We ask the LLM to183

propose m new feature strings in each feature construction iteration.184

For each feature string f , we check whether it is valid and not dupli-185

cate with previously evaluated features. If both criteria are met, we186

evaluate the performance score of adding this feature to the dataset187

s = EM (X ∪ {x̃f},y) through cross validation on the training data188

and add ⟨f, s⟩ to the candidate set Fcand. When f is among the top-189

k candidate features in terms of the score s, we update examples190

in the prompt with the top-k feature-score pairs ⟨f ′, s′⟩ ∈ Fcand191

ranked in the ascending order, taking incremental performance scores192

s′−EM (X,y) from the baseline. We then use the updated prompt to193

instruct the LLM to further propose features. Once feature construc-194

tion completes, we successively add candidate features to the dataset195

from the best to the worst. The optimal number of features to add196

is determined based on validation performance, which takes feature197

interactions into account.198

Methodologically, we instruct the LLM to act as a problem199

solver [19] in our approach. Analogous to genetic algorithms [11, 22]200

that produce new solutions through recombinations and mutations201

on existing solutions with high fitness, we maintain a pool of top-202

performing candidate solutions as examples. By learning examples203

and scores in-context [2], the LLM is able to recognize the patterns204

of promising features and propose new features that are likely to be205

useful. It may, for instance, make analogies to, modify, or combine206

some of the example features. We expect that the beginning of the207

search is more exploratory due to diversity in initial examples. As208

iteration goes on, the LLM learns to exploit promising feature space,209

so the search becomes more focused and would eventually converge.210

In addition, the dataset descriptions serve as a prior that guides the211

selection of feature attributes and operators, improving the effective-212

ness of feature search. The sampling temperature of the LLM can be213

tuned to balance between exploration and exploitation. A high tem-214

perature encourages new solutions to be different from the examples;215

Algorithm 1: AutoFE by Prompting
Input : Dataset D = ⟨X,y⟩ and model M
Output: A set of feature strings F

1 Initialize prompt P with dataset descriptions and example
features

2 Fcand ← ∅
3 repeat // feature construction
4 Ask the LLM to propose m feature strings using prompt

P
5 for each proposed feature string f do
6 if f is valid and f /∈ Fcand then
7 Evaluate cross validation performance score

s = EM (X ∪ {x̃f},y) on training data
8 Fcand ← Fcand ∪ {⟨f, s⟩}
9 Replace in prompt P existing ⟨f̄ , s̄⟩ with top-k

⟨f ′, s′⟩ ∈ Fcand on s′

10 end
11 end
12 until maximum number of iterations
13 for n← 1 to |Fcand| do // feature selection
14 Select top-n feature strings Fn in Fcand on s

