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Abstract—The Internet comprises of interconnected, inde-
pendently managed Autonomous Systems (AS) that rely on
the Border Gateway Protocol (BGP) for inter-domain routing.
BGP anomalies—such as route leaks and hijacks—can divert
traffic through unauthorized or inefficient paths, jeopardizing
network reliability and security. Although existing rule-based
and machine learning methods can detect these anomalies
using structured metrics, they still require experts with in-
depth BGP knowledge of, for example, AS relationships and
historical incidents, to interpret events and propose remediation.
In this paper, we introduce BEAR (BGP Event Analysis and
Reporting), a novel framework that leverages large language
models (LLMs) to automatically generate comprehensive reports
explaining detected BGP anomaly events. BEAR employs a
multi-step reasoning process that translates tabular BGP data
into detailed textual narratives, enhancing interpretability and
analytical precision. To address the limited availability of publicly
documented BGP anomalies, we also present a synthetic data
generation framework powered by LLMs. Evaluations on both
real and synthetic datasets demonstrate that BEAR achieves
100% accuracy, outperforming Chain-of-Thought and in-context
learning baselines. This work pioneers an automated approach
for explaining BGP anomaly events, offering valuable operational
insights for network management.

Index Terms—large language models (LLM), border gateway
protocol (BGP), anomaly explanation, prompt engineering

I. INTRODUCTION

The Border Gateway Protocol (BGP) is the principal inter-
domain routing protocol that facilitates data exchange across
the Internet by enabling autonomous systems (ASes) to dis-
seminate network reachability information [1]. As the back-
bone of Internet connectivity, BGP’s proper functioning is crit-
ical for maintaining global network stability and performance
[2].

However, BGP’s inherent lack of built-in security measures
renders it susceptible to various anomalies, notably BGP
hijacking and route leaks [3]. BGP hijacking involves an
AS illegitimately announcing IP prefixes it does not own,
thereby diverting or intercepting traffic intended for the le-
gitimate IP address holder [4] (see Figure 1). This can lead to
significant disruptions, including loss of data confidentiality
and integrity. Route leaks occur when an AS improperly

announces received BGP routes to unintended parties, of-
ten due to misconfigurations or policy violations [4] (see
Figure 2). Such leaks can cause suboptimal routing, traffic
congestion, and widespread service outages, undermining the
reliability of Internet services. The ramifications of these
BGP vulnerabilities are profound, potentially leading to large-
scale Internet disruptions, economic losses, and compromised
security. Therefore, detecting and mitigating BGP anomalies
are imperative to uphold the resilience and trustworthiness of
the global Internet infrastructure.

While existing methods can detect the occurrence of BGP
anomalies [5]–[15], a comprehensive understanding of these
events is essential for effective mitigation and prevention.
Detailed insights into the event type, affected ASes, pre- and
post-event path changes, and identification of the malicious
or misconfigured AS are crucial for network operators and
security professionals. Such in-depth analysis enables targeted
responses, minimizes disruption, and enhances the overall
security posture of the Internet’s routing infrastructure. Con-
sequently, it is imperative to develop methods that can auto-
matically generate comprehensive reports upon the detection
of an anomaly. We refer to this challenge as BGP anomaly
event explanation and define it formally in Section III-A.

Large Language Models (LLMs) have demonstrated re-
markable proficiency in automatic text generation and com-
plex reasoning tasks [16]. While structured machine learn-
ing models—such as graph-based or other structured ap-
proaches—excel at detecting anomalies using predefined met-
rics [4], they are inherently limited to the information explic-
itly provided to them and lack the broader world knowledge
required to interpret these anomalies. For example, although
structured models can flag deviations in BGP metrics, they
cannot readily account for historical patterns of regional at-
tacks or subtle indicators of sophisticated routing exploits. In
contrast, LLMs are imbued with extensive domain and world
knowledge, including detailed insights into BGP operations
and known vulnerabilities, enabling them to generate nuanced,
context-rich explanations. However, LLMs are not ideally
suited for the direct extraction of precise metric anomalies



from large-scale data, due to their training on textual rather
than structured numerical data [17]. Thus, while we use
structured models to detect anomalies, our novelty lies in
employing LLMs to interpret and explain these anomalies in
detail.

In this paper, we propose a novel framework, BEAR (BGP
Event Analysis and Reporting), designed to leverage an LLM
for generating comprehensive reports that explain detected
BGP anomaly events. The framework begins by extracting
relevant BGP data associated with an anomaly from an online
BGP database using the provided timestamp and IP prefix.
Recognizing the strengths of LLMs in handling textual data
over tabular formats, we adopt a multi-step reasoning ap-
proach: transforming BGP data into text before utilizing the
LLM for data analysis and report generation. To enhance
the accuracy of the generated reports, we incorporate self-
consistency mechanisms and prompt augmentation techniques.
We also cover robustness by studying situations with a subset
of collectors being online. As a side effect, this also reduces
the number of LLM tokens being used. This study focuses
on two primary types of BGP anomalies, as categorized in
the Zhao et al.’s taxonomy [16]: (1) direct intended anomalies
(e.g., BGP hijacks) and (2) direct unintended anomalies (e.g.,
BGP route leaks). These two categories are prioritized because
they represent the most significant types of BGP anomalies
and can be effectively analyzed using available public data. In
contrast, the other two categories—indirect anomalies and link
failures—often require additional external private datasets for
comprehensive analysis. As such, this work limits its scope
to BGP hijacks and route leaks, leaving the exploration of
indirect anomalies and link failures for future research.

Moreover, we introduce the first approach to generate syn-
thetic BGP anomaly event data, addressing the scarcity of
fully documented BGP anomaly events. To create high-quality
synthetic events, we leverage an LLM to produce specific
details of an anomaly, such as the timestamp, victim IP prefix,
event type, hijacker or route leaker, AS path after the event,
and detection rate. Using the generated details, we extract
relevant BGP data from an existing BGP dataset based on
the timestamp and victim IP prefix. This data is then modified
according to the LLM-specified details, creating synthetic BGP
data that simulates the occurrence of an anomaly event. This
method produces high-quality synthetic events. We evaluate
BEAR on both real-world BGP anomaly events, including
many recent incidents, and synthetic events. All generated
reports are assessed by BGP experts for correctness. BEAR
achieves 100% accuracy on both real and synthetic datasets.

Our contributions are listed next.
• Problem Definition and Exploration: This work is the

first to introduce and investigate the problem of BGP
anomaly event explanation, aiming to provide insights
from both structured data and LLM global knowledge
into events by analyzing BGP data both before and after
the anomaly event.

• Novel Multi-Step Reasoning Approach: The paper
proposes a novel multi-step reasoning approach by trans-

Fig. 1. BGP hijack example.

Fig. 2. BGP route leak example.

forming large-scale tabular BGP data into textual de-
scriptions for enhanced interpretability and performing
data analysis and reasoning on the text description in-
stead of the tabular data for high reasoning accuracy.
By leveraging prompt augmentation and self-consistency
mechanisms, the approach achieves 100% accuracy and
generates detailed BGP anomaly event reports, effectively
identifying missing key elements such as event types,
relevant ASes, and comprehensive explanations.

• Robustness of Availability of Collectors: In real world,
collectors can be down. We study such an impact by
creating settings with limited availabilities of collectors.
With respect to LLMs, this accommodates the use of
LLMs with a limited number of input tokens. Leveraging
fewer collectors also results in a faster explanation of
the events and a quicker mitigation and remediation, thus
reducing network impacts.

• Synthetic Data Generation Framework: In this re-
search, an innovative framework is presented that utilizes
LLMs to synthesize high-quality synthetic BGP anomaly
event datasets. This framework generates critical features
such as event types, relevant ASes, target IPs, timestamps,
and AS paths before and after the events, marking the first
method designed to synthesize BGP anomaly events.

All codes are available in https://github.com/hanklee97121/
BEAR BGP EVENT ANALYSIS.

II. RELATED RESEARCH

This section reviews related literature on BGP anomaly
detection and the applications of LLMs in the BGP domain.

A. Background

Each AS advertises the IP prefixes it controls—collections
of IP addresses that define reachable networks—which to-
gether form a global routing table [18]. In addition to merely
announcing these prefixes, an AS advertises complete routes
that include essential attributes such as the next hop and the AS

https://github.com/hanklee97121/BEAR_BGP_EVENT_ANALYSIS
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path [18]. The AS path is a sequential list of AS numbers that a
route advertisement has traversed; each time a router forwards
the announcement, it prepends its own AS number to the path,
thereby creating a path to reach an IP prefix that will be filtered
by policy-based routing rules by following the AS to decide
whether to take this path and advertise it or not [4]. BGP
was originally designed to prioritize functionality and scala-
bility rather than security, so it lacks built-in mechanisms to
authenticate the source of route announcements [19]. Because
of this trust-based design, any AS can announce routes for IP
prefixes regardless of ownership, leaving BGP vulnerable to
both configuration errors and deliberate attacks such as hijacks
and route leaks.