15 Evaluate performance score EM (X ∪ X̃Fn ,y) on
validation data

16 end
17 return Fn with the maximum validation performance score

while a low temperature prefers small changes to examples. 216

Algorithm 1 summarizes our proposed method. The cost of query 217

to the LLM in line 4 scales linearly with the number of features in 218

the dataset and the number of examples k in the prompt, but remains 219

constant across feature construction iterations. The computation cost 220

of feature evaluation in line 7 also remains constant. Feature evalua- 221

tions in line 7 and lines 13-16 are parallelizable. Figure 4 shows an 222

example output, where the LLM proposes a new feature in RPN and 223

explains its usefulness from the semantic perspective. 224

The transformation operators we adopt include: 225

• Unary transformations: logarithm, reciprocal, square root, and 226

min-max normalization; 227

• Binary transformations: addition, subtraction, multiplication, di- 228

vision, and modulo. 229

When computing min-max normalization, we take the minimum and 230

maximum from the training data. Other transformations only require 231

information from a single row of the table. Hence, all these trans- 232

formation operations can be performed instance by instance on test 233

examples. 234

5 Experiments 235

5.1 Experimental Setup 236

We benchmark on seven public datasets from Kaggle1 and UCI 237

repository2 with descriptive information of the dataset and attributes, 238

listed in Table 1. Each dataset is randomly split into training, valida- 239

tion, and test sets with the ratio 16 : 4 : 5. The downstream models 240

we evaluate include linear models (Lasso regression for regression 241

and logistic regression for classification), Random Forest [1], and 242

1 https://www.kaggle.com
2 https://archive.ics.uci.edu

3

Dataset description:
This dataset contains information on default payments, demographic factors, credit data, history of payment, and bill statements of credit card clients in Taiwan
from April 2005 to September 2005.
Dataset contains the following columns:
col-0 (int) [10000, 800000]: LIMIT_BAL: Amount of given credit in NT dollars (includes individual and family/supplementary credit
col-1 (category) {1, 2}: SEX: Gender (1=male, 2=female)
col-2 (category) {0, 1, 2, 3, 4, 5, 6}: EDUCATION: (1=graduate school, 2=university, 3=high school, 4=others, 5=unknown, 6=unknown)
col-3 (category) {0, 1, 2, 3}: MARRIAGE: Marital status (1=married, 2=single, 3=others)
col-4 (int) [21, 79]: AGE: Age in years
col-5 (category) {-2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8}: PAY_0: Repayment status in September, 2005 (-1=pay duly, 1=payment delay for one month, 2=payment delay
for two months, . . . 8=payment delay for eight months, 9=payment delay for nine months and above)
. . .
col-23 (category) {0, 1}: default.payment.next.month: Default payment (1=yes, 0=no)
We have the following unary operators:
log: taking the log of the absolute value
sqrt_abs: taking the square root of the absolute value
min_max: min-max normalization
reciprocal: taking the reciprocal
We have the following binary operators:
+: summing two columns
−: subtracting two columns
∗: multiplying two columns
/: taking the division of two columns
mod_column: taking the modulo of two columns
Feature strings are reverse Polish notation (RPN) expressions that operate on the columns of our dataset. Each feature string constructs an extra column that is
useful for the downstream model random forest to predict the target col-23. The model will be trained on the dataset with the constructed columns and evaluated
on a holdout set. The best columns will be selected.
Below are feature strings arranged in ascending order based on their performance scores. Higher scores are better.
Feature
col-17,col-21,*,col-20,+,sqrt_abs
Score
0.0011
. . .
Feature
col-4,col-6,*,col-12,col-16,-,sqrt_abs,*
Score
0.0014
Give me a new feature string that is different from all strings above and has a higher score. Use no more than five operators. Make sure all columns and operators
exist and do not include the target column. Follow the syntax of RPN.
Output format:
Feature

Usefulness
(Explanation why this adds useful real world knowledge to predict the target according to dataset description)

Figure 3. Example prompt

Feature
col-4,col-5,/,col-6,*,col-15,*,col-18,*,min_max

Usefulness
This feature calculates the ratio of age to repayment status in August
2005, multiplied by the amount of bill statement in July 2005, and
previous payment in August 2005, then normalizes the result. This
feature captures the relationship between age, repayment behavior,
bill amounts, and previous payments, which can provide insights
into how these factors influence the likelihood of default payment.

Figure 4. Example output of the LLM

LightGBM [8]. On linear models, we target encode categorical fea-243

tures. We tune model parameters using randomized search both prior244

to and post AutoFE (see details in our code), because the model may245

need to be reconfigured to accommodate the extra features. We eval-246

uate regression performance with 1−(relative absolute error) and247

classification performance with accuracy. For both metrics, a higher248

score indicates better performance.249

We compare FEBP against the following state-of-the-art AutoFE250

methods:251

Table 1. Datasets used in our experiments, where R stands for regression
and C stands for classification (the number of classes is shown in bracket).

Name Task # Samples # Features

Airfoil (AF) R 1503 5
Boston Housing (BH) R 506 13
Bikeshare (BS) R 731 10
Wine Quality Red (WQR) R 1599 11
AIDS Clinical Trials (ACT) C[2] 2139 23
Credit Default (CD) C[2] 30000 23
German Credit (GC) C[2] 1000 20

• DIFER3 [23]: A neural network-based method that optimizes fea- 252

tures in the embedding space. 253

• OpenFE4 [21]: An expansion-reduction method that evaluates and 254

ranks first-order features using a feature boost algorithm. 255

• CAAFE5 [5]: An LLM-based method that produces Python code 256

based on dataset descriptions. 257

3 https://github.com/PasaLab/DIFER
4 https://github.com/IIIS-Li-Group/OpenFE
5 https://github.com/automl/CAAFE