To study and mitigate these anomalies, researchers rely on
open-source collector frameworks that aggregate BGP data
from routers worldwide. RIPE RIS and RouteViews are two
prominent projects that collect global BGP data by acting as
route collectors [20], [21]. Both projects establish BGP peering
sessions with numerous volunteer networks to receive routing
information in real time. RIPE RIS deploys a network of
Remote Route Collectors at strategic locations—often at major
Internet Exchange Points—where they peer with participating
networks. When an AS peers with an RIS collector, it sends
a complete snapshot of its Routing Information Base (RIB
dump) as well as continuous incremental update messages that
reflect changes in its routing table. These data are recorded
in the standardized MRT (Multi-threaded Routing Toolkit)
format, making them available for public analysis and re-
search. Similarly, the RouteViews project collects BGP data
by establishing voluntary BGP sessions with a wide range of
networks.

B. BGP anomaly detection

Over the years, various techniques have been developed
to detect BGP anomalies [4]. Traditional methods primarily
rely on statistical analyses and rule-based systems to identify
irregularities in BGP update messages [4]. One category of
approaches involves time-series analysis of observed BGP
features. Labovitz et al. [2] introduced one of the earliest
methods, leveraging Fast Fourier Transform to analyze routing
update rates. Subsequent work by Mai et al. [22] and Prakash
et al. [23] employed wavelet transforms to analyze multiple
BGP features for anomaly detection. Al-Musawi et al. [3]
proposed Recurrence Quantification Analysis, a non-linear
dynamics technique, to detect BGP instability by examining
BGP volume and the average AS-path length.

Another category involves traditional machine learning tech-
niques, such as decision trees, Naive Bayes, and support vector
machines [24]–[27]. For instance, Al-Rousan and Trajkovic
[26] applied both support vector machines and Hidden Markov
Models to 37 selected features to detect BGP anomalies. Lutu
et al. [27] used the windowing algorithm on nine selected BGP
features for anomaly detection.

Statistical pattern recognition techniques have also been
explored, including Principal Component Analysis [28], gen-
eralized likelihood ratio tests [29], higher-order path analysis

[30], and Z-score calculations [31]. Other methods involve
brute-force comparisons of historical BGP data [32]–[35] or
assessing prefix reachability [36]–[39].

Recent advancements integrate neural networks into
anomaly detection, utilizing techniques such as LSTMs [10],
[11] and Graph Neural Networks [12], [13]. Fezeu et al.
[14], Huang et al. [15], and others [7]–[9] further demonstrate
the potential of neural networks for BGP anomaly detection.
Scott et al. [6] applied the Matrix Profile, a time-series
mining approach, to detect BGP anomalies across various
event categories. More recently, Scott et al. [5] proposed the
multidimensional recurrence quantification analysis, treating
BGP anomaly detection as a group dynamics problem by ana-
lyzing interactions and temporal relationships among multiple
ASes.

Unlike these methods, which primarily focus on detecting
BGP anomaly events, our approach addresses the subsequent
step: analyzing the detected anomalies and generating com-
prehensive reports to explain the events.

C. LLM in BGP

With the advancement of LLMs and their powerful capabil-
ities in text understanding and generation, these models have
been applied to various domains, including addressing BGP-
related challenges. Mondal et al. [40] explored using LLMs
for automated router configuration synthesis, including BGP
policy implementation. Kan et al. [41] developed a fine-tuned
LLM for network analysis, including IP routing analyses with
an emphasis on BGP paths. Palmero et al. [42] introduced an
AI-powered assistant leveraging LLMs for tasks such as BGP
configuration and anomaly diagnoses.

However, none of these methods address the specific chal-
lenge of analyzing BGP anomaly events and generating com-
prehensive explanatory reports. Our approach bridges this
gap, introducing the first method explicitly designed for BGP
anomaly event explanation.

III. METHODOLOGY

This section outlines the methodology for generating the
BGP anomaly event report. First, we formally define the BGP
anomaly event explanation problem. Next, we describe the
process of retrieving the relevant data for an event analysis.
Finally, we present the framework for producing high-quality
BGP anomaly event reports.

A. Problem Definition

Before introducing the method, we formally define the
problem of BGP anomaly event explanation. A BGP anomaly
event E is given by an associated IP prefix ip and a specific
start time t. We assume this event is currently detected by any
of the BGP anomaly detection algorithms such as the ones
explained in Section II-B. Additionally, we have access to the
BGP dataset DBGP , which contains BGP update messages and
routing information over time. The objective is to develop a
function f that processes this information to generate a natural
language report R. The report should explain the details of the



Fig. 3. Overview of how BGP messages and routing information are collected.

Fig. 4. An example of a BGP update message.

event E and identify key unknown features, such as the event
type and relevant ASes.

B. Data Retrieval

After obtaining the target IP prefix ip and the specific
start time t, we utilize the open-source software framework
BGPStream [43] to retrieve relevant AS path information from
the BGP dataset DBGP . Specifically, we extract AS paths from
BGP update messages and routing information base (RIB)
records to construct three datasets: historical AS paths, AS
paths before the event, and AS paths after the event.

BGPStream accesses BGP messages and RIB records col-
lected by RIPE Routing Information Service (RIS) [21], a
routing data collection platform that gathers BGP data through
collectors. As illustrated in Figure 3, each collector connects
to multiple peers, representing real ASes in the BGP network,
and collects BGP update messages sent by these peers every
five minutes. Additionally, collectors extract RIBs (i.e., all AS
paths from a peer to all accessible IP prefixes) at eight-hour
intervals.

Figure 4 illustrates an example BGP message. The AS
path (highlighted in grey) represents the route taken by an
AS (highlighted in green) to reach an IP prefix (highlighted
in yellow). The letter “A” (highlighted in blue) indicates an
announcement of an AS path, while the letter “W” denotes a
withdrawal message, signaling the removal of an existing AS
path.

An RIB record captures a snapshot of the BGP routing table
at a specific moment, providing a comprehensive view of all
active AS paths known to an AS at that time. The RIPE
RIS collectors generate these snapshots every eight hours,
collecting RIB records from all their peers. The format of
an RIB record is similar to that of a BGP message, with the
key distinction being the identifier letter “R” (highlighted in
blue), which denotes an RIB record.

To build the datasets we proceed as follows.
1) Historical Data (Dhistory): We extract RIB records from

all RIPE RIS collectors, capturing all AS paths to ip. To

ensure Dhistory does not include information about the
anomaly event E, we use RIB records from at least eight
hours prior to the event’s start time t. Given that RIB
records are collected every eight hours, the timestamp
for Dhistory is determined as ⌊ t−8h

8h ⌋ × 8h. Since each
AS maintains a single AS path to a prefix at a time, we
store one AS path for each peer directly connected to a
RIPE RIS collector in Dhistory.

2) Data Before the Event (Dbefore): Building on Dhistory,
we incorporate all BGP update messages from the times-
tamp of Dhistory up to five minutes before t. Each BGP
update message modifies the AS paths in Dhistory to re-
flect the state immediately before the event. Specifically,
if a BGP update message is an annoucement of a new
AS path from peer p to ip, we replace the old one from
p in Dhistory with this new AS path. If a BGP update
message is a withdrawl of an existing AS path from
peer p to ip, we delete the AS path from p in Dhistory.
Starting from Dhistory, we incorporate all BGP update
messages recorded between the timestamp of Dhistory

and five minutes before t. Each update message modifies
Dhistory to reflect the network state immediately before
the event. If an update message announces a new AS
path from peer p to ip, we replace the corresponding
path in Dhistory. If the update message withdraws an
AS path from peer p to ip, the path is removed from
Dhistory.

3) Data After the Event (Dafter): Dbefore is further up-
dated using BGP update messages collected between
five minutes before t and five minutes after t, or up
to one second before the event ends if the end time
is earlier than t + 5m. The update process follows the
same procedure as in Dbefore, ensuring Dafter reflects
the network state after the anomaly event starts.

To account for sub-prefix anomaly scenarios, we also collect
RIB records and BGP update messages for IP prefixes that are
more or less specific than ip, updating Dhistory, Dbefore, and
Dafter accordingly. All three datasets are stored as structured
tabular data in the JSON format, following the structure
“{collector:{peer:[AS path]}}.” We refer to these datasets
collectively as the BGP data.

C. Data Analysis and Report Generation

As illustrated in Figure 5, most IP prefixes are associated
with between 1,000 and 1,200 recorded AS paths, and each
event involves, on average, 2 to 3 IP prefixes in the BGP data.
Given the scale of the dataset—which comprises of up to 1,545
peers, with most events recording between 2,000 and 3,600
AS paths—directly analyzing these three datasets to produce
an accurate explanation presents a significant challenge for
LLMs. To address this, we employ a multi-step reasoning
framework that systematically guides the LLM through the
report generation process, incorporating prompt engineering,
in-context learning, and a self-consistency mechanism to en-
hance accuracy and reliability.



Fig. 5. Number of AS path per IP prefix.

Fig. 6. Overview of the framework that generates report for BGP anomaly
events

The method begins with a data analysis phase designed
to transform tabular BGP data into textual descriptions, as
illustrated in Figure 6. The LLM is first provided with the
BGP data in a tabular format and prompted to describe
changes in AS paths by comparing Dafter with Dbefore, using
Dhistory as a reference. The prompt is carefully structured
to decompose the reasoning process, directing the LLM to
analyze AS path changes systematically. The LLM is required
to answer the following key questions.

• Does the existing path from each peer to the target IP
prefix change?

• If it does, does the last AS (destination) change or not?
• Is there any new AS path to a new sub-prefix introduced?
• If there is, compare it to the existing path with the same

peer, is there any difference?
• Does the last AS (destination) change or not?