4

We adopt GPT-3.5 Turbo6 and GPT-47 as LLMs in our evaluation.258

For FEBP, we include k = 10 example features in the prompt and259

set the temperature of GPT models to 1. We prompt the LLM to260

construct m = 1 feature in each query for accurate control of fea-261

ture construction and reducing the number of feature evaluations. We262

perform feature selection each time 10 new features are add to the263

candidate set, terminate when there are 200 candidate features in to-264

tal, and then select the best subset of features based on validation265

performance. For CAAFE [5], we set the number of iterations to 20.266

Further increasing this limit is likely to cause failures due to the con-267

text window of GPT models. Other parameters of baseline methods268

are initialized as per the corresponding papers. We report the results269

from five repeated runs unless stated otherwise.270

5.2 Performance Comparison271

Table 2 compares the performance of all methods. While there is no272

single method that dominates all cases, our method FEBP achieves273

the best overall performance and the lowest mean rank. FEBP yields274

over 8% improvement over baseline model performance on average,275

with over 22% gain on linear models and∼3% gain on both Random276

Forest and LightGBM. The greater performance gain on linear mod-277

els is because Random Forest and LightGBM are able to model com-278

plex relationships themselves. Our paired t-tests show that the perfor-279

mance margin of FEBP over other AutoFE methods except DIFER280

is statistically significant with p-value < 0.001. FEBP is consider-281

ably more efficient in the sense that it evaluates only 200 candidate282

features, whereas DIFER evaluates over 1000 candidate features.283

We also note that the performance of FEBP and CAAFE using284

GPT-4 is not significantly different from using GPT-3.5. Using GPT-285

4 yields better performance on linear models but slightly worse per-286

formance on Random Forest. We speculate this may be because the287

stronger in-context learning capability of GPT-4 is more likely to288

cause overfitting on the training data.289

5.3 Effect of Semantic Context290

To verify the effect of semantic context on our method, we com-291

pare the full version with a blinded version where the descriptions of292

dataset and operators are removed. From Table 3, the performance293

of blinded version degrades. Our paired t-tests show that the perfor-294

mance margin is statistically significant with p-value < 1e−4. De-295

spite the blinded version performs reasonably well on linear mod-296

els, the performance decline is more evident on Random Forest and297

LightGBM, probably because the construction of non-semantically298

meaningful features overfits the training data.299

We also report the number of LLM responses to understand the300

efficiency of feature construction. From Table 3, the incorporation of301

semantic context improves the efficiency of GPT-3.5 but decreases302

the efficiency of GPT-4. One possible reason is that the semantic303

information injects some bias that causes GPT-4 to reproduce similar304

responses.305

5.4 Performance Analysis306

We analyze the behavior of FEBP for further insights. Here we report307

the experimental results on ACT, BH, GC, and WQR datasets with308

linear models from ten repeated runs using GPT-3.5 Turbo.309

6 https://platform.openai.com/docs/models/gpt-3-5
7 https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4

Feature Learning 310

We investigate the cross validation score on training data across fea- 311

ture construction iterations. Figure 5 shows that the score tends to 312

increase with the number of iterations. This validates that FEBP is 313

able to improve the quality of constructed features through in-context 314

learning of top-ranked examples and scores during feature search. 315

Feature Complexity 316

We investigate the order of candidate features across feature con- 317

struction iterations. Figure 6 shows that the feature order increases 318

faster in early iterations and then becomes more stable. On the one 319

hand, we see that FEBP learns to explore into more complex fea- 320

tures in promising feature space. On the other hand, our constraint 321

instruction regularizes the solutions to avoid over complex features. 322

Feature Divergence 323

We analyze the divergence of a new candidate features from previous 324

features during feature construction. We compute the edit distance 325

between canonicalized feature expression trees using the algorithm 326

in [20] and normalize it by the sum of nodes in the two trees. Fig- 327

ure 7 shows the mean normalized tree edit distance between the cur- 328

rent feature and previous five features across iterations. The declining 329

trend we observe indicates that feature search is converging. 330

Feature Construction Efficiency 331

We investigate the number of LLM responses to construct a new can- 332

didate feature. Figure 8 shows that there is an increasing trend with 333

iterations, meaning that more responses are dropped. This is because 334

it becomes more difficult to construct a non-duplicate feature and 335

also syntactical errors are more likely to occur when features gets 336

more complex. Overall, the increase is quite small, so FEBP is scal- 337

able to a large number of iterations. 338

6 Conclusion and Future Work 339

In this paper, we propose a novel LLM-based AutoFE approach for 340

effective and efficient feature engineering that exploits the seman- 341

tic information of datasets. We provide the LLM with dataset de- 342

scriptions and example features in RPN and prompt it to construct 343

new features. The LLM iteratively explores the search space and 344

improves its solutions. Experiments show that our approach outper- 345

forms state-of-the-art baseline methods with statistical significance 346

and the semantic context of dataset descriptions helps improve the 347

performance. We characterize the behavior of LLM-based feature 348

search in our analysis. For future work, we consider introducing 349

adaptive techniques to the prompt design, such as automated prompt 350

engineering. 351

Ethics Statement 352

All datasets used in this work are public and free of personal infor- 353

mation. Datasets are for research purpose only. Our usage of GPT 354

models complies with the terms and conditions of OpenAI. 355

5

Table 2. Summary of experimental results. For each compared method, the left and right columns show the results without and with parameter tuning post
AutoFE, respectively. The best results are highlighted in boldface, and the second best results are underlined.

Model Dataset Raw DIFER OpenFE CAAFE FEBP
GPT-3.5 GPT-4 GPT-3.5 GPT-4

Linear
Model

AF 0.3474 0.5870 0.6090 0.4300 0.4303 0.4011 0.4016 0.4376 0.4378 0.6612 0.6616 0.6649 0.6647
BH 0.3776 0.5013 0.4994 0.3900 0.3880 0.4788 0.4765 0.4503 0.4506 0.4995 0.5025 0.5184 0.5289
BS 1.0000 - - - - - - - - - - - -

WQR 0.2696 0.2475 0.2630 0.2713 0.2736 0.2742 0.2757 0.2776 0.2776 0.2722 0.2745 0.2713 0.2748
ACT 0.8505 0.8715 0.8799 0.8729 0.8729 0.8519 0.8514 0.8565 0.8570 0.8729 0.8794 0.8766 0.8762
CD 0.8267 0.8273 0.8280 0.8265 0.8268 0.8265 0.8267 0.8238 0.8238 0.8282 0.8282 0.8288 0.8288
GC 0.7100 0.7140 0.7420 0.7320 0.7280 0.7350 0.7330 0.7210 0.7210 0.7570 0.7460 0.7590 0.7420

Random
Forest

AF 0.7677 0.7650 0.7786 0.7579 0.7682 0.7711 0.7693 0.7696 0.7720 0.7709 0.7787 0.7681 0.7749
BH 0.5426 0.5718 0.5701 0.5658 0.5620 0.5556 0.5556 0.5512 0.5492 0.5549 0.5533 0.5543 0.5522
BS 0.9446 0.9865 0.9871 0.9901 0.9901 0.9916 0.9916 0.9818 0.9816 0.9873 0.9881 0.9845 0.9848

WQR 0.3662 0.3838 0.3832 0.3753 0.3729 0.3718 0.3718 0.3693 0.3693 0.3862 0.3845 0.3810 0.3810
ACT 0.8808 0.8897 0.8897 0.8832 0.8841 0.8827 0.8855 0.8827 0.8827 0.8925 0.8921 0.8893 0.8864
CD 0.8293 0.8285 0.8291 0.8287 0.8285 0.8291 0.8289 0.8294 0.8287 0.8295 0.8294 0.8295 0.8276
GC 0.7450 0.7550 0.7500 0.7650 0.7570 0.7690 0.7620 0.7660 0.7630 0.7640 0.7620 0.7680 0.7680

Light-
GBM

AF 0.8375 0.8285 0.8411 0.8188 0.8244 0.8364 0.8348 0.8430 0.8426 0.8311 0.8392 0.8366 0.8395
BH 0.5537 0.5607 0.5636 0.5693 0.5618 0.5540 0.5571 0.5478 0.5501 0.5619 0.5644 0.5642 0.5595
BS 0.9429 0.9763 0.9786 0.9751 0.9797 0.9555 0.9565 0.9449 0.9487 0.9737 0.9754 0.9801 0.9813