These targeted questions guide the LLM to extract meaningful
patterns from the BGP data and produce structured responses.
In this manner, the tabular BGP data is transformed into
descriptive text containing meaningful information, which is
then utilized by the LLM to determine the event type and
compose the report.

Despite these refinements, we observe that the LLM occa-
sionally misidentifies the destination AS in an AS path. For
example, in the AS path [4608, 1221, 4637, 15169], the LLM
may incorrectly infer AS4637 as the destination instead of the
correct answer, AS15169. To mitigate this, we employ few-
shot in-context learning, providing the LLM with examples of
AS paths alongside their correct destination AS, ensuring it
learns to accurately interpret AS paths.

Next, the LLM is tasked with classifying the anomaly
type—determining whether the event is a BGP hijack or a BGP
route leak based on observed AS path changes. The prompt
explicitly describes the distinguishing characteristics of these
anomalies, ensuring the model applies the correct classification
criteria. Additionally, we emphasize in the prompt that the
consequences of these anomalies may be reflected in a single
AS path or a sub-prefix, ensuring that the model accounts
for sub-prefix anomalies in its analysis. This emphasis also
reinforces the importance of detecting even subtle differences
between Dbefore and Dafter, enabling the LLM to identify
minor but crucial changes that may indicate an anomaly.

To improve robustness, we repeat this data analysis and
classification processes identically N times, generating N AS
path change reports and N anomaly classifications. They differ
due to the stochastic generation process of LLMs. A self-
consistency mechanism is then applied, where we ask the LLM
to select the most frequently occurring anomaly classification
across all iterations. Then, instead of directly choosing one of
the generated AS path change reports, we prompt the LLM to
synthesize the final AS path change report that aligns with
the majority of the previously generated reports, ensuring
consistency and coherence. This approach mitigates variability
in the LLM’s outputs and reinforces correctness by prioritizing
the most consistent and frequently observed description.

Finally, we provide the BGP data, the final AS path change
report, and the final anomaly classification as inputs to the
LLM, prompting it to generate a comprehensive BGP event
report. The crafted prompt ensures that the report includes
key details such as the event type and affected ASes. By
combining multi-step reasoning, prompt engineering, and self-
consistency, BEAR produces highly accurate and interpretable
reports that effectively explain BGP anomaly events.

IV. DATASET

We gather information on 10 well-documented BGP
anomaly events from online sources, recording their event
type, relevant ASes, target IP, start time, end time, event name,
and a link to the event description. The corresponding BGP
data for each event is retrieved as outlined in Section III-B.

Given the detailed online descriptions of these events, many
of which occurred prior to 2023, it is possible that the LLM
used in our experiments has been trained on these reports.
To ensure that the LLM generates explanations by reasoning
and analyzing data rather than retrieving reports from its
memory, we modified the BGP data for these 10 events.
Specifically, we replaced the AS numbers with random values
and the timestamps with random timestamps, creating 10



Fig. 7. Workflow of synthetic BGP event generation.

additional samples. These modified events retain the same
structural characteristics as the original events but eliminate
identifying features that could trigger memory-based retrieval
by the LLM. The resulting dataset consists of 20 samples,
encompassing both the original events and their anonymized
counterparts, which we refer to collectively as the “real
events.”

A. Synthetic BGP Event

Due to the scarcity of public well-documented BGP
anomaly event, we only have 20 real events in our dataset
to test the performance of the method. To get more samples
to evaluate the performance of the method, we develop a
framework to generate synthetic BGP events. As illustrated in
Figure 7, we generate a BGP event by generating BGP data
(Dhistory, Dbefore, Dafter) as well as the target IP prefix and
timestamp with the aid of an LLM.

The complete workflow is illustrated in Figure 7. The main
idea is to retrieve real Dhistory and Dbefore from DBGP and
to generate a synthetic Dafter that simulates the impact of
a hypothetical BGP anomaly event using an LLM. We begin
by prompting the LLM to randomly generate a valid IP prefix
and timestamp, which are used to retrieve routing information
via BGPStream, forming Dhistory and Dbefore. To ensure that
these datasets are unaffected by any anomaly event, we verify
the consistency of the AS paths between them. The Dbefore

dataset is then fed into the LLM, which is asked to produce
a textual description, including patterns in the AS paths and
examples of specific AS paths.

Next, the LLM is tasked with generating a detailed hypo-
thetical BGP anomaly event description based on the provided
AS path patterns and examples. Initially, we ask the LLM to
randomly select the event type. Thereafter, it is specifically
instructed to produce a description that incorporates key de-
tails—namely, the event type, any applicable sub-prefix, the
identity of the hijacker or leaker, representative examples of
affected AS paths, and the percentage of peers detecting the

Fig. 8. Number of correct reports generated by BEAR and other naive
benchmarks in explaining BGP anomaly events, evaluated on 10 real events,
10 anonymized real events, and 34 synthetic events.

event. All prompts are provided in a zero-shot manner with
detailed instructions.