WQR 0.3825 0.4145 0.4182 0.3898 0.3884 0.4131 0.4035 0.3902 0.3952 0.4118 0.4171 0.4021 0.4042
ACT 0.8832 0.8794 0.8827 0.8808 0.8799 0.8822 0.8860 0.8827 0.8818 0.8888 0.8925 0.8902 0.8925
CD 0.8300 0.8283 0.8277 0.8293 0.8287 0.8296 0.8298 0.8301 0.8294 0.8301 0.8297 0.8303 0.8294
GC 0.7250 0.7650 0.7600 0.7550 0.7700 0.7490 0.7550 0.7450 0.7720 0.7680 0.7720 0.7760 0.7700

Mean 0.6806 0.7091 0.7140 0.6953 0.6958 0.6979 0.6976 0.6950 0.6967 0.7171 0.7185 0.7187 0.7183
Mean Rank 10.95 7.90 5.50 8.35 8.23 7.55 7.58 8.50 8.65 4.88 3.70 4.25 4.98

Table 3. Performance comparison of FEBP with and without semantic blinding. For each compared setting, the left and middle columns show the results
without and with parameter tuning post AutoFE, respectively, and the right column shows the number of LLM responses. The results where the default version

outperforms the blinded version are highlighted in boldface.

Model Dataset Raw GPT-3.5 GPT-4
Blinding Default Blinding Default

Linear
Model

AF 0.3474 0.6613 0.6602 450.0 0.6612 0.6616 481.2 0.6678 0.6672 275.0 0.6649 0.6647 371.4
BH 0.3776 0.4678 0.4794 438.0 0.4995 0.5025 378.6 0.4869 0.4996 295.6 0.5184 0.5289 335.4
BS 1.0000 - - - - - - - - - - - -

WQR 0.2696 0.2643 0.2733 442.8 0.2722 0.2745 328.4 0.2645 0.2702 244.6 0.2713 0.2748 312.6
ACT 0.8505 0.8790 0.8799 442.8 0.8729 0.8794 372.2 0.8720 0.8729 238.8 0.8766 0.8762 377.4
CD 0.8267 0.8283 0.8283 454.8 0.8282 0.8282 342.0 0.8282 0.8289 238.2 0.8288 0.8288 250.4
GC 0.7100 0.7460 0.7390 432.2 0.7570 0.7460 379.0 0.7430 0.7410 231.2 0.7590 0.7420 310.6

Random
Forest

AF 0.7677 0.7644 0.7743 425.2 0.7709 0.7787 473.8 0.7610 0.7690 274.2 0.7681 0.7749 314.2
BH 0.5426 0.5483 0.5483 479.2 0.5549 0.5533 374.4 0.5507 0.5491 238.4 0.5543 0.5522 278.6
BS 0.9446 0.9628 0.9628 510.0 0.9873 0.9881 386.8 0.9535 0.9543 247.4 0.9845 0.9848 255.0

WQR 0.3662 0.3749 0.3738 461.4 0.3862 0.3845 362.6 0.3666 0.3674 253.0 0.3810 0.3810 283.2
ACT 0.8808 0.8864 0.8841 475.8 0.8925 0.8921 357.6 0.8874 0.8841 222.4 0.8893 0.8864 424.0
CD 0.8293 0.8283 0.8282 497.0 0.8295 0.8294 432.2 0.8291 0.8286 375.2 0.8295 0.8276 304.0
GC 0.7450 0.7630 0.7580 459.2 0.7640 0.7620 368.2 0.7510 0.7490 229.6 0.7680 0.7680 471.8

Light-
GBM

AF 0.8375 0.8304 0.8356 479.6 0.8311 0.8392 464.2 0.8185 0.8266 284.6 0.8366 0.8395 360.6
BH 0.5537 0.5503 0.5467 490.8 0.5619 0.5644 455.0 0.5500 0.5609 238.4 0.5642 0.5595 345.6
BS 0.9429 0.9693 0.9691 480.2 0.9737 0.9754 414.0 0.9539 0.9536 312.6 0.9801 0.9813 236.8

WQR 0.3825 0.4087 0.4151 493.0 0.4118 0.4171 322.8 0.4057 0.4050 246.8 0.4021 0.4042 293.6
ACT 0.8832 0.8864 0.8883 513.0 0.8888 0.8925 367.4 0.8813 0.8748 229.0 0.8902 0.8925 359.6
CD 0.8300 0.8284 0.8292 490.8 0.8301 0.8297 440.8 0.8295 0.8299 218.6 0.8303 0.8294 371.2
GC 0.7250 0.7620 0.7620 482.4 0.7680 0.7720 376.6 0.7550 0.7550 225.0 0.7760 0.7700 382.2

Mean 0.6806 0.7105 0.7118 469.9 0.7171 0.7185 393.9 0.7078 0.7092 255.9 0.7187 0.7183 331.9

References356

[1] L. Breiman. Random forests. Machine learning, 45:5–32, 2001.357

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,358

A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. Language mod-359

els are few-shot learners. Advances in neural information processing360

systems, 33:1877–1901, 2020.361

[3] S. Galhotra, U. Khurana, O. Hassanzadeh, K. Srinivas, and H. Samu-362

lowitz. Kafe: Automated feature enhancement for predictive model-363

ing using external knowledge, 2019. URL https://kr2ml.github.io/2019/364

papers/KR2ML_2019_paper_17.pdf.365

[4] L. Grinsztajn, E. Oyallon, and G. Varoquaux. Why do tree-based mod- 366

els still outperform deep learning on typical tabular data? In Thirty- 367

sixth Conference on Neural Information Processing Systems Datasets 368

and Benchmarks Track, 2022. URL https://openreview.net/forum?id= 369

Fp7__phQszn. 370

[5] N. Hollmann, S. Müller, and F. Hutter. Llms for semi-automated data 371

science: Introducing caafe for context-aware automated feature engi- 372

neering, 2023. URL https://arxiv.org/abs/2305.03403. 373

[6] F. Horn, R. Pack, and M. Rieger. The autofeat python library for 374

automated feature engineering and selection. In Machine Learning 375

and Knowledge Discovery in Databases, pages 111–120, Cham, 2020. 376

6

0 50 100 150 200
Iterations

0.8650

0.8675

0.8700

0.8725

0.8750

0.8775

0.8800

Sc
or

e

p-value: 0

(a) ACT

0 50 100 150 200
Iterations

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

Sc
or

e

p-value: 0

(b) BH

0 50 100 150 200
Iterations

0.740

0.745

0.750

0.755

0.760

Sc
or

e

p-value: 0

(c) GC

0 50 100 150 200
Iterations

0.2400

0.2425

0.2450

0.2475

0.2500

0.2525

0.2550

0.2575

Sc
or

e

p-value: 0

(d) WQR

Figure 5. The cross validation score on training data across iterations. The shaded regions represent standard deviations. We show the p-value of OLS
regression.

0 50 100 150 200
Iterations

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Or
de

r

p-value: 0

(a) ACT

0 50 100 150 200
Iterations

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Or
de

r

p-value: 0.12

(b) BH

0 50 100 150 200
Iterations

2

3

4

5

Or
de

r

p-value: 0

(c) GC

0 50 100 150 200
Iterations

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Or
de

r

p-value: 0

(d) WQR

Figure 6. The order of candidate features across iterations. The shaded regions represent standard deviations. We show the p-value of OLS regression.

50 100 150 200
Iterations

0.35

0.40

0.45

0.50

0.55

Di
st

an
ce

p-value: 0

(a) ACT

50 100 150 200
Iterations

0.35

0.40

0.45

0.50

0.55

Di
st

an
ce

p-value: 0.08

(b) BH

50 100 150 200
Iterations

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Di
st

an
ce

p-value: 0

(c) GC

50 100 150 200
Iterations

0.35

0.40

0.45

0.50

0.55

Di
st

an
ce

p-value: 0

(d) WQR

Figure 7. The mean normalized tree edit distance between a new candidate feature and previous five features across iterations. The shaded regions represent
standard deviations. We show the p-value of OLS regression.

0 50 100 150 200
Iterations

0

1

2

3

4

5

6

Re
sp

on
se

s

p-value: 0.03

(a) ACT

0 50 100 150 200
Iterations

1

0

1

2

3

4

5

6

Re
sp

on
se

s

p-value: 0.08

(b) BH

0 50 100 150 200
Iterations

0

1

2

3

4

5

Re
sp

on
se

s

p-value: 0

(c) GC

0 50 100 150 200
Iterations

0

1

2

3

4

5

Re
sp

on
se

s

p-value: 0.26

(d) WQR

Figure 8. The number of LLM responses to construct a new candidate feature across iterations. The shaded regions represent standard deviations. We show
the p-value of OLS regression.