Using the generated event description, we extract the key
information and modify Dbefore to create Dafter. If the event
involves a sub-prefix hijack or route leak, all AS paths in
Dbefore for the target IP prefix are duplicated and applied to
the sub-prefix, after which subsequent edits are made to the
sub-prefix data. Peers are sampled based on the percentage
of detection, and their AS paths to the target IP prefix are
replaced with randomly selected examples provided by the
LLM. For AS path replacement, in BGP hijack events, the
first AS is set as the peer, the last AS is the hijacker, and
the rest is modified based on the selected example. In BGP
route leak events, the suffix of the AS path is replaced with
the sample AS path provided by the LLM, starting with the
leaker and ending with the correct destination AS.

The LLM generates multiple AS path samples for hijack
events, while for route leak events, a single AS path sample
suffices since the path from the leaker to the valid destination
is unique. After these modifications, Dafter is finalized, com-
pleting the generation of one synthetic BGP anomaly event.

We generate 34 synthetic BGP anomaly events, evenly
divided into 17 BGP hijacks and 17 BGP route leaks, to
assess our method. This dataset is referred to as the “synthetic”
dataset.

V. EXPERIMENT RESULTS

We evaluate our proposed method on both real and synthetic
datasets, comprising a total of 54 events. In our experiments,
we set N = 5 in self-consistency and use GPT-4o as the
backbone LLM. Additionally, we evaluate BEAR on two
other LLMs (Claude-3.5-Sonnet and Llama-3.3-70B-Instruct)
available through the Amazon Bedrock service, with the
corresponding results presented at the end of this section.

We compare BEAR against several baselines, including
chain-of-thought (CoT) reasoning [44], in-context learning
[45], and a combination of both (CoT+In-Context), as these



Fig. 9. An example report for a BGP hijack event. In this report, BEAR not
only identifies the event type but also detects the hijacked sub-prefix.

are the most common prompt engineering methods in natu-
ral language processing. In the CoT reasoning baseline, we
provide definitions for both BGP hijack and BGP route leak,
instructing the LLM to explain its reasoning when inferring
the event type, thereby encouraging a step-by-step thought
process. For the in-context learning baseline, we present the
LLM with four synthetic examples of BGP data generated by
our synthetic BGP event generation framework. Each example
corresponds to a specific event type—namely, one BGP hijack,
one BGP sub-prefix hijack, one BGP route leak, and one BGP
sub-prefix route leak—and is accompanied by its respective
event type and explanation. Notably, these examples are not in-
cluded in the synthetic dataset. The hybrid approach, CoT+In-
Context, combines both strategies by including the definitions
and example reports in the prompt. Additionally, we assess
the performance of BEAR without the self-consistency mecha-
nism, referred to as BEAR0. All generated reports are reviewed
by BGP experts for evaluation.

As shown in Figure 8, BEAR achieves 100% accuracy in
explaining BGP anomaly events, outperforming all baseline
methods. BEAR0 achieves 90.7% accuracy, surpassing CoT,
In-Context, and CoT+In-Context, highlighting the significant
improvement in data analysis capabilities enabled by the
multi-step reasoning approach. Furthermore, the superior per-
formance of BEAR compared to BEAR0 demonstrates that
the self-consistency mechanism enhances the accuracy of the
generated reports. Figure 9 presents an example report. Despite
the increased complexity introduced by the involvement of a
sub-prefix, BEAR successfully identifies all key information
and generates a comprehensive report. Additionally, the report
includes recommended actions to remedy the anomaly.

Alfroy et al. [46] demonstrate that public BGP collection
platforms, such as RIPE RIS, capture data from only a limited
fraction of ASes. As a result, while historical data offers
near-complete routing visibility, real-time anomaly monitoring
depends on a restricted set of collectors. Their simulations
indicate that only about 16% of peer-to-peer links are ob-
served in real time, causing roughly 24% of simulated BGP
hijacks to be missed. Moreover, RIPE RIS collectors can
become temporarily inaccessible due to connectivity issues or

Fig. 10. Experimental results under limited data conditions (x-axis shows
the percentage of collectors). The anomaly presence ratio represents the
percentage of anomaly events captured in D′

before and D′
after . Accuracy

accounts for reports that either correctly explain the BGP anomaly event
or produce an inconclusive report due to missing event-related data while
recommending additional data collection from other collectors.

Fig. 11. Example report when D′
before and D′

after does not contain the
anomaly event.

maintenance. For instance, on January 16, 2025, several route
collectors experienced connectivity problems that prevented
data transmission [47]. Similarly, on February 10, 2025, the
rrc19 collector was taken offline for hardware migration,
interrupting its BGP sessions until maintenance was concluded
[48]. Motivated by these findings, we evaluate BEAR’s per-
formance under conditions of partial data availability during
a BGP anomaly, reflecting real-world scenarios in which
comprehensive BGP data may be inaccessible. To simulate
this limitation, we randomly select a subset of collectors from
the 24 RIPE RIS collectors and restrict the BGP data in
Dbefore and Dafter to those selected collectors, resulting in
D′

before and D′
after. Dataset Dhistory remains unchanged as

a full historical reference for the LLM to identify missing data
during report generation.

Our objective is twofold: (1) if the anomaly event is
represented in D′

before and D′
after, BEAR should generate an

accurate BGP anomaly event report; (2) if the event is absent in
D′

before and D′
after, BEAR should produce an inconclusive

report and recommend collecting additional data from other
collectors, using Dhistory as a guide.

As shown in Figure 10, increasing the number of collectors
leads to a higher capture rate of anomaly events in the
BGP data, as expected, while BEAR maintains consistent



Fig. 12. Average number of tokens required to generate a report at different
levels of available data. The x-axis represents the percentage of collectors. The
two plots show how resource requirements vary as the amount of provided
data increases: the first plot displays the number of input tokens, and the
second plot shows the number of output tokens.

100% accuracy. In scenarios where data from only a single
collector is available (4% of collectors), 78% of anomaly
events were present in D′

before and D′
after, including 7

real, 2 anonymous real, and 33 synthetic events, and BEAR
successfully generated accurate reports for all these cases. For
the remaining 22% of events, where anomaly-related data was
missing, BEAR produced inconclusive reports while appro-
priately recommending additional data collection from other
collectors, thereby still fulfilling our predefined objective. With
two collectors (8% of collectors), 87% of events are captured
in D′

before and D′
after, comprising of 7 real, 6 anonymous

real, and 34 synthetic events. With four collectors (16% of
collectors), 93% of anomaly events are presented in D′

before

and D′
after, including 8 real, 8 anonymous real, and 34 syn-

thetic events. When 33% or more of collectors are available,
all anomaly events are reflected in D′

before and D′
after. As

illustrated in Figure 11, the highlighted part demonstrates
BEAR’s ability to recognize the lack of necessary event
data and suggest gathering more information to complete the
analysis.

Additionally, we evaluate the token resources required for
report generation under different levels of collectors, as illus-
trated in Figure 12. The token counts represent the average
over all 54 events (both real and synthetic), since resource
usage is similar across real and synthetic events. In general,
the total token count used by BEAR to generate a BGP
anomaly explanation increases sublinearly with the number of
collectors—and, consequently, with the data volume. When
employing all 24 collectors, BEAR requires an average of
153,628 input tokens and 4,285 output tokens per report. In
contrast, when only 4% of collectors are available (i.e., one
collector), BEAR uses an average of 53,482 input tokens and
3,874 output tokens per report.

During data collection, we observe that one BGP anomaly

Fig. 13. An example report of a BGP anomaly event with an extensive volume
of data.

event involves data volumes too large for the backbone LLM to
process. Specifically, event Ee — a BGP route leak at Angola
Cables [49] on May 25, 2023 — contains an unusually high
amount of BGP data, with 697 IP prefixes and 771,654 AS
paths (in contrast to an average of 2–3 IP prefixes for other
events). This high volume results from the target IP prefix
having many sub-prefixes, all of which are retrieved to cover
the sub-prefix scenario. As this volume exceeds the LLM’s
token limit, we excluded Ee from previous experiments.

To address this issue, we develop a hierarchical summa-
rization strategy. When the BGP data is exceptionally large,
we partition it either by collector or by peer based on which
method minimizes the number of segments while staying
within the token limit. Suppose the data is divided into M
segments, where a segment is either BGP data of a collector
or a peer. BEAR is then applied to each segment to generate
M initial reports, R = {r1, r2, . . . , rM}, where each report
ri is generated from the BGP data of the ith segment. These
reports are progressively summarized in batches of x reports
(with x ≪ M ). Specifically, the backbone LLM summarizes
each batch of x reports into a single report, yielding a new
set R1 = {r11, r12, . . . , r1N}, where N = ⌈M/x⌉. To obtain
the summarized report r1j , the backbone LLM is instructed
to summarize x random reports from R with a focus on
information relevant to the BGP anomaly. This summarization
is iterated k times until only one final report remains in Rk,
which serves as the comprehensive explanation of the anomaly.