7

Springer International Publishing. ISBN 978-3-030-43823-4.377

[7] J. M. Kanter and K. Veeramachaneni. Deep feature synthesis: Towards378

automating data science endeavors. In 2015 IEEE international con-379

ference on data science and advanced analytics (DSAA), pages 1–10.380

IEEE, 2015.381

[8] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-382

Y. Liu. Lightgbm: A highly efficient gradient boosting decision tree.383

In Advances in Neural Information Processing Systems, volume 30,384

2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/385

6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.386

[9] U. Khurana, H. Samulowitz, and D. Turaga. Feature engineering for387

predictive modeling using reinforcement learning. In Proceedings of388

the AAAI Conference on Artificial Intelligence, volume 32, 2018.389

[10] L. Li, H. Wang, L. Zha, Q. Huang, S. Wu, G. Chen, and J. Zhao. Learn-390

ing a data-driven policy network for pre-training automated feature en-391

gineering. In The Eleventh International Conference on Learning Rep-392

resentations, 2023.393

[11] K. Man, K. Tang, and S. Kwong. Genetic algorithms: concepts and394

applications [in engineering design]. IEEE Transactions on Industrial395

Electronics, 43(5):519–534, 1996. doi: 10.1109/41.538609.396

[12] F. Nargesian, H. Samulowitz, U. Khurana, E. B. Khalil, and D. S.397

Turaga. Learning feature engineering for classification. In Ijcai, vol-398

ume 17, pages 2529–2535, 2017.399

[13] OpenAI. Gpt-4 technical report, 2023. URL https://cdn.openai.com/400

papers/gpt-4.pdf.401

[14] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever.402

Language models are unsupervised multitask learners, 2019.403

[15] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,404

T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,405

A. Joulin, E. Grave, and G. Lample. Llama: Open and efficient founda-406

tion language models, 2023. URL https://arxiv.org/abs/2302.13971.407

[16] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,408

N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher,409

C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu,410

W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hos-411

seini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann,412

A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich,413

Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog,414

Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten,415

R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor,416

A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan,417

M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and418

T. Scialom. Llama 2: Open foundation and fine-tuned chat models,419

2023. URL https://arxiv.org/abs/2307.09288.420

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.421

Gomez, L. u. Kaiser, and I. Polosukhin. Attention is all you need. In422

Advances in Neural Information Processing Systems, volume 30. Cur-423

ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_424

files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.425

[18] K. Wang, P. Wang, and C. Xu. Toward efficient automated feature en-426

gineering. In 2023 IEEE 39th International Conference on Data En-427

gineering (ICDE), pages 1625–1637, 2023. doi: 10.1109/ICDE55515.428

2023.00128.429

[19] C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, and X. Chen. Large430

language models as optimizers, 2023. URL https://arxiv.org/abs/2309.431

03409.432

[20] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance433

between trees and related problems. SIAM J. Comput., 18:1245–1262,434

12 1989. doi: 10.1137/0218082.435

[21] T. Zhang, Z. Zhang, Z. Fan, H. Luo, F. Liu, Q. Liu, W. Cao, and J. Li.436

Openfe: automated feature generation with expert-level performance. In437

Proceedings of the 40th International Conference on Machine Learn-438

ing, ICML’23, 2023.439

[22] G. Zhu, S. Jiang, X. Guo, C. Yuan, and Y. Huang. Evolutionary auto-440

mated feature engineering. In Pacific Rim International Conference on441

Artificial Intelligence, pages 574–586. Springer, 2022.442

[23] G. Zhu, Z. Xu, C. Yuan, and Y. Huang. Difer: Differentiable automated443

feature engineering. In Proceedings of the First International Confer-444

ence on Automated Machine Learning, volume 188 of Proceedings of445

Machine Learning Research, pages 17/1–17. PMLR, 25–27 Jul 2022.446

URL https://proceedings.mlr.press/v188/zhu22a.html.447

[24] D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei,448

P. Christiano, and G. Irving. Fine-tuning language models from human449

preferences. arXiv preprint arXiv:1909.08593, 2019.450

8