We test this method on Ee and its anonymous counterpart
with x = 5. In both cases, partitioning by peer (yielding
M = 576) is necessary, as partitioning by collector does not
sufficiently reduce the data size and still exceeds the token
limit. The summarization process is repeated k = 4 times to
produce the final report. The final reports generated using this
strategy are accurate. However, high computational costs limit
our experiments to Ee and its anonymous counterpart. One
such report is presented in Figure 13.

Additionally, we assess BEAR using different large lan-
guage models, with the results depicted in Figure 14. When
employing Claude-3.7-Sonnet, BEAR attains an accuracy of
100% demonstrating performance comparable to BEAR uti-
lizing GPT-4o. In contrast, BEAR achieves only 80% accu-
racy with Llama-3.3-70B-Instruct, which is lower than the



Fig. 14. Performance of BEAR using different LLM as backbone model.
Evaluated on 10 real events,10 anonymized real events, and 34 synthetic
events.

performance observed with GPT-4o but still surpasses the
baseline methods implemented with GPT-4o. With Claude-
3.7-Sonnet, BEAR processes an average of 151,923 input
tokens and 3,065 output tokens per BGP report. In the case
of Llama-3.3-70B-Instruct, BEAR processes an average of
110,272 input tokens and 4,338 output tokens per report. Since
BEAR depends on the reasoning capabilities of LLMs, those
that excel in this area are more appropriate for explaining BGP
anomalies. As demonstrated in Figure 14, employing an LLM
with reasoning abilities at least comparable to GPT-4o and
Claude-3.7-Sonnet is essential for ensuring the accuracy of
BGP report generation. Moreover, in practical deployments, a
trade-off between accuracy and cost should be considered.

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper presents BEAR, a novel framework that ad-
dresses the critical challenge of explaining BGP anomaly
events. By leveraging the capabilities of LLMs, BEAR trans-
forms raw BGP data into detailed, accurate reports that
provide valuable insights for network operators. Our frame-
work’s multi-step reasoning approach and integration of self-
consistency mechanisms enable high accuracy in anomaly
event explanation, even when data availability is limited.
Furthermore, this paper presents a synthetic data generation
framework that expands evaluation possibilities, mitigating
the scarcity of real-world datasets. Experiments demonstrate
BEAR’s superior performance compared to naive methods,
achieving 100% accuracy on both real and synthetic datasets.
This work not only advances the state of BGP anomaly
detection and explanation but also lays the foundation for inte-
grating LLMs into broader network management applications.

Fig. 15. A diagram to the network operations pipeline.

Looking ahead, a promising future direction is the develop-
ment of a comprehensive network operations pipeline, as in
Figure 15, that integrates anomaly detection, BGP explanation,
and remediation. In this envisioned pipeline, detected BGP
anomalies would be automatically fed into the BEAR frame-
work, which would generate interpretations and recommended
mitigations. These outputs would then be vetted by network
operators and implemented to minimize disruption.

Additionally, BEAR’s approach could be generalized be-
yond networking, particularly by extending graph-based rea-
soning to other domains, such as social network analysis and
financial fraud detection.

Finally, future work may focus on optimizing BEAR’s cost-
efficiency, refining its prompts to further reduce inference
costs, and expanding its applicability to other network pro-
tocols and security applications.
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[18] J. Schlamp, M. Wählisch, T. C. Schmidt, G. Carle, and E. W. Biersack,
“Cair: Using formal languages to study routing, leaking, and interception
in BGP,” arXiv preprint arXiv:1605.00618, 2016.

[19] T. Bühler, A. Milolidakis, R. Jacob, M. Chiesa, S. Vissicchio, and
L. Vanbever, “Oscilloscope: Detecting BGP hijacks in the data plane,”
arXiv preprint arXiv:2301.12843, 2023.

[20] RouteViews. (2013) University of oregon routeviews project. [Online].
Available: https://routeviews.org

[21] RIPE. (2025) RIPE: Routing information service (RIS). [On-
line]. Available: https://www.ripe.net/analyse/internet-measurements/
routing-information-service-ris/

[22] J. Mai, L. Yuan, and C.-N. Chuah, “Detecting BGP anomalies with
wavelet,” NOMS 2008-2008 IEEE Network Operations and Management
Symposium, pp. 465–472, 2008.

[23] B. A. Prakash, N. Valler, D. Andersen, M. Faloutsos, and C. Faloutsos,
“BGP-lens: Patterns and anomalies in internet routing updates,” Proceed-
ings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1315–1324, 2009.

[24] J. Li, D. Dou, Z. Wu, S. Kim, and V. Agarwal, “An internet routing
forensics framework for discovering rules of abnormal BGP events,”
ACM SIGCOMM Computer Communication Review, vol. 35, no. 5, pp.
55–66, 2005.

[25] I. O. de Urbina Cazenave, E. Köşlük, and M. C. Ganiz, “An anomaly
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